上海市七年级(初一)数学期末考试试卷(难度相当适宜)
2023-2024学年上海市普陀区七年级(上)期末数学试卷及答案解析
![2023-2024学年上海市普陀区七年级(上)期末数学试卷及答案解析](https://img.taocdn.com/s3/m/e65338042a160b4e767f5acfa1c7aa00b52a9d07.png)
2023-2024学年上海市普陀区七年级(上)期末数学试卷一、单选题(本大题共6题,每题2分,满分12分)1.(2分)下列计算结果正确的是()A.(﹣a3)2=﹣a6B.(a﹣b)2=a2﹣b2C.a6÷a3=a3D.3a2+2a3=5a52.(2分)下列判断中错误的是()A.3a2bc与﹣bca2是同类项B.3x2﹣y+5xy2是三次三项式C.单项式﹣x3y2的系数是﹣1D.是分式3.(2分)下列从左到右的变形中,是因式分解的是()A.6x2y=2x•3xyB.2a3b﹣4a2b=2a2b(a﹣2)C.(a+b)2=a2+2ab+b2D.a2﹣2a﹣3=a(a﹣2)﹣34.(2分)如果当x=﹣1时,分式M的值为0,那么M可以是()A.B.C.D.5.(2分)下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.6.(2分)如果x﹣2y+2=0,那么x2﹣xy+y2﹣3的值是()A.﹣2B.﹣1C.1D.0二、填空题(本大题共12题,每题3分,满分36分)7.(3分)用代数式表示:“x与y的2倍的和”.8.(3分)单项式a3bc2的次数是.9.(3分)计算:(x﹣5y)(2x+y)=.10.(3分)计算:(4a3﹣a2)÷a2=.11.(3分)因式分解:3a2b﹣9ab=.12.(3分)因式分解:am+an﹣bm﹣bn=.13.(3分)3D打印技术日渐普及,打印出的高精密游标卡尺误差只有±0.000063米.0.000063这个数用科学记数法可以表示为.14.(3分)如果方程=4有增根,那么增根是.15.(3分)计算:=.16.(3分)如果多项式x2+mx﹣6可以因式分解为(x+p)(x+q),其中m、p、q都为整数,那么m的最大值是.17.(3分)如图,在△ABC中,点E、F分别在边AB、BC上,将△BEF沿EF所在的直线折叠,使点B落在点D处,将线段DF沿着BC向左平移若干单位长度后,恰好能与边AC重合,联结AD.如果阴影部分的周长为18,那么BC=.18.(3分)如图,已知△ABC和△DBF是形状、大小完全相同的两个直角三角形,点B、C、D在同一条直线上,点B、A、F也在同一条直线上,△ABC的位置不动,将△DBF 绕点B顺时针旋转x°(0<x<180),点F的对应点为点F1,点D的对应点为点D1,当∠F1BC=∠ABF1时,∠D1BC的度数为.三、简答题(本大题共6题,每题4分,满分24分)19.(4分)计算:(a+1)2﹣(a+4)(a﹣4).20.(4分)计算:a2•a4+(﹣2a2)3+a8÷a2.21.(4分)因式分解:a2﹣2ab+b2﹣1.22.(4分)因式分解:(x2﹣2x)2﹣2(x2﹣2x)﹣3.23.(4分)计算:.24.(4分)解方程:=1.四、解答题(本大题共4题,第25、26题每题6分,第27、28题每题8分,满分28分)25.(6分)化简:(1﹣a+)÷,然后从﹣1,1,﹣2,2中取一个你认为合适的数作为a的值,再代入求值.26.(6分)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)画出△AB1C1,使△AB1C1与△ABC关于直线MN成轴对称;画出△AB2C2,使△AB2C2与△ABC关于点A成中心对称.(2)在第(1)小题的基础上,联结B1B2,四边形AC1B1B2的面积为.(直接写出答案)27.(8分)金秋时节,七年级的同学组织去公园秋游,从景区A出发到相距15千米的景区B,公园有脚踏车和电瓶车两种交通工具可供租用,一部分学生骑脚踏车从A景区先出发,过了半小时后,其余学生乘电瓶车出发,结果他们同时到达B景区.假设他们全程都保持匀速前行,且已知乘电瓶车学生的速度是骑脚踏车的2倍,请问骑脚踏车学生的速度为每小时多少千米?28.(8分)阅读下列材料,并完成相应任务.教材第九章探索整式乘法法则时,我们用不同方法表示同一个图形的面积,直观地理解乘法法则.如图1,现有4张大小形状相同的直角三角形纸片,三边长分别是a、b、c,将它们拼成如图2的大正方形.(1)观察:图2中,大正方形的面积可以用(a+b)2表示,也可以用含a、b、c的代数式表示为,那么可以得到等式:.整理后,得到a、b、c之间的数量关系:a2+b2=c2,这就是著名的“勾股定理”,它反映了直角三角形的三边关系,即直角三角形的两直角边a、b与斜边c所满足的关系式.(2)思考:爱动脑的小明通过图2得到启示,发现其它图形也能验证“勾股定理”,请你帮助小明画出该图形.(画出一种即可)(3)应用:如图3,在直角三角形ABC中,∠C=90°,AC=3,BC=4,那么AB=,点D为射线BC上一点,将△ACD沿AD所在直线翻折,点C的对应点为点C1,如果点C1在射线BA上,那么CD=.(直接写出答案)2023-2024学年上海市普陀区七年级(上)期末数学试卷参考答案与试题解析一、单选题(本大题共6题,每题2分,满分12分)1.(2分)下列计算结果正确的是()A.(﹣a3)2=﹣a6B.(a﹣b)2=a2﹣b2C.a6÷a3=a3D.3a2+2a3=5a5【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:(﹣a3)2=a6,故选项A错误,(a﹣b)2=a2﹣2ab+b2,故选项B错误,a6÷a3=a3,故选项C正确,3a2+2a3不能合并,故选项D错误,故选:C.【点评】本题考查同底数幂的乘除法、幂的乘方与积的乘方、合并同类项、完全平方公式,解答本题的关键是明确它们各自的计算方法.2.(2分)下列判断中错误的是()A.3a2bc与﹣bca2是同类项B.3x2﹣y+5xy2是三次三项式C.单项式﹣x3y2的系数是﹣1D.是分式【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【解答】解:A、3a2bc与﹣bca2是同类项,正确,故不符合题意;B、3x2﹣y+5xy2是三次三项式,正确,故不符合题意;C、单项式﹣x3y2的系数是﹣1,正确,故不符合题意;D、是整式,错误,故符合题意.故选:D.【点评】主要考查了整式的有关概念及分式的定义.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.3.(2分)下列从左到右的变形中,是因式分解的是()A.6x2y=2x•3xyB.2a3b﹣4a2b=2a2b(a﹣2)C.(a+b)2=a2+2ab+b2D.a2﹣2a﹣3=a(a﹣2)﹣3【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、6x2y不是多项式,故A不符合题意;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、是整式的乘法,故C不符合题意;D、等式右边不是整式积的形式,故不是分解因式,故D不符合题意;故选:B.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积.4.(2分)如果当x=﹣1时,分式M的值为0,那么M可以是()A.B.C.D.【分析】直接利用分式的值为零则分子为零,分母不为零进而得出答案.【解答】解:A.当x=﹣1时,分式没有意义,故本选项不符合题意;B.当x=﹣1时,分式没有意义,故本选项不符合题意;C.当x=﹣1时,分式的值为0,故本选项符合题意;D.当x=﹣1时,分式没有意义,故本选项不符合题意.故选:C.【点评】此题主要考查了分式的值为零的条件,正确把握相关定义是解题关键.5.(2分)下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A、原图是轴对称图形,不是中心对称图形,故此选项不符合题意;B、原图是中心对称图形,不是轴对称图形,故此选项符合题意;C、原图既是中心对称图形,又是轴对称图形,故此选项不符合题意;D、原图是轴对称图形,不是中心对称图形,故此选项不符合题意.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.6.(2分)如果x﹣2y+2=0,那么x2﹣xy+y2﹣3的值是()A.﹣2B.﹣1C.1D.0【分析】由已知条件可得x﹣2y=﹣2,将原式变形后代入数值计算即可.【解答】解:∵x﹣2y+2=0,∴x﹣2y=﹣2,∴x2﹣xy+y2﹣3=(x2﹣4xy+4y2)﹣3=(x﹣2y)2﹣3=×(﹣2)2﹣3=1﹣3=﹣2,故选:A.【点评】本题考查代数式求值,将原式进行正确的变形是解题的关键.二、填空题(本大题共12题,每题3分,满分36分)7.(3分)用代数式表示:“x与y的2倍的和”x+2y.【分析】根据题意可以用相应的代数式表示出题目中对的语句,本题得以解决.【解答】解:x与y的2倍的和是:x+2y,故答案为:x+2y.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.8.(3分)单项式a3bc2的次数是6.【分析】单项式中所有字母的次数之和即为该单项式的次数,据此即可求得答案.【解答】解:单项式a3bc2的次数是3+1+2=6,故答案为:6.【点评】本题考查单项式的次数,熟练掌握其定义是解题的关键.9.(3分)计算:(x﹣5y)(2x+y)=2x2﹣9xy﹣5y2.【分析】多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加,根据多项式乘多项式的法则计算即可.【解答】解:(x﹣5y)(2x+y)=2x2+xy﹣10xy﹣5y2=2x2﹣9xy﹣5y2.故答案为:2x2﹣9xy﹣5y2.【点评】本题考查了多项式乘多项式,解题的关键是熟记法则,运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.10.(3分)计算:(4a3﹣a2)÷a2=4a﹣1.【分析】根据多项式除以单项式的运算法则计算即可.【解答】解:(4a3﹣a2)÷a2=4a3÷a2﹣a2÷a2=4a﹣1.故答案为:4a﹣1.【点评】本题主要考查了整式的除法,熟记多项式除以单项式的运算法则是解答本题的关键.11.(3分)因式分解:3a2b﹣9ab=3ab(a﹣3).【分析】提取公因式,即可得出答案.【解答】解:3a2b﹣9ab=3ab(a﹣3),故答案为:3ab(a﹣3).【点评】本题考查了因式分解,掌握因式分解的各种方法的特点是解此题的关键.12.(3分)因式分解:am+an﹣bm﹣bn=(m+n)(a﹣b).【分析】把前两项分为一组,后两项分为一组,然后再进行分解即可解答.【解答】解:am+an﹣bm﹣bn=(am+an)﹣(bm+bn)=a(m+n)﹣b(m+n)=(m+n)(a﹣b),故答案为:(m+n)(a﹣b).【点评】本题考查了因式分解﹣分组分解法,熟练掌握因式分解﹣分组分解法是解题的关键.13.(3分)3D打印技术日渐普及,打印出的高精密游标卡尺误差只有±0.000063米.0.000063这个数用科学记数法可以表示为 6.3×10﹣5.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000063=6.3×10﹣5,故答案为:6.3×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(3分)如果方程=4有增根,那么增根是﹣2.【分析】将原方程等号左边通分,若它有增根,其分母为零,求出此时x的值即可.【解答】解:∵原方程可整理为=4,它有增根,∴x+2=0,∴x=﹣2.故答案为:﹣2.【点评】本题考查分式方程的增根,理解并掌握增根的定义是本题的关键.15.(3分)计算:=﹣1.【分析】利用分式的加减法则计算即可.【解答】解:原式=﹣==﹣1,故答案为:﹣1.【点评】本题考查分式的加减运算,熟练掌握相关运算法则是解题的关键.16.(3分)如果多项式x2+mx﹣6可以因式分解为(x+p)(x+q),其中m、p、q都为整数,那么m的最大值是5.【分析】根据十字相乘法的分解方法和特点可知m=p+q,pq=﹣6.【解答】解:﹣6可以分成:﹣1×6,1×(﹣6),﹣2×3,2×(﹣3),3×(﹣2),﹣3×2,而﹣1+6=5,1+(﹣6)=﹣5,﹣2+3=1,2+(﹣3)=﹣1,3+(﹣2)=1,﹣3+2=﹣1,因为5>1>﹣1>﹣5,=p+q=5.所以m最大故答案为:5.【点评】本题主要考查十字相乘法分解因式,对常数项的不同分解是解本题的关键.17.(3分)如图,在△ABC中,点E、F分别在边AB、BC上,将△BEF沿EF所在的直线折叠,使点B落在点D处,将线段DF沿着BC向左平移若干单位长度后,恰好能与边AC重合,联结AD.如果阴影部分的周长为18,那么BC=9.【分析】由折叠性质得DF=BF,四边形ADFC为平行四边形,AD=FC,再由BC=BF+FC,可得四边形ADFC的周长为:2×(DF+FC),据此解答即可.【解答】解:∵△BEF沿EF折叠点B落在点D处,∴DF=BF,∵DF沿BC向右平移若干单位长度后恰好能与边AC重合,∴四边形ADFC为平行四边形(DF∥AC且DF=AC),∴AD=FC,∵BC=BF+FC,∴2×(DF+FC)=2×BC=18,∴BC=9,∴故答案为:9.【点评】题主要考查了翻折及平移变换,解题的关键是掌握折叠及平移的性质,求出DF+FC=10.18.(3分)如图,已知△ABC和△DBF是形状、大小完全相同的两个直角三角形,点B、C、D在同一条直线上,点B、A、F也在同一条直线上,△ABC的位置不动,将△DBF 绕点B顺时针旋转x°(0<x<180),点F的对应点为点F1,点D的对应点为点D1,当∠F1BC=∠ABF1时,∠D1BC的度数为112.5°或45°.【分析】分两种情形:当BF1在BC的上方时,当BF1在BC的下方时,分别求解.【解答】解:当BF1在BC的上方时,∵∠F1BC=∠ABF1,∴∠CBF1=∠CBF=22.5°,∴∠CBD1=∠CBF1+∠F1BD1=22.5°+90°=112.5°.当BF1在BC的下方时,同法可得∠CBD1=45°.故答案为:112.5°或45°.【点评】本题考查作图﹣旋转变换,解题的关键是理解题意,学会用分类讨论的射线思考问题.三、简答题(本大题共6题,每题4分,满分24分)19.(4分)计算:(a+1)2﹣(a+4)(a﹣4).【分析】利用完全平方公式及平方差公式计算即可.【解答】解:原式=a2+2a+1﹣a2+16=2a+17.【点评】本题考查完全平方公式及平方差公式,此为基础且重要知识点,必须熟练掌握.20.(4分)计算:a2•a4+(﹣2a2)3+a8÷a2.【分析】根据幂的运算法则计算求值即可.【解答】解:原式=a6+(﹣8a6)+a6=﹣6a6.【点评】本题考查了幂的运算法则:同底数幂相乘(除),底数不变指数相加(减);幂的乘方,底数不变指数相乘;积的幂等于幂的积.掌握幂的运算法则是解题的关键.21.(4分)因式分解:a2﹣2ab+b2﹣1.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2﹣2ab+b2可组成完全平方公式,可把前三项分为一组.【解答】解:a2﹣2ab+b2﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).【点评】本题主要考查了非负数的性质和分组分解法分解因式,用分组分解法进行因式分解的难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组.22.(4分)因式分解:(x2﹣2x)2﹣2(x2﹣2x)﹣3.【分析】把x2﹣2x看成一个整体,利用十字相乘法分解,然后利用十字相乘法和完全平方公式分解即可.【解答】解:原式=(x2﹣2x﹣3)(x2﹣2x+1)=(x﹣3)(x+1)(x﹣1)2.【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行多次因式分解,分解因式一定要彻底.23.(4分)计算:.【分析】根据零指数幂,负整数指数幂,有理数的乘方运算求解即可.【解答】解:=﹣1+1+4=4.【点评】本题考查了零指数幂,负整数指数幂,有理数的乘方,有理数的混合运算,熟练掌握这些知识是解题的关键.24.(4分)解方程:=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+2=x2+2x,解得:x=1,经检验x=1是分式方程的解,∴分式方程的解为x=1.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.四、解答题(本大题共4题,第25、26题每题6分,第27、28题每题8分,满分28分)25.(6分)化简:(1﹣a+)÷,然后从﹣1,1,﹣2,2中取一个你认为合适的数作为a的值,再代入求值.【分析】先利用异分母分式加减法法则计算括号里,再算括号外,然后把a的值代入化简后的式子进行计算,即可解答.【解答】解:原式=[﹣(a﹣1)]•=•=•=•=﹣(a+1)=﹣a﹣1,∵a+1≠0,a+2≠0,a﹣2≠0,∴a≠﹣1,a≠﹣2,a≠2,∴当a=1时,原式=﹣1﹣1=﹣2.【点评】本题考查了分式的化简求值,准确熟练地进行计算是解题的关键.26.(6分)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)画出△AB1C1,使△AB1C1与△ABC关于直线MN成轴对称;画出△AB2C2,使△AB2C2与△ABC关于点A成中心对称.(2)在第(1)小题的基础上,联结B1B2,四边形AC1B1B2的面积为13.(直接写出答案)【分析】(1)根据轴对称的性质和中心对称的性质作图即可.(2)利用割补法求四边形的面积即可.【解答】解:(1)如图,△AB1C1和△AB2C2即为所求.(2)四边形AC1B1B2的面积为=13.故答案为:13.【点评】本题考查作图﹣轴对称变换、中心对称,熟练掌握轴对称的性质、中心对称的性质是解答本题的关键.27.(8分)金秋时节,七年级的同学组织去公园秋游,从景区A出发到相距15千米的景区B,公园有脚踏车和电瓶车两种交通工具可供租用,一部分学生骑脚踏车从A景区先出发,过了半小时后,其余学生乘电瓶车出发,结果他们同时到达B景区.假设他们全程都保持匀速前行,且已知乘电瓶车学生的速度是骑脚踏车的2倍,请问骑脚踏车学生的速度为每小时多少千米?【分析】设骑脚踏车学生的速度为每小时x千米,则乘电瓶车学生的速度为每小时2x千米,利用时间=路程÷速度,结合乘电瓶车学生比骑脚踏车学生少用半小时,可列出关于x的分式方程,解之经检验后,即可得出结论.【解答】解:设骑脚踏车学生的速度为每小时x千米,则乘电瓶车学生的速度为每小时2x千米,根据题意得:﹣=,解答:x=15,经检验,x=15是所列方程的解,且符合题意.答:骑脚踏车学生的速度为每小时15千米.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.28.(8分)阅读下列材料,并完成相应任务.教材第九章探索整式乘法法则时,我们用不同方法表示同一个图形的面积,直观地理解乘法法则.如图1,现有4张大小形状相同的直角三角形纸片,三边长分别是a、b、c,将它们拼成如图2的大正方形.(1)观察:图2中,大正方形的面积可以用(a+b)2表示,也可以用含a、b、c的代数式表示为4×ab+c2,那么可以得到等式:(a+b)2=4×ab+c2.整理后,得到a、b、c之间的数量关系:a2+b2=c2,这就是著名的“勾股定理”,它反映了直角三角形的三边关系,即直角三角形的两直角边a、b与斜边c所满足的关系式.(2)思考:爱动脑的小明通过图2得到启示,发现其它图形也能验证“勾股定理”,请你帮助小明画出该图形.(画出一种即可)(3)应用:如图3,在直角三角形ABC中,∠C=90°,AC=3,BC=4,那么AB=5,点D为射线BC上一点,将△ACD沿AD所在直线翻折,点C的对应点为点C1,如果点C1在射线BA上,那么CD=或6.(直接写出答案)【分析】(1)将正方形的面积表示成4个直角三角形的面积加中间小正方形的面积,即可用含a、b、c的代数式表示出大正方形的面积;根据同一个图形用不同方法表示出其面积,面积不变即可得到等式;(2)此题的方法很多,这里只举一种例子即可,比如把两个直角三角形和一个等腰直角三角形组成一个梯形;(3)分两种情况:点D在BC上和点D在BC延长线上,并分别画出图形,在Rt△BDC'中利用勾股定理列方程解出即可.【解答】解:(1)由图形可知:正方形的面积也可表示成4个直角三角形的面积加中间小正方形的面积,即4×ab+c2,∵用不同的方法表示同一个图形的面积,面积不变,∴(a+b)2=4×ab+c2,故答案为:4×ab+c2,(a+b)2=4×ab+c2;(2)答案不唯一,比如:(3)在直角三角形ABC中,∠C=90°,AC=3,BC=4,由勾股定理,得AB===5,点D为射线BC上一点,分两种情况:①点D在BC上时,如图,设CD=x,由翻折可知C'D=x,BD=BC﹣CD=4﹣x,BC'=AB﹣AC'=AB﹣AC=5﹣3=2,在Rt△BDC'中,由勾股定理,得BD2=BC'2+DC'2,即(4﹣x)2=22+x2,解得x=;②点D在BC的延长线上时,如图,设CD=y,由翻折可知C'D=y,BD=BC+CD=4+y,BC'=AB+AC'=AB+AC=5+3=8,在Rt△BDC'中,由勾股定理,得BD2=BC'2+DC'2,即(4+y)2=82+y2,解得y=6.故答案为:或6.【点评】本题考查勾股定理的证明,以及勾股定理的灵活运用,解答时涉及列代数式,等式变形,熟练运用数形结合思想,灵活运用勾股定理是解题的关键。
上海市七年级上册数学期末试卷(带答案)-百度文库
![上海市七年级上册数学期末试卷(带答案)-百度文库](https://img.taocdn.com/s3/m/c2e0c0e129ea81c758f5f61fb7360b4c2e3f2ac9.png)
上海市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.在数3,-3,-2/3,0.5中,最小的数为()答案:B。
-3最小。
2.-2的倒数是()答案:C。
-1/2.3.A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是(。
)答案:D。
4x*(5/4) * (t+0.5) = 160,解方程得x=40.4.探索规律:右边是用棋子摆成的“H”字,第一个图形用了7个棋子,第二个图形用了12个棋子,按这样的规律摆下去,摆成第20个“H”字需要棋子()答案:A。
第n个“H”字需要的棋子数为n^2 + 1.5.已知点A、B、C在一条直线上,线段AB=5cm,BC=3cm,那么线段AC的长为()答案:C。
线段AC=AB+BC=5+3=8cm。
6.化简(2x-3y)-3(4x-2y)的结果为()答案:B。
-10x+3y。
7.方程3x-1=2的解是()答案:A。
x=1.8.如果方程组{2x+y=5,x-2y=3}的解为{x=2,y=1},那么“口”和“△”所表示的数分别是(。
)答案:C。
口表示2x+y=7,△表示x-2y=-3.9.观察一行数:-1,5,-7,17,-31,65,则按此规律排列的第10个数是()答案:B。
-511.10.如图,两块直角三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD=()答案:B。
120度。
11.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了()答案:C。
44分钟。
12.关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b/a;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解。
2023-2024学年上海市普陀区七年级(下)期末数学试卷及答案解析
![2023-2024学年上海市普陀区七年级(下)期末数学试卷及答案解析](https://img.taocdn.com/s3/m/45d6d88a846a561252d380eb6294dd88d1d23d05.png)
2023-2024学年上海市普陀区七年级(下)期末数学试卷一、单项选择题(本大题共有6题,满分12分)1.(2分)下列实数中,无理数是()A.B.3.1415C.D.﹣12.(2分)下列运算一定正确的是()A.=±7B.(﹣)2=7C.﹣=7D.=73.(2分)如图,与∠A位置关系为同旁内角的角是()A.∠1B.∠2C.∠3D.∠C4.(2分)在直角坐标平面内,如果点P(m,n)在第四象限,那么点Q(n,m)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(2分)如图,在△ABC中,已知AB=AC,AD是△ABC的中线,如果∠B=70°,那么以下结论中,错误的是()A.∠CAD=20°B.AD⊥BCC.△ABD的面积是△ABC面积的一半D.△ABD的周长是△ABC周长的一半6.(2分)如图,已知AB∥DE,AD∥EC,那么与△BDE的面积一定相等的三角形是()A.△ADE,△ADC B.△CDE,△ADC C.△AEC,△ADC D.△ADE,△CDE二、填空题(本大题共有12题,满分36分)7.(3分)81的平方根是.8.(3分)把方根化为幂的形式:=.9.(3分)比较大小:﹣3﹣7.(填“>”,“=”或“<”)10.(3分)用科学记数法表示0.00369,结果保留两个有效数字约为.11.(3分)直角坐标系内点P(﹣2,3)关于x轴的对称点Q的坐标为.12.(3分)请写出一个在直角坐标平面内不属于任何象限的点的坐标:.13.(3分)在直角坐标平面内,点向平移m(m>0)个单位后,落在第三象限.(填“上”,“下”,“左”,“右”)14.(3分)在直角坐标平面内,经过点M(5,﹣6)且垂直于y轴的直线可以表示为直线.15.(3分)如图,把一直尺放置在一个三角形纸片上,如果∠1=70°,那么∠2=°.16.(3分)如果等腰三角形的周长等于16厘米,一条边长等于6厘米,那么这个等腰三角形的底边与其一腰的长度的比值等于.17.(3分)如图,已知点P在∠AOB的内部,点P关于OA、OB的对称点分别为P1、P2,如果∠AOB=30°,OP=6厘米,那么△P1OP2的周长等于厘米.18.(3分)如图,在直角坐标平面内,点A的坐标为(3,0),点B的坐标为(0,3),点C的坐标为(c,0)(c<0),在坐标平面内存在点D,使以点A、B、D为顶点的三角形与△ABC全等,且∠BAD与∠ABC是对应角,那么点D的坐标为.(用含c的代数式表示)三、筒答题(本大题共有5题,满分25分)19.(5分)计算:.20.(5分)计算:.21.(5分)如图,在△ABC中,已知点G、F分别在边BC、AC上,AE∥BC交GF的延长线于点E,且∠B=∠E.试说明∠B+∠BGF=180°的理由.解:因为AE∥BC(已知),所以∠E=∠EGC().因为∠B=∠E(已知),所以∠B=(等量代换).所以∥().所以∠B+∠BGF=180°().22.(5分)如图,已知AB⊥BD,AC⊥CD,∠1=∠2.试说明AD⊥BC的理由.解:因为AB⊥BD(已知),所以∠ABD=90°(垂直的意义).同理.所以∠ABD=∠ACD(等量代换).在△ABD和△ACD中,,所以△ABD≌△ACD().得(全等三角形的对应边相等).又因为∠1=∠2(已知),所以AD⊥BC().23.(5分)根据下列要求作图并回答问题:(1)用直尺和圆规作图(保留作图痕迹,不要求写作法和结论):①作△ABC,使AB=AC=a,BC=b;②作边AB的垂直平分线,分别交AB、BC于点M、N;(2)在(1)的图形中,联结AN,那么△ACN的周长等于.(用含a、b的代数式表示)四、解答题(本大题共有4题,满分27分)24.(6分)如图,在直角坐标平面内,已知点A(3,﹣1),点B在y轴的正半轴上且到x轴的距离为1个单位,将点B向右平移2个单位,再向上平移3个单位到达点C,点D与点A关于原点对称.(1)在直角坐标平面内分别描出点B、C、D;(2)写出图中点B、C、D的坐标是:B,C,D;(3)按A﹣B﹣C﹣D﹣A顺次联结起来所得的图形的面积是.25.(7分)如图,在△ABC中,已知∠BAC=90°,AB=AC,点D在边AB上,联结CD,过点B作BE ⊥CD交CD的延长线于点E,联结AE,过点A作AF⊥AE交CD于点F.试说明AE=AF的理由.解:因为∠DBE+∠BEC+∠EDB=180°().同理:∠DCA+∠BAC+∠ADC=180°.因为BE⊥CD,所以∠BEC=90°.又因为∠BAC=90°,所以∠BEC=∠BAC.因为∠EDB=∠ADC(),所以∠=∠.(完成以下说理过程)26.(7分)如图,在等边三角形ABC的边AC上任取一点D,以CD为边向外作等边三角形CDE,联结BD、AE.(1)试说明△BCD与△ACE全等的理由;(2)试说明∠ABD和∠AED相等理由.27.(7分)小普同学在课外阅读时,读到了三角形内有一个特殊点“布洛卡点”,关于“布洛卡点”有很多重要的结论.小普同学对“布洛卡点”也很感兴趣,决定利用学过的知识和方法研究“布洛卡点”在一些特殊三角形中的性质.让我们尝试与小普同学一起来研究,完成以下问题的解答或有关的填空.【阅读定义】如图1,△ABC内有一点P,满足∠PAB=∠PBC=∠PCA,那么点P称为△ABC的“布洛卡点”,其中∠PAB、∠PBC、∠PCA被称为“布洛卡角”.如图2,当∠QAC=∠QCB=∠QBA时,点Q也是△ABC的“布洛卡点”.一般情况下,任意三角形会有两个“布洛卡点”.【解决问题】(说明:说理过程可以不写理由)问题1:等边三角形的“布洛卡点”有个,“布洛卡角”的度数为度;问题2:在等腰三角形ABC中,已知AB=AC,点M是△ABC的一个“布洛卡点”,∠MAC是“布洛卡角”.(1)∠AMB与△ABC的底角有怎样的数量关系?请在图3中,画出必要的点和线段,完成示意图后进行说理.(2)当∠BAC=90°(如图4所示),BM=5时,求点C到直线AM的距离.2023-2024学年上海市普陀区七年级(下)期末数学试卷参考答案与试题解析一、单项选择题(本大题共有6题,满分12分)1.【分析】根据有理数和无理数的概念解答:无限不循环小数是无理数.【解答】解:A、,是整数,属于有理数,不符合题意;B、3.1415是有限小数,属于有理数,不符合题意;C、是无理数,符合题意;D、﹣1是整数,属于有理数,不符合题意;故选:C.【点评】此题主要考查了无理数的定义,熟知其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是解题的关键.2.【分析】根据平方根、立方根的定义判断即可.【解答】解:A.=7,此选项错误,不符合题意;B.(﹣)2=7,此选项正确,符合题意;C.﹣=﹣7,此选项错误,不符合题意;D.=﹣7,此选项错误,不符合题意;故选:B.【点评】本题考查算术平方根、立方根的定义,解题的关键是熟练掌握基本概念,属于中考基础题.3.【分析】根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可.【解答】解:A、∠1和∠A是同位角,不是同旁内角,故本选项错误,不符合题意;B、∠2和∠A都是四边形ABED的内角,不是同旁内角,故本选项错误,不符合题意;C、∠3和∠A是同位角,不是同旁内角,故本选项错误,不符合题意;D、∠C和∠A是同旁内角,故本选项正确,符合题意;故选:D.【点评】本题考查了同位角、内错角、同旁内角、对顶角的定义的应用,能熟记同位角、内错角、同旁内角、对顶角的定义是解此题的关键,注意:数形结合思想的应用.4.【分析】根据第四象限点的坐标特征可得m>0,n<0,然后根据第二象限点的坐标特征,即可解答.【解答】解:∵点P(m,n)在第四象限,∴m>0,n<0,∴点Q(n,m)所在的象限是第二象限,故选:B.【点评】本题考查了点的坐标,熟练掌握平面直角坐标系中每一象限点的坐标特征是解题的关键.5.【分析】由三角形内角和定理求出∠BAC=180°=70°﹣70°=40°,由等腰三角形三线合一的性质得到∠CAD=∠BAC=20°,AD⊥BC,由三角形面积公式得到△ABD的面积是△ABC面积的一半,△ABC周长的一半=AB+BD,△ABD的周长=AB+BD+AD,得到△ABD的周长不是△ABC周长的一半,【解答】解:∵AB=AC,∴∠B=∠C=70°,∴∠BAC=180°=70°﹣70°=40°,∵AD是△ABC的中线,∴AD平分∠BAC,∴∠CAD=∠BAC=20°,故A不符合题意;∵AB=AC,AD是△ABC的中线,∴AD⊥BC,故B不符合题意;∵AD是△ABC的中线,∴BD=CD,∴△ABD的面积是△ABC面积的一半,故C不符合题意;∵AB=AC,BD=CD,∴AB+BD=AC+CD=△ABC周长的一半,∵△ABD的周长=AB+BD+AD,∴△ABD的周长不是△ABC周长的一半,故D符合题意.故选:D.【点评】本题考查等腰三角形的性质,关键是掌握等腰三角形的性质:等腰三角形的两个底角相等,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.6.【分析】两条直线平行,则两直线之间的距离处处相等,从而根据三角形面积公式,找出同底等高的三角形,本题即可得求.【解答】解:本题可通过三角形面积公式求解,观察三角形BDE和三角形ADE,两个三角形共用一个底DE,因为AB∥DE,所以三角形BDE和三角形ADE的高相等,即AB与DE的距离d1.=S△ADE=DE×d1.故S△BDE观察三角形EDA和三角形CDA,两个三角形共用一个底DA,因为AD∥EC,所以三角形EDA和三角形CDA的高相等,即AD与EC的距离d2.=S△ADE=AD×d2.故S△ADC=S△ADC=S△ADE.所以S△BDE故选:A.【点评】本题巧妙地将三角形的面积和平行线的性质相结合,创新性地考查了学生对三角形面积的理解.二、填空题(本大题共有12题,满分36分)7.【分析】直接根据平方根的定义填空即可.【解答】解:∵(±9)2=81,∴81的平方根是±9.故答案为:±9;【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.【分析】根据分数指数幂,可化成分数指数形式,根据负分数幂的性质,可得负分数指数幂.【解答】解:原式==.【点评】本题考查了分数指数幂,先求分数指数幂,再求负分数指数幂.9.【分析】两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣3|=3=,|﹣7|=7,∵45<49,∴<7,∴﹣>﹣7,即﹣3>﹣7.故答案为:>.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.10.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:用科学记数法表示0.00369,结果保留两个有效数字约为:3.7×10﹣3,故答案为:3.7×10﹣3.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【分析】关于x轴对称的点横坐标不变,纵坐标互为相反数,据此即可解答.【解答】解:点P(﹣2,3)关于x轴的对称点Q的坐标为(﹣2,﹣3).故答案为:(﹣2,﹣3).【点评】本题考查了关于x轴、y轴的对称点的坐标,关于x轴对称的两个点横坐标相同,纵坐标互为相反数.12.【分析】根据x轴或y轴上的点不属于任何象限解答即可.【解答】解:在直角坐标平面内不属于任何象限的点的坐标可以是(0,﹣1)等.故答案为:(0,﹣1)(答案不唯一).【点评】本题考查了点的坐标:平面直角坐标系中,点与有序实数对一一对应.也考查了各象限内的点的坐标特点.13.【分析】根据点P的位置判断即可.【解答】解:∵P(﹣,0)在x轴的负半轴上,∴点P向下平移落在第三象限,故答案为:下.【点评】本题考查坐标与图形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14.【分析】垂直于y轴的直线,纵坐标相等,都为﹣6,所以为直线:y=﹣6.【解答】解:由题意得:经过点A(5,﹣6)且垂直于y轴的直线可以表示为直线为:y=﹣6,故答案为:y=﹣6.【点评】此题考查了坐标与图形的性质,解题的关键是抓住过某点的坐标且垂直于y轴的直线的特点:纵坐标相等.15.【分析】由邻补角的性质得到∠3=180°﹣70°=110°,由平行线的性质推出∠2=∠3=110°.【解答】解:∵∠1=70°,∴∠3=180°﹣70°=110°,∵AB∥CD,∴∠2=∠3=110°.故答案为:110.【点评】本题考查平行线的性质,关键是由平行线的性质推出∠2=∠3.16.【分析】分两种情况:当等腰三角形的腰长为6厘米时;当等腰三角形的底边长为6厘米时;然后分别进行计算即可解答.【解答】解:分两种情况:当等腰三角形的腰长为6厘米时,∵等腰三角形的周长等于16厘米,∴底边长=16﹣2×6=4(厘米),此时等腰三角形的底边与其一腰的长度的比值==;当等腰三角形的底边长为6厘米时,∵等腰三角形的周长等于16厘米,∴腰长==5(厘米),此时等腰三角形的底边与其一腰的长度的比值=;综上所述:这个等腰三角形的底边与其一腰的长度的比值等于或,故答案为:或.【点评】本题考查了等腰三角形的性质,三角形的三边关系,分两种情况讨论是解题的关键.17.【分析】根据轴对称的性质,∠AOB=30°,P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∠AOP=∠AOP1,∠BOP=∠BOP2,可求出∠P1OP2的度数,确定三角形的形状,再由等边三角形的性质即可得出结论.【解答】解:连接OP,∵P1与P关于OA对称,∴OP=OP1,∵P2与P关于OB对称,∴OP=OP2,∴OP1=OP2,∵P1与P关于OA对称,∴∠POA=∠AOP1,∵P2与P关于OB对称,∴∠BOP=∠BOP2,又∵∠P1OP2=∠AOP1+∠AOP+∠BOP+∠BOP2,∵∠P1OP2=∠BOP+∠BOP+∠AOP+∠AOP,=2(∠BOP+∠APO),=2∠AOB,∵∠AOB=30°,∵∠P1OP2=2×30°=60°,∴△OP1P2为等边三角形,∴△P1OP2的周长=3OP=18(厘米).故答案为:18.【点评】本题考查轴对称的性质,等边三角形的判定与性质,熟知关于轴对称的两个图形对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等是解题的关键.18.【分析】依题意有以下两种情况:①当点D在AB的上方时,过点B作BD//AC,过点A作AD//BC交BD于点D,则点D即为所求的点,由BD∥AC,AD∥BC得∠BAD=∠ABC,∠ABD=∠BAC,则△BAD和△ABC全等,且∠BAD与∠ABC是对应角,然后根据BD=AC,BD//AC可得点D的坐标;②当点D在AB的下方时,在y轴的负半轴上截取OD=OC,连接AD,则点D即为所求的点,先证明△OAD和△OBC全等得AD=BC,∠OAD=∠OBA,再根据OA=OB=3得∠OAB=∠OBA,进而得∠BAD =∠ABC,由此可证明△BAD和△ABC全等,且∠BAD与∠ABC是对应角,然后根据OD=OC,点D 在y轴上可得点D的坐标,综上所述即可得出答案.【解答】解:∵以点A、B、D为顶点的三角形与△ABC全等,且∠BAD与∠ABC是对应角,∴有以下两种情况:①当点D在AB的上方时,过点B作BD//AC,过点A作AD//BC交BD于点D,如图1所示:则点D即为所求的点,理由如下:∵BD∥AC,AD∥BC,∴∠BAD=∠ABC,∠ABD=∠BAC,在△BAD和△ABC中,,∴△BAD≌△ABC(ASA),且∠BAD与∠ABC是对应角,∴BD=AC,∵BD//AC,∴点D的纵坐标与点B的纵坐标相等,∵点A(3,0),点B(0,3),点C(c,0)(c<0),∴BD=AC=3﹣c,∴点D的坐标为(3﹣c,3);②当点D在AB的下方时,在y轴的负半轴上截取OD=OC,连接AD,如图2所示:∵点A(3,0),点B(0,3),点C(c,0)(c<0),∴OA=OB=3,则点D即为所求的点,理由如下:在△OAD和△OBC中,,∴△OAD≌△OBC(SAS),∴AD=BC,∠OAD=∠OBA,∵OA=OB,∴∠OAB=∠OBA,∴∠OAB+∠OAD=∠OBA+∠OBC即∠BAD=∠ABC,在△BAD和△ABC中,,∴△BAD≌△ABC,且∠BAD与∠ABC是对应角,∵OD=OC,点D在y轴上,∴点D的坐标为(0,c),综上所述:点D的坐标为(3﹣c,3)或(0,c).故答案为:(3﹣c,3)或(0,c).【点评】此题主要考查了全等三角形的判定,坐标与图形性质,熟练掌握全等三角形的判定,坐标与图形性质是解决问题的关键,分类讨论是解决问题的难点,也是易错点.三、筒答题(本大题共有5题,满分25分)19.【分析】根据实数的运算法则及零指数幂进行计算即可得出答案.【解答】解:原式=﹣5++1﹣9=﹣13+=﹣12.【点评】本题主要考查实数的运算,熟练掌握实数的运算法则是解题的关键.20.【分析】根据分数指数幂和实数的运算法则计算即可.【解答】解:原式=×===2.【点评】本题考查的是分数指数幂和实数的运算,熟练掌握其运算法则是解题的关键.21.【分析】根据平行线的性质可得∠E=∠EGC,再利用等量代换可得∠B=∠EGC,然后利用同位角相等,两直线平行可得AB∥EG,从而利用平行线的性质可得∠B+∠BGF=180°,即可解答.【解答】解:因为AE∥BC(已知),所以∠E=∠EGC(两直线平行,内错角相等).因为∠B=∠E(已知),所以∠B=∠EGC(等量代换).所以AB∥EG(同位角相等,两直线平行).所以∠B+∠BGF=180°(两直线平行,同旁内角互补),故答案为:两直线平行,内错角相等;∠EGC;AB;EG;同位角相等,两直线平行;两直线平行,同旁内角互补.【点评】本题考查了平行线的判定与性质,根据题目的已知条件并结合图形进行分析是解题的关键.22.【分析】根据题意和题目中的解答过程,将空缺部分补充完整即可.【解答】解:因为AB⊥BD(已知),所以∠ABD=90°(垂直的意义).同理∠ACD=90°.所以∠ABD=∠ACD(等量代换).在△ABD和△ACD中,,所以△ABD≌△ACD(AAS).得AB=AC(全等三角形的对应边相等).又因为∠1=∠2(已知),所以AD⊥BC(三线合一).故答案为:∠ACD=90°;AAS;AB=AC;三线合一.【点评】本题考查全等三角形的判定与性质、等腰三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.23.【分析】(1)①任意作射线BM,以点B为圆心,线段b的长为半径画弧,交射线BM于点C,再分别以点B,C为圆心,线段a的长为半径画弧,两弧相交于点A,连接AB,AC即可.②根据线段垂直平分线的作图方法作图即可.(2)根据线段垂直平分线的可得AN=BN,则△ACN的周长为AC+AN+CN=AC+BN+CN=AC+BC=a+b.【解答】解:(1)①如图,任意作射线BM,以点B为圆心,线段b的长为半径画弧,交射线BM于点C,再分别以点B,C为圆心,线段a的长为半径画弧,两弧相交于点A,连接AB,AC,则△ABC即为所求.②如图,直线MN即为所求.(2)∵直线MN为线段AB的垂直平分线,∴AN=BN,∵AC=a,BC=b,∴△ACN的周长为AC+AN+CN=AC+BN+CN=AC+BC=a+b.故答案为:a+b.【点评】本题考查作图—复杂作图、线段垂直平分线的性质,熟练掌握基本尺规作图的方法、线段垂直平分线的性质是解答本题的关键.四、解答题(本大题共有4题,满分27分)24.【分析】(1)根据题意在平面直角坐标系中描出点B、C、D三点即可;(2)根据图中点B、C、D的位置写出点B,C,D的坐标;(3)根据【解答】解:(1)如图所示;(2)B(0,1),C(2,4),D(﹣3,1);故答案为:(0,1),(2,4),(﹣3,1);(3)图形的面积=△BCD的面积+△BDA的面积=×3×3+×3×2=,故答案为:.【点评】本题考查了作图﹣平移变换,正确地作出图形是解题的关键.25.【分析】由三角形内角和定理得∠DBE+∠BEC+∠EDB=180°,∠DCA+∠BAC+∠ADC=180°,∠BEC=∠BAC=90°,因为∠EDB与∠ADC是对顶角,所以∠EDB=∠ADC,可推导出∠DBE=∠DCA,而AB=AC,∠BAE=∠CAF=90°﹣∠BAF,即可证明△BAE≌△CAF,得AE=AF,于是得到问题的答案.【解答】解:因为∠DBE+∠BEC+∠EDB=180°(三角形的内角和等于180°),同理:∠DCA+∠BAC+∠ADC=180°,因为BE⊥CD,所以∠BEC=90°,又因为∠BAC=90°,所以∠BEC=∠BAC,因为∠EDB=∠ADC(对顶角相等),所以∠DBE=∠DCA,因为AF⊥AE,所以∠EAF=90°,所以∠BAE=∠CAF=90°﹣∠BAF,在△BAE和△CAF中,,所以△BAE≌△CAF(ASA),所以AE=AF.故答案为:三角形的内角和等于180°,对顶角相等,DBE,DCA.【点评】此题重点考查三角形内角和定理、对顶角相等、同角的余角相等、全等三角形的判定与性质等知识,证明△BAE≌△CAF是解题的关键.26.【分析】(1)根据等边三角形的性质和全等三角形的判定方法可以证明结论成立;(2)根据(1)中的结论、外角和内角的关系可以得到∠ABD和∠AED相等.【解答】解:(1)∵△ABC是等边三角形,∴BC=AC,∠BCD=60°,∵△CDE是等边三角形,∴CD=CE,∠ACE=60°,在△BCD与△ACE中,,∴△BCD≌△ACE(SAS);(2)由(1)知,△BCD≌△ACE,∴∠CBD=∠CAE,∵∠CBD+∠ABD=∠ABC=60°,∠AED+∠CAE=∠CDE=60°,∴∠ABD=∠AED.【点评】本题考查全等三角形的判定与性质、等边三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件.27.【分析】问题1:根据等边三角形的性质证明△ACP≌△BAP(ASA),得PA=PB=PC,进而可以解决问题;问题2:(1)根据题意画出图形,利用等腰三角形的性质和“布洛卡点”定义,即可解决问题;(2)由△ABC是等腰直角三角形,证明△ABM≌△ACN(AAS),即可解决问题.【解答】解:问题1:如图1﹣1:∵△ABC是等边三角形,∴AB=BC=AC,∠CAB=∠ABC=∠ACB=60°,∵∠PAB=∠PBC=∠PCA,∴∠PAC=∠PBA=∠PCB,∴△ACP≌△BAP(ASA),∴CP=AP,同法可证CP=BP,∴PA=PB=PC,∴∠PAB=∠PBA=∠PBC=∠PCB=∠PCA=∠PAC=30°,∴等边三角形的“布洛卡点”有1个,“布洛卡角”的度数为30度;故答案为:1,30°;问题2:(1)∠AMB=2△ABC,如图3即为所求,∵AB=AC,∴∠ABC=∠ACB,∵点M是△ABC的一个“布洛卡点”,∠MAC是“布洛卡角”,∴∠MAC=∠MCB=∠MBA,∴∠MBC=∠MCA,设∠MAC=∠MCB=∠MBA=α,∠MBC=∠MCA=β,∴∠MAB=180°﹣3α﹣2β,∴∠AMB=180°﹣(180°﹣3α﹣2β)﹣α=2(α+β)=∠ABC,∴∠AMB=2∠ABC;(2)如图4,过点C作CN⊥AM的延长线于点N,∵△ABC是等腰直角三角形,∴AC=AB,∠CAB=90°,∴∠ABC=∠ACB=45°,由(1)知:∠AMB=2∠ABC=90°,∵点M是△ABC的一个“布洛卡点”,∠MAC是“布洛卡角”,∴∠MAC=∠MBA=∠BCM,∴△ABM≌△ACN(AAS),∴BM=AN=5,AM=CN,∵∠AMB=∠CNM=90°,∴BM∥CN,∴∠MBC=∠NCB,∵∠MBA=∠BCM,∴∠MCN=∠ABC=45°,∴CN=MN,∴AM=CN=MN=AN=2.5,∴点C到直线AM的距离为2.5.【点评】本题是三角形综合题,考查全等三角形的判定与性质、等边三角形的性质、等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是准确寻找相似三角形。
2022-2023学年上海市徐汇区七年级(上)期末数学试卷
![2022-2023学年上海市徐汇区七年级(上)期末数学试卷](https://img.taocdn.com/s3/m/7f99302817fc700abb68a98271fe910ef12dae9f.png)
2022-2023学年上海市徐汇区七年级(上)期末数学试卷一、填空题:(本大题共16题,每题2分,满分32分)1.用代数式表示“x与y的2倍的差的平方”:.2.单项式mn2的次数是.3.将3x﹣3(x﹣y)﹣1表示成只含有正整数的指数幂形式为.4.用科学记数法表示:0.0000197=.5.计算:a2•(﹣2a3)=.6.已知x m+n•x m﹣n=x4,则m=.7.分解因式:x2﹣=.8.分解因式:(x﹣5)(3x﹣2)﹣3(x﹣5)=.9.分解因式:x2+4z2﹣9y2+4xz=.10.若(﹣5)3x+1=1,则x=.11.当x=时,分式的值为零.12.计算:=.13.当x=1时,代数式无意义,则a=.14.如果将一个四边形ABCD向上平移3.5cm得到四边形A1B1C1D1,点D1是点D的对应点,则线段DD1=cm.15.在等腰三角形、平行四边形、等腰梯形、五角星及圆中共有个旋转对称图形.16.如图所示,在△ABC中.沿着过点C的直线折叠这个三角形,使顶点A落在BC边上的点E处,折痕为CD,并联结DE.如果BC=9cm,且满足=,边AC=.二、选择题:(本大题共5题,每题2分,满分10分)17.下列等式中,能成立的是()A.(a+b)2=a2+ab+b2B.(a﹣3b)2=a2﹣9b2C.(1+a)2=a2+2a+1D.(a+4)(a﹣4)=a2﹣418.下列运算正确的是()A.4x6÷(2x2)=2x3B.2x﹣2=C.(﹣2a2)3=﹣8a6D.=a﹣b19.关于x的方程有增根,则m的值为()A.2B.﹣1C.0D.120.在俄罗斯方块游戏中,所有出现的方格体自由下落,如果一行中九个方格齐全,那么这一行会自动消失.已拼好的图案如图所示,现又出现一小方格体,必须进行以下哪项操作,才能拼成一个完整图案,使图上所有方格自动消失()A.顺时针旋转90°,向下平移B.逆时针旋转90°,向下平移C.顺时针旋转90°,向右平移D.逆时针旋转90°,向右平移21.甲、乙两水管向水池中注水,单独开甲管要x小时注满水池,单独开乙管要y小时注满水池,若两管同时打开要()小时注满水池.A.x+y B.C.D.三、解答题:(本大题共7题,每题5分,满分35分)22.计算:(1)(﹣2)2+(3.14﹣π)0﹣|﹣2|+()﹣1;(2)(4x2﹣2x3+6x)÷(﹣2x)﹣(2x﹣1)2.23.分解因式:(1)2ab2﹣6a2b2+4a3b2;(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24.24.计算:(x﹣1+y﹣1)÷(x﹣1﹣y﹣1)(结果不含负整数指数幂).25.解方程:.26.化简求值:÷﹣1,其中x=1,y=.四、作图题:(每小题5分,共10分)27.画出四边形关于直线l的轴对称图形.28.在边长为1的正方形网格中:(1)画出△ABC关于点O的中心对称图形△A'B'C'.(2)△ABC与△A'B'C'的重叠部分的面积为.五、简答题:(本大题共2题,其中31题6分,32题7分,满分13分)29.小明、小丽共同打印一份文件,小明共打1800个字,比小丽少打了,已知小丽的工作效率比小明高25%,完成时间比小明少5分钟,问他俩各花多少时间完成任务?30.如图,在正方形ABCD中,点E是AB边上的一点,AE=a,BE=b.(1)将△ADE绕点D旋转,使DA与DC重合,点E落在点F处,画出△DCF;(2)联结EF,求出△DEF的面积.(结果用含a、b的代数式表示)六、附加题(每题10分,共20分)31.已知(2x﹣1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7.(1)求a0﹣a1+a2﹣a3+a4﹣a5+a6﹣a7的值.(2)求a0+a2+a4+a6的值.32.分解因式:xy+(x+1)(y+1)(xy+1).。
上海市七年级上册数学期末试卷(含答案)
![上海市七年级上册数学期末试卷(含答案)](https://img.taocdn.com/s3/m/1b7ce1fea8956bec0875e347.png)
上海市七年级上册数学期末试卷(含答案)一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .3 2.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .123.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .592 4.在223,2,7-四个数中,属于无理数的是( ) A .0.23 B 3 C .2- D .2275.下列方程变形正确的是( )A .方程110.20.5x x --=化成1010101025x x --= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 6.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( ) A .22()m n - B .2(2m-n) C .22m n - D .2(2)m n -7.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .1 8.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( )A .∠AOC=∠BOCB .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB 9.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥 10.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离11.下列调查中,调查方式选择正确的是( )A .为了了解1 000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量, 选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查12.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.14.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.15.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.16.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG=,Q I均在长方形ABCD内部.记图中的阴影部分面积分别为123,,s s s.若2137SS=,则3S=___17.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.18.已知a,b是正整数,且a5b<<,则22a b-的最大值是______.19.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,则∠BOE的度数为___________.(用含α的式子表示)20.请先阅读,再计算:因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯,所以:1111122334910++++⨯⨯⨯⨯1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-=则1111 10010110110210210320192020++++=⨯⨯⨯⨯_________.21.方程x+5=12(x+3)的解是________.22.已知代数式235x-与233x-互为相反数,则x的值是_______.23.观察“田”字中各数之间的关系:则c 的值为____________________.24.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.三、压轴题25.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________.(2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.26.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.27.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
上海市金山区七年级(上)期末数学试卷(五四学制)(解析版)
![上海市金山区七年级(上)期末数学试卷(五四学制)(解析版)](https://img.taocdn.com/s3/m/02b9143e84868762cbaed573.png)
上海市金山区七年级(上)期末数学试卷(五四学制)、选择题:(本大题共6题,每题3分,满分18分) 1. (3分)下列运算正确的是()A. 5 1= - 5 B . m 4*m 3=m C . (x 2) 3=X D. (- 20) °=- 1 2. (3分)下列分式是最简分式的是( )A .3. (3分)下列等式从左到右的变形中,是因式分解的是()A . (a+1) (a - 1) =a 2- 1B . (a - 1) (b - 1) = (1-a ) (1 - b ) C.! 一 . ' ' ' D. j' a'b-i -b - ■:.L ■a -1 4z4. (3分)如果分式壬1中的伙、y 都扩大为原来的4倍,那么下列说法中,正 确的是()A .分式的值不变B.分式的值扩大为原来的4倍来源学科网C.分式的值缩小为原来的?D.分式的值缩小为原来的—5. (3分)下列图形中是旋转对称图形但不是中心对称图形的是()6. (3分)在如图4X4的正方形网格中,△ MNP 绕某点旋转一定的角度,得到 △ M 1N 1P 1,则其旋转中心可能是()、填空题:(本大题共12题,每题2分,满分24分)1 Plb BA•cP------------- VA .点A B.点BC 点C D.点DB C xix —v2x+lA.B.C .D .7. (2分)当x 时,分式1有意义.---------- x+18. (2分)计算:(-ab)2宁Xb= ____ .9. (2 分)化简:2 (2x—3)-(3- 2x)= ___ .10. _____________________________ (2分)因式分解:x3- 4x= .11. (2 分)计算:1---- -- =.12. (2分)_____________________ 与的最简公分母为.M -y x +xy13. ________________________________ (2分)方程—• 丁77的解是x=.14 . (2分)当x ____ 时,分式:’ 值为0 .x-1-1 215 . (2分)将代数式' 化为只含有正整数指数幕的形式是5a 3b16 . (2分)用科学记数法表示甲型H5N7流感病毒的直径0.000000081 _____ .17 . (2分)如图,△ ABC的周长为30cm,把厶ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=4cm,则厶ABD 的周长是_________ .B 1} C.18. (2分)如图,在△ ABC中,BC=2 / B=60°,若把线段BC绕着点B旋转,使得点C落在直线AB上的D处,旋转角度大于0度小于180度,那么线段BC扫过的面积等于_______ .(结果保留n三、解答题:(本大题共7题,满分58分)19. (16分)计算:20. (8分)因式分解: (1) 9 -『+x 2 - 6x(2) (m 2- 2m ) 2 -2 (m 2- 2m )- 3.画出与图形③关于直线 AB 成轴对称的图形(记为④) 将图形④与图形②拼成一个整体图形,那么这个整体图形的对称轴有24. (8分)某区招办处在中考招生录取工作时,为了防止数据输入出错,全区 3600名学生的成绩数据分别由李某、王某两位同志进行操作,两人各自独立地 输入一遍,然后让计算机比较两人的输入是否一致. 已知李某的输入速度是王某 的2倍,结果李某比王某少用2小时输完.问李某、王某两人每分钟分别能输入 多少名学生的成绩?25. (9分)已知三角形纸片ABC (如图),将纸片折叠,使点A 与点C 重合,折 痕分别与边AC 、BC 交于点D 、E ,点B 关于直线DE 的对称点为点F . (1) 画出直线DE 和点F.(2) 联结 EF FC,如果/ FEC=52,求/ DEC 的度数.(1) (x+y ) 2+ ( (3)凡亡(4) y 2(y+4)-x - y ) (2x+y )- 3x 2八T^.1(y -4) -1+2 (4-y )21. (5 分) 3 46解方程:厂「―.22. (6 分) 23. (6 分) 先化简,再求值:(一-a - 如图,在下列方格纸中,有两个图形.1) 二启4出其中a =_la-1 出(1) 画出图形①向右平移4个单位所得到的图形(记为③) (2) (3)(3) 联结AE 、BD、DF,如果:.,且△ DEF的面积为4,求厶ABC的面积.EC 3参考答案与试题解析一、选择题:(本大题共6题,每题3分,满分18分)1. (3分)下列运算正确的是( )A. 5「1=-5B. m4十m「3=mC. (x「5)「6=护D. (- 20) °=— 1【解答】解:A、5-1='.,故原题计算错误;B、m4* m-3=m7,故原题计算错误;C (x-2) -3=x6,故原题计算正确;D、(-20) 0=1,故原题计算错误;故选:C.V—1 1【解答】解:(A)原式=[..=.,故A不是最简分式;(D)原式=.,故D不"是最简分式;故选:C.A. (a+1) (a- 1)=孑-1B. (a- 1) (b- 1) = (1 - a) (1 - b)5(3分)下列分式是最简分式的是( )6(3分)下列等式从左到右的变形中,是因式分解的是( )A. C.(B)原式=3(x+y)仗p)八x-y=3 (x+y),故B不是最简分式;2x+lC -D .二” 1 八| -a-1 4 £【解答】解:A、不属于因式分解,故本选项不符合题意;B、不属于因式分解,故本选项不符合题意;C、不属于因式分解,故本选项不符合题意;D、属于因式分解,故本选项符合题意;故选:D.4. (3分)如果分式'中的x、y都扩大为原来的4倍,那么下列说法中,正2z+y 确的是()A.分式的值不变B.分式的值扩大为原来的4倍C. 分式的值缩小为原来的一D.分式的值缩小为原来的-7故选:B.5. (3分)下列图形中是旋转对称图形但不是中心对称图形的是()【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意.故选:A.6. (3分)在如图4X4的正方形网格中,△ MNP绕某点旋转一定的角度,得到△ MiNiPi,则其旋转中心可能是()DbB t PlA•cPA.点AB.点B C点C D.点DA. D.【解答】解:•••△ MNP绕某点旋转一定的角度,得到△ M i N i P i, •••连接PR、Ng、MM1,作PR的垂直平分线过B、D、C,作NN i的垂直平分线过B、A,作MM i的垂直平分线过B,• ••三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.二、填空题:(本大题共12题,每题2分,满分247. (2分)当x__工:-1_时,分式二7有意义.【解答】解:根据题意可得,x+1 工0,即X H- 1时,分式有意义.故答案为:工-1.8. (2分)计算:(-ab)2-a2b= b【解答】解:原式=a2b2^ a2b=b故答案为:b9. (2 分)化简:2 (2x — 3)-( 3- 2x ) = 6x- 9 【解答】解:原式=4x- 6 - 3+2x=6x- 9, 故答案为:6x- 910. (2 分)因式分解:x 3 - 4x= x (x+2) (x - 2) 【解答】解:x 3- 4x =x (x 2 - 4) =x (x+2) (x - 2). 故答案为:x (x+2) (x -2).] 1_ =a(a-l) a故答案为:a12. (2分)^^与的最简公分母为 x (x 2- y 2)x -y x +xy【解答】解:••• x 2- y 2= (x+y ) (x - y ),2x +xy=x (x+y ),最简公分母是x (x 2- y 2).3 113. (2分)方程=-二三的解是x= - 9 .【解答】解:方程两边都乘2x (x+3),得 3 X( x+3) =2x 解得 x=- 9. 检验;当x=- 9时,2x (x+3)工0. ••• x=- 9是原方程的解.14. (2分)当x =- 1 时,分式 .值为0.K-1 【解答】解:根据题意得:x 2-仁0,且x - 1工011. (2分)计算: 【解答】 解: 原式解得:X=- 1 故答案是:=-1-1 2 3 215. (2分)将代数式'化为只含有正整数指数幕的形式是51%17. (2分)如图,△ ABC 的周长为30cm ,把厶ABC 的边AC 对折,使顶点C 和 点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE=4cm,则厶ABD 的周长是 22cm .A\RDC【解答】解:根据折叠方法可得AE=CE AD=CD ■/ AE=4cm , ••• CE=4cm•••△ ABC 的周长为30cm , • AB+CB=30- 8=22 (cm ),△ ABD 的周长是:AB+BD+AD=ABhBC=22cm 故答案为:22cm .18. (2分)如图,在△ ABC 中,BC=2 / B=60°,若把线段BC 绕着点B 旋转, 使得点C 落在直线AB 上的D 处,旋转角度大于0度小于1 80度,那么线段BC 扫过的面积等于二:或二:.(结果保留n3故答案为: ■■5xb16.(2分)用科学记数法表示甲型 H 5N 7流感病毒的直 径0.00000008仁 8.1 X10-8【解答】 解: 0.000000081=8.1 X 10故答案为: 8.1X 10-8【解答】3, 2 a y ------- ? 5xb【解答】解:当逆时针旋转时由扇形面积公式得:线段 BC 扫过的面积等于2当顺时针旋转时,由扇形面积公式得线段 BC 扫过的面积等于!'- ,3603来源 学 _科_网 Z_X_X_K]故答案为:.I 或.'三、•:解答题:(本大题共7题,满分58分) 19. ( 16分)计算:(1) (x+y ) 2+ (x — y ) (2x+y )— 3x 2(4) y 2 (y+4)— 1(y — 4) —1+2 (4 — y )【解答】解:(1)原式=x 2+2xy+y 2+2x 2 — xy — y 2 — 3X 2 =xy ;(2)原式=21' j ' 1 -';=—3a 8? (4a — 4)=—12a 4;(i-3) (x+3) x-2it 一3(3)原式=土=x+3;='■■■ < :(y+4) (y-4) = Cy-4)(y+2) 二也 =丙'20. (8分)因式分解: (1) 9 - y 2+x 2~ 6x(2) (m 2- 2m ) 2 -2 (m 2- 2m )- 3. 【解答】解:(1)原式=(x 2- 6x+9)- y 2 =(x -3) 2 - y 2=(x -3+y ) (x -3 - y );(2)原式=(m 2 - 2m - 3) (m 2- 2m+1) =(m - 3) (m+1) (m - 1) 2.故原方程的解是y=3.22. (6分)先化简,再求值:( -a - 1) — — T ,其中a=-.aT a-1&2【解答】3 4 &解:―3 4 ——1 H4y y-1_ 6 -y(y-l)' 21. (5分)解方程:3 (y - 1)- 4y=- 6, y=3,经检验:y=3是原方程的解, (4) 原式=(y+4)(y-4) +(4-y)3^4 = 6 y ¥T y-y 2【解答】解:原式-■: - !::'a-1 a-1= 3-a g+l a-1■' -=-G-2)(&+刃,1= '■ ■=__已+2-.-2当―…时,5原式=-—丄亠25 £卞.23. (6分)如图,在下列方格纸中,有两个图形.(1)画出图形①向右平移4个单位所得到的图形(记为③)(2)画出与图形③关于直线AB成轴对称的图形(记为④)(3)将图形④与图形②拼成一个整体图形,那么这个整体图形的对称轴有来源:Z_xx_k.Co(2)如图所示,图形④即为所求;(4)图形④与图形②拼成一个正方形,其对称轴有4条,故答案为:4.来源:]24. (8分)某区招办处在中考招生录取工作时,为了防止数据输入出错,全区3600名学生的成绩数据分别由李某、王某两位同志进行操作,两人各自独立地输入一遍,然后让计算机比较两人的输入是否一致. 已知李某的输入速度是王某的2倍,结果李某比王某少用2小时输完.问李某、王某两人每分钟分别能输入多少名学生的成绩?【解答】解:设王某每分钟能输入x名学生的成绩,则李某每分钟能输入2x名学生的成绩,根据题意得春二「=解得x=15,经检验,x=15是原方程的解,且符合题意,所以2x=30,答:李某每分钟能输入30名学生的成绩,王某每分钟能输入15名学生的成绩.25. (9分)已知三角形纸片ABC(如图),将纸片折叠,使点A与点C重合,折痕分别与边AC BC交于点D、E,点B关于直」线DE的对称点为点F.(1)画出直线DE和点F.(2)FC,如果/ FEC=52,求/ DEC的度数.联结EF一言且厶DEF的面积为4 ,求厶ABC的面积.【解答】解:(1)直•线DE、点F如图所:(2)由轴对称性的性质可知/ DEBN DEF, 因为/ FEC=52, / DEB F Z DEF2 FEG180°, 所以 2/DEFK FEC+1800 ,即 2/DEF=52+180° , / DEF=116 ,所以/ DEC=/ DEF — / FEC=116- 52°=64°.(3) 由轴对称性的性质可知ABCDEFS B EE F S X ED =4 , S\AEC =S\ EDC 设厶BED 中BE 边上的高为h , 二尹小二 BE 二] 弘EDC '|E C-h _EC_5,所以 S A EDC =12 ,所以 S A AEC =2S J \ED (=24 ,1 *S^kAEC 支 EC ・h 底 3设厶AEC 中EC 边上的高为h‘ ’| , 弘ABC 吕丹BC 4所以 S A ABC =32.。
上海市七年级上册数学期末试卷(带答案)-百度文库
![上海市七年级上册数学期末试卷(带答案)-百度文库](https://img.taocdn.com/s3/m/42f84be78762caaedd33d4d7.png)
上海市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1062.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短 3.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查4.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .345.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( )A .4B .3C .0D .﹣26.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( ) A .50° B .130° C .50°或 90° D .50°或 130° 7.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°8.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )9.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒10.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==11.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元B .赔了10元C .赚了50元D .不赔不赚12.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD ∠的度数为( )A .100B .120C .135D .150二、填空题13.一个角的余角等于这个角的13,这个角的度数为________. 14.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.15.写出一个比4大的无理数:____________.16.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________. 17.当a=_____时,分式13a a --的值为0. 18.因式分解:32x xy -= ▲ .19.如果一个数的平方根等于这个数本身,那么这个数是_____. 20.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 21.4是_____的算术平方根.22.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、解答题25.化简代数式,22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭,并求当24,=3a b =-时该代数式的值.26.柯桥区某企业因为发展需要,从外地调运来一批94吨的原材料,现有甲、乙、丙三种车型共选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?27.解方程:x﹣2=2 3 x+28.如图,点O是直线AE上的一点,OC是∠AOD的平分线,∠BOD=13∠AOD.(1)若∠BOD=20°,求∠BOC的度数;(2)若∠BOC=n°,用含有n的代数式表示∠EOD的大小.29.先化简,再求值:a2+(5a2﹣2a)﹣2(a2﹣3a),其中a=﹣5.30.已知:四点A B C D、、、的位置如图所示,根据下列语句,画出图形.()1画直线AD、直线,BC画射线AB;()2画一点O,使点O既在直线AD上又在直线,BC上;()3在上面所作的图形中,以A B C D O、、、、为端点的线段共有条.四、压轴题31.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.32.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)33.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B. 3.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.4.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.5.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b、4、-2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.6.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.7.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.8.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.9.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.10.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.11.A解析:A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用12.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.二、填空题13.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.14.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.16.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.17.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.18.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).19.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.20.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.21.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.22.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.23.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、解答题25.221122a ab b -+-,值为:799- 【解析】根据题意先进行化简,然后把24,=3a b =-分别代入化简后的式子,得出最终结果即可. 【详解】 解:22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭ =222273222a ab b a ab b ---++ =22122a ab b -+-, 然后把24,=3a b =-代入上式得: 221122a ab b -+- 1124=16+42239⎛⎫-⨯⨯⨯-- ⎪⎝⎭ =44839--- =799-. 故答案为:221122a ab b -+-,值为:799-. 【点睛】本题考查化简求值,解题关键在于对整式加减的理解.26.(1)需要甲车6辆,乙车8辆;(2)选甲车8辆、乙车3辆、丙车3辆,此时运费为6500元;选甲车6辆、乙车8辆,此时运费为6400元.【解析】【分析】(1)设需要甲车x 辆,乙车y 辆,根据运送94吨原材料需运费6400元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设需要甲车a 辆,乙车b 辆,丙车(14-a-b )辆,根据需要运送94吨原材料,即可得出关于a 、b 的二元一次方程,结合a 、b 、c 均为非负整数即可得出运送方案,再利用总运费=400×甲车所需辆数+500×乙车所需辆数+600×丙车所需辆数,即可求出总运费.【详解】解:(1)设需要甲车x 辆,乙车y 辆,根据题意得:5x+8y=94400x+500y=6400⎧⎨⎩, 解得:x=6y=8⎧⎨⎩.答:需要甲车6辆,乙车8辆.(2)设需要甲车a辆,乙车b辆,丙车(14﹣a﹣b)辆,根据题意得:5a+8b+10(140﹣a﹣b)=94,整理得:5a+2b=46,∴a=46-2b5,当b=3时,a=8,c=3;当b=8时,a=6,c=0.第一种:400×8+500×3+600×3=6500(元);第二种:400×6+500×8=6400(元).答:选甲车8辆、乙车3辆、丙车3辆,此时运费为6500元;选甲车6辆、乙车8辆,此时运费为6400元.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.27.x=4【解析】【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】解:去分母得:3x﹣6=x+2,移项合并得:2x=8,解得:x=4.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.28.(1)10°;(2)180°﹣6n【解析】【分析】(1)根据∠BOD=13∠AOD.∠BOD=20°,可求出∠AOD,进而求出答案;(2)设∠BOD的度数,表示∠AOD,用含有n的代数式表示∠AOD,从而表示∠DOE.【详解】解:(1)∵∠BOD=13∠AOD.∠BOD=20°,∴∠AOD=20°×3=60°,∵OC是∠AOD的平分线,∴∠AOC=∠COD=12∠AOD=12×60°=30°,∴∠BOC=∠COD﹣∠BOD=30°﹣20°=10°;(2)设∠BOD=x,则∠AOD=3x,有(1)得,∠BOC=∠COD﹣∠BOD,即:n =32x ﹣x ,解得:x =2n , ∴∠AOD =3∠BOD =6n , ∠EOD =180°﹣∠AOD =180°﹣6n ,【点睛】考查角平分线的意义,以及角的计算,通过图形直观得到角的和或差是解决问题的关键.29.80.【解析】试题分析:先去括号,再合并同类项,最后把字母的值代入计算即可.试题解析:222(52)2(3),a a a a a +--- 2225226,a a a a a =+--+244,a a =+,∵5a =-,∴原式24(5)4(5),=⨯-+⨯- 42520,=⨯-10020,=-80=.30.()1见解析;()2见解析;()37【解析】【分析】(1)根据直线、射线的性质画图即可;(2)画出直线AD 和直线BC 的交点即可得出答案;(3)根据线段的定义分别得出各条线段即可.【详解】解:(1)(2)如图所示:(3)根据图形可知线段有: AO , AB ,AD ,BO , BC ,CO ,OD ,共7条.故答案为:7【点睛】此题主要考查了简单作图,解答此题需要熟练掌握直线、射线、线段的性质,认真作图解答即可.四、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t , =4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x 秒,表示出P ,Q 的运动路程,利用路程和等于AB 长即可解题;(3)根据点Q 达到A 点时,点P ,Q 停止运动求出运动时间即可解题;(4)根据第三问点P 运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25- ,35(2)设运动时间为x 秒13x 2x 2535+=+解得 x 4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P 运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P 所在的位置表示的数为5 .(4)由(3)得:点P 运动了6个来回后,又运动了30个单位长度,∴点P 和点Q 一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.33.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP=2t,BQ=t,∴AQ=20-t,QP=2t-(20-t)=3t-20,PB=20-2t.∵PB=20-2t≥0,∴t≤10.∵QP=3t-20≥0,∴t≥203,∴203≤t≤10.分三种情况讨论:①当AQ=13AP时,20-t=13×2t,解得:t=12>10,舍去;②当AQ=12AP时,20-t=12×2t,解得:t=10;③当AQ=23AP时,20-t=23×2t,解得:t607;答:t为10或607时,点Q是线段AP的“2倍点”.【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.。
2022-2023学年上海市闵行区七年级(下)期末数学试卷答案解析
![2022-2023学年上海市闵行区七年级(下)期末数学试卷答案解析](https://img.taocdn.com/s3/m/f4a06d13cec789eb172ded630b1c59eef8c79a8b.png)
2022-2023学年上海市闵行区七年级(下)期末数学试卷一、选择题:(本大题共6题,每题2分,满分12分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(2分)下列各数中,无理数是()A.B.C.πD.2.0232.(2分)下列说法正确的是()A.4的平方根是2B.1的立方根是±1C.﹣3没有五次方根D.0的任何次方根都是03.(2分)已知:如图,点A、D、B、E在同一直线上,且AC∥DF,AD=BE,增加下列条件不能推导出△ABC≌△DEF的是()A.BC=EF B.BC∥EF C.AC=DF D.∠C=∠F 4.(2分)在平面直角坐标系xOy中,点M与点N(3,4)关于原点对称,那么点M的坐标为()A.(3,4)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)5.(2分)下列说法错误的是()A.等腰三角形两腰上的高相等B.等腰三角形两腰上的中线相等C.等腰三角形两底角的平分线相等D.等腰三角形高、中线和角平分线重合6.(2分)已知:如图,∠AOB=45°,点P在∠AOB的内部,OP=4,点P1与点P关于OB对称,点P2与点P关于OA对称,那么以P1、O、P2三点为顶点的三角形面积是()A.4B.8C.16D.无法确定二、填空题:(本大题共12题,每题2分,满分24分)7.(2分)计算:2=.8.(2分)比较大小:﹣﹣2.(填“>”、“=”或“<”)9.(2分)点A和点B是数轴上的两点,点A表示的数为,点B表示的数为,那么A、B两点间的距离为.10.(2分)利用计算器计算:≈(保留两个有效数字).11.(2分)用分数指数幂表示:=.12.(2分)已知:如图,a∥b,三角尺的直角顶点在直线b上,∠1=49°,∠2的度数为.13.(2分)在平面直角坐标系xOy中,已知点P(﹣2,﹣3)向上移动4个单位后得到点Q,那么点Q的坐标是.14.(2分)已知等腰三角形的周长为10,一边长为2,那么它的腰长为.15.(2分)如图:将正方形纸片ABCD先对折,得折痕EF后展开,然后再将AB沿BG翻折,使点A落在折痕EF上的点P,联结PC得△PBC,那么△PBC的形状为.16.(2分)在平面直角坐标系xOy中,已知点A关于x轴的对称点落在第二象限,那么它关于y轴的对称点落在第象限.17.(2分)已知∠AOB与∠CDE的两边分别平行,∠AOB=34°,∠CDE的度数是.18.(2分)我们规定车辆在转弯时的转弯角是车辆原行驶路线与转弯后路线所成的角的外角.如图:一辆车在一段绕山公路行驶(沿箭头方向)时,在点B、C和D处的转弯角分别是α、β和θ,且AB∥DE,则α、β和θ之间的数量关系是.三、解答题(本大题共8题,满分64分)19.(6分)计算:.20.(6分)计算:.21.(6分)计算:=.22.(6分)已知:如图,平面直角坐标系xOy中的△ABC.(1)写出△ABC三个顶点的坐标;(2)画出△ABC关于y轴的对称图形.23.(6分)已知:如图,在△ABC中,已知BD平分∠ABC,DE∥BC,点M是BD的中点.请说明EM⊥BD.解:因为BD平分∠ABC(已知),所以∠CBD=(角平分线的意义).因为DE∥BC(已知),所以∠CBD=∠BDE().所以∠BDE=().所以EB=ED().因为点M是BD的中点(已知),所以EM⊥BD().24.(8分)已知:如图,点C、D在AB的异侧,AC=AD,BC=BD,请说明△ABC与△ABD全等的理由.25.(8分)已知在等腰三角形ABC中,AC=BC,∠C=2∠B.求∠B的度数.26.(8分)已知在等边△ABC中,点D是边AB上一点,点E是CB延长线上一点,DC=DE.(1)如图1,如果点D是AB的中点,说明BE=AD;(2)如图2,如果点D是AB上任意一点(不与点A、B重合),BE=AD还成立吗?请说明理由.27.(10分)如图:在平面直角坐标系xOy中,已知点P(4,4),点A是x轴的正半轴上一点,横坐标为a(4<a<8),联结AP,将线段AP绕点P顺时针旋转90°,点A的对应点为点B.(1)在图中描出点P和点B;(不写结论)(2)点B的坐标为(用含a的代数式表示),四边形OAPB的面积为;(3)联结OP.i)∠POA=°;ii)说明点A和点B到线段OP的距离之和等子线段OP的长.2022-2023学年上海市闵行区七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题2分,满分12分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.【分析】整数和分数统称为有理数,无理数即无限不循环小数;据此进行判断即可.【解答】解:是分数,=2是整数,2.023是有限小数,它们均为有理数,则A,B,D均不符合题意;π是无限不循环小数,也是无理数,则C符合题意;故选:C.【点评】本题考查无理数的识别,其相关定义是基础且重要知识点,必须熟练掌握.2.【分析】分别根据平方根、立方根和n次方根的定义进行判断即可.【解答】解:4的平方根是±2,故A不符合题意;1的立方根是1,故B不符合题意;﹣3有五次方根,故C不符合题意;0的任何次方根都是0,故D符合题意;故选:D.【点评】本题考查平方根、立方根和n次方根的定义,此为基础且重要知识点,必须熟练掌握.3.【分析】根据全等三角形的判定定理求解即可.【解答】解:∵AC∥DF,∴∠A=∠FDE,∵AD=BE,∴AD+DB=BE+DB,即AB=DE,A、∵AB=DE,BC=EF,∠A=∠FDE,不能判定△ABC≌△DEF,故此选项符合题意;B、∵BC∥EF,∴∠ABC=∠DEF,∵∠A=∠FDE,AB=DE,∠ABC=∠DEF,∴△ABC≌△DEF(ASA),故此选不项符合题意;C、∵AC=DF,∠A=∠FDE,AB=DE,∴△ABC≌△DEF(SAS),故此选项不符合题意;D、∵∠C=∠F,∠A=∠FDE,AB=DE,∴△ABC≌△DEF(AAS),故此选项不符合题意;故选:A.【点评】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.4.【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O 的对称点是P′(﹣x,﹣y),即可得出答案.【解答】解:∵点M与点N(3,4)关于原点对称,∴点M的坐标为(﹣3,﹣4).故选:B.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.5.【分析】根据等腰三角形的性质,逐一判断即可解答.【解答】解:A、等腰三角形两腰上的高相等,故A不符合题意;B、等腰三角形两腰上的中线相等,故B不符合题意;C、等腰三角形两底角的平分线相等,故C不符合题意;D、等腰三角形底边上的高、底边上的中线和顶角的角平分线互相重合,故D符合题意;故选:D.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.6.【分析】由对称的性质证∠P2OP1=90°,再根据三角形面积计算即可.【解答】解:如图,∵OP=4,点P1与点P关于OB对称,点P2与点P关于OA对称,∴OP1=OP2=OP=4,∠P2OA=∠AOP,∠POB=∠BOP1,∵∠AOB=45°,∴∠P2OA+∠AOP+∠POB+∠BOP1=90°,即∠P2OP1=90°,∴.故选:B.【点评】本题考查了轴对称的性质和三角形的面积,熟练掌握并运用轴对称的性质是解题的关键.二、填空题:(本大题共12题,每题2分,满分24分)7.【分析】根据二次根式的乘方法则计算即可.【解答】解:()2=3,故答案为:3.【点评】本题考查的是二次根式的乘方,掌握二次根式的乘方法则是解题的关键.8.【分析】求出2=<,再根据实数的大小比较法则比较即可.【解答】解:∵2=,∴﹣<﹣2,故答案为:<.【点评】本题考查了实数的大小比较法则的应用,注意:两个负数比较大小,其绝对值大的反而小.9.【分析】根据数轴上两点间的距离公式AB=|a﹣b|,代入A点和B点表示的数,求解即可.【解答】解:∵点A表示的数为,点B表示的数为,∴.故答案为:.【点评】此题主要是考查了数轴上两点间的距离,能够熟练运用公式是解答此题的关键.10.【分析】利用计算器分别计算出各数,再根据有理数的减法进行计算即可.【解答】解:原式≈2.449﹣1.414=1.035≈1.0.故答案为:1.0.【点评】本题考查的是计算器﹣数的开方,能熟练利用计算器计算数的开方是解答此题的关键.11.【分析】直接化根式为分数指数幂得答案.【解答】解:原式=.故答案为:.【点评】本题考查根式与分数指数幂的互化,是基础的计算题.12.【分析】由a∥b,得到∠3=∠1=49°,由平角定义得到∠2=180°﹣90°﹣49°=41°.【解答】解:∵a∥b,∴∠3=∠1=49°,∴∠2=180°﹣90°﹣49°=41°.故答案为:41°.【点评】本题考查平行线的性质,关键是由平行线的性质得到∠3=∠1=49°.13.【分析】根据向上平移横坐标不变,纵坐标加进行计算即可得解.【解答】解:∵将点P(﹣2,﹣3)向上移动4个单位后得到点Q,∴点Q的纵坐标为﹣3+4=1,∴点Q的坐标为(﹣2,1).故答案为:(﹣2,1).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.【分析】首先设等腰三角形的另一边为x,再分两种情况讨论:①当x为等腰三角形的腰长时,底边为2,根据等腰三角形的周长为10可求出x=4,然后根据“三角形任意两边之和大于第三边”进行检验即可得出答案;②当2为等腰三角形的腰长时,底边为x,根据等腰三角形的周长为10可求出x=4,然后根据“三角形任意两边之和大于第三边”进行检验即可得出答案.【解答】解:设等腰三角形的另一边为x,∵等腰三角形的周长为10,一边长为2,∴有以下两种情况:①当x为等腰三角形的腰长时,底边为2,依题意得:2x+2=10,解得:x=4,∵2+4>5,故符合三角形任意两边之和大于第三边,∴腰长为4,②当2为等腰三角形的腰长时,底边为x,依题意得:2+2+x=10,解得:x=6,∵2+2<6,故不符合三角形任意两边之和大于第三边,此种情况不存在.综上所述:该等腰三角形的腰长为4.故答案为:4.【点评】此题主要考查了等腰三角形的概念,三角形三边之间的关系,解答此题的关键是理解三角形任意两边之和大于第三边,进行分类讨论是解答此题的难点,也是易错点.15.【分析】由轴对称可知BA=BP=PC,再由正方形的边长相等可知BP=PC=BC,从而判断形状.【解答】解:等边三角形.证明如下,由题意知,EF垂直平分线段BC,∴PB=PC,∵△ABG和△PBG关于BG对称,∴PB=PC=BA,∵四边形ABCD是正方形,∴PB=PC=BA=BC,∴△PBC是等边三角形.故答案为:等边三角形.【点评】本题主要考查了轴对称的性质.本题的关键是将轴对称转化为线段相等.16.【分析】由已知可得点A位于第三象限,可求点A关于y轴的对称点的坐标,根据点的坐标特点可得答案.【解答】解:∵点A关于x轴的对称点落在第二象限,∴A点在第三象限,∴它关于y轴的对称点落在第四象限.故答案为:四.【点评】此题考查的是关于x轴、y轴对称的点的坐标,关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).17.【分析】由平行线的性质得到∠CDE=∠AOB或∠CDE+∠AOB=180°,即可得到答案.【解答】解:如图1,∵OA∥DC,OB∥DE,∴∠AOB=∠CEB,∠CDE=∠CEB,∴∠CDE=∠AOB=34°°.如图2,∵OA∥CD,DE∥OB,∴∠AOB=∠DNB,∠DNB+∠CDE=180°,∴∠AOB+∠CDE=180°,∵∠AOB=34°,∴∠CDE=146°,∴∠CDE=34°或146°.故答案为:34°或146°.【点评】本题考查平行线的性质,关键是由平行线的性质得到∠CDE=∠AOB或∠CDE+∠AOB=180°.18.【分析】根据题意画出图形,然后根据平行线的性质证得∠DFC=α,再根据三角形外角的性质解答即可.【解答】解:如图,∵AB∥DE,∴∠DFC=α,∵θ=∠DFC+β,∴θ=α+β.故答案为:θ=α+β.【点评】本题考查的是平行线的性质以及三角形外角的性质,解题的关键是熟练掌握平行线的性质并灵活运用;平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.三、解答题(本大题共8题,满分64分)19.【分析】利用二次根式的乘除计算得出答案.【解答】解:原式=(5﹣2)÷=3÷=3.【点评】本题考查了二次根式的混合运算,题目难度较小,明确二次根式乘除法的性质是解决问题的关键.20.【分析】利用完全平方公式,平方差公式进行计算,即可解答.【解答】解:=(4+2)×(4﹣2)=16﹣12=4.【点评】本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.21.【分析】先计算同底数幂的除法,再计算幂的乘方即可.【解答】解:原式=()6=3﹣1=.故答案为:.【点评】本题考查了分数指数幂,熟练掌握运算法则是关键.22.【分析】(1)根据图形直接写出点的坐标即可;(2)根据轴对称变换的性质找出对应点即可求解.【解答】解:(1)A(﹣1,2),B(﹣2,﹣2),C(1,﹣1);(2)如图所示,△DEF即为所求.【点评】本题考查了轴对称变换的性质,熟练掌握轴对称变换的性质是解题的关键.23.【分析】由角平分线的定义和平行线的性质得到∠BDE=∠ABD,由等腰三角形的判定得到EB=ED,根据等腰三角形的性质即可证得EM⊥BD.【解答】解:因为BD平分∠ABC(已知),所以∠CBD=∠ABD(角平分线的意义).所以∠CBD=∠BDE(两直线平行,内错角相等).所以∠BDE=∠ABD(等量代换).所以EB=ED(等角对等边).因为点M是BD的中点(已知),所以EM⊥BD(等腰三角形的性质).【点评】本题主要考查了平行线的性质,等腰三角形的性质和判定等知识,灵活运用相关知识是解决问题的关键.24.【分析】由SSS即可证明两三角形全等.【解答】证明:在△ABC和△ABD中,∴△ABC≌△ABD(SSS).【点评】本题考查了三角形全等的判定.本题的关键是发掘公共边相等这一条件.25.【分析】根据等腰三角形的性质得∠A=∠B,设∠A=∠B=x,则∠C=2∠B=2x,由三角形的内角和定理得到关于x的方程,即可求解.【解答】解:∵AC=BC,∴∠A=∠B,设∠A=∠B=x,则∠C=2∠B=2x,∴x+x+2x=180°,∴x=45°,∴∠B=45°.【点评】本题考查了等腰三角形的性质以及三角形的内角和定理等知识,熟练掌握等腰三角形的性质是解题的关键.26.【分析】(1)根据等边三角形的性质可得∠ABC=∠ACB=60°,AC=BC,再利用等腰三角形的三线合一性质可得∠CDB=90°,∠DCB=30°,然后利用等腰三角形的性质可得∠E=∠DCB=30°,再利用三角形的外角性质可得∠EDB=∠E=30°,从而可得BE=BD,最后利用等量代换即可解答;(2)过点D作DF∥CB,交AC于点F,根据等边三角形的性质可得∠ABC=∠ACB=∠A=60°,从而可得∠ABE=120°,再根据平行线的性质可得∠ADF=∠ABC=60°,∠AFD=∠ACB=60°,从而可得∠CFD=120°,然后根据等边三角形的判定可得△ADF是等边三角形,从而可得AD=DF,再根据等腰三角形的性质可得∠E=∠DCE,最后根据平行线的性质可得∠DCB=∠FDC,从而可得∠E=∠FDC,进而利用AAS证明△DBE≌△CFD,再利用全等三角形的性质可得BE=DF,从而利用等量代换即可解答.【解答】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AC=BC,∵点D是AB的中点,∴∠CDB=90°,∠DCB=∠ACB=30°,∵DC=DE,∴∠E=∠DCB=30°,∵∠EDB=∠ABC﹣∠E=30°,∴∠EDB=∠E=30°,∴BE=BD,∵BD=AD,∴BE=AD;(2)BE=AD还成立,理由:过点D作DF∥CB,交AC于点F,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,∴∠ABE=180°﹣∠ABC=120°,∵DF∥BC,∴∠ADF=∠ABC=60°,∠AFD=∠ACB=60°,∴∠CFD=180°﹣∠AFD=120°,∴∠ABE=∠CFD=120°,∵∠A=∠ADF=∠AFD=60°,∴△ADF是等边三角形,∴AD=DF,∵DE=DC,∴∠E=∠DCE,∵DF∥BC,∴∠DCB=∠FDC,∴∠E=∠FDC,∴△DBE≌△CFD(AAS),∴BE=DF,∴BE=AD.【点评】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.27.【分析】(1)根据题目中的要求画出图形;(2)根据图形的特征,通过旋转,构造全等三角形,观察图形中线段间的数量关系即得答案;(3)i)正方形的对角线平分每一组对角得的角pop等45度,正方形的对角线平分每一组对角得的角POA等于45°,ii)利用割补法来证明A点B点到OP的距离的和等于OP的长.见解答.【解答】解:(1)如下图:(2)如图:作AN⊥x轴,BM⊥y轴,∵P(4,4)、A(a,0),∴PM=4,PN=4,∵∠MPN=∠BPA=90°,∴∠MPB=∠NPA,又∵∠PMB=∠PNA=90°,∴△PBM≌△PAN(AAS),=S△PNA,AN=BM=a﹣4,∴S△PMB=S四边形ONPB+S△PNA=S△四边形ONPB+S△PMB=S正方形PMON=PM2=16,∴S四边形OAPB∵OM=4,∴OB=OM﹣BM=4﹣(a﹣4)=8﹣a,∴B(0,8﹣a),故答案为:B(0,8﹣a),16;(3)连接OP,作BE⊥OP,AF⊥OP,i)由(2)知四边形PMON为正方形,所以OP为正方形PMON的对角线,∴∠PON=∠POA=45°,故答案为:∠POA=45°;ii)由图知S四边形OAPB=S△PBO+S△P AO=16,∴,∵P(4,4),∴OP=,∴BE+AF=,∴点A和点B到线段OP的距离之和等于线段OP的长.【点评】本题考查坐标与图形的变化——旋转,四边形的面积等知识解题的,关键是理解题意学会利用参数构建方程解决问题属于中考中常考的题型。
2023-2024学年上海市长宁区七年级(下)期末数学试卷及答案解析
![2023-2024学年上海市长宁区七年级(下)期末数学试卷及答案解析](https://img.taocdn.com/s3/m/c4022f3f7f21af45b307e87101f69e314332facd.png)
2023-2024学年上海市长宁区七年级(下)期末数学试卷一、选择题(本大题共6小题,每题2分,满分12分)1.(2分)下列各数中,是无理数的是()A.B.C.D.2.(2分)下列运算正确的是()A.B.C.D.3.(2分)下列图中,∠1、∠2是对顶角的是()A.B.C.D.4.(2分)已知a为实数,那么在平面直角坐标系中,下列各点中一定位于第四象限的点是()A.(4,﹣a2)B.(a+1,﹣4)C.(a2+1,﹣4)D.(a2,﹣4)5.(2分)已知等腰三角形的周长为16,其底边长为a,那么a的取值范围是()A.a>0B.0<a<8C.0<a<16D.a<166.(2分)如图,直线a⊥b,在平面直角坐标系中,x轴∥a,y轴∥b,已知点A(﹣1,4)、点B(2,﹣1),那么坐标原点是点()A.O1B.O2C.O3D.O4二、填空题(本大题共12小题,每空3分,满分36分)7.(3分)49的平方根是.8.(3分)比较大小:﹣π﹣3.14(选填“>”、“=”、“<”).9.(3分)计算:=.10.(3分)近似数﹣0.040有个有效数字.11.(3分)把表示成幂的形式是.12.(3分)在△ABC中,已知∠A:∠B:∠C=1:2:1,那么△ABC是三角形.13.(3分)如图,AB∥CD,BF交CD于点E,AE⊥BF,∠CEF=34°,则∠A的度数是.14.(3分)在梯形ABCD中,AD∥BC,联结AC、BD,已知梯形ABCD的面积为16,△BDC的面积为12,那么△ADC的面积.15.(3分)一个三角形的三边长为x,5,7,另一个与它全等的三角形的三边长为3,y,5,那么以x、y 为腰长和底边长的等腰三角形的周长等于.16.(3分)平面直角坐标系中有点P、Q(2,﹣3)、M(﹣1,2).如果PQ∥x轴,PM∥y轴,那么点P 关于原点O对称的点的坐标是.17.(3分)如图,E、B、C三点在一条直线上,AD∥BC,AD=BC,点F是AE的中点,如果BD=EC,那么∠BFD=度.18.(3分)如图,在长方形ABCD中,AB=12厘米,AD=16厘米,点E为AD中点,已知点P在线段AB上以2厘米/秒的速度由点A向点B运动,同时点Q在线段BC上由点C向点B运动,如果△AEP 与△BPQ恰好全等,那么点Q的运动速度是厘米/秒.三、简答题(本大题共4题,第19、20题每题6分,第21、22题每题7分,满分26分)19.(6分)计算:.20.(6分)利用幂的运算性质计算:.21.(7分)如图,已知AB∥CD,BE∥DF,∠B=30°,试求∠CDH的度数.22.(7分)如图,已知AC∥DE,AC=DE,BD=FC,说明△ABC≌△EFD.请填写说理过程或理由.解:因为AC∥DE(已知),所以∠ACB=∠EDF().因为BD=FC(已知),所以﹣BD=﹣FC(),即BC=FD.在△ABC与△EFD中,,所以△ABC≌△EFD().四、解答题(本大题共3题,第23题6分,第24题10分,第25题10分,满分26分)23.(6分)如图,直角坐标平面上有边长为1的正方形网格,已知点A的坐标为(3,4),点B的坐标为(4,1),点C的坐标为(﹣2,4).(1)平移线段AB得到线段CD,此时点A与点C重合,点B与点D重合,直接写出点D的坐标是;(2)顺次连接点A、B、D、C,那么四边形ABDC的面积是;(3)再次平移线段CD,使得其两个端点都落在坐标轴上,此时点C与点P重合,那么点P与坐标原点O的距离=.24.(10分)如图,△ABC和△AED都是等腰直角三角形,∠ACB=∠AED=90°,点D在AB上,点M(1)联结DM,延长DM与AC相交于点F,请根据要求画出图形,并说明AE=CF.(2)再联结BF,已知BF=12,求CM的长.25.(10分)在锐角三角形ABC中,点D、E分别在边AB、AC上,联结DE,将△ADE沿DE翻折后,点A落在BC边上的点P,当△BDP和△CEP都为等腰三角形时,我们把线段DE称为△ABC的完美翻折线,P为完美点.(1)如图1,在等边三角形ABC中,边BC的中点P是它的完美点,已知其完美翻折线DE的长为4,那么等边三角形ABC的周长=.(2)如图2,已知DE为△ABC的完美翻折线,P为完美点,当∠B、∠C恰为等腰三角形的顶角时,求此时∠A的度数.(3)如图3,已知DE为△ABC的完美翻折线,P为完美点,当∠B、∠EPC恰为等腰三角形的顶角时,请判断点P到边AB、AC的距离是否相等?并说明你的判断理由.2023-2024学年上海市长宁区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每题2分,满分12分)1.【分析】无理数即无限不循环小数,据此即可求得答案.【解答】解:是无限不循环小数,它是无理数;=4,﹣=﹣3是整数,是分数,它们不是无理数;故选:A.【点评】本题考查无理数的识别,熟练掌握其定义是解题的关键.2.【分析】根据算术平方根的定义依次计算即可求解.【解答】解:A、无意义,故错误,不符合题意;B、﹣=﹣5,故错误,不符合题意;C、=9,故错误,不符合题意;D、=3,故正确,符合题意.故选:D.【点评】本题考查了算术平方根,解题的关键是熟练运用算术平方根的定义,本题属于基础题型.3.【分析】根据对顶角的定义逐项判断即可.【解答】解:由一个公共端点,并且一个角的两边分别与另一个角的两边互为反向延长线,具有这种位置关系的两个角即为对顶角,则A,B,C中的图形不符合此定义;D中的图形符合此定义;故选:D.【点评】本题考查对顶角的识别,熟练掌握其定义是解题的关键.4.【分析】A.先判断a2的大小,从而判断﹣a2的大小,最后根据点的坐标判断其所在位置即可;B.先根据a的大小,从而判断a+1的大小,最后根据点的坐标判断其所在位置即可;C.先判断a2的大小,从而判断a2+1大小,后根据点的坐标判断其所在位置即可;D.先判断a2的大小,然后根据点的坐标判断其所在位置即可.【解答】解:A.∵a2≥0,∴﹣a2≤0,∴(4,﹣a2)在第四象限或x轴的正半轴上,故此选项不符合题意;B.∵a为实数,∴a+1>0或a+1≤0,∴(a+1,﹣4)可能在第四象限,也可能在第三象限,也可能在y轴的负半轴上,故此选项不符合题意;C.∵a2≥0,∴a2+1>0,∴(a2+1,﹣4)一定在第四象限.故此选项符合题意;D.a2≥0,∴(a2,﹣4)在第四象限或y轴的负半轴上,故此选项不符合题意,故选:C.【点评】本题主要考查了点的坐标,解题关键是熟练掌握各个象限和坐标轴上点的坐标特征.5.【分析】根据已知易得:腰长为,然后根据三角形的三边关系可得,从而进行计算即可解答.【解答】解:∵等腰三角形的周长为16,其底边长为a,∴腰长为,由题意得:,解得:0<a<8,故选:B.【点评】本题考查了等腰三角形的性质,解一元一次不等式组,三角形的三边关系,准确熟练地进行计算是解题的关键.6.【分析】根据题意和点A和点B的坐标,可以画出相应的坐标系,然后即可得哪个点为原点.【解答】解:由题意可得,平面直角坐标系如图所示,故坐标原点是点O2,故选:B.【点评】本题考查坐标与图形的性质,解答本题的关键是明确题意,画出相应的平面直角坐标系.二、填空题(本大题共12小题,每空3分,满分36分)7.【分析】根据平方根的定义解答.【解答】解:49的平方根是±7.故答案为:±7.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.【分析】先比较π和3.14的大小,再根据“两个负数,绝对值大的反而小”即可比较﹣π<﹣3.14的大小.【解答】解:因为π是无理数所以π>3.14,故﹣π<﹣3.14.故填空答案:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.9.【分析】根据分数指数幂的定义和运算性质计算即可.【解答】解:原式====8,故答案为:8.【点评】本题考查的是分数指数幂,熟练掌握分数指数幂的定义和运算性质是解题的关键.10.【分析】根据有效数字的定义即一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字,即可得出答案.【解答】解:近似数﹣0.040有4,0两个有效数字.故答案为:2.【点评】此题考查近似数和有效数字,注意有效数字即从左边不是0的数字起所有的数字.中间的0和末尾的0都是有效数字.11.【分析】根据分数指数幂的定义即可求出答案.【解答】解:=.故答案为:.【点评】本题考查分数指数幂的公式,=.12.【分析】根据三角形内角和、三个内角比计算出每个内角度数即可判断.【解答】解:设∠A=x,则∠B=2x,∠C=x,∵∠A+∠B+∠C=180°,∴x+2x+x=180°,∴x=45°,∴∠A=45°,∠B=90°,∠C=45°,所以△ABC是等腰直角三角形.故答案为:等腰直角.【点评】本题考查了三角形内角和定理,运用方程思想是解本题的关键.13.【分析】先根据垂直的定义得到∠AEF=90°,进而求出∠AEC=56°,再由两直线平行,内错角相等可得∠A=∠AEC=56°.【解答】解:∵AE⊥BF,∴∠AEF=90°,∵∠CEF=34°,∴∠AEC=∠AEF﹣∠CEF=56°,∵AB∥CD,∴∠A=∠AEC=56°,故答案为:56°.【点评】本题考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解题的关键.14.【分析】根据题意求出△BDA的面积,再根据三角形的面积公式求出△ADC的面积.【解答】解:∵梯形ABCD的面积为16,△BDC的面积为12,∴△BDA的面积为:16﹣12=4,∵AD∥BC,∴△ADC的面积=△BDA的面积=4,故答案为:4.【点评】本题考查的是梯形的性质、三角形的面积计算,掌握三角形的面积公式是解题的关键.15.【分析】根据全等三角形的对应边相等可得x=3,y=7,根据三角形的三边关系求出等腰三角形的三边,即可求得答案.【解答】解:∵三角形的三边长为x,5,7的三角形,与另一个三边长为3,y,5的三角形全等,∴x=3,y=7,当以x为腰时,∴三角形的三边为3,3,7,∵3+3<7,∴不能够组成三角形,当以y为腰时,∴三角形的三边为7,7,3,∵3+7>7,∴能组成三角形,∴三角形的周长=3+7+7=17,故答案为:17.【点评】此题考查全等三角形的性质、等腰三角形的性质,三角形的三边关系,熟记性质准确找出对应边得到x、y的值是解题的关键.16.【分析】根据关于原点对称的点的坐标:横纵坐标互为相反数解答即可.【解答】解:由题意得:Q(2,﹣3)、M(﹣1,2),PQ∥x轴,PM∥y轴,∴P(﹣1,﹣3),∴点P关于原点O对称的点的坐标是(1,3).故答案为:(1,3).【点评】本题主要考查了关于原点对称的点的坐标特点,熟练掌握关于原点对称的点的坐标:横纵坐标互为相反数是解题关键.17.【分析】延长BF、DA交于点G,可证明△AFG≌△EFB,得AG=EB,GF=BF,而AD=BC,可推导出GD=EC,因为BD=EC,所以GD=BD,即可根据等腰三角形的“三线合一”证明DF⊥BG,则∠BFD=90°,于是得到问题的答案.【解答】解:延长BF、DA交于点G,∵AD∥BC,∴∠G=∠EBF,∵点F是AE的中点,∴AF=EF,在△AFG和△EFB中,,∴AG=EB,GF=BF,∵AD=BC,∴AG+AD=EB+BC,∴GD=EC,∵BD=EC,∴GD=BD,∴DF⊥BG,∴∠BFD=90°,故答案为:90.【点评】此题重点考查平行线的性质、线段的中点的定义、全等三角形的判定与性质、等腰三角形的“三线合一”等知识,正确地作出辅助线是解题的关键.18.【分析】根据△AEP与△BPQ全等,得到AE=PB,可计算出运动时间,再根据BQ=AP,即可计算出点Q的运动速度.【解答】解:设运动时间为t s,Q的运动速度x cm/s,由题意得AP=2t cm,QC=xt cm,∴BQ=(16﹣xt)cm,PB=(12﹣2t)cm,∵△AEP与△BPQ全等,∴BQ=AP,AE=PB或BP=AP,AE=BQ,当BQ=AP,AE=PB时,∵AE=8cm,∴12﹣2t=8cm,∴t=2,∴AP=2t=4cm,∴16﹣xt=4,∴x=6;当BP=AP,AE=BQ时,,解方程组得t=3,x=,故点Q的运动速度是6cm/s或cm/s.故答案为:6或.【点评】本题考查矩形的性质和全等三角形的性质,根据三角形全等对应的边相等建立等式是解本题的关键.三、简答题(本大题共4题,第19、20题每题6分,第21、22题每题7分,满分26分)19.【分析】根据立方根、平方根以及零次幂、负整数指数幂的意义计算.【解答】解:原式=+2﹣1+=3.【点评】本题考查了二次根式的混合运算及立方根、平方根以及零次幂、负整数指数幂的运算,正确理解平方根与立方根的意义是解题的关键.20.【分析】直接利用分数指数幂的性质分别化简得出答案.【解答】解:原式====22=4.【点评】本题考查分数指数幂、实数的运算,熟练掌握运算法则是解题的关键.21.【分析】先根据BE∥DF,∠B=30°得出∠FMA=∠B=30°,再由AB∥CD即可得出∠CDM的度数,再由平角的定义即可得出结论.【解答】解:∵BE∥DF,∠B=30°,∴∠FMA=∠B=30°,∵AB∥CD,∴∠CDM=∠FMA=30°,∴∠CDH=180°﹣∠CDM=180°﹣30°=150°.【点评】本题考查的是平行线的性质,熟知两直线平行,同位角相等是解题的关键.22.【分析】根据平行线的性质及线段的和差求出∠ACB=∠EDF,BC=FD,利用SAS证明△ABC≌△EFD 即可.【解答】解:因为AC∥DE(已知),所以∠ACB=∠EDF(两直线平行,内错角相等),因为BD=FC(已知),所以BF﹣BD=BF﹣FC(等式性质),即BC=FD.在△ABC与△EFD中,,所以△ABC≌△EFD(SAS).故答案为:两直线平行,内错角相等;BF;BF;等式性质;SAS.【点评】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.四、解答题(本大题共3题,第23题6分,第24题10分,第25题10分,满分26分)23.【分析】(1)根据点A和点C的坐标得出平移的方向和距离,再结合点B的坐标即可解决问题.(2)画出示意图,结合所画图形即可解决问题.(3)根据题意,画出示意图,结合图形平移的性质即可解决问题.【解答】解:(1)因为点A坐标为(3,4),点C坐标为(﹣2,4),且平移后点A与点C重合,所以3﹣(﹣2)=5,4﹣4=0,又因为点B的坐标为(4,1),所以4﹣5=﹣1,1﹣0=1,则点D的坐标为(﹣1,1).故答案为:(﹣1,1).(2)如图所示,连接AD,则,同理可得,,∴.故答案为:15.(3)如图所示,当点C在x轴上,点D在y轴上时,点P的坐标为(﹣1,0),所以点P与坐标原点的距离为1.当点C在y轴上,点D在x轴上时,点P′的坐标为(0,3),所以点P′与坐标原点的距离为3.故答案为:1或3.【点评】本题主要考查了坐标与图形变化﹣平移及三角形的面积,熟知图形平移的性质及三角形的面积公式是解题的关键.24.【分析】(1)由△ABC和△AED都是等腰直角三角形,∠ACB=∠AED=90°,得AC=CB,AE=ED,则∠CAB=∠EDA=45°,所以AC∥DE,则∠FCM=∠DEM,而∠FMC=∠DME,CM=EM,即可证明△FCM≌△DEM,得CF=ED,则AE=CF;(2)由∠CAB=∠EAD=45°,得∠EAC=90°,则∠EAC=∠FCB,即可证明△EAC≌△FCB,得CE=BF=12,则CM=CE=6.【解答】解:(1)联结DM,延长DM与AC相交于点F,∵△ABC和△AED都是等腰直角三角形,∠ACB=∠AED=90°,∴AC=CB,AE=ED,∴∠CAB=∠CBA=45°,∠EDA=∠EAD=45°,∴∠CAB=∠EDA,∴AC∥DE,∴∠FCM=∠DEM,∵点M为CE的中点,∴CM=EM,在△FCM和△DEM中,,∴△FCM≌△DEM(AAS),∴CF=ED,∴AE=CF.(2)联结BF,∵∠CAB=∠EAD=45°,∴∠EAC=2×45°=90°,∴∠EAC=∠FCB,在△EAC和△FCB中,,∴△EAC≌△FCB(SAS),∴CE=BF=12,∴CM=EM=CE=×12=6,∴CM的长为6.【点评】此题重点考查等腰直角三角形的判定与性质、平行线的判定与性质、线段的中点的定义、全等三角形的判定与性质等知识,证明△FCM≌△DEM是解题的关键.25.【分析】(1)根据翻折的性质可得△ADE≌△PDE,根据等边三角形的性质可得∠B=∠C=60°,则△BDP和△PEC是等边三角形,最后证明△ADE是等边三角形即可求解;(2)连接AP,设∠DAP=α,∠EAP=β,根据三角形的外角定理和等腰三角形的性质可得∠BPD=∠BDP=2α,∠CPE=∠PEC=2β,最后根据∠BPD+∠DPE+∠CPE=180°即可求解;(3)连接AP,过P作PH⊥AB于点H,PN⊥AC于点N,设∠DAP=α,∠EAP=β,根据∠BPD+∠DPE+∠CPE=180°可得α=β,则AP为∠BAC的平分线,PH=PN,即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=AC,∵P为△ABC的完美点,∴△ADE≌△PDE,△BDP和△PEC是等腰三角形,∵∠B=∠C=60°,∴△BDP和△PEC是等边三角形,∴BD=DP,PE=CE,又∵AD=DP,AE=PE,∴,,∴AD=AE,∴△ADE是等边三角形,∵DE=4,∴AD=AE=4,∴AB=AC=BC=8,∴等边三角形ABC的周长=8+8+8=24,故答案为:24;(2)连接AP,如图2,设∠DAP=α,∠EAP=β,∵DE为△ABC的完美翻折线,∴△ADE≌△PDE,∴AD=DP,AE=PE,∴∠DPA=∠DAP=α,∠EPA=∠EAP=β,∴∠BDP=2α,∠PEC=2β,∵△BDP和△PEC是等腰三角形,且∠B,∠C都为顶角,∴BD=BP,CP=CE,∴∠BPD=∠BDP=2α,∠CPE=∠PEC=2β,∵∠BPD+∠DPE+∠CPE=180°,∴3α+3β=180°,∴α+β=60°,即∠BAC=60°;(3)点P到边AB、AC的距离相等;理由如下:连接AP,过P作PH⊥AB于点H,PN⊥AC于点N,如图3,∵DE为△ABC的完美翻折线,∴△ADE≌△PDE,△BDP和△PEC是等腰三角形,设∠DAP=α,∠EAP=β,∴∠DPA=∠DAP=α,∠EPA=∠EAP=β,∴∠BDP=2α,∠PEC=2β,∵∠B,∠EPC为顶角,∴BD=BP,PE=PC,∴∠BPD=∠BDP=2α,∠PEC=∠PCE=2β,∴∠EPC=180°﹣4β,∵∠BPD+∠DPE+∠EPC=180°,∴2α+α+β+180°﹣4β=180°,∴α=β,AP为∠BAC的平分线,∴PH=PN,.【点评】本题主要考查了三角形的折叠问题,等腰三角形的性质,等边三角形的性质,角平分线的性质定理,解题的关键是掌握相关内容,根据三角形的内角和定理和外角定理构造等量关系求解。
上海市七年级第一学期数学期末考试(共三套-含答案)
![上海市七年级第一学期数学期末考试(共三套-含答案)](https://img.taocdn.com/s3/m/46d2482a360cba1aa911daa6.png)
上海市2021学年七年级第一学期数学期末试卷2021.1.14〔测试时间90分钟, 总分值100 分〕一、填空题〔每题1分,共18分〕1、多项式9753+-x x 是________次________项式2、多项式13691124--+-x x x 的最高次项是___________,最高次项的系数是____________,常数项是______3、_______________•(24a -)=23441612a a a +-5.从整式π、2、3+a 、3-a 中,任选两个构造一个..分式 . 6.如果多项式62-+mx x 在整数范围内可以因式分解,那么m 可以取的值是______________. 7.假设m +n =8,mn =14,那么=+22n m ;8.当x 时,分式242--x x 有意义;9.如果分式522-+x x 的值为1,那么=x ; 10.计算:x x x x 444122-⋅+-=______________;11、假设关于x 的方程221=-x 与23-=+a x x 的解相等,那么a 的值为_____________12. 如图,将△AOC 绕点O 顺时针旋转90°得△BOD ,3=OA ,1=OC ,那么图中阴影局部的面积为 .13.:如图,在正方形ABCD 中,点E 在边BC 上,将△DCE 绕点D 按顺时针方向旋转,与△DAF 重合,那么旋转角等于_________度.14. 在线段、角、正三角形、长方形、正方形、等腰梯形和圆中,共ABC DEF〔第13题图〕有 个为旋转对称图形.15.如图,一块等腰直角的三角板ABC ,在水平桌面上绕点C 按顺时针方向旋 转到A ′B ′C ’的位置,使A 、C 、B ′三点共线,那么旋转角的大小是 度.16、正三角形是旋转对称图形,绕旋转中心至少旋转 度,可以和原图形重合。
17.长、宽分别为a 、b 的长方形硬纸片拼成一个“带孔〞正方形〔如右图所示〕,试利用面积的不同表示方法,写出一个等式______________________.18.为确保信息平安,信息需要加密传输,发送方由明文→明文〔解密〕.加密规那么为:明文a ,b ,c 对应的密文1-a ,12+b ,23-c .如果对方收到的密文为2,9,13,那么解密后得到的明文为 . 二、选择题(本大题共13小题,每题2分,总分值26分)1.以下运算中,正确的选项是 …………………………………—………………………〔 〕(A) 532)(a a =; (B) 532a a a =⋅; (C) 532a a a =+; (D) 236a a a =÷. 2.()()c b a c b a --+-的计算结果是………………………………………………〔 〕(A)222c b a -+; (B)222c b a +-;(C) 2222b c ac a -+-; (D) 2222c b ab a -+-. 3.如果22423y xy x M --=,2254y xy x N -+=,那么2215138y xy x --等于…〔 〕 〔A 〕N M -2 〔B 〕N M -4 〔C 〕N M 32- 〔D 〕N M 23- 4.如果分式yx x +-22的值为0,那么y 的值不能等于……………………………〔 〕 〔A 〕2 〔B 〕-2 〔C 〕4 〔D 〕-4 5.小马虎在下面的计算中只做对了一道题,他做对的题目是 ( 〕〔A 〕 222()a b a b +=+ 〔B 〕 432101102-⨯⨯⨯=〔C 〕 3252a a a += 〔D 〕 326(2)4a a -=6.甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调, 两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安 装x 台,根据题意,下面所列方程中正确的选项是 〔 〕(A)26066-=x x ; (B) x x 60266=-; (C)26066+=x x ; 〔D 〕xx 60266=+ 7.如果将分式yx y x +-22中的x 和y 都扩大到原来的3倍,那么分式的值〔 〕〔A 〕扩大到原来的3倍; 〔B 〕扩大到原来的9倍;〔C 〕缩小到原来的31; 〔D 〕不变.8、以下各式正确的选项是………………………………………………………………〔 〕 〔A 〕422x x x =+ 〔B 〕9336)2(x x-=-〔C 〕22)21x (41x x+=++ 〔D 〕)0(21222≠=-x x x9.在以下图右侧的四个三角形中,由ABC △既不能经过旋转也不能经过平 移得到的三角形是 〔 〕10.以下图形中,是中心对称图形的是〔 〕11.从甲到乙的图形变换,判断全正确的选项是〔A 〕〔1〕翻折,〔2〕旋转,〔3〕平移; 〔B 〕〔1〕翻折,〔2〕平移,〔3〕旋转; 〔C 〕〔1〕平移,〔2〕翻折,〔3〕旋转; 〔D 〕〔1〕平移,〔2〕旋转,〔3〕翻折。
2018-2019学年上海市闵行区第一学期期末考试七年级数学试卷(解析版)
![2018-2019学年上海市闵行区第一学期期末考试七年级数学试卷(解析版)](https://img.taocdn.com/s3/m/4d2c3e2a14791711cc79177f.png)
上海市闵行区2018-2019学年第一学期期末考试七年级数学试卷(考试时间:90分钟 满分100分)题号 一 二 三 四 五 总分 分值 12 24 36 6 22 100 得分一、选择题(本大题共6小题,每小题2分,满分12分)1.设某数为m ,则代数式2352m -表示……………………………………( )(A )某数的3倍的平方减去5除以2;(B )某数平方的3倍与5的差的一半; (C )某数的3倍减5的一半; (D )某数与5的差的3倍除以【专题】整式.【分析】根据代数式的性质得出代数式2352m -的意义.【解答】解:∵设某数为m ,代数式2352m -表示:某数平方的3倍与5的差的一半. 故选:B .【点评】此题主要考查了代数式的意义,根据已知得出代数式的意义是考查重点.2.如果将分式yx xy32+中的和y 都扩大到原来的3倍,那么分式的值…( )(A )不变; (B )扩大到原来的9倍; (C )缩小到原来的31; (D )扩大到原来的3倍.【专题】分式.【分析】将分式中的x 、y 分别用3x 、3y 代替,然后利用分式的基本性质化简即可. 【解答】解:∴扩大到原来的3倍, 故选:D .【点评】本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.3.013⎛⎫⎪⎝⎭的值是……………………………………………………………… ( )(A )0; (B )1; (C )13; (D )以上都不是.【专题】实数.【分析】直接利用零指数幂的性质计算得出答案. 【解答】解:(13⎛⎫⎪⎝⎭=1,故选:B . 【点评】此题主要考查了零指数幂的性质,正确把握相关定义是解题关键.4.数学课上老师出了一道因式分解的思考题,题意是1622++mx x 能在有理数的范围内因式分解,则整数m 的值有几个.小军和小华为此争论不休,请你判断整数m 的值有几个?…………………………………………………( ) (A ) 4;(B )5;(C ) 6;(D )8.【分析】根据把16分解成两个因数的积,2m 等于这两个因数的和,分别分析得出即可. 【解答】解:∵4×4=16,(-4)×(-4)=16,2×8=16,(-2)×(-8)=16,1×16=16,(-1)×(-16)=16,∴4+4=2m ,-4+-4=2m ,2+8=2m ,-2-8=2m ,1+16=2m ,-1-16=2m , 分别解得:m=4,-4,5,-5,8.5,-8.5; ∴整数m 的值有4个, 故选:A .【点评】此题主要考查了十字相乘法分解因式,对常数16的正确分解是解题的关键.5.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字___的格子内……………………………………( ) (A )1; (B )2; (C )3; (D )4.【专题】作图题;平移、旋转与对称.【分析】从阴影部分图形的各顶点向虚线作垂线并延长相同的距离找对应点,然后顺次连接各点可得答案.(第5题图)(第6题图)【解答】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形, 故选:C .【点评】本题考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质,基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.6.如图,五角星绕着它的旋转中心旋转,使得ABC ∆与DEF ∆重合,那么旋转角的度数至少为……( )(A )60︒; (B)120︒;(C )72︒; (D )144︒.【专题】计算题.【分析】由于五角星的五个角可组成正五边形,根据正五边形的性质得到正五边形的中心角为72°,然后可判断要使△ABC 与△DEF 重合,旋转角的度数至少为2个72°. 【解答】解:五角星的五个角可组成正五边形,所以五角星绕着它的旋转中心至少顺时针旋转2个72°,使得△ABC 与△DEF 重合. 故选:D .【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正五边形的性质.二、填空题(本大题共12小题,每小题2分,满分24分) 7.计算:()=23a _________.【分析】按照幂的乘方法则:底数不变,指数相乘计算.即(a m )n =a mn (m ,n 是正整数)【解答】解:(a 3)2=a 6. 故答案为:a 6.【点评】本题考查了幂的乘方法则:底数不变,指数相乘.(a m )n =a mn (m ,n 是正整数),牢记法则是关键.8.已知单项式3134b a n +-与单项式223-m b a 是同类项,则n m += . 分析】根据同类项的概念求解. 【解答】解:∵单项式−4 3a n+1b 3与单项式3a 2b m-2是同类项,∴n+1=2,m-2=3, 解得:n=1,m=5, m+n=5+1=6. 故答案为:6. 【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.9.计算:2322(123)(3)x y z xy xy -+÷-= .【专题】计算题;整式.【分析】根据整式的除法法则即可求出答案. 【解答】解:原式=4xyz-1 故答案为:4xyz-1.【点评】本题考查整式的除法,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.因式分解: 2218x -= .【分析】提公因式2,再运用平方差公式因式分解. 【解答】解:2x 2-18=2(x 2-9)=2(x+3)(x-3), 故答案为:2(x+3)(x-3).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.因式分解:29124a a -+= .【专题】整式.【分析】直接利用完全平方公式分解因式得出答案. 【解答】解:9a 2-12a+4=(3a-2)2.【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键.12.在分式22222223332b a b m n x xy a b ca ab m n xc a b+-++-+-+--,,,,中,最简分式有 个. 【专题】计算题;分式.【分析】根据最简分式的定义对各个分式逐一判断即可得.【点评】本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.本题的关键是找出分子分母的公因式.13.关于x 的方程2111+-=-x x m 如果有增根,那么增根一定是 . 【专题】计算题.【分析】先把方程两边同乘以x-1得到m=1+2(x-1),整理得m=2x-1,又方程如果有增根,增根只能为x=1,然后把x=1代入m=2x-1,可解得m=1,所以当m=1时,分式方程有增根,增根为x=1.【解答】解:去分母得m=1+2(x-1), 整理得m=2x-1, ∵方程有增根,∴x-1=0,即x=1, ∴m=2×1-1=1,即m=1时,分式方程有增根,增根为x=1. 故答案为x=1.【点评】本题考查了分式方程的增根:把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边不成立(或分母为0),那么这个未知数的值叫分式方程的增根.14.将代数式233x y -化为只含有正整数指数幂的形式是_______________.15.用科学记数法表示:000321.0-=______________.【专题】实数.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:-0.000321=-3.21×10-4. 故答案为:-3.21×10-4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.等边三角形有__________条对称轴.【分析】轴对称就是一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解. 【解答】解:等边三角形有3条对称轴. 故答案为:3.【点评】正确理解轴对称图形的定义是解决本题的关键,本题是一个基础题.17.如图,三角形ABC 三边的长分别为22AB m n =-,2AC mn =,22BC m n =+,其中m 、n 都是正整数.以AB 、AC 、BC 为边分别向外画正方形,面积分别为1S 、2S 、3S ,那么1S 2S 、3S 之间的数量关系为____________.【专题】等腰三角形与直角三角形.【分析】首先利用勾股定理的逆定理判定△ABC 是直角三角形,设Rt △ABC 的三边分别为a 、b 、c ,再分别用a 、b 、c 表示S 1、S 2、S 3的值,由勾股定理即可得出S 1、S 2、S 3之间的数量关系.(第17题图)【解答】解:∵AB=m 2-n 2,AC=2mn ,BC=m 2+n 2, ∴AB 2+AC 2=BC 2,∴△ABC 是直角三角形,设Rt △ABC 的三边分别为a 、b 、c , ∴S 1=c 2,S 2=b 2,S 3=a 2, ∵△ABC 是直角三角形, ∴b 2+c 2=a 2,即S 1+S 2=S 3. 故答案为:S 1+S 2=S 3.【点评】本题考查了勾股定理以及其逆定理的运用和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积.18.如图,将三角形AOC 绕点O 顺时针旋转120°得三角形BOD ,已知4OA =,1OC =,那么图 中阴影部分的面积为___________.(结果保留π)【专题】与圆有关的计算. 【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB 的面积-扇形OCD 的面积,利用扇形的面积公式即可求解. 【解答】解:∵△AOC ≌△BOD∴阴影部分的面积=扇形OAB 的面积-扇形OCD 的面积=故答案为5π.【点评】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积-扇形OCD 的面积是解题关键.三、简答题(本大题共6小题,每小题6分, 满分36分)19.计算:2(3)(3)2()m n m n m n +---.【专题】计算题;整式.【分析】根据整式的运算法则即可求出答案. 【解答】解:原式=3m 2+8mn-3n 2-2(m 2-2mn+n 2) =3m 2+8mn-3n 2-2m 2+4mn-2n 2 =m 2+12mn-5n 2【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.计算:1122()()x y x y -----÷-.(第18题图)【专题】计算题.【分析】先将负整数指数化为正整数指数,即分式形式,再通分相除,利用平方差公式分解,约分后可得到结果.【解答】【点评】此题考查了分式的混合运算和负整数指数幂,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.21.因式分解: 3223y xy y x x --+.【专题】计算题;因式分解.【分析】原式第一、二项结合,三、四项结合,提取公因式,再利用平方差公式分解即可.【解答】解:原式=(x 3+x 2y )-(xy 2+y 3)=x 2(x+y )-y 2(x+y )=(x+y )2(x-y ). 【点评】此题考查了因式分解-分组分解法,用分组分解法进行因式分解的难点是采用两两分组还是三一分组.22.分解因式:()()2226x x x x -+--.【专题】整式.【分析】直接利用十字相乘法分解因式得出答案. 【解答】解:原式=(x 2-x+3)(x 2-x-2) =(x 2-x+3)(x+1)(x-2).【点评】此题主要考查了十字相乘法分解因式,正确分解常数项是解题关键.23.解方程:26321311-=+-x x . 【专题】计算题.【分析】本题考查解分式方程的能力,因为6x-2=2(3x-1),且1-3x=-(3x-1),所以可确定方程最简公分母为2(3x-1),然后方程两边乘以最简公分母化为整式方程求解. 【解答】解:方程两边同乘以2(3x-1), 得:-2+3x-1=3, 解得:x=2,检验:x=2时,2(3x-1)≠0. 所以x=2是原方程的解.【点评】此题考查分式方程的解.解分式方程时先确定准确的最简公分母,在去分母时方程两边都乘以最简公分母,而后移项、合并求解;最后一步一定要进行检验,这也是容易忘却的一步.24.先化简,再求值:22227119443m m m m m m m --+⎛⎫⋅+÷⎪--++⎝⎭,其中2019m =. 【专题】计算题;分式.【分析】首先计算括号内的分式,把除法转化成乘法运算,然后进行分式的乘法运算即可化简,然后把m=2019代入计算即可求解.【解答】.【点评】本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.四、画图题(本题满分6分)25.在图中网格上按要求画出图形,并回答问题:(1)如果将三角形ABC 平移,使得点A 平移到图中点D 位置,点B 、 点C 的对应点分别为点E 、点F , 请画出三角形DEF ;(2)画出三角形ABC 关于点D 成中心对称的三角形111A B C .(3)三角形DEF 与三角形111A B C ______(填“是”或“否”)关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点O .【专题】作图题;网格型;平移、旋转与对称.【分析】(1)由题意得出,需将点B 与点C 先向左平移3个单位,再向下平移1个单位,据此可得;(2)分别作出三顶点分别关于点D 的对称点,再首尾顺次连接可得; (3)连接两组对应点即可得.【解答】解:(1)如图所示,△DEF 即为所求.(2)如图所示,△A 1B 1C 1即为所求;(3)如图所示,△DEF 与△A 1B 1C 1是关于点O 成中心对称, 故答案为:是.【点评】本题主要考查作图-旋转变换和平移变换,解题的关键是熟练掌握旋转变换和平移变换的定义和性质,并据此得出变换后的对应点五、解答题(本大题共3小题,第26、27各7分,28题8分,满分22分)26.依法纳税是每个公民应尽的义务.新税法规定:居民个人的综合所得,以每一纳税月收入减去费用5000元以及专项扣除、专项附加扣除和依法确定的其它扣除后的余额,为个人应纳税所得额.已知李先生某月的个人应纳税所得额比张先生的多1500元,个人所得税税率相同情况下,李先生的个人所得税税额为76.5元,而张先生的个人所得税税额为31.5元.求李先生和张先生应纳税所得额分别为多少元?=⎛⎫ ⎪⎝⎭个人所得税税额个人所得税税率应纳税所得额 【专题】分式方程及应用.【分析】设张先生应纳税所得额为x 元,则李先生应纳税所得额为(x+1500)元,二人纳税的税率用x 表示出来,根据税率相同列出方程能,解方程即可.【解答】解:设张先生应纳税所得额为x 元,则李先生应纳税所得额为(x+1500)元.解得x=1050,经检验:x=1050是原方程的根且符合题意, 当x=1050时,x+1500=2550(元),答:李先生和张先生的应纳税所得额分别为2550元、1050元.【点评】本题考查了分式方程的应用,同时考查了学生对税率概念的理解,根据税率相同找等量关系是解题的关键.27.阅读材料:已知3112=+x x ,求142+x x 的值 解:由2113x x =+得,213x x +=,则有13x x+=, 422222111()2327x x x x x x +=+=+-=-=由此可得,;24117x x =+所以, 请理解上述材料后求:已知a x x x =++12,用1242++x x x a 的代数式表示的值.【专题】整体思想;分式.【点评】本题主要考查了分式的值,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.28.如图,已知一张长方形纸片,AB CD a ==,AD BC b ==(2a b a <<).将这张纸片沿着过点A 的折痕翻折,使点B 落在AD 边上的点F ,折痕交BC 于点E ,将折叠后的纸片再次沿着另一条过点A 的折痕翻折,点E 恰好与点D 重合,此时折痕交DC 于点G .(1)在图中确定点F 、点E 和点G 的位置;(2)联结AE , 则EAB ∠=_____°;(3)用含有a 、b 的代数式表示线段DG 的长.【专题】矩形菱形正方形;平移、旋转与对称.【分析】(1)根据题意作出图形即可;(2)由折叠的性质得到∠DAE=∠EAB,根据矩形的性质得到∠BAD=∠DAE+∠EAB=90°,根据等腰直角三角形的性质得到结论;(3)由折叠的性质得到DG=EG,设CG=x,则DG=EG=a-x,根据勾股定理列方程即可得到结论.【解答】解:(1)点F、点E和点G的位置如图所示;(2)由折叠的性质得:∠DAE=∠EAB,∵四边形ABCD是矩形,∴∠BAD=∠DAE+∠EAB=90°,∴∠EAB=45°,故答案为:45;(3)由折叠的性质得:DG=EG,∵∠ABE=90°,∠EAB=45°,∴∠AEB=45°,∴BE=AB=a,∴CE=b-a,设CG=x,则DG=EG=a-x,在Rt△CEG中,CG2+CE2=EG2,即x2+(b-a)2=(a-x)2,【点评】本题考查了翻折变换(折叠问题),矩形的性质,正确的作出图形是解题的关键.。
上海普陀区2019学年七年级第二学期数学期末数学考试试卷(含答案)
![上海普陀区2019学年七年级第二学期数学期末数学考试试卷(含答案)](https://img.taocdn.com/s3/m/92c5973ca98271fe900ef921.png)
七年级第二学期数学期末数学考试试卷初中七年级期末质量调研数学试卷一、填空题(本大题共有14题,每题2分,满分28分) 1.16的平方根等于 . 2.求值:32764= . 3.如果用四舍五入法并精确到百分位,那么0.7856≈ . 4.比较大小:3- 10-(填“>”,“=”,“<”). 5.计算:4010⨯= . 6.用幂的形式表示:3215= .7.如图1,直线AB 、CD 相交于点O ,OE 平分BOC ∠.如果65BOE ∠=,那么AOC ∠= 度.OEDCBA图1 图28.如图2,直线c 与b a ,都相交, //a b ,如果2110∠=︒,那么1∠= 度. 9.如果点P 在第二象限,且点P 到x 轴的距离是3,到y 轴的距离是5,那么点P 的坐标是 .10.已知△ABC 的两边8a =,2b =,那么第三条边c 的长度的范围是 . 11.如图3,在Rt △ABC 中,90ABC ∠=,BD 是斜边AC 上的高.如果154∠=,那么C ∠= 度.学校_______________________ 班级__________ 学号_________ 姓名______________………………密○………………………………………封○………………………………………○线………………………………………………12.如图4,已知//AD BC ,AC 与BD 相交于点O .请写出图中面积相等的一对三角形: (只要写出一对即可).D AB C 1ODCBACBAD图3 图4 图513.如图5,在△ABC 中,80A ∠=,如果ABC ∠与ACB ∠的平分线交于点D ,那么BDC ∠= 度.14.如果一个等腰三角形其中一腰上的高与另一腰的夹角是30,那么这个等腰三角形的顶角等于 度.二、单项选择题(本大题共有412分) 15.下列各数中:0、2-(它的位数无限且相邻两个“3”之间“7”的个数依次加1个),无理数有……………………………( ). (A) 1个; (B) 2个; (C) 3个; (D) 4个.16.下列语句中正确的是…………………………………………………………( ). (A) 数轴上的每一个点都有一个有理数与它对应; (B) 负数没有方根;(C) 近似数52.0有两个有效数字;(D) 中国2010年上海世博会一轴四馆中的“中国馆”总建筑面积约为1601000平方米,1601000这个数是近似数.17.如图6,不能推断AD//BC 的是…………………………………………………( ). (A) 15∠=∠; (B) 24∠=∠;(C) 345∠=∠+∠ ; (D)012180B ∠+∠+∠=.18.给出下列关于三角形的条件:EDBA54321图6……………………密○………………①已知三边; ②已知两边及其夹角; ③已知两角及其夹边; ④已知两边及其中一边的对角.利用尺规作图,能作出唯一的三角形的条件分别是…………………………( ). (A) ①②③; (B) ①②④; (C) ②③④; (D) ①③④.三、(本大题共有4题,第19、20题每题5分,第21、22题每题6分,满分22分) 19.计算:(5- 解:20.利用幂的运算性质进行计算:4.解:21.画图(不要求写画法,但需保留作图痕迹,并写出结论). (1)画△ABC ,使4AB =cm ,2BC =cm ,3AC =cm ; (2)画△ABC 边AC 上的中线BD . 解:………密○……………………………22.如图7,在直角坐标平面内,已知点()2,3A --与点B ,将点A 向右 平移7个单位到达点C .(1)点B 的坐标是 ;A 、B 两点之间距离等于 ; (2)点C 的坐标是 ;△ABC 的形状是 ; (3)画出△ABC 关于原点O 对称的△111A B C .四、(本大题共有5题,第23、24题各6分,第25、26题各8分,第27题10分,满分38分) 23. 在△ABC 中,已知::3:4:5A B C ∠∠∠=,求三角形各内角度数. 解:7名______________24.如图8,已知AB AC =,AD BC ⊥,垂足为点D ,110BAC ∠=. (1)求1∠的度数;(2)BD CD =吗?为什么? 解:25.如图9,点A 、B 、C 、D 在一条直线上.如果AC BD =,BE CF =,且//BE CF ,那么//AE DF .为什么? 解:因为//BE CF (已知),所以EBC FCB ∠=∠( ). 因为180EBC EBA ∠+∠=,180FCB FCD ∠+∠=(平角的意义), 所以 ( ). 因为AC BD =(已知),1DCBA图8所以AC BC BD BC -=-(等式性质), 即 . (完成以下说理过程)26.如图10,在△ABC 中,已知AB AC =,点D 、E 、F 分别在边BC 、AC 、AB 上,且BD CE =,FDE B ∠=∠. (1)说明△BFD 与△CDE 全等的理由.(2)如果△ABC 是等边三角形,那么△DEF 是等边三角形吗?试说明理由. 解 :(1)记1EDC ∠=∠,2DFB ∠=∠.因为2FDC B ∠=∠+∠( ),FEDCBA图9……………………密○…………………即12FDE B ∠+∠=∠+∠.又因为FDE B ∠=∠(已知),所以 (等式性质).(完成以下说理过程)27.如图11,在直角坐标平面内有两点()0,2A 、()2,0B -,且A 、B 两点 之间的距离等于a (a 为大于0的已知数),在不计算a 的数值条件下,完成下 列两题:(1)以学过的知识用一句话说出a >2的理由;(2)在x 轴上是否存在点P ,使△PAB 是等腰三角形,如果存在,请写出点P 的坐标,并求△PAB 的面积;如果不存在,请说明理由. 解:图1021F ED CBAy普陀区2015学年度第二学期初中七年级数学期末质量调研参考答案与评分意见2016.6一、填空题(本大题共有14题,每题2分,满分28分)1.4±; 2. 34; 3.0.79; 4.>; 5.20; 6.235-;7.50; 8.70; 9.()5,3-; 10.10>c >6; 11.54;12.△ABD 与△ADC 或△DCO 与△ABO 或△ABC 与△DBC ; 13.130; 14.60或120;二、单项选择题(本大题共有4题,每题3分,满分共12分) 15.B ; 16.D ; 17.B ; 18.A .三、(本大题共有4题,第19、20题各5分,第21、22题各6分,满分22分) 19.解:原式2⎡=-⎢⎣……………………………………………………1分2⎡=-⎢⎣………………………………………………… 1分2=-…………………………………………… 1分2=………………………………………………………………… 2分【说明】没有过程,直接得结论扣2分.20.解法一: 原式4113222⎛⎫=⨯ ⎪⎝⎭……………………………………………………… 2分 4562⎛⎫= ⎪⎝⎭…………………………………………………………… 1分1032=…………………………………………………………………1分=.……………………………………………………………1分不扣分.解法二: 原式4113222⎛⎫=⨯ ⎪⎝⎭……………………………………………………… 2分 42322=⨯………………………………………………………… 1分1032=…………………………………………………………………1分=.……………………………………………………………1分21.(1)画图正确2分,标注字母正确1分,结论1分; (2)画图正确1分,标注字母正确1分.22.(1)()2,4-,7;……………………………………………………………(1+1)分 (2)()5,3-,等腰直角三角形;…………………………………………(1+1)分 (3)画图正确1分,标注字母正确1分.四、(本大题共有5题,第23、24题各6分,第25、26题各8分,第27题10分,满分38分)23.解:根据题意:设A ∠ 、B ∠ 、C ∠的度数分别为3x 、4x 、5x .……1分 因为A ∠ 、B ∠ 、C ∠是△ABC 的三个内角(已知),所以180A B C ∠+∠+∠=(三角形的内角和等于180),……………1分 即 345180x x x ++=.…………………………………………………1分 解得 15x =.……………………………………………………………2分 所以 45A ∠=,60B ∠=,75C ∠=.………………………………1分24.解:(1) 因为AB AC =(已知), 所以△ABC 是等腰三角形. 由AD BC ⊥(已知), 得112BAC ∠=∠(等腰三角形的三线合一).……………………………2分 由110BAC ∠=(已知), 得11110552∠=⨯=.……………………………………………………2分 (2)因为△ABC 是等腰三角形,AD BC ⊥(已知),所以BD CD =(等腰三角形的三线合一).……………………………2分【说明】在用“等腰三角形的三线合一”性质时,前面两个条件有漏写的,要扣1分.25.解: 两直线平行,内错角相等…………………………………………………1分 EBA FCD ∠=∠…………………………………………………………1分 等角的补角相等……………………………………………………………1分 AB CD =.………………………………………………………………1分 在△ABE 和△DCF 中,,,(AB CD ABE DCF BE CF =⎧⎪∠=∠⎨⎪=⎩已知), ………………………………………………………1分 所以△ABE ≌△DCF (S.A.S ),……………………………………1分 得A D ∠=∠(全等三角形的对应角相等),…………………………1分 所以//AE DF (内错角相等,两直线平行).…………………………1分26.(1)三角形的一个外角等于与它不相邻的两个内角和…………………………1分12∠=∠………………………………………………………………………1分因为AB AC =(已知),所以B C ∠=∠(等边对等角).……………………………………………1分在△BFD 和△CDE 中,12,,(B C BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩已知), ………………………………………………………1分 所以△BFD ≌△CDE (A.A.S ),………………………………………1分 (2)因为△BFD ≌△CDE ,所以DF DE =(全等三角形的对应边相等).……………………………1分因为△ABC 是等边三角形(已知),所以60B ∠=(等边三角形的每个内角等于60).因为FDE B ∠=∠(已知),所以60FDE ∠=(等量代换).……………………………………………1分 所以△DEF 是等边三角形(有一个内角等于60的等腰三角形是等边三角形).……………………………………………………………………………1分27.解:(1)a >2的理由是“垂线段最短”【说明】1.如果学生写出“直角三角形的斜边大于直角边”也同样给分.2.如果学生想法正确,但表达不够清楚,酌情扣1分.(2)()12,0P a --,△1PAB 的面积为a ; ()22,0P a -,△2PAB 的面积为a ; ()32,0P ,△3PAB 的面积为4; ()40,0P ,△4PAB 的面积为2.(每个结论各1分)。
2022-2023学年上海市闵行区七宝三中七年级(上)期末数学试卷(含解析)
![2022-2023学年上海市闵行区七宝三中七年级(上)期末数学试卷(含解析)](https://img.taocdn.com/s3/m/317ca32ccd7931b765ce0508763231126edb7713.png)
2022-2023学年上海市闵行区七宝三中七年级(上)期末数学试卷一、选择题:(本大题共有6题,每题2分,满分12分)1.(2分)下列各代数式中是五次单项式的是( )A.5a3b B.32a2b C.﹣a2b3D.9a2+b32.(2分)下列各式从左到右的变形是因式分解的是( )A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)3.(2分)下列各式是最简分式的是( )A.B.C.D.4.(2分)分式中x的取值范围是( )A.x≠2B.x≠﹣2C.D.5.(2分)下列图形中是轴对称图形的是( )A.B.C.D.6.(2分)下列说法中正确的有( )(1)如果把一个图形绕着一定点旋转后和另一个图形重合,那么这两个图形成中心对称;(2)如果两个图形关于一点成中心对称,那么其对应点之间的距离相等;(3)如果一个旋转对称图形有一个旋转角为120°,那么它不是中心对称图形;(4)如果一个旋转对称图形有一个旋转角为180°,那么它是中心对称图形.A.0个B.1个C.2个D.3个二、填空题:(本大题共有12题,每题3分,满分36分)7.(3分)用代数式表示:“a、b两数平方差的倒数”是 .8.(3分)将2x﹣3y(x+y)﹣1表示成只含有正整数指数幂的形式为 .9.(3分)纳米是一种长度单位:1纳米=10﹣9米,已知某植物花粉的直径为1360纳米,那么用科学记数法表示该种花粉的直径为 .10.(3分)在以下图形:线段、角、等腰三角形、平行四边形、长方形、圆中,既是轴对称图形又是中心对称图形是 .11.(3分)计算:(3a6x3﹣6ax5)÷(﹣3ax3)= .12.(3分)如果4﹣m×8﹣m=215,那么m= .13.(3分)将一包果珍冲剂溶于100克水中冲泡成浓度是20%的饮料,这包冲剂有 克.14.(3分)如果关于x的分式方程无解,则m的值为 .15.(3分)已知,则的值为 .16.(3分)已知分式方程=1的解为非负数,则a的取值范围是 .17.(3分)如图,将△ABC绕点A顺时针旋转80°后得到△ADE,点B与点D是对应点,那么∠DAC= °.18.(3分)如图,在长方形ABCD中,AB=6cm,BD=10cm,如果将长方形ABCD绕着点B顺时针旋转90° cm2.(结果保留π)三、简答题:(每题4分,共24分)19.(4分)计算:(2x﹣1)2﹣2(x﹣2)(x+6).20.(4分)计算:.21.(4分)分解因式:2x3﹣2x2y+8y﹣8x.22.(4分)因式分解:(y2﹣y)2﹣14(y2﹣y)+24.23.(4分)计算:(结果不含负整数指数幂).24.(4分)解方程:.四、解答题:(第25、26题每题6分,第27、28题8分,共28分)25.(6分)在如图所示的方格中,(1)作出△ABC关于直线MN对称的图形△A1B1C1;(2)写出△A2B2C2是由△A1B1C1经过怎样的平移得到的?(左右平移或上下平移)(3)在图上标出平移的方向并测出平移的距离.(精确到0.1厘米)26.(6分)先化简,后求值:,然后在0,1,代入求值.27.(8分)为了治理污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,后来每天铺设的长度比原计划增加了20%,结果共用30天完成这一任务28.(8分)已知三角形纸片ABC(如图),将纸片折叠,使点A与点C重合,点B关于直线DE的对称点为点F.(1)画出直线DE和点F;(2)联结EF、FC,如果∠FEC=48°,求∠DEC的度数;(3)联结AE、BD、DF,如果,且△DEF的面积为42022-2023学年上海市闵行区七宝三中七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共有6题,每题2分,满分12分)1.(2分)下列各代数式中是五次单项式的是( )A.5a3b B.32a2b C.﹣a2b3D.9a2+b3【答案】C【分析】一个单项式中所有字母的指数的和叫做单项式的次数,由此即可判断.【解答】解:A、单项式的次数是4次;B、单项式的次数是3次;C、单项式次数是4次;D、式子是多项式.故选:C.【点评】本题考查单项式的次数,关键是掌握单项式的次数的定义.2.(2分)下列各式从左到右的变形是因式分解的是( )A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)【答案】见试题解答内容【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答即可.【解答】解:A.等式右边不是乘积形式,不合题意;B.等式右边不是乘积形式,不合题意;C.等式右边不是乘积形式,不合题意;D.符合定义,符合题意.故选:D.【点评】本题考查了因式分解,解题的关键是理解因式分解的定义.3.(2分)下列各式是最简分式的是( )A.B.C.D.【答案】A【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、是最简分式;B、=,不是最简分式;C、=,不是最简分式;D、==,不是最简分式;故选:A.【点评】本题考查了最简分式.熟练掌握一个分式的分子与分母没有公因式时,叫最简分式是解题的关键.4.(2分)分式中x的取值范围是( )A.x≠2B.x≠﹣2C.D.【答案】D【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴2x﹣2≠0,∴x≠.故选:D.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解题的关键.5.(2分)下列图形中是轴对称图形的是( )A.B.C.D.【答案】B【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项A、C、D的图形不能找到这样的一条直线,直线两旁的部分能够互相重合.选项B的图形能找到这样的一条直线,使图形沿一条直线折叠,所以是轴对称图形.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.(2分)下列说法中正确的有( )(1)如果把一个图形绕着一定点旋转后和另一个图形重合,那么这两个图形成中心对称;(2)如果两个图形关于一点成中心对称,那么其对应点之间的距离相等;(3)如果一个旋转对称图形有一个旋转角为120°,那么它不是中心对称图形;(4)如果一个旋转对称图形有一个旋转角为180°,那么它是中心对称图形.A.0个B.1个C.2个D.3个【答案】B【分析】根据中心对称的定义及性质判断各选项即可得出答案.【解答】解:A、只有旋转180°后重合才是中心对称,不符合题意;B、对应点的连线都经过对称中心,错误;C、如果一个旋转对称图形有一个旋转角为120°,正六边形是旋转对称图形,但它是中心对称图形,不符合题意;D、如果一个旋转对称图形有一个旋转角为180°,正确.故选:B.【点评】本题考查中心对称的定义,属于基础题,注意掌握把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.二、填空题:(本大题共有12题,每题3分,满分36分)7.(3分)用代数式表示:“a、b两数平方差的倒数”是 .【答案】.【分析】先表示出两数的平方,再表示出差,最后表示出倒数即可.【解答】解:∵a、b两数的平方差为a2﹣b2,∴a、b两数的平方差的倒数为,故答案为:.【点评】本题考查列代数式,根据关键词得到相应的运算顺序是解决本题的关键.8.(3分)将2x﹣3y(x+y)﹣1表示成只含有正整数指数幂的形式为 .【答案】.【分析】根据负整数指数幂的运算法则解答即可.【解答】解:原式=•=.故答案为:.【点评】本题考查的是负整数指数幂,熟知负整数指数幂等于正整数指数幂的倒数是解题的关键.9.(3分)纳米是一种长度单位:1纳米=10﹣9米,已知某植物花粉的直径为1360纳米,那么用科学记数法表示该种花粉的直径为 1.36×10﹣6 .【答案】1.36×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:那么用科学记数法表示该种花粉的直径为1360×10﹣9=1.36×10﹣2米.故答案为:1.36×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(3分)在以下图形:线段、角、等腰三角形、平行四边形、长方形、圆中,既是轴对称图形又是中心对称图形是 线段,长方形、圆 .【答案】线段,长方形,圆.【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【解答】解:线段既是轴对称图形,也是中心对称图形;等腰三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;长方形既是轴对称图形,也是中心对称图形;圆既是轴对称图形,也是中心对称图形.角是轴对称图形,不是中心对称图形;故答案为:线段,长方形,圆.【点评】本题考查了中心对称图形以及轴对称图形的概念,正确记忆中心对称图形是要寻找对称中心,旋转180度后和原图形重合是解题关键.11.(3分)计算:(3a6x3﹣6ax5)÷(﹣3ax3)= ﹣a5+2x2 .【答案】见试题解答内容【分析】用多项式的每一项都除以单项式,并将结果相加,即可得到结果.【解答】解:(3a6x6﹣6ax5)÷(﹣7ax3)=3a6x3÷(﹣3ax6)﹣6ax5÷(﹣7ax3)=﹣a5+7x2.故答案为:﹣a5+5x2【点评】此题考查了整式的除法运算,熟练掌握多项式除以单项式的法则是解本题的关键.12.(3分)如果4﹣m×8﹣m=215,那么m= ﹣3 .【答案】﹣3.【分析】直接利用幂的乘方运算法则以及结合同底数幂的乘法运算法则计算得出答案.【解答】解:∵4﹣m×8﹣m=715,∴2﹣2m×7﹣3m=215,∴6﹣5m=215,解得:m=﹣8.故答案为:﹣3.【点评】本题考查了幂的乘方运算以及结合同底数幂的乘法运算,掌握相关运算法则是解题关键.13.(3分)将一包果珍冲剂溶于100克水中冲泡成浓度是20%的饮料,这包冲剂有 25 克.【答案】25.【分析】根据题意可得:100÷(1﹣20%)﹣100,然后进行计算即可解答.【解答】解:由题意得:100÷(1﹣20%)﹣100=100÷80%﹣100=125﹣100=25(克),∴这包冲剂有25克,故答案为:25.【点评】本题考查了百分数的应用,准确熟练地进行计算是解题的关键.14.(3分)如果关于x的分式方程无解,则m的值为 ﹣2 .【答案】﹣2.【分析】分式方程去分母转化为整式方程,根据分式方程无解得到x﹣3=0,求出x的值,代入整式方程即可求出m的值.【解答】解:,去分母得:2=x﹣2﹣m,根据分式方程无解,得到x﹣3=0,代入整式方程得:6=﹣m,解得:m=﹣2.故答案为:﹣2.【点评】本题考查了分式方程的解,正确记忆在任何时候都要考虑分母为0无解是解题关键.15.(3分)已知,则的值为 .【答案】.【分析】已知等式左边通分并利用同分母分式的减法法则计算,变形后代入所求式子计算即可求出值.【解答】解:∵﹣==2,∴原式===.故答案为:.【点评】本题考查了分式的化简求值,掌握分式的运算法则是关键.16.(3分)已知分式方程=1的解为非负数,则a的取值范围是 a≤﹣1且a≠﹣2 .【答案】见试题解答内容【分析】先把分式方程转化为整式方程求出用含有a的代数式表示的x,根据x的取值求a的范围.【解答】解:分式方程转化为整式方程得,2x+a=x﹣1移项得,x=﹣a﹣4,解为非负数则﹣a﹣1≥0,又∵x≠5,∴a≠﹣2∴a≤﹣1且a≠﹣5,故答案为:a≤﹣1且a≠﹣2.【点评】本题考查了分式方程的解,解答本题的关键是先把分式方程转化为整式方程,求出方程的解,再按要求列不等式,解不等式.17.(3分)如图,将△ABC绕点A顺时针旋转80°后得到△ADE,点B与点D是对应点,那么∠DAC= 125 °.【答案】125.【分析】根据旋转的性质即可得到结论.【解答】解:∵将△ABC绕点A顺时针旋转80°后得到△ADE,∴∠CAE=80°,∵∠BAE=35°,∴∠CAB=∠EAD=45°,∴∠CAD=∠CAB+∠BAE+∠DAE=125°,故答案为:125.【点评】本题考查了旋转的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.18.(3分)如图,在长方形ABCD中,AB=6cm,BD=10cm,如果将长方形ABCD绕着点B顺时针旋转90° (48+25π) cm2.(结果保留π)【答案】(48+25π).【分析】根据旋转的性质,长方形ABCD扫过的图形可分割成两个直角三角形和一个扇形,而两个直角三角形又可合并成长方形ABCD,扇形所在圆的半径为BD,圆心角为90°,即可根据长方形的面积公式和扇形的面积公式求出这两部分的面积及长方形ABCD 扫过的面积.【解答】解:如图,长方形ABCD绕着点B顺时针旋转90°得到长方形EBGF,根据旋转的性质得△BGF≌△BCD,∠DBF=90°,∴S△ABD+S△BGF=S△ABD+S△BCD=S长方形ABCD,∴长方形ABCD扫过的面积S=S△ABD+S△BGF+S扇形DBF=S长方形ABCD+S扇形DBF,∵AB=6cm,BC=8cm,∴S=3×8+=(48+25π)cm2,∴长方形ABCD扫过的面积是(48+25π)cm8,故答案为:(48+25π).【点评】此题重点考查矩形的面积公式、旋转的性质、扇形的面积公式等知识,正确地将长方形ABCD扫过的图形分割成三角形和扇形是解题的关键.三、简答题:(每题4分,共24分)19.(4分)计算:(2x﹣1)2﹣2(x﹣2)(x+6).【答案】见试题解答内容【分析】根据完全平方公式、多项式乘以多项式的法则展开,再合并同类项即可.【解答】解;原式=4x2﹣8x+1﹣2(x5+4x﹣12)=4x7﹣4x+1﹣6x2﹣8x+24=2x2﹣12x+25.【点评】本题考查了整式的混合运算,解题的关键是注意去括号、合并同类项,以及公式的使用.20.(4分)计算:.【答案】.【分析】根据分式的乘除法则即可求出答案.【解答】解:原式=()2•()•=•(=•=.【点评】本题考查分式的乘除运算,解题的关键熟练运用分式的乘除运算法则,本题属于基础题型.21.(4分)分解因式:2x3﹣2x2y+8y﹣8x.【答案】2(x﹣y)(x+2)(x﹣2).【分析】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答】解:原式=2x2(x﹣y)﹣4(x﹣y)=2(x﹣y)(x2﹣7)=2(x﹣y)(x+2)(x﹣7).【点评】本题考查了平方差公式,分组分解法分解因式,要先把式子整理,再分解因式.对于一个四项式用分组分解法进行因式分解,难点是采用两两分组还是三一分组.22.(4分)因式分解:(y2﹣y)2﹣14(y2﹣y)+24.【答案】(y﹣2)(y+1)(y﹣4)(y+3).【分析】直接利用十字相乘法分解因式得出答案【解答】解:原式=(y2﹣y﹣2)(y6﹣y﹣12)=(y﹣2)(y+1)(y﹣2)(y+3).【点评】此题主要考查了十字相乘法分解因式,正确分解常数项是解题关键.23.(4分)计算:(结果不含负整数指数幂).【答案】见试题解答内容【分析】先把分子与分母同时乘以xy即可.【解答】解:原式==.【点评】本题考查的是负整数指数幂,熟知负整数指数幂的计算法则是解答此题的关键.24.(4分)解方程:.【答案】x=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+1)﹣4=3(x﹣2),解得:x=1,检验:把x=5代入得:(x+1)(x﹣2)≠3,∴x=1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.四、解答题:(第25、26题每题6分,第27、28题8分,共28分)25.(6分)在如图所示的方格中,(1)作出△ABC关于直线MN对称的图形△A1B1C1;(2)写出△A2B2C2是由△A1B1C1经过怎样的平移得到的?(左右平移或上下平移)(3)在图上标出平移的方向并测出平移的距离.(精确到0.1厘米)【答案】(1)见图;(2)向右平移6个单位,再向下平移2个单位;(3)平移方向如图所示,向右平移约3.2厘米,向下平移约1.2厘米.【分析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.(3)标出方向,测出距离即可.【解答】解:(1)△A1B1C2如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移6个单位.(3)平移方向如图所示,向右平移约3.2厘米.【点评】本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置以及变化情况是解题的关键.26.(6分)先化简,后求值:,然后在0,1,代入求值.【答案】,1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将使分式有意义的x的值代入计算即可.【解答】解:原式=(﹣)÷=÷=•=,∵x﹣1≠5且x﹣2≠0,∴x≠4且x≠2,∴x=0,则原式=4.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.27.(8分)为了治理污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,后来每天铺设的长度比原计划增加了20%,结果共用30天完成这一任务【答案】见试题解答内容【分析】根据关键句子“每天铺设的长度比原计划增加了20%,结果共用30天完成这一任务”找到等量关系列出方程求解即可.【解答】解:设原计划每天铺设x米,则增加后每天铺设(1+20%)x 米. 120+150=30xx=9经检验:x=9是原方程的根,且符合题意;120%x=10.7米答:增加后每天铺设10.8米.【点评】此题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.28.(8分)已知三角形纸片ABC(如图),将纸片折叠,使点A与点C重合,点B关于直线DE的对称点为点F.(1)画出直线DE和点F;(2)联结EF、FC,如果∠FEC=48°,求∠DEC的度数;(3)联结AE、BD、DF,如果,且△DEF的面积为4【答案】(1)见解析;(2)66°;(3).【分析】(1)画出线段AC的垂直平分线即可,作出点B关于直线DE的对称点F;(2)由轴对称性的性质可知∠DEB=∠DEF,因为∠FEC=48°,∠DEB+∠DEF=∠FEC+180°,所以2∠DEF=∠FEC+180°;(3)设△AEC中EC边上的高为h',根据,计算即可.【解答】解:(1)直线DE、点F如图所:(2)由轴对称性的性质可知∠DEB=∠DEF,因为∠FEC=48°,∠DEB+∠DEF=∠FEC+180°,所以2∠DEF=∠FEC+180°,即2∠DEF=48°+180°,∠DEF=114°,所以∠DEC=∠DEF﹣∠FEC=114°﹣48°=66°.(3)由轴对称性的性质可知,S△BED=S△EDF=5,S△AED=S△EDC,设△BED中BE边上的高为h,则=,所以S△EDC=10,所以S△AEC=2S△EDC=20,设△AEC中EC边上的高为h',∴,所以S△ABC=.【点评】本题考查作图﹣轴对称变换,三角形的面积、三角形内角和定理等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题.。
上海市第四教育署2022-2023学年七年级上学期数学期末考试卷(解析版)
![上海市第四教育署2022-2023学年七年级上学期数学期末考试卷(解析版)](https://img.taocdn.com/s3/m/46c89075cd7931b765ce0508763231126fdb7744.png)
初一年级数学学科课堂练习(考试时间:90分钟,满分:100分)一、选择题:(本大题共6题,每小题2分,满分12分)1.代数式32x -,4x y -,x y +,22x π+,98中是整式的有()A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据单项式和多项式统称为整式,进而判断得出答案.【详解】解:4x y-的分母含有字母,不是整式;32x -是整式;x y +是整式;22x π+是整式;98是整式;综上,整式的个数是4个.故选:D .【点睛】本题考查了整式的定义.解题的关键是熟练掌握整式的定义.要注意22x π+虽然有分数线,但是2.下列计算正确的是()A.235x x x += B.235x x x ×=C.236x x x ⋅= D.()325x x =【答案】B【解析】【分析】分别依据合并同类项、同底数幂的乘法、幂的乘方法则逐一计算即可.【详解】解:A 、2x 和3x 不是同类项,不能合并,该选项不符合题意;B 、235x x x ×=,该选项符合题意;C 、2356x x x x ⋅=≠,该选项不符合题意;D 、()3265x x x =≠,该选项不符合题意;故选:B .【点睛】本题主要考查幂的运算,解题的关键是掌握合并同类项、同底数幂的乘法、幂的乘方法则.3.下列各式从左到右的变形是因式分解的是()A.()2222x y x y xy +=-+B.()422211(1x x x x x x ++=++-+)C.()230130x x x x --=--D.()22121a a a -=-+【答案】B【解析】【分析】根据因式分解的定义,逐项判断即可求解.【详解】解:A 、从左到右的变形不是因式分解,故本选项不符合题意;B 、从左到右的变形是因式分解,故本选项符合题意;C 、从左到右的变形不是因式分解,故本选项不符合题意;D 、从左到右的变形不是因式分解,故本选项不符合题意;故选:B【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.4.若分式||22x x --的值为零,则x 的值是()A.±2B.2C.﹣2D.0【答案】C【解析】【分析】分式的值为0,则分母不为0,分子为0.【详解】∵|x |﹣2=0,∴x =±2,当x =2时,x ﹣2=0,分式无意义.当x =﹣2时,x ﹣2≠0,∴当x =﹣2时分式的值是0.故选C .【点睛】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.5.分式423xy x y+中,当x 和y 分别扩大3倍时,分式的值()A.扩大9倍B.扩大6倍C.扩大3倍D.不变【答案】C【解析】【分析】根据分式的基本性质可得答案.【详解】分式423xy x y+中,当x 和y 分别扩大3倍时,得()43336124323333232323x y xy xy xy x y x y x y x y⋅⋅===⋅⨯+⨯+++,所以分式的值扩大3倍,故选:C .【点睛】本题考查分式的性质,解题的关键是把x 和y 换成3x 和3y .6.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形和中心对称图形的定义,逐项判断即可求解.【详解】解:A 、是轴对称图形,但不是中心对称图形,故本选项不符合题意;B 、既是轴对称图形又是中心对称图形,故本选项符合题意;C 、是中心对称图形,但不是轴对称图形,故本选项不符合题意;D 、既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.二、填空:(本大题共12题,每小题3分,满分36分)7.单项式257x y -的次数为_________.【答案】57-【解析】【分析】单项式中的数字因数为单项式的系数,据此即可求解.【详解】解:由定义可知:单项式257x y -中的数字因数为:57-.故答案为:57-.【点睛】此题考查的知识点有:单项式的定义、单项式系数的定义;准确掌握单项式系数的定义是解题关键.8.将多项式322313y xy x y x --+按字母y 升幂排列,结果是_________.【答案】322313x x x y y y +-+-【解析】【分析】根据多项式的定义解决此题.【详解】解:∵多项式322313y xy x y x --+含3xy 、1-、223x y -、3x y 这四项,y 的次数分别是3、0、2、1,∴多项式322313y xy x y x --+按字母y 升幂排列的结果是322313x x x y y y +-+-.故答案为:32213x x x y y y +-+-.【点睛】本题主要考查多项式,熟练掌握多项式的定义是解决本题的关键.9.计算()()322933x x x -÷-=_________.【答案】31x -+##13x-【解析】【分析】利用多项式除以单项式的法则,先用多项式的每一项除以单项式,再把所得的商相减计算即可.【详解】解:()()322933x x x -÷-()()32229333x x x x =÷--÷-31x =-+.故答案为:31x -+.【点睛】本题考查了整式的除法,熟练掌握运算法则是解决本题的关键.10.20212022133⎛⎫⨯-= ⎪⎝⎭__________.【答案】3-【解析】【分析】利用积的乘方的法则进行求解即可.【详解】解:20212022133⎛⎫⨯- ⎪⎝⎭=202120211333⎛⎫⨯- ⎪⎭⨯⎝=20213133⎛⎫⨯ ⎪⎝⎭⨯-=()202131-⨯=13-⨯=-3故答案为:-3【点睛】本题主要考查积的乘方,解答的关键是熟记积的乘方的法则并灵活运用.11.若29x mx ++是一个完全平方式,则m 的值是_____.【答案】6±【解析】【分析】根据29x mx ++是一个完全平方式,得到()2229369x mx x x x ++=±=±+,即可得解.【详解】解:∵29x mx ++是一个完全平方式,∴()2229369x mx x x x ++=±=±+∴6m =±,故答案为:6±.【点睛】本题考查完全平方式.熟练掌握完全平方式的特点,是解题的关键.12.分解因式:2x xy ax ay -+-=_________.【答案】()()x a x y +-【解析】【分析】前两项一组,提取公因式x ,后两项一组,提取公因式a ,然后两组之间再提取公因式()x y -整理即可.【详解】解:2x xy ax ay-+-()()2x xy ax ay =-+-()()x x y a x y =-+-()()x a x y =+-故答案为:()()x a x y +-【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.13.纳米是一种长度单位,1纳米910-=米,冠状病毒的直径为21.210⨯纳米,用科学记数法表示为________米.【答案】1.2×10-7【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:21.210⨯纳米=2971.21010 1.210--⨯⨯=⨯米故答案为:71.210-⨯.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.14.要使分式32x x -+有意义,则x 的取值范围是_________.【答案】2x ≠-【解析】【分析】根据分式有意义的条件,即可求解.【详解】解:根据题意得:20x +≠,解得:2x ≠-.故答案为:2x ≠-【点睛】本题主要考查了分式有意义的条件,熟练掌握分式的分母不等于0是解题的关键.15.在装有150克盐的容器中加入一些水后可以得到浓度为30%的盐水,那么所加入的水有_________克.【答案】350【解析】【分析】浓度⨯溶液=溶质,溶液=溶质+水,设未知数,列方程求解即可.【详解】解:设加入的水有x 克,依题意得()15030%150x +⨯=,解得350x =,即加入的水有350克,故答案为:350.【点睛】此题主要考查了一元一次方程的应用,根据“浓度⨯溶液=溶质”得出方程是解答此题的关键.16.如图,将一张长方形纸条ABCD 沿EF 折叠,折痕为EF ,点B 落到点H 的位置;再将这张纸条沿EG 折叠,使点C 落在直线EH 上,折痕为EG ,那么FEG ∠=_________度.【答案】90︒##90度【解析】【分析】根据折叠的性质可知,折痕即为角平分线,由此即可求解.【详解】解:如图所示,根据题意得,12∠=∠,3=4∠∠,∵1234180∠+∠+∠+∠=︒,∴2223180∠+∠=︒,∴2390∠+∠=︒,即2390FEG ∠=∠+∠=︒,故答案为:90︒.【点睛】本题主要考查矩形的折叠,掌握折痕就是角平分线的性质是解题的关键.17.如图,ABC 沿AB 平移后得到DEF ,点D 是点A 的对应点,如果10AE =,2BD =,那么ABC 平移的距离是_________.【答案】4【解析】【分析】根据平移的性质得出方程进而得出答案.【详解】解:设平移的距离为x ,则EB AD x ==,则10BE BD AD ++=,故210x x ++=,解得:4x =,即ABC 平移的距离是:4.故答案为:4.18.如图,AOB 绕点O 顺时针旋转30︒后与COD △重合.若130AOD ∠=︒,则COB ∠=_________.【答案】70︒##70度【解析】【分析】由旋转的性质得30AOC BOD ∠=∠=︒,进一步计算即可求解.【详解】解:由旋转的性质得30AOC BOD ∠=∠=︒,∵130AOD ∠=︒,∴130303070COB AOD AOC BOD ∠=∠-∠-∠=︒-︒-︒=︒,故答案为:70︒.【点睛】本题考查了旋转的性质,是基础题,熟记性质并确定30AOC BOD ∠=∠=︒是解题的关键.三、简答题:(本大题共6题,每小题5分,满分30分)19.计算:()()()22x y x y x x y -+--.【答案】24y xy-+【解析】【分析】根据平方差公式和单项式乘以多项式运算法则计算即可.【详解】原式222244x y x xy y xy =--+=-+.【点睛】本题考查整式的乘法,解题的关键是熟练掌握平方差公式.20.分解因式:()22925a a b -+.【答案】()()8525a b a b -++【解析】【分析】利用平方差公式进行因式分解,即可求解.【详解】解:()22925a a b -+()()2235a a b =-+⎡⎤⎣⎦()()3535a a b a a b =++-+⎡⎤⎡⎤⎣⎦⎣⎦()()8525a b a b =+--()()8525a b a b =-++【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.21.分解因式:23930x x --.【答案】()()352x x -+.【解析】【分析】先提取公因式,再利用十字相乘法继续分解即可.【详解】解:23930x x --()23310x x =--()()352x x =-+.【点睛】本题考查了用提公因式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.22.计算:()()1111x y x y -----÷+.【答案】y x y x-+【解析】【分析】先把负整数指数幂化为分式的形式,再去括号进行除法运算即可.【详解】解:()()1111x y x y -----÷+1111x y x y ⎛⎫⎛⎫=-÷+ ⎪ ⎪⎝⎭⎝⎭y x y x xy xy-+=÷y x y x -=+.【点睛】本题考查了负整数指数幂、分式的除法,熟练掌握分式的运算法则是解题关键.23.解方程:21233x x x-+=--.【答案】无解【解析】【分析】去分母,去括号,移项,合并同类项,系数化1,检验,解分式方程即可.【详解】解:去分母,得:()2231x x -+-=-,去括号,得:2261x x -+-=-,移项,合并,得:3x =;检验:当3x =时,30x -=,∴3x =是原方程的增根,舍掉,∴原方程无解.【点睛】本题考查解分式方程.熟练掌握解分式方程的步骤,是解题的关键.注意,验根.24.先化简再求值:22361399x x x x x -⎛⎫+÷⎪+--⎝⎭,其中1x =.【答案】29x +,10【解析】【分析】利用除法法则变形,去括号,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:22361399x x x x x -⎛⎫+÷ ⎪+--⎝⎭()2236939x x x x x -⎛⎫=+⋅- ⎪+-⎝⎭()()()223633939x x x x x x x -=⋅+-+⋅-+-()236x x=-+2696x x x=-++29x =+,当1x =时,原式21910=+=.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.四、解答题(本大题共3题,第25、26题每小题7分,第27题8分,满分22分)25.学校组织学生到距离为15千米的公园参加露营活动,一部分同学骑自行车先走,40分钟后其余同学乘坐大巴前往,结果他们同时到达,如果大巴士的平均速度是自行车平均速度的3倍,问:大巴士与自行车的平均速度分别是每小时多少千米?【答案】自行车的平均速度为15km/h ,大巴士的平均速度为45km/h【解析】【分析】设自行车的平均速度为km/h x ,则大巴士的平均速度为3km/h x ,根据题意列方程即可求解.【详解】解:根据题意,设自行车的平均速度为km/h(0)x x >,则大巴士的平均速度为3km/h x ,40分钟23=小时,由题意得:2151533x x x -=,整理得,21553x -=,解得,15x =,经检验:15x =是方程的解,且符合题意,则331545x =⨯=,∴自行车的平均速度为15km/h ,大巴士的平均速度为45km/h .【点睛】本题主要考查方程与行程问题的综合,理解题意中的数量关系,列方程解决实际问题是解题的关键.26.阅读材料:在代数式中,将一个多项式添上某些项,使添项后的多项式中的一部分成为一个完全平方式,这种方法叫做配方法.如果我们能将多项式通过配方,使其成为22A B -的形式,那么继续利用平方差公式就能把这个多项式因式分解.例如,分解因式:44x +.解:原式422444x x x =++-()22224x x =+-()()222222x x x x =+++-即原式()()222222x x x x =+++-请按照阅读材料提供的方法,解决下列问题.分解因式:(1)441x +;(2)421x x ++.【答案】(1)()()22212212x xx x +++-(2)()()2211x xx x +++-【解析】【分析】(1)原式按照阅读材料提供的方法得到2244144x x x ++-,利用完全平方公式和平方差公式分解即可;(2)原式按照阅读材料提供的方法得到42221x x x ++-,利用完全平方公式和平方差公式分解即可.【小问1详解】解:4422414414x x x x +=++-()()222212x x =+-()()22212212x x x x =+++-;【小问2详解】解:42422121x x x x x ++=++-()2221x x =+-()()2211x x x x =+++-.【点睛】本题考查了因式分解,解题的关键是明确题意,可以根据材料中的例子对所求的式子进行因式分解.27.已知,ABC 中:(1)如果将ABC 绕点C 顺时针旋转90︒得到11A B C ,点A B 、分别与点11A B 、对应,请画出图形.(不要求写作图步骤)(2)连接11A B B B ,与1AC 相交于点O .如果11ACB B ⊥,点O 是线段1B B 的中点,且111113A BC B B A B S S =V 四边形,若11A B B S a =V ,试用含有a 的代数式来表示ABC 的面积.【答案】(1)见解析(2)32ABC S a =△.【解析】【分析】(1)根据题意作出图形即可;(2)根据题意求得113A B CB a S =四边形,12BCB S a =△,根据11AC B B ⊥,点O 是线段1B B 的中点,得到11111122A B O A B B S S a ==△△,1112CB O BCB S S a ==△△,据此即可求解.【小问1详解】解:如图,11A B C 即为所作,【小问2详解】解:如图,∵111113A B C BB A B S S =V 四边形,且11A B B S a =V ,∴113A B CB a S =四边形,∴12BCB S a =△,∵11AC B B ⊥,点O 是线段1B B 的中点,∴11111122A B O A B B S S a ==△△,1112CB O BCB S S a ==△△,∵11A B C 是ABC 旋转得到的,∴1132ABC A B C S S a ==△△.【点睛】本题考查了旋转的性质,三角形的面积公式,掌握旋转的性质是解题的关键.第15页/共15页。
上海市七年级上册数学期末试卷(含答案)
![上海市七年级上册数学期末试卷(含答案)](https://img.taocdn.com/s3/m/c2f1f0f6cf84b9d529ea7aa3.png)
上海市七年级上册数学期末试卷(含答案)一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线 2.在220.23,3,2,7-四个数中,属于无理数的是( ) A .0.23 B .3 C .2- D .2273.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或54.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-= 5.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( )A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm6.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( )4 a b c ﹣2 3 …A .4B .3C .0D .﹣27.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A .6cmB .3cmC .3cm 或6cmD .4cm8.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -9.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33° 10.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A .8cmB .2cmC .8cm 或2cmD .以上答案不对 11.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180° 12.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2B .4C .﹣2D .﹣4 13.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒B .75︒C .115︒D .95︒ 14.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .259.2元 15.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .150二、填空题16.若|x |=3,|y |=2,则|x +y |=_____.17.已知x=5是方程ax ﹣8=20+a 的解,则a= ________18.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.19.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____.20.已知单项式245225n m x y x y ++与是同类项,则m n =______.21.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.22.|-3|=_________;23.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.24.﹣30×(1223-+45)=_____. 25.15030'的补角是______.26.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)27.若2a +1与212a +互为相反数,则a =_____. 28.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.29.用度、分、秒表示24.29°=_____.30.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?32.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.33.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.34.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.35.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
2019-2020学年上海市闵行区七年级下学期期末数学试卷 (解析版)
![2019-2020学年上海市闵行区七年级下学期期末数学试卷 (解析版)](https://img.taocdn.com/s3/m/aad23208dd3383c4ba4cd252.png)
2019-2020学年上海市闵行区七年级第二学期期末数学试卷一、选择题(共6小题).1.下列各数中是无理数的()A.B.2C.0.25D.0.2022.下列等式正确的是()A.B.C.D.3.在直角坐标平面内,已知点B和点A(3,4)关于x轴对称,那么点B的坐标()A.(3,4)B.(﹣3,﹣4)C.(3,﹣4)D.(﹣3,4)4.点到直线的距离是指()A.从直线外一点到这条直线的垂线B.从直线外一点到这条直线的垂线段C.从直线外一点到这条直线的垂线的长D.从直线外一点到这条直线的垂线段的长5.如图中∠1、∠2不是同位角的是()A.B.C.D.6.如图,已知∠DOB=∠COA,补充下列条件后仍不能判定△ABO≌△CDO的是()A.∠D=∠B,OB=OD B.∠C=∠A,OA=OCC.OA=OC,OB=OD D.AB=CD,OB=OD二、填空题(共12小题).7.64的平方根是.8.比较大小:.(填“>、<、或=”)9.计算:=.10.利用计算器计算(保留三个有效数字).11.数轴上,点B在点A的右边,已知点A表示的数是﹣2,且AB=5.那么点B表示的数是.12.在直角坐标平面内,点P(﹣5,0)向平移m(m>0)个单位后落在第三象限.(填“上”或“下”或“左”或“右“)13.已知点A(m,n)在第四象限,那么点B(m,﹣n)在第象限.14.在△ABC中,如果∠A=∠B+∠C,那么△ABC是三角形.(填“锐角”、“钝角”或“直角”)15.等腰三角形的两条边长分别为4和9,那么它的周长为.16.如图,已知直线a∥b∥c,△ABC的顶点B、C分别在直线b、c上,如果∠ABC=60°,边BC与直线b的夹角∠1=25°,那么边AB与直线a的夹角∠2=度.17.如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,如果△ABD的周长为12,△ABC的周长为16,那么AD的长是.18.如图所示,将长方形纸片ABCD进行折叠,如果∠BHG=70°,那么∠BHE=度.三、解答题(本大题共8题,满分64分)19.计算:(×﹣2)÷20.计算.21.利用幂的性质计算:.22.如图,已知在△ABC中,∠B=80°,点D在BC的延长线上,∠ACD=3∠A,求:∠A的度数.23.如图,已知GH、MN分别平分∠AGE、∠DMF,且∠AGH=∠DMN,试说明AB∥CD的理由.解:因为GH平分∠AGE(已知),所以∠AGE=2∠AGH()同理∠=2∠DMN因为∠AGH=∠DMN(已知)所以∠AGE=∠()又因为∠AGE=∠FGB()所以∠=∠FGB()所以AB∥CD().24.如图,已知C是线段AB的中点,CD∥BE,且CD=BE,试说明∠D=∠E的理由.25.如图,在直角坐标平面内,已知点A(1,2).(1)把点A向右平移3个单位再向下平移2个单位,得到点B,那么点B的坐标是;(2)点C(0,﹣2),那么△ABC的面积等于;(3)在图中画出出△ABC关于原点O对称的△A1B1C1.26.如图,已知点B、C、E在一直线上,△ABC、△DCE都是等边三角形,联结AE、BD.试说明AE=BD的理由.27.如图,在△ABC中,AB⊥BC,BE⊥AC于E,AF平分∠BAC交BE于点F,DF∥BC.(1)试说明:BF=DF;(2)延长AF交BC于点G,试说明:BG=DF.参考答案一、选择题:(本大题共6题,每题2分,满分12分)1.下列各数中是无理数的()A.B.2C.0.25D.0.202【分析】根据无理数的定义求解即可.解:2,0.25,0.202是有理数,是无理数,故选:A.2.下列等式正确的是()A.B.C.D.【分析】根据二次根式的性质求出每个式子的值,再得出选项即可.解:A、没有意义,故本选项不符合题意;B、=3,故本选项符合题意;C、﹣=﹣5,故本选项不符合题意;D、﹣=﹣2,故本选项不符合题意;故选:B.3.在直角坐标平面内,已知点B和点A(3,4)关于x轴对称,那么点B的坐标()A.(3,4)B.(﹣3,﹣4)C.(3,﹣4)D.(﹣3,4)【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数解答.解:∵点B和点A(3,4)关于x轴对称,∴点B的坐标为(3,﹣4),故选:C.4.点到直线的距离是指()A.从直线外一点到这条直线的垂线B.从直线外一点到这条直线的垂线段C.从直线外一点到这条直线的垂线的长D.从直线外一点到这条直线的垂线段的长【分析】根据点到直线的距离的定义解答本题.解:A、垂线是直线,没有长度,不能表示距离,故A错误;B、垂线段是一个图形,距离是指垂线段的长度,故B错误;C、垂线是直线,没有长度,不能表示距离,故C错误;D、符合点到直线的距离的定义,故D正确.故选:D.5.如图中∠1、∠2不是同位角的是()A.B.C.D.【分析】同位角的定义:在截线的同侧,并且在被截线的同一方的两个角是同位角,依此即可求解.解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.6.如图,已知∠DOB=∠COA,补充下列条件后仍不能判定△ABO≌△CDO的是()A.∠D=∠B,OB=OD B.∠C=∠A,OA=OCC.OA=OC,OB=OD D.AB=CD,OB=OD【分析】根据全等三角形的判定方法即可一一判断.解:∵∠DOB=∠COA,∴∠DOB﹣∠BOC=∠COA﹣∠BOC,即∠DOC=∠BOA,A、根据∠D=∠B、OB=OD和∠DOC=∠BOA能推出△ABO≌△CDO(ASA),故本选项不符合题意;B、根据∠A=∠C、OA=OC和∠DOC=∠BOA能推出△ABO≌△CDO(ASA),故本选项不符合题意;C、根据OA=OC、∠DOC=∠BOA和OB=OD能推出△ABO≌△CDO(SAS),故本选项不符合题意;D、根据CD=AB、OB=OD和∠DOC=∠BOA不能推出△ABO≌△CDO,故本选项符合题意;故选:D.二、填空题:(本大题共12题,每题2分,满分24分)7.64的平方根是±8.【分析】直接根据平方根的定义即可求解.解:∵(±8)2=64,∴64的平方根是±8.故答案为:±8.8.比较大小:<.(填“>、<、或=”)【分析】先把两个实数平方,然后根据实数的大小比较方法即可求解.解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.9.计算:=10.【分析】利用算术平方根的定义计算即可.解:===10.故答案为:10.10.利用计算器计算 1.78(保留三个有效数字).【分析】用计算器计算出和的值后,再根据有效数字的定义解答即可.解:原式≈3.464﹣1.681≈1.78.故答案为:1.78.11.数轴上,点B在点A的右边,已知点A表示的数是﹣2,且AB=5.那么点B表示的数是3.【分析】根据数轴表示数的意义,在点A的右边,到点A距离为5的点所表示的数为3.解:﹣2+5=3,故答案为:3.12.在直角坐标平面内,点P(﹣5,0)向下平移m(m>0)个单位后落在第三象限.(填“上”或“下”或“左”或“右“)【分析】根据点P的位置判断即可.解:∵P(﹣5,0)在x轴的负半轴上,∴点P向下平移落在第三象限,故答案为下.13.已知点A(m,n)在第四象限,那么点B(m,﹣n)在第一象限.【分析】根据点所在象限判断出m、n的取值范围,然后再确定﹣n的取值范围,进而可得答案.解:∵点A(m,n)在第四象限,∴m>0,n<0,∴﹣n>0,∴点B(m,﹣n)在第一象限,故答案为:一.14.在△ABC中,如果∠A=∠B+∠C,那么△ABC是直角三角形.(填“锐角”、“钝角”或“直角”)【分析】根据三角形的内角和是180°计算.解:∠A+∠B+∠C=180度.又∠A=∠B+∠C,则2∠A=180°,即∠A=90°.即该三角形是直角三角形.故答案为:直角.15.等腰三角形的两条边长分别为4和9,那么它的周长为22.【分析】分4是腰长与底边两种情况讨论求解.解:①4是腰长时,三角形的三边分别为4、4、9,∵4+4<9,∴不能组成三角形,②4是底边时,三角形的三边分别为4、9、9,能组成三角形,周长=4+9+9=22.综上所述,它的周长为22.故答案为:22.16.如图,已知直线a∥b∥c,△ABC的顶点B、C分别在直线b、c上,如果∠ABC=60°,边BC与直线b的夹角∠1=25°,那么边AB与直线a的夹角∠2=35度.【分析】证明∠ABC=∠1+∠2即可解决问题.解:如图,∵a∥b∥c,∴∠2=∠3,∠1=∠4,∴∠ABC=∠2+∠1.∵ABC=60°,∠1=25°,∴∠2=60°﹣25°=35°,故答案为35.17.如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,如果△ABD的周长为12,△ABC的周长为16,那么AD的长是4.【分析】根据等腰三角形的性质和三角形的周长即可得到结论.解:∵AB=AC,AD是∠BAC的平分线,∴BD=CD,∵△ABC的周长为16,∴AB+BD=16=8,∵△ABD的周长为12,∴AD=12﹣8=4,故答案为:4.18.如图所示,将长方形纸片ABCD进行折叠,如果∠BHG=70°,那么∠BHE=55度.【分析】利用平行线的性质可得∠1=70°,利用折叠及平行线的性质,三角形的内角和定理可得所求角的度数.解:由题意得EF∥GH,∴∠1=∠BHG=70°,∴∠FEH+∠BHE=110°,由折叠可得∠2=∠FEH,∵AD∥BC∴∠2=∠BHE,∴∠FEH=∠BHE=55°.故答案为55.三、解答题(本大题共8题,满分64分)19.计算:(×﹣2)÷【分析】直接利用二次根式的乘法运算法则分别化简得出答案.解:原式=(﹣2)÷=﹣2.20.计算.【分析】先根据平方差公式计算得到原式=(+2+﹣2)(+2﹣+2),再把括号内合并同类二次根式后进行乘法运算.解:原式=(+2+﹣2)(+2﹣+2)=2×4=8.21.利用幂的性质计算:.【分析】先把各数化为同底数幂的乘除法,再根据同底数幂的乘法与除法法则进行计算.解:原式=×÷==.22.如图,已知在△ABC中,∠B=80°,点D在BC的延长线上,∠ACD=3∠A,求:∠A的度数.【分析】利用三角形的外角的性质即可解决问题.解:∵∠ACD=∠B+∠A,∠ACD=3∠A,∴3∠A=80°+∠A,∴∠A=40°,23.如图,已知GH、MN分别平分∠AGE、∠DMF,且∠AGH=∠DMN,试说明AB∥CD的理由.解:因为GH平分∠AGE(已知),所以∠AGE=2∠AGH(角平分线的定义)同理∠DMF=2∠DMN因为∠AGH=∠DMN(已知)所以∠AGE=∠DMF(等量代换)又因为∠AGE=∠FGB(对顶角相等)所以∠DMF=∠FGB(等量代换)所以AB∥CD(同位角相等,两直线平行).【分析】根据角平分线的定义和等量关系可得∠AGE=∠DMF,再根据对顶角相等和等量关系可得∠DMF=∠FGB,再根据平行线的判定推出即可.解:因为GH平分∠AGE(已知),所以∠AGE=2∠AGH(角平分线的定义)同理∠DMF=2∠DMN因为∠AGH=∠DMN(已知)所以∠AGE=∠DMF(等量代换)又因为∠AGE=∠FGB(对顶角相等)所以∠DMF=∠FGB(等量代换)所以AB∥CD(同位角相等,两直线平行).故答案为:角平分线的定义,DMF,DMF,等量代换,对顶角相等,DMF,等量代换,同位角相等,两直线平行.24.如图,已知C是线段AB的中点,CD∥BE,且CD=BE,试说明∠D=∠E的理由.【分析】根据中点定义求出AC=CB,两直线平行,同位角相等,求出∠ACD=∠B,然后证明△ACD和△CBE全等,再利用全等三角形的对应角相等进行解答.解:∵C是AB的中点(已知),∴AC=CB(线段中点的定义).∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等).在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).∴∠D=∠E(全等三角形的对应角相等).(1分)25.如图,在直角坐标平面内,已知点A(1,2).(1)把点A向右平移3个单位再向下平移2个单位,得到点B,那么点B的坐标是(4,0);(2)点C(0,﹣2),那么△ABC的面积等于7;(3)在图中画出出△ABC关于原点O对称的△A1B1C1.【分析】(1)利用点平移的坐标变换规律写出B点坐标;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(3)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可.解:(1)B点坐标为(4,0);(2)S△ABC=4×4﹣×4×1﹣×3×2﹣×4×2=7;故答案为(4,0);7;(3)如图,△A1B1C1为所作.26.如图,已知点B、C、E在一直线上,△ABC、△DCE都是等边三角形,联结AE、BD.试说明AE=BD的理由.【分析】由“SAS”可证△ACE≌△BCD,可得AE=BD.解:∵△ABC,△DCE都是等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD.27.如图,在△ABC中,AB⊥BC,BE⊥AC于E,AF平分∠BAC交BE于点F,DF∥BC.(1)试说明:BF=DF;(2)延长AF交BC于点G,试说明:BG=DF.【分析】(1)由角平分线的性质可得FE=FH,由“ASA”可证△DEF≌△BHF,可得BF=DF;(2)由等角的余角相等可得∠AFE=∠AGB=∠BFG,可得BF=BG=DF.【解答】证明:(1)如图,延长DF交AB于H,延长AF交BC于G,∵AB⊥BC,DF∥BC,∴DH⊥AB,∵AF平分∠BAC,BE⊥AC,DH⊥AB,∴FE=FH,又∵∠DFE=∠BFH,∠DEF=∠BHF=90°,∴△DEF≌△BHF(ASA),∴BF=DF;(2)∵AF平分∠BAC,∴∠EAF=∠BAG,∵∠EAF+∠AFE=90°,∠BAG+∠AGB=90°,∴∠AFE=∠AGB,∴∠BFG=∠AGB,∴BF=BG,∴BG=DF.。
2023-2024学年上海市杨浦区七年级(下)期末数学试卷及答案解析
![2023-2024学年上海市杨浦区七年级(下)期末数学试卷及答案解析](https://img.taocdn.com/s3/m/0be0774915791711cc7931b765ce050877327500.png)
2023-2024学年上海市杨浦区七年级(下)期末数学试卷一、填空题(本大题共14题,每小题2分,满分28分)1.(2分)16的平方根是.2.(2分)计算:=.3.(2分)写出在与之间的一个有理数,这个数可以是(只需填写一个).4.(2分)在数轴上,实数2﹣对应的点在原点的侧.(填“左”、“右”)5.(2分)今年春节黄金周上海共接待游客约16750000人,将16750000这个数保留三个有效数字并用科学记数法表示是.6.(2分)经过点P(﹣2,5)且垂直于x轴的直线可以表示为直线.7.(2分)在平面直角坐标系中,点M(a+2,a﹣2)在x轴上,那么点M的坐标是.8.(2分)已知直线AB和直线CD相交于点O,∠AOC=2∠AOD,那么这两条直线的夹角等于度.9.(2分)如图,将一块直角三角板的直角顶点放在一个长方形纸片的一边上,那么∠1+∠2=度.10.(2分)如果一个三角形的两条边长分别为3和8,且第三边的长为整数,那么第三边的长的最小值是.11.(2分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为点D、点E,AD与BE交于点F,要使△BDF≌△ADC,还需添加一个条件,这个条件可以是(只需填写一个).12.(2分)如图,在△ABC中,AB=AC,∠A=50°,点D、E、F分别在边BC、AB、AC上,如果BD =CF,BE=CD,那么∠EDF=度.13.(2分)如图,已知∠AOB=30°,点P在∠AOB的内部,点P1与点P关于OB对称,点P2与点P 关于OA对称,联结P1P2、OP1、OP2,如果△OP1P2的周长是18,那么OP=.14.(2分)已知在△ABC中,AB=AC,AD⊥BC,垂足为点D,点O在直线AD上,且OA=OB=OC,如果点B绕点O旋转60°后恰好与点C重合,那么∠BAC=度.二、选择题(本大题共6题,每小题2分,满分12分)15.(2分)下列实数中,是无理数的是()A.B.0.C.0.010010001D.16.(2分)下列计算正确的是()A.B.C.D.17.(2分)如图,下列说法中,错误的是()A.∠EAD与∠EBD是同位角B.∠EAD与∠DBC是同位角C.∠EAD与∠ADC是内错角D.∠EAD与∠ADB是内错角18.(2分)只给定三角形的两个元素,画出的三角形的形状和大小是不确定的.在下列给定的两个条件的基础上,增加一个AB=4cm的条件后,所画出的三角形的形状和大小仍不能完全确定的是()A.∠A=60°,∠B=30°B.BC=6cm,∠B=30°C.BC=3cm,∠A=30°D.BC=5cm,AC=6cm19.(2分)从1、﹣3、4这三个数中,随意取两个数组成一个点的坐标,这个点恰好落在第二象限的可能性大小是()A.B.C.D.20.(2分)如图,在△ABC中,D是边BC的中点,将△ABD沿AD翻折,点B落在点E处,AE交CD 于点F,△ADF的面积恰好是△ABC面积的.小丽在研究这个图形时得到以下两个结论:①∠B=∠CAE;②AC=CD.那么下列说法中,正确的是()A.①正确②错误B.①错误②正确C.①、②皆正确D.①、②皆错误三、简答题(本大题共5题,每小题6分,满分30分)21.(6分)计算:.22.(6分)计算:.23.(6分)用幂的运算性质计算:(结果表示为含幂的形式).24.(6分)如图,已知∠1+∠2=180°,∠3=∠B,请填写理由,说明AD∥BC.解:因为∠1+∠2=180°(已知),∠1+∠AED=180°(),所以∠2=∠AED().所以AB∥DE().所以∠3+=180°().又因为∠3=∠B(已知).所以∠B+=180°(等量代换).所以AD∥BC().25.(6分)如图,在△ABC中,E是AD上一点,AB=AC,∠ABE=∠ACE,请填写理由,说明AD⊥BC.解:因为AB=AC(已知),所以∠ABC=∠ACB().又因为∠ABE=∠ACE(已知),所以∠ABC﹣∠ABE=∠ACB﹣∠ACE(等式性质).即∠EBC=∠ECB.所以EB=EC().在△ABE与△ACE中,,所以△ABE≌△ACE().所以∠BAE=().又因为AB=AC(已知),所以AD⊥BC().四、解答题(本大题共3小题,第1题6分,第2题6分,第3题8分,满分20分)26.(6分)对于如图给定的图形(不再添线),从①∠1=∠2;②∠3=∠4;③AD∥BC;④AB∥CD 中选取两个作为已知条件,通过说理能得到AE∥CF.(1)你选择的两个条件是(填序号);(2)根据你选择的两个条件,说明AE∥CF的理由.27.(6分)在平面直角坐标系中,点A(﹣3,0),将点A先向右平移1个单位,再向下平移2个单位得点B,点B关于原点对称的点记为点C.(1)分别写出点B、C的坐标:B()、C();(2)△ABC的面积是;(3)点D是直线x=3上的一点,如果△OAD的面积等于△ABC的面积,那么点D的坐标是.28.(8分)如图,已知等腰△ABC,AB=AC,D是边AB上一点(不与点A、B重合),E是线段CD延长线上一点,∠BEC=∠BAC.(1)说明∠EBA=∠DCA的理由;(2)小华在研究这个问题时,提出了一个新的猜想:点D在运动的过程中(不与点A、B重合),∠AEC 与∠ABC是否会相等?,小丽思考片刻后,提出了自己的想法:可以在线段CE上取一点H,使得CH =BE,联结AH,然后通过学过的知识就能得到∠AEC与∠ABC相等.你能否根据小丽同学的想法,说明∠AEC=∠ABC的理由.五、探究题(本大题共1小题,第1小题2分,第2小题4分,第3小题4分,满分10分)29.(10分)上海教育出版社七年级第二学期《练习部分》第60页习题14.6(2)第5题及参考答案.5.过下面三角形的一个顶点画一条直线,把这个三角形分割成两个等腰三角形:参考答案:小华在完成了以上解答后,对分割三角形的问题产生了兴趣,并提出了以下三个问题,请你解答:【问题1】如图1,△ABC中,∠A=120°,∠B=40°,∠C=20°,请设计一个方案把△ABC分割成两个小三角形,其中一个小三角形三个内角的度数与原三角形的三个内角的度数分别相等,另一个小三角形是等腰三角形.请直接画出示意图并标出等腰三角形顶角的度数(示意图画在答题卡上);【问题2】如果有一个内角为26°的三角形被分割成两个小三角形,其中一个小三角形三个内角的度数与原三角形三个内角的度数分别相等,另一个小三角形是等腰三角形,那么原三角形最大内角的度数所有可能的值为;【问题3】如图2,在△ABC中,∠A=60°,∠B=70°,∠C=50°,在△DEF中,∠D=60°,∠E =85°,∠F=35°,分别用一条直线分割这两个三角形,使△ABC分割成的两个小三角形三个内角的度数与△DEF分割成的两个小三角形三个内角的度数分别相等,请设计两种不同的分割方案,直接画出示意图并标出相应的角的度数(示意图画在答题卡上).2023-2024学年上海市杨浦区七年级(下)期末数学试卷参考答案与试题解析一、填空题(本大题共14题,每小题2分,满分28分)1.【分析】一个数x的平方等于a,则这个数x即为a的平方根,据此即可得出答案.【解答】解:∵42=16,(﹣4)2=16,∴16的平方根为±4,故答案为:±4.【点评】本题考查平方根的定义,此为基础且重要知识点,必须熟练掌握.2.【分析】合并同类二次根式即可.【解答】解:=(2﹣3+4)=,故答案为:.【点评】本题考查了二次根式的加减,熟练掌握其运算法则是解题的关键.3.【分析】运用算术平方根知识进行估算、求解.【解答】解:∵<<,∴在与之间的一个有理数可以是3,故答案为:3(答案不唯一).【点评】此题考查了对无理数大小的估算能力,关键是能准确理解并运用算术平方根知识.4.【分析】根据2<<3,可知2﹣<0,所以2﹣在原点的左侧.【解答】解:根据题意可知:2﹣<0,∴2﹣对应的点在原点的左侧.故填:左【点评】本题考查实数与数轴上点的对应关系,掌握了实数与数轴上的点的一一对应关系,很容易得出正确答案.5.【分析】运用科学记数法和有效数字的定义进行求解.【解答】解:16750000≈16800000,16800000=1.68×107,∴16750000≈1.68×107,故答案为:1.68×107.【点评】此题考查了运用科学记数法表示较小数字的能力,关键是能准确理解并运用该知识.6.【分析】根据点的坐标特点解答即可.【解答】解:经过点P(﹣2,5)且垂直于x轴的直线可以表示为直线x=﹣2.故答案为:x=﹣2.【点评】本题考查的是点的坐标,熟知坐标系内点的坐标特点是解题的关键.7.【分析】根据x轴上点的坐标特点解答即可.【解答】解:∵点M(a+2,a﹣2)在x轴上,∴a﹣2=0,解得a=2,∴a+2=2+2=4,∴M(4,0),故答案为:(4,0).【点评】本题考查的是点的坐标,熟知x轴上点的纵坐标为0是解题的关键.8.【分析】由两条直线相交得出∠AOC+∠AOD=180°,再根据已知∠AOC=2∠AOD,即可求出这两个角的度数,从而得出这两条直线的夹角的度数.【解答】解:由题意得∠AOC+∠AOD=180°,又∵∠AOC=2∠AOD,∴2∠AOD+∠AOD=180°,∴∠AOD=60°,∴∠AOC=120°,∴这两条直线的夹角等于60°或120°,故答案为:60或120.【点评】本题考查了对顶角、邻补角,熟知邻补角的定义是解题的关键.9.【分析】根据平行线的性质求出∠1=∠3,再结合平角的定义求解即可.【解答】解:如图,∵m∥n,∴∠1=∠3,∵∠3+90°+∠2=180°,∴∠1+90°+∠2=180°,∴∠1+∠2=90°,故答案为:90.【点评】此题考查了平行线的性质,熟记平行线的性质定理是解题的关键.10.【分析】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,进行分析求解.【解答】解:设第三边的长为x,满足8﹣3<x<8+3,即5<x<11.而第三边的长为整数,所以符合条件的x值为:6、7、8、9、10,所以第三边的长的最小值是6.故答案为:6.【点评】本题主要考查三角形三边关系,要注意三角形“任意两边之和>第三边”这一定理.11.【分析】根据全等三角形的判定定理求解即可.【解答】解:添加AD=BD,理由如下:∵AD⊥BC,BE⊥AC,∴∠ADB=∠ADC=∠BEC=90°,∴∠CBE+∠BFD=90°,∠C+∠CBE=90°,∴∠BFD=∠C,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),故答案为:AD=BD(答案不唯一).【点评】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.12.【分析】由AB=AC,得∠B=∠C,由∠B+∠C=2∠B=180°﹣∠A=130°,求得∠B=65°,再证明△EBD≌△DCF,得∠BED=∠CDF,可推导出∠EDF=∠B=65°,于是得到问题的答案.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A=50°,∴∠B+∠C=2∠B=180°﹣∠A=130°,∴∠B=65°,在△EBD和△DCF中,∴△EBD≌△DCF(SAS),∴∠BED=∠CDF,∴∠EDF=180°﹣∠BDE﹣∠CDF=180°﹣∠BDE﹣∠BED=∠B=65°,故答案为:65.【点评】此题重点考查等腰三角形的性质、全等三角形的判定与性质、三角形内角和定理等知识,证明△EBD≌△DCF是解题的关键.13.【分析】根据轴对称的性质得出△OP1P2为等边三角形,据此可解决问题.【解答】解:如图所示,∵点P1与点P关于OB对称,点P2与点P关于OA对称,∴OP=OP1,OP=OP2,∠POA=∠P2OA,∠POB=∠P1OB,∴∠P1OP2=2(∠POA+∠POB)=2∠AOB=60°,∴△OP1P2是等边三角形.∵△OP1P2的周长是18,∴OP1=18÷3=6,∴OP=6.故答案为:6.【点评】本题主要考查了轴对称的性质,熟知图形对称的性质是解题的关键.14.【分析】点O的位置有两种可能①O在△ABC内部.②O在△ABC外部.分别求出∠BAC的度数即可.【解答】解:点O的位置有两种可能:①如图①O在△ABC内部.∵点B绕点O旋转60°后恰好与点C重合,∴∠BOC=60°,∵OB=OC,OD⊥BC,∴∠BOD=∠COD=30°,∵OA=OB,∴∠OAB=∠OBA=15°,∵OA=OC,∴∠OAC=∠OCA=15°,∴∠BAC=30°.②∵点B绕点O旋转60°后恰好与点C重合,∴∠BOC=60°,∵OB=OC,OD⊥BC,∴∠BOD=∠COD=30°,∵OA=OB,∴∠OAB=∠OBA=75°,∵OA=OC,∴∠OAC=∠OCA=75°,∴∠BAC=150°.∴∠BAC=30或150度.故答案为:30或150.【点评】本题考查了图形的旋转,等腰三角形的性质.关键是分类讨论点O的位置有两种可能.二、选择题(本大题共6题,每小题2分,满分12分)15.【分析】根据有理数和无理数的概念解答:无限不循环小数是无理数.【解答】解:A.,是整数,属于有理数,不符合题意;B.0.是循环小数,属于有理数,不符合题意;C.0.010010001是有限小数,属于有理数,不符合题意;D.,是无理数,符合题意.故选:D.【点评】此题主要考查了无理数的定义,熟知其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是解题的关键.16.【分析】AB选项均根据二次根式的性质进行计算,然后判断即可;C.根据算术平方根的定义进行计算,然后判断即可;D.先把带分数化成假分数,然后进行化简判断即可.【解答】解:A.∵,∴此选项的计算正确,故此选项符合题意;B.∵,∴此选项的计算错误,故此选项不符合题意;C.∵,∴此选项的计算错误,故此选项不符合题意;D.∵,∴此选项的计算错误,故此选项不符合题意;故选:A.【点评】本题主要考查了二次根式的计算和化简,解题关键是熟练掌握二次根式的性质和如何把二次根式化成最简二次根式.17.【分析】根据同位角和内错角的定义解答即可.【解答】解:∠EAD与∠EBD是同位角,故正确,A不符合题意;∠EAD与∠DBC不是同位角,故错误,B符合题意;∠EAD与∠ADC是内错角,故正确,C不符合题意;∠EAD与∠ADB是内错角,故正确,不符合题意.故选:B.【点评】本题考查了同位角和内错角的定义,关键是同位角和内错角定义的熟练掌握.18.【分析】根据选项中所给条件,结合题中的AB=4cm,依次进行判断三角形的形状和大小是否确定即可解决问题.【解答】解:∵∠A=60°,∠B=30°,∴∠C=90°,则三角形的形状确定.再根据∠A的正弦值和余弦值,可求出BC及AC的长,所以三角形的大小也确定.故A选项不符合题意.因为AB=6cm,AB=4cm,且它们的夹角为∠B=30°,所以依据全等三角形的判定定理“SAS”可知,此三角形的形状和大小都确定.故B选项不符合题意.因为∠A=30°,BC=3cm,AB=4cm,所以此时△ABC的两边和一边的对角确定,则△ABC的形状和大小都不确定.故C选项符合题意.因为AB=4cm,BC=5cm,AC=6cm,所以依据全等三角形的判定定理“SSS”可知,此三角形的形状和大小都确定.故D选项不符合题意.故选:C.【点评】本题主要考查了解直角三角形及全等三角形的判定,熟知全等三角形的判定定理是解题的关键.19.【分析】列举出所有点的坐标,找出第二象限内点的坐标,利用概率公式解答即可.【解答】解:∵1、﹣3、4这三个数随意取两个数组成一个点的坐标为(1,﹣3),(﹣3,1),(1,4),(4,1),(﹣3,4),(4,﹣3)共6种,第二象限内的点为(﹣3,1),(﹣3,4),∴这个点恰好落在第二象限的可能性为=.故选:C.【点评】本题考查的是点的坐标和可能性的大小,熟知第二象限内点的横坐标小于0,纵坐标大于0是解题的关键.20.【分析】根据折叠的性质、三角形的面积公式、中线的性质求解.【解答】解:∵D是边CB的中点,∴BD=CD,=S△ACD=S△ADE=S△ABC,∴S△ABD=S△ABC,∵S△ADF=S△EDF=S△ABC,∴S△ACF∴DF=CF,AF=EF,∴四边形ACED为平行四边形,∴AC∥DE,AC=DE,∴∠E=∠EAC,∵∠E=∠B,∴∠EAC=∠B,故①是正确的;由折叠的性质得:BD=DE,∴AC=CD,故②谁正确的,故选:C.【点评】本题考查了翻折变换,掌握折叠的性质、三角形的面积公式、中线的性质是解题的关键.三、简答题(本大题共5题,每小题6分,满分30分)21.【分析】根据分数指数幂法则、实数的运算法则、零指数幂法则、负整数指数幂法则进行解题即可.【解答】解:原式=﹣2+2﹣1+=﹣.【点评】本题考查分数指数幂、实数的运算、零指数幂、负整数指数幂,熟练掌握相关的运算法则是解题的关键.22.【分析】先算括号内的和完全平方,再算除法,最后算加减.【解答】解:原式=2﹣2+1+(﹣2)÷=2﹣2+1+﹣2=1﹣.【点评】本题考查二次根式的混合运算,解题的关键是掌握二次根式相关运算的法则.23.【分析】先将该算式变形为同底数幂乘除混合运算,再运用同底数幂相乘除运算法则进行求解.【解答】解:=÷×=÷×==.【点评】此题考查了分数指数幂的运算能力,关键是能准确理解并运用该知识进行正确地计算.24.【分析】根据平行线的判定与性质求解即可.【解答】解:因为∠1+∠2=180°(已知),∠1+∠AED=180°(邻补角定义),所以∠2=∠AED(同角的补角相等).所以AB∥DE(内错角相等,两直线平行).所以∠3+∠BAD=180°(两直线平行,同旁内角互补).又因为∠3=∠B(已知).所以∠B+=180°(等量代换).所以AD∥BC(同旁内角互补,两直线平行).故答案为:邻补角定义;同角的补角相等;内错角相等,两直线平行;∠BAD;两直线平行,同旁内角互补;∠BAD;同旁内角互补,两直线平行.【点评】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.25.【分析】由AB=AC,根据“等边对等角”得∠ABC=∠ACB,所以∠ABC﹣∠ABE=∠ACB﹣∠ACE,则∠EBC=∠ECB,由“等角对等边”证明EB=EC,进而根据“SSS“证明△ABE≌△ACE,再根据全等三角形的对应角相等推导出∠BAE=∠CAE,即可根据等腰三角形的“三线合一”证明AD⊥BC,于是得到问题的答案.【解答】解:因为AB=AC(已知),所以∠ABC=∠ACB(“等边对等角”),又因为∠ABE=∠ACE(已知),所以∠ABC﹣∠ABE=∠ACB﹣∠ACE(等式性质),即∠EBC=∠ECB,所以EB=EC(“等角对等边”),在△ABE与△ACE中,,所以△ABE≌△ACE(SSS),所以∠BAE=∠CAE(全等三角形的对应角相等),又因为AB=AC(已知),所以AD⊥BC(等腰三角形的“三线合一”).故答案为:“等边对等角”,“等角对等边”,SSS,∠CAE,全等三角形的对应角相等,等腰三角形的“三线合一”.【点评】此题重点考查等腰三角形的性质、全等三角形的判定与性质等知识,适当选择全等三角形的判定定理证明△ABE≌△ACE是解题的关键.四、解答题(本大题共3小题,第1题6分,第2题6分,第3题8分,满分20分)26.【分析】(1)选择的两个条件是①④,根据平行线的性质求出∠ABD=∠CDB,根据三角形外角性质求出∠AED=∠CFB,再根据“内错角相等,两直线平行”即可得解;(2)结合三角形外角性质、平行线的判定与性质求解即可.【解答】解:(1)选择的两个条件是①④,理由如下:∵AB∥CD,∴∠ABD=∠CDB,∵∠1=∠2,∠AED=∠1+∠ABD,∠CFB=∠2+∠CDB,∴∠AED=∠CFB,∴AE∥CF,故答案为:①④(答案不唯一);(2)∵AB∥CD,∴∠ABD=∠CDB,∵∠1=∠2,∠AED=∠1+∠ABD,∠CFB=∠2+∠CDB,∴∠AED=∠CFB,∴AE∥CF.【点评】此题考查了平行线的判定与性质,熟记平行线的判定与性质是解题的关键.27.【分析】(1)根据关于原点对称的点的坐标特点和平移的规律即可得出答案;(2)根据三角形的面积公式计算即可;(3)根据三角形的面积公式计算即可.【解答】解:(1)∵点A(﹣3,0),将点A先向右平移1个单位,再向下平移2个单位得点B,∴点B的坐标是(﹣3+1,0﹣2),即(﹣2,﹣2),∵点B关于原点对称的点记为点C,∴点C的坐标是(2,2);故答案为:(﹣2,﹣2),(2,2);(2)△ABC的面积等于×3×2+×3×2=6;故答案为:6;(3)∵△OAD的面积等于△ABC的面积,OA=3,∴点D到x的距离为4,∵点D是直线x=3上,∴点D的坐标是:(3,4)或(3,﹣4).故答案为:(3,4)或(3,﹣4).【点评】本题考查关于坐标与图形变化﹣平移,坐标与图形变化﹣对称和三角形的面积等知识,解题的关键是掌握关于原点对称的点的坐标特点和平移的规律.28.【分析】(1)由三角形的内角和定理得∠BEC+∠BDE+∠EBA=180°,∠BAC+∠ADC+∠DCA=180°,则∠BEC+∠BDE+∠EBA=∠BAC+∠ADC+∠DCA,再根据∠BEC=∠BAC,∠BDE=∠ADC即可得出结论;(2)在线段CE上取一点H,使得CH=BE,连接AH,根据AB=AC及三角形内角和定理得∠ABC=∠ACB=(180°﹣∠BAC),再依据“SAS”判定△ABE和△ACH全等得AE=AH,∠BAE=∠CAH,进而得∠EAH=∠BAC,然后根据AE=AH及三角形内角和定理得∠AEC=∠AHD=(180°﹣∠EAH)=(180°﹣∠BAC),由此即可得出结论.【解答】(1)证明:∵∠BEC+∠BDE+∠EBA=180°,∠BAC+∠ADC+∠DCA=180°,∴∠BEC+∠BDE+∠EBA=∠BAC+∠ADC+∠DCA,又∵∠BEC=∠BAC,∠BDE=∠ADC,∴∠EBA=∠DCA;(2)解:在线段CE上取一点H,使得CH=BE,连接AH,如图所示:∵AB=AC,∴∠ABC=∠ACB=(180°﹣∠BAC),由(1)可知:∠EBA=∠DCA,在△ABE和△ACH中,,∴△ABE≌△ACH(SAS),∴AE=AH,∠BAE=∠CAH,∴∠BAE+∠DAH=∠CAH+∠DAH,即∠EAH=∠BAC,∵AE=AH,∴∠AEC=∠AHD=(180°﹣∠EAH)=(180°﹣∠BAC),∴∠AEC=∠ABC.【点评】此题主要考查了等腰三角形的性质,熟练掌握等腰三角形的性质,三角形的内角和定理,全等三角形的判定和性质是解决问题的关键.五、探究题(本大题共1小题,第1小题2分,第2小题4分,第3小题4分,满分10分)29.【分析】(1)依据题意,作∠ABC的平分线,交AC于点D,故∠ABD=∠CBD=∠C=20°,∠ADB =40°.则DB=DC.进而可以计算得解;(2)依据题意,根据(1)作较大内角的平分线,交AC于点D,从而∠ABD=∠CBD=∠C,则DB=DC,从而△DBC是等腰三角形,进而可以得解;(3)依据题意,分别进行设计画图可以得解.【解答】解:(1)如图,作∠ABC的平分线,交AC于点D,∴∠ABD=∠CBD=∠C=20°,∠ADB=40°.∴DB=DC.∴△DBC是等腰三角形.∴∠BDC=140°.(2)由题意,根据(1)作较大内角的平分线,交AC于点D,∴∠ABD=∠CBD=∠C.∴DB=DC.∴△DBC是等腰三角形.∴当,最大180﹣(26°+13°)=141°.故答案为:141°.(3)由题意,设计如下:方案1:作∠ABC的平分线,交AC于点M,根据题意,得∠A=60°,,∠C=50°,∠AMB=85°,∠BMC=95°;作∠DEN=35°,交DF于点N,根据题意,得∠D=60°.∠DNE=85°,∠NEF=50°,∠F=35°,∠ENF=95°.方案2:作∠ACQ=15°交AB于点Q,根据题意,得∠A=60°,∠AQC=105°,∠BCQ=35°,∠BQC=75°,∠B=70°;作∠DEO=15°,交DF于点O,根据题意,得∠D=60°,∠DOE=105°,∠EOF=75°,∠F=35°,∠OEF=70°.【点评】本题主要考查了等腰三角形的判定和性质,角的平分线的作图,作一个角等于定角,三角形内角和定理,熟练掌握等腰三角形的判定和性质,角的平分线的作图,作一个角等于定角是关键。
上海市七年级上册数学期末试卷(带答案)-百度文库
![上海市七年级上册数学期末试卷(带答案)-百度文库](https://img.taocdn.com/s3/m/fec09a5331126edb6e1a102f.png)
上海市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13 C .13-D .32.-2的倒数是( ) A .-2B .12-C .12D .23.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 4.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1125.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cm B .2cm C .8cm 或2cm D .以上答案不对 6.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y7.方程312x -=的解是( ) A .1x = B .1x =-C .13x =-D .13x =8.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-4 9.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513 B .﹣511C .﹣1023D .102510.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .15011.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟12.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a ≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题13.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.|-3|=_________;16.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.17.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 18.如果向东走60m 记为60m +,那么向西走80m 应记为______m. 19.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______. 20.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 21.已知二元一次方程2x-3y=5的一组解为x ay b=⎧⎨=⎩,则2a-3b+3=______. 22.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______. 23.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________. 24.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.27.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.28.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.29.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数30.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)31.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a . 请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点. (1)请你在图②的数轴上表示出A ,B ,C 三点的位置.(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒. ①当t =2时,求AB 和AC 的长度;②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.32.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握3.B解析:B【解析】【分析】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟,列出方程即可得.【详解】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得160 4x -1605x=12,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.4.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n个图中,有2×(2n+1)+n=5n+2(个).∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.5.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.6.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x﹣3y﹣12x+6y=﹣10x+3y.故选B.点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.7.A解析:A【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A.考点:解一元一次方程.8.B解析:B【解析】【分析】把5xy=⎧⎨=⎩x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.9.D解析:D【解析】【分析】观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n个数为(﹣2)n+1,第10个数是(﹣2)10+1=1024+1=1025故选:D.【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.10.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.11.C解析:C【解析】试题解析:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C.12.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6,移项,合并得,x=31a-,因为无解,所以a﹣1=0,即a=1.故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题13.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.14.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 15.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.16.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 17.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80 解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键18.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.19.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键.【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】<<,解:459∴<<,23=,∴=,b3a2=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.21.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案. 【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x a y b =⎧⎨=⎩代入方程2x-3y=5得 2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.22.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.23.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.24.-2【解析】【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a +9+3a +5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.三、压轴题25.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.(1)107秒或10秒;(2)1413或11413. 【解析】【分析】(1)由绝对值的非负性可求出a ,c 的值,设点B 对应的数为b ,结合BC = 2 AB ,求出b 的值,当运动时间为t 秒时,分别表示出点P 、点Q 对应的数,根据“Q 到B 的距离与P 到B 的距离相等”列方程求解即可;(2)当点R 运动了x 秒时,分别表示出点P 、点Q 、点R 对应的数为,得出AQ 的长, 由中点的定义表示出点M 、点N 对应的数,求出MN 的长.根据MN +AQ =25列方程,分三种情况讨论即可.【详解】(1)∵|a -20|+|c +10|=0,∴a -20=0,c +10=0,∴a =20,c =﹣10.设点B 对应的数为b .∵BC =2AB ,∴b ﹣(﹣10)=2(20﹣b ).解得:b =10.当运动时间为t 秒时,点P 对应的数为20+2t ,点Q 对应的数为﹣10+5t .∵Q 到B 的距离与P 到B 的距离相等,∴|﹣10+5t ﹣10|=|20+2t ﹣10|,即5t ﹣20=10+2t 或20﹣5t =10+2t ,解得:t =10或t =107. 答:运动了107秒或10秒时,Q 到B 的距离与P 到B 的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.∵点M 为线段PR 的中点,点N 为线段RQ 的中点,∴点M 对应的数为224202x x ++-=442x +, 点N 对应的数为2052x x -+=2x +10, ∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论: ①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25,解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.27.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s【解析】【分析】(1)根据非负数的性质求得a 、b 、c 的值即可;(2)i )根据3BC-k•AB 求得k 的值即可;ii )当AC=13AB 时,满足条件. 【详解】(1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.28.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.29.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.30.(1)25-,35(2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x秒,表示出P,Q的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25-,35(2)设运动时间为x秒13x2x2535+=+解得x4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P所在的位置表示的数为5 .(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,∴点P和点Q一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.31.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变【解析】【分析】(1)根据点的移动规律在数轴上作出对应的点即可;(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;②先求出A、B、C点表示的数,然后利用定义求出AB、AC的长,代入3AC-4AB即可得到结论.【详解】(1)A,B,C三点的位置如图所示:.。
2019-2020学年上海市松江区七年级(下)期末数学试卷(解析版)
![2019-2020学年上海市松江区七年级(下)期末数学试卷(解析版)](https://img.taocdn.com/s3/m/9ed074a4f90f76c661371a59.png)
2019-2020学年上海市松江区七年级(下)期末数学试卷一.填空题(共14小题)1.16的平方根是.2.=.3.比较大小:2(填“>”或“<”或“=”)4.请写出一个大于1且小于2的无理数.5.截止2020年6月5日,全世界感染新冠肺炎的人数约为6650000人,数字6650000用科学记数法表示,并保留2个有效数字,应记为.6.一个实数在数轴上对应的点在负半轴上,且到原点距离等于,则这个数为.7.在平面直角坐标系中,将点A(﹣3,﹣1)向右平移3个单位后得到的点的坐标是8.在平面直角坐标系中,点P(m+3,m+1)在y轴上,则m=.9.已知:如图,直线a∥b,直线c与a,b相交,若∠2=115°,则∠1=度.10.如图,AD∥BC,BD平分∠ABC,且∠A=110°,则∠D=°.11.如果等腰三角形的两条边长分别等于3厘米和7厘米,那么这个等腰三角形的周长等于厘米.12.如图,直线a∥b,点A,B位于直线a上,点C,D位于直线b上,且AB:CD=1:2,如果△ABC的面积为10,那么△BCD的面积为.13.如图,在△ABC中,两个内角∠BAC与∠BCA的角平分线交于点D,若∠B=70°,则∠D=度.14.如图,在△ABC中,∠A=100度,如果过点B画一条直线l能把△ABC分割成两个等腰三角形,那么∠C度.二.选择题(共4小题)15.下列等式中,正确的有()A.B.C.D.16.如图,在下列条件中,能说明AC∥DE的是()A.∠A=∠CFD B.∠BED=∠EDFC.∠BED=∠A D.∠A+∠AFD=180°17.利用尺规作∠AOB的角平分线OC的作图痕迹如图所示,说明∠AOC=∠BOC用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS18.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组三.解答题19.计算:3÷﹣27+()﹣1﹣(+2)0.20.利用幂的性质进行计算:4×8÷2.21.在△ABC中,已知∠A:∠B:∠C=2:3:5,求∠A、∠B、∠C的度数.22.如图,已知AD∥BC,点E是AD的中点,EB=EC.试说明AB与CD相等的理由.23.如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知)所以∠DEF=∠CFE()因为(已知)所以∠DEF=∠CFE(角平分线的意义)所以∠=∠CEF(等量代换)因为∠A=∠CFE(已知)所以∠A=()所以EF∥BC()24.在平面直角坐标系中,已知点A的坐标为(3,2).设点A关于y轴的对称点为B,点A关于原点O的对称点为C,点A绕点O顺时针旋转90°得点D.(1)点B的坐标是;点C的坐标是;点D的坐标是;(2)顺次联结点A、B、C、D,那么四边形ABCD的面积是.25.如图,已知在△ABC中,点D为AC边上一点,DE∥AB交边BC于点E,点F在DE的延长线上,且∠FBE=∠ABD,若∠DEC=∠BDA.(1)试说明∠BDA=∠ABC的理由;(2)试说明BF∥AC的理由.26.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在边BC上(不与点B、C重合),BE⊥AD,重足为E,过点C作CF⊥CE,交线段AD于点F.(1)试说明△CAF≌△CBE的理由;(2)数学老师在课堂上提出一个问题,如果EF=2AF,试说明CD=BD的理由.班级同学随后进行了热烈讨论,小明同学提出了自己的想法,可以取EF的中点H,联结CH,就能得出结论,你能否能根据小明同学的想法,写出CD=BD的理由.27.如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED=EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.2019-2020学年上海市松江区七年级(下)期末数学试卷参考答案与试题解析一.填空题(共14小题)1.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.2.=﹣2.【分析】因为﹣2的立方是﹣8,所以的值为﹣2.【解答】解:=﹣2.故答案为:﹣2.3.比较大小:>2(填“>”或“<”或“=”)【分析】根据2=<即可得出答案.【解答】解:∵2=<,∴>2,故答案为:>.4.请写出一个大于1且小于2的无理数.【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【解答】解:大于1且小于2的无理数是,答案不唯一.故答案为:.5.截止2020年6月5日,全世界感染新冠肺炎的人数约为6650000人,数字6650000用科学记数法表示,并保留2个有效数字,应记为 6.7×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将6650000用科学记数法表示为:6.7×106.故答案为:6.7×106.6.一个实数在数轴上对应的点在负半轴上,且到原点距离等于,则这个数为﹣.【分析】直接利用数轴的特点得出到原点距离等于的数字.【解答】解:∵一个实数在数轴上对应的点在负半轴上,且到原点距离等于,∴这个数为:﹣.故答案为:﹣.7.在平面直角坐标系中,将点A(﹣3,﹣1)向右平移3个单位后得到的点的坐标是(0,﹣1)【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:将点A(﹣3,﹣1)向右平移3个单位长度,得到对应点B,则点B的坐标是(﹣3+3,﹣1),即(0,﹣1),故答案为(0,﹣1).8.在平面直角坐标系中,点P(m+3,m+1)在y轴上,则m=﹣3.【分析】直接利用y轴上点的坐标特点进而得出答案.【解答】解:∵点P(m+3,m+1)在y轴上,∴m+3=0,解得:m=﹣3.故答案为:﹣3.9.已知:如图,直线a∥b,直线c与a,b相交,若∠2=115°,则∠1=65度.【分析】利用平行线的性质及邻补角互补即可求出.【解答】解:∵a∥b,∴∠1=∠3,∵∠2=115°,∴∠3=180°﹣115°=65°(邻补角定义),∴∠1=∠3=65°.故填65.10.如图,AD∥BC,BD平分∠ABC,且∠A=110°,则∠D=35°.【分析】根据平行线的性质先求得∠ABC的度数,再根据角平分线的性质及平行线的性质求得∠D的度数.【解答】解:∵AD∥BC,∠A=110°,∴∠ABC=180﹣∠A=70°;又∵BD平分∠ABC,∴∠DBC=35°;∵AD∥BC,∴∠D=∠DBC=35°.故答案为:35.11.如果等腰三角形的两条边长分别等于3厘米和7厘米,那么这个等腰三角形的周长等于17厘米.【分析】分两种情况讨论:当3厘米是腰时或当7厘米是腰时.根据三角形的三边关系,知3,3,7不能组成三角形,应舍去.【解答】解:当3厘米是腰时,则3+3<7,不能组成三角形,应舍去;当7厘米是腰时,则三角形的周长是3+7×2=17(厘米).故答案为:17.12.如图,直线a∥b,点A,B位于直线a上,点C,D位于直线b上,且AB:CD=1:2,如果△ABC的面积为10,那么△BCD的面积为20.【分析】根据两平行线间的距离处处相等,结合三角形的面积公式,知△BCD和△ABC 的面积比等于CD:AB,从而进行计算.【解答】解:∵a∥b,∴△ABC的面积:△BCD的面积=AB:CD=1:2,∴△BCD的面积=10×2=20.故答案为:20.13.如图,在△ABC中,两个内角∠BAC与∠BCA的角平分线交于点D,若∠B=70°,则∠D=125度.【分析】根据三角形内角和以及∠B的度数,先求出(∠BAC+∠BCA),然后根据角平分线的性质求出(∠DAC+∠ACD),从而再次利用三角形内角和求出∠ADC.【解答】解:∵AD、CD是∠BAC与∠BCA的平分线,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣(∠BAC+∠BCA)=180°﹣(180°﹣∠B)=90°+∠B=125°,故答案为:125.14.如图,在△ABC中,∠A=100度,如果过点B画一条直线l能把△ABC分割成两个等腰三角形,那么∠C=20度.【分析】设过点B的直线与AC交于点D,则△ABD与△BCD都是等腰三角形,根据等腰三角形的性质,得出∠ADB=∠ABD=40°,∠C=∠DBC,根据三角形外角的性质即可求得∠C=20°.【解答】解:如图,设过点B的直线与AC交于点D,则△ABD与△BCD都是等腰三角形,∵∠A=100度,∴∠ADB=∠ABD=40°,∵CD=BD,∴∠C=∠DBC,∵∠ADB=∠C+∠DBC=2∠C,∴2∠C=40°,∴∠C=20°,故答案为=20.二.选择题(共4小题)15.下列等式中,正确的有()A.B.C.D.【分析】根据二次根式的运算法则依次计算即可求解.【解答】解:A、无意义,故错误;B、,故正确;C、﹣=﹣5,故错误;D、,故错误;故选:B.16.如图,在下列条件中,能说明AC∥DE的是()A.∠A=∠CFD B.∠BED=∠EDFC.∠BED=∠A D.∠A+∠AFD=180°【分析】直接利用平行线的判定方法分析得出答案.【解答】解:A、当∠A=∠CFD时,则AB∥DF,不合题意;B、当∠BED=∠EDF时,则AB∥DF,不合题意;C、当∠BED=∠A时,则AC∥DE,符合题意;D、当∠A+∠AFD=180°时,则AB∥DF,不合题意;故选:C.17.利用尺规作∠AOB的角平分线OC的作图痕迹如图所示,说明∠AOC=∠BOC用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】由全等三角形的判定定理即可得出结论.【解答】解:如图,连接CD,CE,由作法可知OE=OD,CE=CD,OC=OC,故可得出△OCE≌△OCD(SSS),所以∠AOC=∠BOC,所以OC就是∠AOB的平分线.故选:A.18.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组【分析】根据等腰三角形的判定定理逐个判断即可.【解答】解:①、∵△ABC中,AB=AC,∴△ABC是等腰三角形,故①正确;②、∵△ABC中,∠B=56°,∠BAC=68°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣68°﹣56°=56°,∴∠B=∠C,∴△ABC是等腰三角形,故②正确;③∵△ABC中,AD⊥BC,AD平分∠BAC,∴∠BAD=∠CAD,∠ADB=∠ADC,∵∠B+∠BAD+∠ADB=180°,∠C+∠CAD+∠ADC=180°,∴∠B=∠C,∴△ABC是等腰三角形,故③正确;④、∵△ABC中,AD⊥BC,AD平分边BC,∴AB=AC,∴△ABC是等腰三角形,故④正确;即正确的个数是4,故选:D.三.解答题19.计算:3÷﹣27+()﹣1﹣(+2)0.【分析】直接利用零指数幂的性质和二次根式的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=﹣3+﹣1=1﹣.20.利用幂的性质进行计算:4×8÷2.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则计算得出答案.【解答】解:4×8÷2=2×2÷2=2=22=4.21.在△ABC中,已知∠A:∠B:∠C=2:3:5,求∠A、∠B、∠C的度数.【分析】设∠A=2x,则∠B=3x,∠C=5x,再根据三角形的内角和是180°列出关于x 的方程,求出x的值,即可得出各角的度数.【解答】解:∵在△ABC中∠A:∠B:∠C=2:3:5,∴设∠A=2x,则∠B=3x,∠C=5x,∵∠A+∠B+∠C=180°,即2x+3x+5x=180°,解得x=18°,∴∠A=2×18°=36°,∠B=3×18°=54°,∠C=5×18°=90°.答:∠A、∠B、∠C的度数分别为:36°,54°,90°.22.如图,已知AD∥BC,点E是AD的中点,EB=EC.试说明AB与CD相等的理由.【分析】由于AD∥BC,利用平行线的性质可得∠AEB=∠1,∠DEC=∠2,而EB=EC,根据等边对等角可得∠EBC=∠ECB,等量代换可证∠AEB=∠DEC,再结合AE=DE,EB=EC,利用AAS可证△AEB≌△EDC,从而有AB=CD.【解答】解:∵AD∥BC,∴∠AEB=∠1,∠DEC=∠2,∵EB=EC,∴∠EBC=∠ECB,∴∠AEB=∠DEC,在△AEB与△EDC中,,∴△AEB≌△EDC,∴AB=CD.23.如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知)所以∠DEF=∠CFE(两直线平行,内错角相等)因为EF平分∠CED(已知)所以∠DEF=∠CFE(角平分线的意义)所以∠CFE=∠CEF(等量代换)因为∠A=∠CFE(已知)所以∠A=∠CEF(等量代换)所以EF∥BC(同位角相等,两直线平行)【分析】先根据两直线平行,内错角相等,得到∠DEF=∠CFE,再根据角平分线得出∠DEF=∠CEF,进而得到∠CFE=∠CEF,再根据∠A=∠CFE,即可得出∠A=∠CEF,进而根据同位角相等,两直线平行,判定EF∥BC.【解答】解:因为DE∥BC(已知)所以∠DEF=∠CFE(两直线平行,内错角相等)因为EF平分∠CED(已知)所以∠DEF=∠CEF(角平分线的意义)所以∠CFE=∠CEF(等量代换)因为∠A=∠CFE(已知)所以∠A=∠CEF(等量代换)所以EF∥BC(同位角相等,两直线平行)故答案为:两直线平行,内错角相等,EF平分∠CED,CFE,∠CEF,等量代换,同位角相等,两直线平行.24.在平面直角坐标系中,已知点A的坐标为(3,2).设点A关于y轴的对称点为B,点A关于原点O的对称点为C,点A绕点O顺时针旋转90°得点D.(1)点B的坐标是(﹣3,2);点C的坐标是(﹣3,﹣2);点D的坐标是(2,﹣3);(2)顺次联结点A、B、C、D,那么四边形ABCD的面积是25.【分析】(1)根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,以及利用旋转的性质即可解答本题.(2)利用矩形面积减去两个三角形求出即可.【解答】解:(1)∵点A的坐标为(3,2),点A关于y轴对称点为B,∴B点坐标为:(﹣3,2),∵点A关于原点的对称点为C,∴C点坐标为:(﹣3,﹣2),∵点A绕点O顺时针旋转90°得点D,∴D点坐标为:(2,﹣3),故答案为:(﹣3,2),(﹣3,﹣2),(2,﹣3);(2)顺次连接点A、B、C、D,那么四边形ABCD的面积是:5×6﹣×1×5﹣×1×5=25.故答案为:25.25.如图,已知在△ABC中,点D为AC边上一点,DE∥AB交边BC于点E,点F在DE的延长线上,且∠FBE=∠ABD,若∠DEC=∠BDA.(1)试说明∠BDA=∠ABC的理由;(2)试说明BF∥AC的理由.【分析】(1)根据平行线的性质得出∠DEC=∠ABC,根据∠DEC=∠BDA求出∠BDA =∠ABC即可;(2)求出∠BAC=∠FBD,根据∠BDA=∠BAC得出∠BDA=∠FBD,根据平行线的判定得出即可.【解答】解:(1)理由是:∵DE∥AB,∴∠DEC=∠ABC,∵∠DEC=∠BDA,∴∠BDA=∠ABC;(2)∵∠ABD=∠FBE,∴∠ABD+∠DBE=∠FBE+∠DBE,即∠BAC=∠FBD,∵∠BDA=∠BAC,∴∠BDA=∠FBD,∴BF∥AC.26.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在边BC上(不与点B、C重合),BE⊥AD,重足为E,过点C作CF⊥CE,交线段AD于点F.(1)试说明△CAF≌△CBE的理由;(2)数学老师在课堂上提出一个问题,如果EF=2AF,试说明CD=BD的理由.班级同学随后进行了热烈讨论,小明同学提出了自己的想法,可以取EF的中点H,联结CH,就能得出结论,你能否能根据小明同学的想法,写出CD=BD的理由.【分析】(1)由三角形内角和定理和余角的性质可得∠CAF=∠CBE,∠ACF=∠BCE,由“ASA”可证△CAF≌△CBE;(2)取EF的中点H,联结CH,由全等三角形的性质可得CF=CE,AF=BE,可证△CEF是等腰直角三角形,由等腰直角三角形的性质可得CH=FH=EH=EF,CH⊥EF,由“AAS”可证△CHD≌△BED,可得CD=BD.【解答】解:(1)∵BE⊥AD,∴∠ACB=∠BED=90°,又∵∠ADC=∠BDE,∴∠CAF=∠CBE,∵CE⊥CF,∴∠ECF=∠ACB=90°,∴∠ACF=∠BCE,又∵AC=BC,∴△CAF≌△CBE(ASA);(2)如图,取EF的中点H,联结CH,∵△CAF≌△CBE,∴CF=CE,AF=BE,∴△CEF是等腰直角三角形,∵点H是EF中点,∴CH=FH=EH=EF,CH⊥EF,∵EF=2AF,∴CH=AF=FH=EH,∴CH=BE,又∵∠CDH=∠BDE,∠CHD=∠BED=90°,∴△CHD≌△BED(AAS),∴CD=BD.27.如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED=EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.【分析】(1)根据等边三角形的性质得到∠BCE=30°,BE=AE,等腰三角形的判定和性质;(2)如图1,如图2,过A作AM⊥BC于M,过E作EN⊥BC于N,根据等边三角形的性质和平行线分线段成比例定理即可得到结论.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠BCE=30°,BE=AE,∵ED=EC,∴∠EDB=∠BCE=30°,∵∠ABD=120°,∴∠DEB=30°,∴DB=EB,∴AE=DB;(2)如图1,∵AB=2,AE=1,∴点E是AB的中点,由(1)知,BD=AE=1,∴CD=BC+BD=3;如图2,过A作AM⊥BC于M,过E作EN⊥BC于N,∵AB=AC,DE=CE,∴BM=BC=3,CD=2CN,∵AM⊥BC,EN⊥BC,∴AM∥EN,∴=,∴=,∴BN=,∴CN=BC﹣BN=,∴CD=1,综上所述,CD的长为1或3.。
上海市七年级(上)期末数学试卷含答案
![上海市七年级(上)期末数学试卷含答案](https://img.taocdn.com/s3/m/2438f2710740be1e650e9aa8.png)
七年级(上)期末数学试卷一、选择题(本大题共6小题,共18.0分)1.下列代数式中,单项式是A. B. C. D.2.下列分式中,不是最简分式是A. B. C. D.3.下列图形中既是轴对称图形,又是中心对称图形的是A. B. C. D.4.当时下列各式中值为0的是A. B. C. D.5.若分式中的x,y的值同时扩大到原来的2倍,则此分式的值A. 扩大到原来的4倍B. 扩大到原来的2倍C. 不变D. 缩小到原来的6.图中是由五个形状、大小相同的正方形组成的图形,如果去掉其中一个正方形,使得剩下的图形是一个中心对称图形,那么不同的方法有几种A. 1B. 2C. 3D. 4二、填空题(本大题共12小题,共24.0分)7.用代数式表示a与b差的平方:______ .8.______.9.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘,其浓度为贝克立方米.数据“”用科学记数法可表示为_________.10.因式分解:______.11.计算:______.12.如果关于x的二次三项式是完全平方式,那么m的值是______.13.已知:,,化简的结果是______.14.当______时,分式无意义.15.若方程有增根,则______.16.在正方形、等腰梯形、线段、等边三角形和平行四边形这五种图形中,是旋转对称图形但不是中心对称图形的是______.17.如图,将三角形ABC沿射线AC向右平移后得到三角形CDE,如果,,那么的度数是______.18.直角中,,,,,将绕点A旋转,使点C落在直线BA上的,则______.三、计算题(本大题共3小题,共18.0分)19.计算:.20.分解因式:.21.先简化,再求值:,其中.四、解答题(本大题共7小题,共46.0分)22.计算:23.计算:24.解方程:25.已知:,,若不含有x的项,求:的值26.小丽和爸爸进行1200米竞走比赛,爸爸的速度是小丽的倍,小丽走完全程比爸爸多用5分钟,小丽和爸爸每分钟各走多少米?27.如图,在一个的正方形网格中有一个,在网格中画出绕点P逆时针方向旋转得到的;在网格中画出向下平移三个单位得到的.连结AM,,.将线段AM沿着射线AD运动,使得点A与点D重合,用代数式表示线段AM扫过的平面部分的面积.将三角形ABM绕着点A旋转,使得AB与AD重合,点M落在点N,连结MN,用代数式表示三角形CMN的面积.将三角形ABM顺时针旋转,使旋转后的三角形有一边与正方形的一边完全重合第小题的情况除外,请在如图中画出符合条件的3种情况,并写出相应的旋转中心和旋转角.答案和解析1.【答案】B【解析】解:A、是多项式,故A错误;B、是单项式,故B正确;C、是多项式,故C错误;D、分母中含有字母是分式,故D错误.故选:B.依据单项式、多项式、分式的定义回答即可.本题主要考查的是单项式的定义,掌握单项式、多项式、分式的定义是解题的关键.2.【答案】D【解析】解:,即分子、分母中含有公因式,所以它不是最简分式;故选:D.最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.考查了最简分式,分式分子分母不能约分的分式才是最简分式.3.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形.故不符合题意;B、是轴对称图形,不是中心对称图形.故不符合题意;C、不是轴对称图形,是中心对称图形.故不符合题意;D、是轴对称图形,也是中心对称图形.故符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查中心对称图形,轴对称图形的知识,记住:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点,就叫做中心对称点.4.【答案】C【解析】解:A、当时,,此时分式无意义,故此选项不合题意;B、,当时,,此时分式无意义,故此选项不合题意;C、当时,,,此时分式的值为零,符合题意;D、当时,,此时分式无意义,故此选项不合题意;故选:C.直接利用分式的值为零的条件分析得出答案.此题主要考查了分式的值为零的条件,正确把握分式有意义的条件是解题关键.5.【答案】C【解析】解:,故选:C.根据分式的基本性质即可求出答案.本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.6.【答案】B【解析】解:去掉一个正方形,得到中心对称图形,如图所示:,共2种方法.故选:B.根据中心对称图形的概念求解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.【答案】【解析】解:差为,平方后为:.先求差,然后求平方.列代数式的关键是正确理解文字语言中的关键词,比如该题中的“平方”、“差”等,从而明确其中的运算关系,正确地列出代数式.8.【答案】【解析】解:原式.根据积的乘方等于积中每个因式各自乘方以及幂的乘方,底数不变,指数相乘的法则进行计算.此题考查了积的乘方的性质和幂的乘方的性质,关键是理清指数的变化法则.9.【答案】【解析】解:用科学记数法可表示为:;故答案为:.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为,其中,n由原数左边起第一个不为零的数字前面的0的个数所决定.10.【答案】【解析】解:.故答案为:.首先提取公因式x,进而利用平方差公式分解因式得出即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.11.【答案】【解析】解:.故答案为:.直接利用整式除法运算法则化简求出答案.此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.12.【答案】【解析】解:是一个完全平方式,这两个数是3x和2,,解得;故答案是:.利用完全平方公式的结构特征判断即可得到m的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.【答案】【解析】解:,,原式.故答案为:.原式利用多项式乘多项式法则计算,整理后将已知等式代入计算即可求出值.此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键.14.【答案】【解析】解:由题意得:,解得:,故答案为:.根据分式无意义的条件可得,再解即可.此题主要考查了分式无意义,关键是掌握分式无意义的条件是分母等于零.15.【答案】3【解析】解:分式方程去分母得:,由题意将代入得:,解得:.故答案为:3.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.此题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.16.【答案】等边三角形【解析】解:正方形、等腰梯形、线段、等边三角形和平行四边形这五种图形中正方形、线段和平行四边形都是中心对称图形,只有等边三角形是旋转对称图形但不是中心对称图形,故答案为:等边三角形.根据中心对称图形的定义以及旋转图形的性质分别判断得出即可.此题主要考查了旋转图形的性质,注意中心对称图形也属于旋转图形,但要按要求答题.17.【答案】【解析】解:将沿直线AB向右平移到达的位置,≌ ,,,,则.故答案为:.根据平移的性质得出 ≌ ,进而得出,,进而得出的度数,再利用三角形内角和解答即可.此题主要考查了平移的性质,根据平移的性质得出的度数是解题关键.18.【答案】1或9【解析】解:如图1,将绕点A旋转,使点C落在直线BA上的,,,如图2,将绕点A旋转,使点C落在直线BA上的,,,故答案为:1或9.根据旋转的性质即可得到结论.本题考查了旋转的性质,分类讨论是解题的关键.19.【答案】解:原式.【解析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及乘方的意义计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】解:根据十字相乘法,,,.【解析】因为,,所以可利用十字相乘法分解因式;得到的两个因式,还可以用十字相乘法分解因式.本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察、体会它实质是二项式乘法的逆过程;并注意一定要分解完全.21.【答案】解:原式,当时,原式.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.【答案】解:原式.【解析】利用单项式乘以多项式法则计算即可得到结果.此题考查了单项式乘多项式,熟练掌握单项式乘以多项式的法则是解本题的关键.23.【答案】解:原式.【解析】直接将分式通分进而计算得出答案.此题主要考查了分式的加减运算,正确通分运算是解题关键.24.【答案】解:去分母得:,整理得:,解得:,经检验是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.【答案】解:,,,由不含有x的项,得到,解得:,则.【解析】把A与B代入中,去括号合并后根据结果不含x项确定出a与b的值,代入原式计算即可求出值.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.26.【答案】解:设小丽每分钟走x米,则爸爸每分钟走米,依题意得:,,.经检验,是原方程的根,并符合题意米答:小丽每分钟走80米,爸爸每分钟走120米.【解析】设小丽每分钟走x米,则爸爸每分钟走米,根据他们所行走的时间差是5分钟列出方程.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.27.【答案】解:如图所示;如图所示.【解析】根据网格结构找出点A、B、C绕点P逆时针旋转的对应点、、的位置,然后顺次连接即可;根据网格结构找出点、、的向下平移3个单位的对应点、、的位置,然后顺次连接即可.本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键.28.【答案】解:,答:线段AM扫过的平面部分的面积为,;,答:三角形CMN的面积为;如图1,旋转中心:AB边的中点为O,顺时针,;如图2,旋转中心:点B;顺时针旋转,;如图3,旋转中心:正方形对角线交点O;顺时针旋转,.【解析】根据平移的性质和平行四边形的面积计算即可;根据三角形的面积计算即可;根据旋转的性质画出图形得出旋转中心和角度即可.本题考查了旋转的性质,关键是根据旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角解答.第11页,共11页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二学期期末质量抽测七年级(初一年级)数学试卷(完卷时间:90分钟满分:100分)一、填空题(本大题共14题,每小题2分,满分28分)1.64的立方根是.2.如果x=4,那么x=.3.在数轴上,如果点A、点B所对应的数分别为7-、72,那么A、B两点的距离AB=.4.5在两个连续整数a和b之间(a<b),那么b a=.5.计算:()33=.6.计算:219-=.7.崇明越江通道建设中的隧道工程全长约为3100.9⨯米,其中3100.9⨯有个有效数字.8.三角形的两边长分别为3和5,那么第三边a的取值范围是.9.△ABC中,AB=3,∠A=∠B = 60°,那么BC=.10.如图,AD∥BC,△ABD的面积是5,△AOD的面积是2,那么△COD的面积是.11.将一副三角板如图所示摆放(其中一块三角板的一条直角边与另一块三角板的斜边摆放在一直线上),那么图中∠α=度.题号一二三四总分得分12. 经过点P (-1,5)且垂直于x轴的直线可以表示为直线 .13. 如图,点P 在∠MON 的平分线上,点A 、B 分别在角的两边,如果要使△AOP ≌△BOP ,那么需要添加的一个条件是 (只写一个即可,不添加辅助线).14. 等腰三角形一腰上的高与另一腰的夹角为50°,那么这个等腰三角形的底角为 .二、选择题(本大题共4题,每小题3分,满分12分)(每题只有一个选项正确) 15. 下列说法中正确的是…………………………………………………( )(A )无限不循环小数是无理数; (B )一个无理数的平方一定是有理数; (C )无理数包括正无理数、负无理数和零; (D )两个无理数的和、差、积、商仍是无理数.16. 将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°, 其中正确的个数是…………………………………………( ) (A )1; (B )2; (C )3; (D )4.17. 如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),那么棋子“炮”的坐标为…………………( ) (A )(3,0); (B )(3,1); (C )(3,2); (D )(2,2).18. 如图,AOB 是一钢架,且∠AOB =10°,为加固钢架,需要在其内部添加一些钢管EF 、FG 、GH 、…,添加的钢管长度都与OE 相等,那么最多能添加这样钢管的根数为……………………………………………( ) (A )6; (B )7;(C )8; (D )9.第16题第17题图 MGFEOBA 第18题图三、简答题(本大题共4题,每小题6分,满分24分) 19.计算:()15315265÷-⨯.20.利用幂的性质进行计算(写出计算过程):6332816÷⨯.21.如图,如果AB =AD ,∠ABC =∠ADC ,试说明BC 与CD 相等的理由. 解:联结BD .因为AB =AD ,所以 ( ). 因为∠ABC =∠ADC (已知),所以∠ABC - =∠ADC - ( ). 即 . 所以BC =CD .22.在△ABC 中,如果∠A 、∠B 、∠C 的外角..的度数之比是4∶3∶2,求∠A 的度数.23.(8分)(1)在下图中画出表示点P 到直线a 距离的垂线段PM ;(2)过点P 画出直线B 的平行线c ,与直线a 交于点N ; (3)如果直线a 与b 的夹角为35°,求出∠MPN 的度数.第23题图bABCD第21题图24.(9分)如图,已知AC =BC =CD ,BD 平分∠ABC ,点E 在BC 的延长线上.(1) 试说明CD ∥AB 的理由;(2) C D 是∠ACE 的角平分线吗?为什么?25.(7分)如图,在直角坐标平面内,已知点A 的坐标(-5,0),(1) 图中B 点的坐标是 ;(2) 点B 关于原点对称的点C 的坐标是 ;点A 关于y 轴对称的点D 的坐标是 ;(3) △ABC 的面积是 ; (4) 在直角坐标平面上找一点E ,能满足ADE S ∆=ABCS ∆的点E 有 个;(5) 在y 轴上找一点F ,使ADF S ∆=ABC S ∆,那么点F 的所有可能位置是;(用坐标表示,并在图中画出)第24题图DAEBC第25题图26.(12分)把两个大小不同的等腰直角三角形三角板按照一定的规则放置:“在同一平面内将直角顶点叠合”.(1)图1是一种放置位置及由它抽象出的几何图形,B 、C 、D 在同一条直线上,联结EC .请找出图中的全等三角形(结论中不含未标识的字母),并说明理由;(2)图2也是一种放置位置及由它抽象出的几何图形,A 、C 、D 在同一条直线上,联结BD 、联结EC 并延长与BD 交于点F .请找出线段BD 和EC 的位置关系,并说明理由; (3)请你:①画出一个符合放置规则且不同于图1和图2所放位置的几何图形; ②写出你所画几何图形中线段BD 和EC 的位置和数量关系;③上面第②题中的结论在按照规则放置所抽象出的几何图形中都存在吗?第26题 图1第26题 图2第二学期期末质量抽测七年级数学参考答案及评分意见一、填空题:(本大题共14题,每题2分,满分28分)1、4;2、16;3、73;4、8;5、33;6、-3;7、2;8、82<<a ;9、3; 10、3; 11、75; 12、1-=x ; 13、AO =BO (或∠A =∠B ;∠APO =∠BPO ); 14、70°或20°.二、选择题:(本大题共4题,每小题3分,满分12分)(每题只有一个选项正确) 15、A ; 16、D ; 17、C ; 18、C .三、(本大题共4题,每题6分,满分24分) 19、解:原式=1531152153130⨯-⨯……………………………………………………(3分)=3232-…………………………………………………………………………(2分)=322-.…………………………………………………………………………(1分)20、 解:原式=652334222÷⨯……………………………………………………………………(3分)=6523342-+…………………………………………………………………………(2分)=338442=.……………………………………………………………………(1分)21、∠ABD =∠ADB .等边对等角. ∠ABD .∠ADB .等式性质.∠CBD =∠CDB .………(每格1分)22、解:设∠A 、∠B 、∠C 的外角分别为∠1=x 4度、∠2=x 3度、∠3=x 2度. …………(1分)因为∠1、∠2、∠3是△ABC 的三个外角,所以360234=++x x x . 解得40=x .………………………………………………(2分)所以∠1=160°、∠2=120°、∠3=80°.……………………………………………(1分)因为∠A +∠1=180°,…………………………………………………………………(1分)所以∠A=80°.…………………………………………………………………………(1分)四、解答题(本大题共4小题,23题8分,24题9分,25题7分,26题12分,满分36分) 23、(1)、(2)画图略. ……………………………………………………(各2分,其中结论各1分)(3)因为直线a 与b 的夹角为35°,所以∠β=35°. …………………………………………………………(1分) 将直线a 与c 的夹角记为∠1. 因为c ∥b ,所以∠1=∠β=35°. ………………………………………………(1分)因为PM ⊥a ,所以∠PMN =90°. ……………………………………………………………………(1分)因为∠1+∠P +∠PMN =180°,所以∠P =55°. ………………………………………………………………………(1分)24、(1)解:因为BD 平分∠ABC ,(已知)所以∠ABD =∠DBC .(角平分线定义)………………………………………(1分)因为BC =CD ,(已知)所以∠DBC =∠D .(等边对等角)………………………………………………(1分)所以∠ABD =∠D.(等量代换)…………………………………………………(1分)所以CD∥AB.(内错角相等,两直线平行)……………………………………(1分)(2)CD是∠ACE的角平分线. ……………………………………………………………(1分)因为CD∥AB,所以∠DCE =∠ABE.(两直线平行,同位角相等)…………………………………(1分)∠ACD =∠A.(两直线平行,内错角相等)……………………………………(1分)因为AC=BC,(已知)所以∠A =∠ABE.(等边对等角)……………………………………………………(1分)所以∠ACD=∠DCE.(等量代换)…………………………………………………(1分)即CD是∠ACE的角平分线.25、(1)(―3,4);(2)(3,―4);(5,0);(3)20;(4)无数.……………………(每格1分)(5)(0,4)或(0,―4).…………………………………………………………………(2分)26、解:(1)△ABD≌△ACE. …………………………………………………………………(1分)因为△ABC是直角三角形,所以AB=AC,∠BAC=90°. ……………………………………………………(1分)同理AD=AE,∠EAD=90°. ……………………………………………………(1分)所以∠BAC=∠EAD.所以∠BAC+∠CAD=∠EAD+∠CAD.即∠BAD=∠CAE. ………………………………………………………………(1分)在△ABD 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=.,,AE AD CAE BAD AC AB 所以△ABD ≌△ACE .(2)可证得△ABD ≌△ACE ,所以∠ADB =∠AEC .(全等三角形对应角相等)………………………………(1分)因为∠ACE =∠DCF ,(对顶角相等)∠ADB +∠DCF +∠EFD =180°,(三角形内角和180°)∠AEC +∠ACE +∠EAC =180°,(三角形内角和180°)………………(1分)所以∠EAC =∠EFD . ……………………………………………………………(1分) 因为∠BAC =90°, 所以∠EAC =90°. 所以∠EFD =90°.所以BD ⊥EC . (垂直定义)……………………………………………………(1分)(3)①图略. ……………………………………………………………………………(1分)②BD =EC ,BD ⊥EC . …………………………………………………………(2分) ③存在. ……………………………………………………………………………(1分)评分标准仅供参考,请注意几何说明书写的规范性,可做适当调整.。