简支梁、悬臂梁、外伸梁弯矩及剪力

合集下载

简支梁受力分析力矩剪力计算

简支梁受力分析力矩剪力计算

M
FA
0.83 q 0.4
0.4 2
3150kN.m

四、剪力图和弯矩图
在一般情况下,剪力和弯矩是随着截面的位置不同而变化的。如果取梁的轴线为 x 轴,以坐标 x 表示横截面的位置,则剪力和弯矩可表示为 x 的函数,即
Q Q(x)
M M (x)
上述两函数表达了剪力和弯矩沿梁轴线的变化规律,故分别称为梁的剪力方程和弯矩方程。 为了能一目了然地看出梁各截面上的剪力和弯矩沿梁轴线的变化情况,在设计计算中常把各截
由两段的弯矩方程可知,弯矩图为两条斜直线,由边界条件可得出斜直线上两点的坐标值:
AC 段
简支梁受力分析力矩剪力计算
x1 0 ,
M1 0 ; x1 a ,
M1
Pab l
BC 段
x2 a ,
M2
Pab l

x2
l

M2
0
于是便得到如图 10。1。11(c)所示的横梁的弯矩图。
(5)确定剪力和弯矩的最大值 由图 10。1.11c,结合剪力方程,可以看出,当 a b 时,BC 段 各截面的剪力值最大;当 a b 时,AC 段各截面的剪力值最大。小车行驶时,力 P 作用点的坐标发生 变化,最大剪力值也随之发生变化。小车接近支座 B 点或 A 点时,剪力达到最大值 PQ max P 。
二、梁的计算简图及基本形式
梁上的荷载和支承情况比较复杂,为便与分析和计算,在保证足够精度的前提下,需要对梁进 行力学简化。
(一)、梁的简化
为了绘图的方便,首先对梁本身进行简化,通常用梁的轴线来代替实际的梁.
(二)、荷载分类
作用在梁上的载荷通常可以简化为以下三种类型:
1 、集中荷载

简答简支体系梁桥,悬臂体系梁桥,连续梁桥力学特点

简答简支体系梁桥,悬臂体系梁桥,连续梁桥力学特点

简答简支体系梁桥,悬臂体系梁桥,连续梁桥
力学特点
简支体系梁桥、悬臂体系梁桥以及连续梁桥的力学特点如下:
简支体系梁桥:其结构为静定结构,没有多余的约束,支座位移对结构内力没有影响;支座反力仅有竖向力,没有水平力;结构在均布荷载作用下跨中弯矩最大,挠度曲线为抛物线形式;支座处剪力最大,弯矩为零。

悬臂体系梁桥:和简支梁桥一样,都属于静定体系,其内力不受基础不均匀沉降的影响;从桥的立面上看,在桥墩上只需布置一排沿墩中心布置的支座,从而可减小桥墩的尺寸。

连续梁桥:在支座处增大梁高,减小跨中正弯矩,与简支梁相比,减小跨中正弯矩,使桥梁恒载减小,自重减轻;在跨径大于80m的大跨度预应力混凝土连续梁桥,一般主梁采用变高度形式,高度变化基本与内力变化相适应。

梁的剪力和弯矩剪力图和弯矩图

梁的剪力和弯矩剪力图和弯矩图
2
dF s q dx
dM F S dx
剪力图是水平直线. 弯矩图是斜直线. 弯矩图是水平直线.
2 d M q 2 dx
dF s 0 dx
dM 0 dx
FS C
dM C dx
C 0
C 0
MC
dF s q dx
F S2 x 2
剪力图是斜直线.
弯矩图是二次抛物线.
若x1,x2两截面间无集中力作用,则x2截面上的FS1等于 x1截面上的FS1加上两截面之间分布荷载图的面积.
4.3
例 题
3kN
C
求图示外伸梁中的A、B、C、D、E、 F、G各截面上的内力。
2 kN m 6 kN m
1kN m
A
D
FA
E
F
B
G
FB
1m
1m
1m
1m
1m
1m
1m
1m
4.4
例 题
求图示外伸梁中的1-1、2-2、3 -3、4-4和5-5各截面上的内力
6 kN m
6kN
1
2
q2 kN m
3
外力情况 q<0(向下) 无荷载段
剪力图上 的特征 弯矩图上 的特征
↘(向下斜 水平线 直线) (下凸抛物 斜直线 线)
集中力F 集中力偶 作用处: M作用处: 突变,突 不变 变值为F 有尖点 有突变, 突变值为
M
最大弯矩 剪力为零 可 能的 的截面 截面位置 剪力突变 弯矩突变 的截面 的某一侧

q
A
FA
FA
C
D
B
a
c
b
l
FB
FB
FA a

最全梁的弯矩剪力汇总大表

最全梁的弯矩剪力汇总大表

最全梁的弯矩剪力汇总大表表1 简单载荷下基本梁的剪力图与弯矩图注:外伸梁= 悬臂梁+ 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

简支梁、悬臂梁、外伸梁弯矩及剪力

简支梁、悬臂梁、外伸梁弯矩及剪力

简支梁、悬臂梁、外伸梁弯矩及剪力在我们学习结构工程时,简支梁、悬臂梁和外伸梁是几个必不可少的概念。

这些梁的设计和分析,直接关系到建筑物的安全与稳定。

今天,就让我们深入探讨这几个梁的弯矩和剪力。

一、简支梁简支梁是那种两头支撑,中间自由的梁。

它就像是过了山的飞鸟,飞得自由自在。

咱们先看看弯矩。

这个东西简单来说,就是梁受到的弯曲程度。

简支梁中间受力最大,所以弯矩在中间是最显著的。

想象一下,拿一根木棒,手握两端,中间用力向下压,这时候中间部分就会弯曲得最厉害。

1.1 剪力方面。

简支梁的剪力在支撑处最大。

这就像是吃糖葫芦,越往下吃,甜蜜感越浓。

刚开始的那几口,比较温和。

到最后,咬到竹签,那个感觉就不一样了。

剪力在这里相当于那种“感觉”,它反映了力的传递。

1.2 简支梁的设计也不是随随便便的。

我们需要知道材料的强度,载荷的大小,甚至环境的影响。

你可不能用易碎的材料建一座桥。

做设计的时候,得像是在做一场棋局,提前考虑好每一步,避免失误。

二、悬臂梁说到悬臂梁,大家会想起那种一头固定、一头悬空的梁。

就像高悬的风筝,风一吹就摇摇欲坠。

悬臂梁的弯矩分布非常有趣,靠近固定端的弯矩最大。

想象一下,手拿着一根手电筒,前面照着,后面有个小朋友在拽着。

离你近的地方受力最重,那就是固定端的感觉。

2.1 悬臂梁的剪力也是一大亮点。

固定端的剪力很大,越往悬空的部分,剪力就越小。

这种变化,就像是从高峰滑下来,刚开始的时候速度快,后来逐渐减慢。

2.2 设计悬臂梁时,需要考虑的不仅仅是弯矩和剪力,还有挠度。

挠度就是梁中间的“下垂”程度,太大可不行。

就像是楼梯扶手,如果下垂太厉害,行走时就容易出问题。

想象一下,走楼梯时扶手总是低得让你摸不到,那多尴尬啊。

2.3 此外,悬臂梁还得考虑振动和疲劳。

这东西就像是人在长时间站立后,腿会发麻。

设计得不当,长时间的载荷会导致材料疲劳,最后可能出问题。

三、外伸梁接下来讲讲外伸梁。

这种梁的特点就是一部分突出,像一只探出的手臂。

梁 弯矩图 梁 内力图 (剪力图与弯矩图)

梁 弯矩图 梁 内力图  (剪力图与弯矩图)

简单载荷 梁内力图(剪力图与弯矩图)梁的简图剪力Fs 图弯矩M 图1laFsF F l a F l al -+-F la l a )(-+M2l eMsF lM e +MeM +3laeMsF lM e +Me M lal -e M la +-4lqsF +-2ql 2qlM82ql +2l5lq asF +-la l qa 2)2(-lqa 22M2228)2(l a l qa -+la l qa 2)(2-la l a 2)2(-6lqsF +-30l q 60l qM3920l q +3)33(l-7aFlsF F+Fa-M8aleMsF+eM M9lqs F ql+M22ql -10lqsF 2l q +M620l q -注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征某一段梁上的外力情况 剪力图的特征弯矩图的特征无载荷水平直线斜直线或集中力 F突变 F 转折或或集中力偶eM 无变化 突变e M均布载荷q斜直线抛物线 或零点极值表3 各种约束类型对应的边界条件约束类型 位移边界条件力边界条件(约束端无集中载荷)固定端0=w ,0=θ —简支端0=w0=M 自由端—0=M ,0=S F注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰∙=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

梁的弯曲

梁的弯曲

弯曲的定义:承受的外力作用线垂直于杆轴线。

在这种外力作用下,杆轴线由直线变为曲线。

这种变形称之为弯曲。

平面弯曲:梁变形后的轴线变成一条在纵向对称面内的平面直线,这类弯曲称之为平面弯曲。

按照支撑情况可以把梁分为悬臂梁、简支梁、外伸梁三种。

内力的计算一、内力方程:内力与截面位置坐标(x )间的函数关系式。

Q=Q (x )————剪力方程 M=M (x )————弯矩方程 方法:截面法xY M m la l P Y Q Y A C A⋅=∴=-==∴=∑∑ , 0)( , 0PalAB1. 弯矩:M构件受弯时,横截面上其作用面垂直于截面的内力偶矩。

2. 剪力:Q构件受弯时,横截面上其作用线平行于截面的内力。

二、剪力图与弯矩图 1、求出支座反力2、写出剪力与弯矩的内力方程(含x 的方程)3、将写出的内力方程整理成含x 的已知函数关系,取特殊点描点连线即可。

(端点,与x 、y 轴的坐标点)弯曲构件横截面上的(内力)应力 1、弯矩M ———正应力σz I My=σ(弯曲正应力计算公式)maxZ Z y I W =(Wz —截面的抗弯截面系数) z t W M =max ,σ几种常见截面的 Iz 和 Wz 园截面: 644z d I π=323z d W π=空心截面: )1(6444z απ-=D I )1(3243z απ-=D W矩形截面: 123z bh I = 62z bh W =空心矩形截面: 12123300z bh h b I -= )2//()1212(03300z h bh h b W -=关于正应力的强度校核:① 校核强度: [m a xσ≤zW M② 设计截面尺寸:[m a xσM W z ≥③ 计算许可载荷:[max σz W M ≤2、剪力Q ——剪应力t*=zzbI QS 1τ其中Q 为截面剪力;S z 为y 点以下的面积对中性轴之静矩 Iz 为整个截面对z 轴之惯性矩;b 为y 点处截面宽度。

结构力学弯矩

结构力学弯矩

结构力学-弯矩————————————————————————————————作者:————————————————————————————————日期:就要对结构的弯矩和剪力图有个大概的判断。

下面总结各种结构弯矩图的绘制及图例:一、方法步骤1、确定支反力的大小和方向(一般情况心算即可计算出支反力)●悬臂式刚架不必先求支反力;●简支式刚架取整体为分离体求反力;●求三铰式刚架的水平反力以中间铰C的某一边为分离体;●对于主从结构的复杂式刚架,注意“先从后主”的计算顺序;●对于复杂的组合结构,注意寻找求出支反力的突破口。

2、对于悬臂式刚架,从自由端开始,按照分段叠加法,逐段求作M图(M图画在受拉一侧);对于其它形式的刚架,从支座端开始,按照分段叠加法,逐段求作M图(M图画在受拉一侧)。

二、观察检验M图的正确性1、观察各个关键点和梁段的M图特点是否相符●铰心的弯矩一定为零;●集中力偶作用点的弯矩有突变,突变值与集中力偶相等;●集中力作用点的弯矩有折角;●均布荷载作用段的M图是抛物线,其凹凸方向与荷载方向要符合“弓箭法则”;2、结构中的链杆(二力杆)没有弯矩;3、结构中所有结点的杆端弯矩必须符合平衡特点。

各种结构弯矩图例如下:ﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫﻫ746简支梁、悬臂梁、外伸梁弯矩及剪力2014-08-1111:43 系统分类:管理文章专业分类:建筑结构浏览数:6835静定梁有三种形式:简支梁、悬臂梁、外伸梁。

这三种梁的支座反力和弯矩、剪力只要建立平衡方程,就可以求解。

图1.5.1左右两列分别是简支梁在均布荷载和集中荷载作用下的计算简图、弯矩图和剪力图。

图1.5.2左右两列分别是简支梁在2个对称集中荷载作用和一个非居中集中荷载作用下的计算简图、弯矩图和剪力图。

图1.5.3左右两列分别是悬臂梁在均布荷载作用和一个端点集中荷载作用下的计算简图、弯矩图和剪力图。

各类梁的弯矩力计算汇总表

各类梁的弯矩力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图梁的简图剪力Fs 图弯矩M 图1laFsF F l a F l al -+-F la l a )(-+M2l eMsF lM e +MeM +3laeMsF lM e +Me M lal -e M la +-4lqsF +-2ql 2qlM82ql +2l5lqasF +-la l qa 2)2(-lqa 22M2228)2(l a l qa -+la l qa 2)(2-la l a 2)2(-6lqsF +-30l q 60l qM3920l q +3)33(l7aFlsF F+Fa-M8aleMsF+eM M9lqs F ql+M22ql -10lqsF 2l q +M620l q -注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·mV B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

简支梁、悬臂梁、外伸梁弯矩及剪力

简支梁、悬臂梁、外伸梁弯矩及剪力

简支梁、悬臂梁、外伸梁弯矩及剪力在结构力学中,简支梁、悬臂梁和外伸梁是常见的梁结构形式,它们在工程中有着广泛的应用。

要理解和设计这些梁结构,就必须清楚地了解它们所承受的弯矩和剪力的分布规律及计算方法。

首先,我们来看看简支梁。

简支梁是指梁的两端分别由铰支座支撑,其一端可以自由转动,另一端可以水平移动但不能竖向移动。

当简支梁上承受均布荷载时,其弯矩呈抛物线分布。

在梁的跨中,弯矩达到最大值,其值为qL²/8(其中q 为均布荷载,L 为梁的跨度)。

而剪力则是线性分布的,在梁的两端支座处,剪力达到最大值,其值分别为 ±qL/2。

如果简支梁上承受集中荷载,那么在集中荷载作用点处,弯矩会发生突变。

比如,一个集中力P 作用在简支梁跨中时,跨中弯矩为PL/4。

接下来,我们说说悬臂梁。

悬臂梁是一端固定,另一端自由的梁结构。

当悬臂梁承受均布荷载时,弯矩沿梁长线性增加,在自由端达到最大值,其值为 qL²/2。

剪力则保持不变,等于均布荷载 q 乘以梁的长度L。

若是悬臂梁上有集中荷载作用,在集中荷载作用点处,弯矩也会发生突变。

例如,一个集中力 P 作用在悬臂梁自由端时,自由端的弯矩为 PL。

最后,再讲讲外伸梁。

外伸梁是在简支梁的基础上,一端或两端伸出支座之外的梁结构。

外伸梁的弯矩和剪力分布比较复杂,要根据具体的荷载情况和外伸长度来确定。

但总体来说,外伸部分的弯矩和剪力与简支部分是相互影响的。

在实际工程中,准确计算这三种梁的弯矩和剪力至关重要。

因为弯矩和剪力直接关系到梁的强度和稳定性,如果计算不准确,可能会导致梁的破坏,从而影响整个结构的安全性。

例如,在建筑结构中,梁要承受楼板传来的荷载。

如果梁的弯矩和剪力计算错误,可能会导致梁在使用过程中出现裂缝、变形甚至断裂。

在桥梁工程中,桥梁的主梁通常也是以梁的形式存在。

如果对弯矩和剪力估计不足,可能会使桥梁在车辆荷载作用下发生过大的变形,影响行车安全和桥梁的使用寿命。

梁 弯矩图 梁 内力图 (剪力图与弯矩图)

梁 弯矩图 梁 内力图  (剪力图与弯矩图)

简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5标准标准标准标准标准标准标准注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

实用文档2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

梁弯矩图梁内力图(剪力图与弯矩图)

梁弯矩图梁内力图(剪力图与弯矩图)

简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

.\2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

简支梁、悬臂梁、外伸梁弯矩及剪力

简支梁、悬臂梁、外伸梁弯矩及剪力

简支梁、悬臂梁、外伸梁弯矩及剪力
静定梁有三种形式:简支梁、悬臂梁、外伸梁。

这三种梁的支座反力和弯矩、剪力只要建立平衡方程,就可以求解。

图1.5.1左右两列分别是简支梁在均布荷载和集中荷载作用下的计算简图、弯矩图和剪力图。

图1.5.2左右两列分别是简支梁在2个对称集中荷载作用和一个非居中集中荷载作用下的计算简图、弯矩图和剪力图。

图1.5.3左右两列分别是悬臂梁在均布荷载作用和一个端点集中荷载作用下的计算简图、弯矩图和剪力图。

图1.5.4左右两列分别是外伸梁在集中荷载均布荷载作用和
均布荷载作用下的计算简图、弯矩图和剪力图。

从图1.5.1~图1.5.4,我们看到,正确的弯矩图和正确的剪力图之间有如下对应关系:每个区段从左到右,弯矩下坡,剪力为正;弯矩上坡,剪力为负;弯矩为水平线时,对应区段的剪力为零;在均布荷载作用下,剪力为零所对应的截面,弯矩最大;在集中荷载作用下,弯矩最大值一般在集中荷载作用点,该点的剪力有突变,突变的绝对值之和等于集中荷载的大小。

如果不满足这个对应关系,那么弯矩图和剪力图必有一个画错了,或者两个全不对。

多跨连续梁是超静定梁,单单用平衡方程不能求解,还需要“变形协调条件”才能解联立方程进行求解。

图1.5.5是某多跨连续梁在均布荷载力作用下的变形简图、受力钢筋配置区域和弯矩图示意图。

负弯矩表示截面的上翼缘受拉、下翼缘受压;正弯矩表示截面下翼缘受拉、上翼缘受压;反弯点截面,该点弯矩等于零,在这个截面,上下截面既不受压,也不受拉。

机械基础4-4 构件弯曲强度计算

机械基础4-4 构件弯曲强度计算

FQ x2 RA F
A右截面
C左截面 C右截面 B左截面
FQA RA 14.3KN
FQC RA 14.3KN FQC RB 5.7KN
FQB RB 5.7KN
3.、画弯矩图 列出AC、CD和DB三段弯矩方程 AC段 M x1 RA x1 0 x1 a CD段 M x 2 R A x2 F x2 a
1.剪力 FQ 沿着杆件的截面切线方向上的内力。 2.弯矩 M 弯曲杆件横截面上的内力偶矩。
FQ ( x) F ( x)
4.弯矩正、负号规定
使截面产生上凹下凸变形的弯矩为正,也就是保留左段向 上的外力和顺时针转向的力偶对截面产生正的弯矩; 保留右段向上的外力和逆时针转向的力偶对截面产生正的 弯矩。反之为负。 弯矩方程为
五、梁弯曲时的强度条件 1.纯弯曲的应力 如果梁上的剪力为零,则该梁称为纯弯曲梁。 1)中性层 2)中性轴 中性层与横截面的交线称为中性轴 3)梁的正应力的分布规律
以中性轴为分界线,梁上的应力分为受 拉区和受压区,正弯矩时中性层以上受 压,中性层以下受拉,负弯矩时中性层 以下受压,中性层以上受拉,正应力从 中性层到梁的上、下边缘成线性规律分 布,中性轴上应力为零,最大的正应力 发生在梁的上、下边缘点,正应力的方 向垂直于截面。
FQ x P 0 x L
2)运用弯矩方程绘制弯矩图
M x Px 0 x L
例3 图示简支梁,已知:集中力F=20KN,力偶矩M=20Nm, 梁的跨度L=7m, a=3m,,b=4m,c=2m。不计梁的自重。画出该 梁的剪力图和弯矩图。
解: 1、首先求作用在梁上的外载荷 1)研究对象AB梁
单位(mm3) 单位(mm) 单位(mm) 单位(mm) 单位(mm)

梁弯矩图梁内力图(剪力图和弯矩图)

梁弯矩图梁内力图(剪力图和弯矩图)

简单载荷梁力图(剪力图与弯矩图)各种载荷下剪力图与弯矩图的特征表2表3 各种约束类型对应的边界条件常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

结构力学公式大全

结构力学公式大全

结构力学公式大全1、常用截面几何与力学特征表注:1.I称为截面对主轴(形心轴)的截面惯性矩(mm4)。

基本计算公式如下:2.W称为截面抵抗矩(mm3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:3.i称截面回转半径(mm),其基本计算公式如下:4.上列各式中,A为截面面积(mm2),y为截面边缘到主轴(形心轴)的距离(mm),I为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2、单跨梁的内力及变形表2.1 简支梁的反力、剪力、弯矩、挠度2.2 悬臂梁的反力、剪力、弯矩和挠度2.3 一端简支另一端固定梁的反力、剪力、弯矩和挠度2.4 两端固定梁的反力、剪力、弯矩和挠度2.5 外伸梁的反力、剪力、弯矩和挠度3.等截面连续梁的内力及变形表3.1 二跨等跨梁的内力和挠度系数注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql;。

2.在集中荷载作用下:M=表中系数×Fl;V=表中系数×F;。

[例1] 已知二跨等跨梁l=5m,均布荷载q=11.76kN/m,每跨各有一集中荷载F=29.4kN,求中间支座的最大弯矩和剪力。

[解] MB支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN·mVB左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l=6m,均布荷载q=11.76kN/m,求边跨最大跨中弯矩。

[解] M1=0.080×11.76×62=33.87kN·m。

3.2 三跨等跨梁的内力和挠度系数注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql;。

各种梁的弯矩计算

各种梁的弯矩计算

各种梁的弯矩计算弯曲变形:杆件在垂直于其轴线的载荷作用下,使原为直线的轴线变为曲线的变形。

梁Beam——以弯曲变形为主的直杆称为直梁,简称梁。

弯曲bending平面弯曲plane bending7.1.2梁的计算简图载荷:(1)集中力concentrated loads(2)集中力偶force-couple(3)分布载荷distributed loads7.1.3梁的类型(1)简支梁simple supported beam 上图(2)外伸梁overhanging beam(3)悬臂梁cantilever beam7.2 梁弯曲时的内力7.2.1梁弯曲时横截面上的内力——剪力shearing force和弯矩bending moment问题:任截面处有何内力?该内力正负如何规定?例7-1 图示的悬臂梁AB ,长为l ,受均布载荷q 的作用,求梁各横截面上的内力。

求内力的方法——截面法截面法的核心——截开、代替、平衡内力与外力平衡解:为了显示任一横截面上的内力,假想在距梁的左端为x处沿m-m截面将梁切开。

梁发生弯曲变形时,横截面上同时存在着两种内力。

剪力——作用线切于截面、通过截面形心并在纵向对称面内。

弯矩——位于纵向对称面内。

剪切弯曲——横截面上既有剪力又有弯矩的弯曲。

纯弯曲——梁的横截面上只有弯矩而没有剪力。

工程上一般梁(跨度L 与横截面高度h 之比L/h >5),其剪力对强度和刚度的影响很小,可忽略不计,故只需考虑弯矩的影响而近似地作为纯弯曲处理。

规定:使梁弯曲成上凹下凸的形状时,则弯矩为正;反之使梁弯曲成下凹上凸形状时,弯矩为负。

7.2.2弯矩图bending moment diagrams弯矩图:以与梁轴线平行的坐标x表示横截面位置,纵坐标y按一定比例表示各截面上相应弯矩的大小。

例7-2 试作出例7-1中悬臂梁的弯矩图。

解(1)建立弯矩方程由例7-1知弯矩方程为(2)画弯矩图弯矩方程为一元二次方程,其图象为抛物线。

各类梁的弯矩剪力计算汇总表-剪力计算公式一览表

各类梁的弯矩剪力计算汇总表-剪力计算公式一览表

表 1 简单载荷下基本梁的剪力图与弯矩图注:外伸梁= 悬臂梁+ 端部作用集中力偶的简支梁2.单跨梁的内力及变形表(表2-6~表2-10)1)简支梁的反力、剪力、弯矩、挠度表2-62)悬臂梁的反力、剪力、弯矩和挠度表2-73)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-84)两端固定梁的反力、剪力、弯矩和挠度表2-95 )外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14 )1)二跨等跨梁的内力和挠度系数表2-11均布荷载 q =11.76kN/m ,每跨各有一集中荷载 F =29.4kN ,求中间支座的最大弯矩和剪力。

M B 支=(-0.125×11.76×52)+(- 0.188×29.4×5)=(- 36.75)+( -27.64)=- 64.39kN ·mV B 左=(-0.625×11.76×5)+(- 0.688×29.4)=(- 36.75)+(- 20.23)=- 56.98kN[例 2] 已知三跨等跨梁 l = 6m ,均布荷载 q =11.76kN/m ,求边跨最大跨中弯矩 [解 ] M1 = 0.080×11.76×62=33.87kN ·m 。

2)三跨等跨梁的内力和挠度系数 表 2-12注: 1.在均布荷载作用下: M =表中系数×4ql 2;V =表中系数× ql ; w 表中系数ql。

100EI Fl 3Fl ;V =表中系数× F ; w 表中系数 Fl。

100EI2.在集中荷载作用下: M =表中系数×[例 1] 已知二跨等跨梁 l =5m ,[解]f ⅜ 跨内帰大 支座弯矩 弯矩荷載图VCXAflM 2-0.5500 -O I OSo-O (O 5Q0.4500.550(Jf≡¾-0,050 -0.500 D.0751-0.050 -0.050 -0,0500,5000.050UHiD跨度中点挠度-0.45(J 0,990 -0.625 0.990L A 4-L073L054-0÷117-0.033 0.383D-0.C67 0.0170.433f t J÷175 -0.150一(L 1500.350-0,075 -0.0750.425ΓJ⅛3.175 -0.075-0.075-0,07S0.050-0.3131 0,677 -0.313λ1620.1370 + 175-o r osα 0,325-0.617-0.4170*033 0.5β3 0.033-0.5670.0830.5730.365 -0.208-O.on-0,017 0.885 -0.313 0.104-0.650 0.500"-W0.650-0,5750 0.575-0.425E146 1.6150.208 1.146- 0,075- 0,50C 0.5000.0750.075-0Λ69-0.9371U46L 615-0.469-0,675-0.375 0,6250.0500.0500.9900.677 L 0.3124 注:1.在均布荷载作用下:M =表中系数× ql2;V=表中系数× ql;w表中系数ql 100EI2.在集中荷载作用下:M =表中系数× Fl;V=表中系数× F;w 表中系数Fl。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简支梁、悬臂梁、外伸梁弯矩及剪力
静定梁有三种形式:简支梁、悬臂梁、外伸梁。

这三种梁的支座反力和弯矩、剪力只要建立平衡方程,就可以求解。

图1.5.1左右两列分别是简支梁在均布荷载和集中荷载作用下的计算简图、弯矩图和剪力图。

图1.5.2左右两列分别是简支梁在2个对称集中荷载作用和一个非居中集中荷载作用下的计算简图、弯矩图和剪力图。

图1.5.3左右两列分别是悬臂梁在均布荷载作用和一个端点集中荷载作用下的计算简图、弯矩图和剪力图。

图1.5.4左右两列分别是外伸梁在集中荷载均布荷载作用和
均布荷载作用下的计算简图、弯矩图和剪力图。

从图1.5.1~图1.5.4,我们看到,正确的弯矩图和正确的剪力图之间有如下对应关系:每个区段从左到右,弯矩下坡,剪力为正;弯矩上坡,剪力为负;弯矩为水平线时,对应区段的剪力为零;在均布荷载作用下,剪力为零所对应的截面,弯矩最大;在集中荷载作用下,弯矩最大值一般在集中荷载作用点,该点的剪力有突变,突变的绝对值之和等于集中荷载的大小。

如果不满足这个对应关系,那么弯矩图和剪力图必有一个画错了,或者两个全不对。

多跨连续梁是超静定梁,单单用平衡方程不能求解,还需要“变形协调条件”才能解联立方程进行求解。

图1.5.5是某多跨连续梁在均布荷载力作用下的变形简图、受力钢筋配置区域和弯矩图示意图。

负弯矩表示截面的上翼缘受拉、下翼缘受压;正弯矩表示截面下翼缘受拉、上翼缘受压;反弯点截面,该点弯矩等于零,在这个截面,上下截面既不受压,也不受拉。

相关文档
最新文档