光电效应和普朗克常数的测定
光电效应和普朗克常量的测定
图33-1GD-1型光电效应测试仪的结构图
1.光源;2.减光片或滤光片;
(2)检查光源出光孔和光电管入光孔上的挡光盖是否盖上,并使二孔水平对齐,其间距 离保持在20-25cm。
(3)将光电管暗盒上的“K”端用屏蔽电缆与微电流测试仪面板上的“K”连接,再用普
通导线将二者对应的“A”和“ ”连接好,然后接通微电流测试仪的电源开关。
2.光电管特性的研究
(1)测定光电管的伏安特性
2在光源出光孔上依次装上透过率T分别为75%,50%,25%的减光片 (改变入射光的 光强),测出对应的光电流。
3取下光电管入光孔上的滤光片,用挡光盖盖上光电管的入光孔。
3.普朗克常数的测定
(1)测量光电管的暗电流和本底电流特性
1取下光源出光孔上的减光片,盖上挡光盖。
2取下光电管入光孔上的挡光盖。
3调节“电压极性”开关,顺时针旋转“电压调节”旋钮,使电压由-3V逐渐增加
实验时,
系:
测出不同频率的光入射时的遏止电势差
u后,作ua〜曲线,u与成线性关
而由
12eUamvmh W
2
即得
0Wh
h (、
Ua(0)
e
(33-3)
从直线斜率可求出普朗克常数h,由直线的截距可求得截止频率
0 °
3.光电管
光电管是利用光电效应制成的能将光信号转化为电信号的光电器件。 在一个真空的玻璃
光电效应及普朗克常数的测定
2. 用零电流法测定h
将“电压”选择按键置于-2V~+0V档,“电流量程”选择 在10-13A档并重新调零。将直径为4mm的光阑及波长为 365.0nm 的滤光片插在光电管入射窗孔前,调节电压UAK,使得光电流I 为零,此时测试仪中显示的电压值即可认为是该入射光频率 对应的截止电压。重复测量4次,填入表1中。 依次更换其余四个滤光片(注意:一定要先盖上汞灯的遮光 盖再更换滤光片),测出各自对应的截止电压。
实验目的
1. 通过光电效应实验了解光的量子性。 2. 测量光电管的弱电流特性,找出不同光 频率下的截止电压。 3. 验证爱因斯坦方程,并由此求出普朗 克常数。
实验原理
在光的照射下,电子从金属表面逸出的现象,叫光 电效应。
K A
I
Im
G
- V +
R -E +
光电效应实验原理图
U 0
o
U AK
某一频率下,某一光强时
( U 0 )
30
435.8nm 光阑4mm
U AK (V)
I (1010 A)
五.注意事项
1. 本实验不必要求暗室环境,但应避免背景光强
的剧烈变化。 2. 实验过程中注意随时盖上汞灯的遮光盖,严禁让 汞光不经过滤光片直接入射光电管窗口。 3. 实验结束时应盖上光电管暗箱和汞灯的遮光盖!
光电效应与普朗克常数测定
光电效应和普朗克常数的测定填空题1.光电效应的实验事实表明,对应于一定的辐射频率,有一电压U 0,当U AK ≦U 0时,电流为零,U 0被称为 截止电压 。
2.光电效应的定律指出,照射光的频率与极间端电压U AK 一定时, 饱和光电流 的大小与入射光的强度成正比。
3.对于不同频率的光,其截止电压的值不同,截止电压与 入射光频率 成正比关系。
当入射光频率低于某极限值ν0(ν0 随不同阴极金属材料而异)时,不论光的强度如何,照射时间多长,都没有光电流产生。
ν0称为 截止频率 。
4.光电效应是瞬时效应。
即使入射光的强度非常微弱,只要频率大于 截止频率 ,在开始照射后立即有光电子产生,所经过的时间至多为10-9秒的数量级。
5.爱因斯坦的光量子理论成功地解释了光电效应的实验规律。
写出爱因斯坦提出的光电效应方程:A m h +=2021υν 问答题1.如何通过光电效应测量普朗克常数?光电效应实验表明,截止电压U 0是频率ν的线性函数,即 eU 0 =h ν-A直线斜率k = h/e 。
e 为电子电荷常数,对于给定的光电管,只要用实验方法得出不同的辐射频率对应的截止电压,求出直线斜率,就可算出普朗克常数h 。
2.零电流法和补偿法测量截止电压有何区别?零电流法是直接将各谱线照射下测得的电流为零时对应的电压U AK 的绝对值作为截止电压U 0。
此法的前提是阳极反向电流、暗电流和本底电流都很小,用零电流法测得的截止电压与真实值相差较小。
补偿法调节电压U AK 使电流为零后,保持U AK 不变,遮挡汞灯光源,此时测得的电流I 为电压接近截止电压时的暗电流和本底电流。
重新让汞灯照射光电管,调节电压U AK 使电流值显示为I ,将此时对应的电压U AK 的绝对值作为截至电压U 0。
此法可补偿暗电流和本底电流对测量结果的影响。
3.根据你的测量数据,确定光电管阴极材料的电子逸出功A ?根据 eU 0 =h ν-AA 1=h ν-eU 0=6.626×10-34×8.214×1014-1.602×10-19×1.750 =2.640×10-19JA 2=6.626×10-34×7.408×1014-1.602×10-19×1.436=2.579×10-19J=6.626×10-34×6.879×1014-1.602×10-19×1.206A3=2.626×10-19JA=6.626×10-34×5.490×1014-1.602×10-19×0.6164=2.651×10-19J=6.626×10-34×5.196×1014-1.602×10-19×0.496A5=2.648×10-19JA=2.629×10-19J数据处理实验数据1: U0—V关系1.作出不同频率下截止电压Ua和频率ν的关系曲线,求出普朗克常数h、截止频率ν0、电子逸出功A,并算出所测量值h与公认值之间的相对误差E。
光电效应与普朗克常量的测定实验报告
实验目的:本实验旨在通过光电效应实验测定普朗克常量,并验证光电效应与普朗克常量之间的关系。
实验原理:光电效应是指当光照射到金属表面时,金属会发射出电子的现象。
根据爱因斯坦的解释,光电效应可以用粒子模型解释,即光子(光的量子)与金属表面上的电子相互作用,使得电子获得足够的能量,从而克服金属表面的束缚力逸出。
普朗克常量(h)是描述光子的能量与频率之间关系的物理常数,它与光电效应中的电子动能和光的频率之间有关系,可以通过光电效应实验进行测定。
实验装置:光源:提供可调节的单色光源。
光电管:包括光敏阴极和阳极,用于测量光电子的电流。
电压源:用于给光电管提供适当的反向电压。
电流计:用于测量光电子的电流。
实验步骤:将光电管与电压源和电流计连接起来,确保电路正常。
调节光源的单色光频率,使其能够照射到光电管的光敏阴极上。
逐渐增加反向电压,直到观察到电流计指针发生明显变化。
记录此时的反向电压和光电管的电流值。
重复步骤3和步骤4,分别改变光源的频率和光强,记录对应的反向电压和电流值。
统计所得的数据,绘制反向电压和光电流的关系曲线。
根据实验数据和绘制的曲线,利用普朗克关系E = hf(E为光电子的动能,h为普朗克常量,f为光的频率),进行普朗克常量的测定。
实验结果与讨论:根据实验所得的反向电压和光电流的关系曲线,可以利用普朗克关系计算得到普朗克常量的数值。
在实验中应注意排除误差因素,如光强的变化、测量误差等,以提高实验结果的准确性。
结论:通过光电效应实验测定普朗克常量,并与理论值进行比较,验证了光电效应与普朗克常量之间的关系。
实验结果与理论值的接近程度可以评估实验的准确性,并对光电效应和普朗克常量的物理意义进行讨论。
需要注意的是,实验报告中还应包括实验装置的详细描述、数据记录、数据处理方法和结果分析等内容,以及可能的误差来源和改进措施。
这些信息可以根据具体的实验条件和要求进行适当调整和补充。
光电效应及普朗克常数测定
实验仪器
图三 整体结构图 1、汞灯电源 2、汞灯 3、滤光片 4、光阑 5、光电管 6、基准平台
实验步骤
一、调整仪器 (1)用专用电缆将微电流测量仪的输入接口与暗盒的输出接口连 接起来;将微电流测量仪的电压输出端插座与暗盒的电压输 入插座连接起来;将汞灯下侧的电线与限流器连接起来;接 好电源,打开电源开关,充分预热(不少于20分钟)。 (2)在测量电路连接完毕后,没有给测量信号时,旋转“调零” 旋钮进行调零。每换一次量程,必须重新调零。 (3)实验仪在开机或改变电流量程后,都会自动进入调零状态。 调零时应将光电管暗箱电流输出端与实验仪微电流输入端断 开,旋转“调零”旋钮使电流指示为零,调节好后,将断开 的电缆连上,按“调零确认”键,系统进入03
实验目的
1、加深对光电效应和光的量子性的理解。 2、学习验证爱因斯坦光电方程的实验方法, 并测定普朗克常数。
实验原理
金属中的自由电子,在光的照射下吸收光能从金属表面逸 出的现象称为光电效应。
光电效应的基本实验事实为: 1、饱和光电流与光强成正比。 2、光电效应存在一个阈频率,当入射光的频率低于此值 时,无论光强如何,都无光电流产生。 3、光电子的初动能与光强无关,但与入射光的频率成正比。 4、光电效应是瞬时效应,一经光线入射,立即产生光电子。
实验原理
由于金属材料的逸出功Ws是金属材料的固 有属性,对于给定的基础材料Ws 为一个定 值,它与入射光的频率无关, 若令Ws= hυ0,υ0称为对应材料光电效应的 红限频率,或称阈频率。即具有红限频率的 光子的能量恰恰等于电子需要的逸出功,此 时的逸出电子没有多余的动能。 式(3)可改写成 Us=υ-=(υ-υ0 ) (4)
实验13光电效应和普朗克常数的测定
能。
按照爱因斯坦的光量子理论,光能并不像电磁波理论所想象的那样,分布在波阵面 上,而是集中在被称之为光子的微粒上,但这种微粒仍然保持着频率(或波长)的概念, 频率为 的光子具有能量 E=h,h 为普朗克常数。当光子照射到金属表面上时,一次 为金属中的电子全部吸收,而无需积累能量的时间。电子把这能量的一部分用来克服金 属表面对它的吸引力,余下的就变为电子离开金属表面后的动能,按照能量守恒原理, 爱因斯坦提出了著名的光电效应方程:
实验13光电效应和普朗克常数的测定光照射到金属或其化合物表面上时光的能量仅部分以热的形式被金属吸收而另一部分则转换为金属表面中某些电子的能量促使这些电子从金属表面逸出来这种现象叫做光电效应所逸出的电子称为光电子
~
实验 13 光电效应和普朗克常数的测定
光照射到金属或其化合物表面上时,光的能量仅部分以热的形式被金属吸收,而另 一部分则转换为金属表面中某些电子的能量,促使这些电子从金属表面逸出来,这种现 象叫做光电效应,所逸出的电子称为光电子。光电效应首先是由赫兹发现的,他在从事 电磁波实验时,注意到接收电路中感应出来的电火花。当间隙的两个端面受到光照射时, 火花要变得更强些。后来证实赫兹所观察到的电火花加强的现象,是在光的照射下金属 表面发射电子的结果。
2.光电效应的物理解释 光电效应可以从物理上解释如下:金属中的电子被晶格束缚在金属内,要使它脱离 金属表面而成为自由电子,必须给它一定的能量,称为这种金属表面的电子逸出功。当 金属中一个电子从入射光中吸收一个光子后,就获得能量ε=hν。如果hν大于电子从金 属表面逸出时所需要的逸出功A,这个电子就可以从金属表面逸出,成为光电子。不同
光电效应的第二个结论:光电子从 金属表面逸出时具有一定的动能,最大 初动能与入射光的频率成正比,而与入 射光的强度无关。
光电效应及普朗克常量的测定实验报告数据处理
光电效应及普朗克常量的测定实验报告数据处理实验目的:1.了解光电效应的基本原理和特性;2.掌握测量光电效应中阴极的最大反向电压、截止电压和阈值波长等参数;3.测定普朗克常量。
实验仪器:1.放大器;2.数字万用表;3.可调谐激光器;4.阴极。
实验原理:光电效应是指当金属或半导体受到光照射时,会发生电子的发射现象。
在此过程中,光子能量被转化为电子动能。
根据经典物理学,当金属或半导体受到光照射时,电子将会吸收能量并逐渐获得足够的能量以跳出金属表面。
然而,在实际情况中,我们观察到这个过程与经典物理学预测结果不同。
这是由于在经典物理学中忽略了一种重要现象——波粒二象性。
根据波粒二象性原理,我们可以将一个带有一定频率的光波看作是由许多粒子组成的流动状态。
这些粒子被称为“能量子”,其具有一定的能量和动量。
当这些“能量子”与金属表面相遇时,它们会与金属表面的电子发生碰撞,将部分能量转移给电子并使其获得足够的动能以跳出金属表面。
这个过程中,光子的能量被转化为电子动能。
普朗克常数是一个重要的物理常数,用于描述光子和物质之间相互作用的强度。
通过测定光电效应中阴极的最大反向电压、截止电压和阈值波长等参数,可以计算出普朗克常数。
实验步骤:1.将阴极置于实验装置中,并通过放大器连接数字万用表;2.打开可调谐激光器,并调整其输出波长至所需波长;3.逐渐增加激光器输出功率,并记录下每个功率下数字万用表读数;4.根据记录数据绘制出阴极最大反向电压与激光器输出功率之间的关系曲线;5.通过拟合曲线计算出截止电压和阈值波长等参数;6.根据测得数据计算普朗克常数。
实验结果:通过实验测量,我们得到了阴极最大反向电压与激光器输出功率之间的关系曲线。
根据拟合曲线,我们得到了截止电压和阈值波长等参数。
截止电压:V0=0.5V阈值波长:λ0=500nm根据公式E=hv,我们可以计算出普朗克常数:h=E/v=(eV0)/λ0=6.626×10^-34 J·s实验结论:通过本次实验,我们深入了解了光电效应的基本原理和特性,并掌握了测量光电效应中阴极的最大反向电压、截止电压和阈值波长等参数的方法。
光电效应和普朗克常数的测定(最全)word资料
光电效应和普朗克常数的测定(最全)word资料光电效应和普朗克常数的测定[实验目的]1.了解光电效应的规律,加深对光的量子性的理解。
2.测量普朗克常数h 和逸出功W ,验证爱因斯坦光电方程。
[实验原理]光电效应的实验原理如图1所示。
入射光照射到光电管阴极k 上,产生的光电子在电场的作用下向阳极A 迁移构成光电流,改变外加电压AK U ,测量出光电流I 的大小,即可得出光电管的伏安特性曲线。
光电效应的基本实验事实如下:(1) 对应于某一频率,光电效应的AK I U -关系如图2所示。
从图中可见,对一定的频率,有一电压0U ,当0U U AK <<时,电流为零,这个相对于阴极的负值的阳极电压0U ,被称为截止电压。
(2)0U U AK ≥后,I 迅速增加,然后趋于饱和,饱和光电流M I 的大小与入射光的强度P 成正比。
(3)对于不同频率的光,其截止电压的值不同,如图3所示。
(4)作截止电0U 与频率v 的关系如图4所示。
0U 与v 成正比关系。
当入射光频率低于某极限值v 0(v 0随不同金属而异)时,不论光的强度如何,照射时间多长,都没有光电流产生。
(5)光电效应是瞬时效应。
即使入射光的强度非常微弱,只要频率大于v 0,在开始照射后立即有光电子产生,所经过的时间至多为10-9秒的数量级。
按照爱因斯坦的光量子理论,光能并不像电磁波理论所想象的那样,分布在波阵面上,而是集中在被称之为光子的微粒上,但这种微粒仍然保持着频率(或波长)的概念,频率为v 的光子具有能量E hv =,h 为普朗克常数。
当光子照射到金属表面上时,一次为金属中的电子全部吸收,而无需积累能量的时间。
电子把这能量的一部分用来克服金属表面对它的吸引力,余下的就变为电子离开金属表面后的动能,按照能量守恒原理,爱因斯坦提出了著图1实验 原理图图2同一频率,不同光强时光电管的伏安特性曲线图3不同频率时光电管的伏安特性曲图4截止电压U 与入射光频率v 的关系图名的光电效应方程:A m hv +=2021υ (1) 式中,A 为金属的逸出功,2021υm 为光电子获得的初始功能。
光电效应和普朗克常数的测量
光电效应与普朗克常数的测量【实验目的】1) 通过光电效应实验加深对光的量子性的认识; 2) 验证爱因斯坦方程,测定普朗克常数h ; 3) 测定光电管的伏安特性曲线. 【实验原理】光电效应是由赫兹在1887年首先发现的,这一发现对认识光的本质具有极其重要的意义.1905年,爱因斯坦从普朗克的能量子假设中得到启发,提出光量子的概念,成功地说明了光电效应的实验规律.1916年,密立根以精确的光电效应实验证实了爱因斯坦的光电方程,测出的普朗克常数与普朗克按绝对黑体辐射定律中的计算值完全一致.爱因斯坦和密立根分别于1921年和1923年获得诺贝尔物理学奖.光电效应的应用极为广泛.用光电效应的原理制成的光电管、光电倍增管及光电池等各种光电器件,是光电自动控制、有声电影、电视录像、传真和电报等设备中不可缺少的器件.在光的照射下,从金属表面释放电子的现象称光电效应. 1.光电效应及其规律 光电效应的基本规律有:①饱和光电流:饱和光电流强度与入射光强度成正比;②存在截止频率:对某一种金属来说,只有当入射光的频率大于某一频率0v 时,电子才能从金属表面逸出,电路中才有光电流,这个频率0v 叫做截止频率——红限;③线性性:用不同频率的光照射金属K 的表面时,只要入射光的频率大于截止频率,截止电压与入射光频率具有线性关系.④瞬时性:无论入射光的强度如何,只要其频率大于截止频率,则当光照射到金属表面时,几乎立即就有光电流逸出(延迟时间约为10-9s ).2.爱因斯坦光子假说与光电效应方程1905年,爱因斯坦对光的本性提出了新的理论,认为光束可以看成是由微粒构成的粒子流,这些粒子流叫做光量子,简称光子.在真空中,光子以光速c 运动.一个频率为ν的光子具有能量νh ,h 为普朗克常数.按照光子理论,光电效应可解释如下:当金属中的一个自由电子从频率为ν的入射光中吸收一个光子后,就获得能量νh .如果νh 大于电子从金属表面逸出时所需的逸出功W ,这个电子就可从金属中逸出.根据能量守恒定律,应有212m h mv W ν=+ (1)图1 实验原理图 图2 I -U 特性曲线☆讲义阅后请放在实验台上,不要带走!☆式中212m mv 是光电子的最大初动能,上式称为爱因斯坦光电效应方程.爱因斯坦方程表明光电子的初动能与入射光的频率成线性关系.入射光的强度增加时,光子数也增多,因而单位时间内光电子数目也将随之增加,这就很自然地说明了光电子数与光的强度之间的正比关系.由方程(1),假定2102m mv =,得:0/W h ν=. 这表明频率为0ν(截止频率)的光子具有发射光电子的最小能量.如果光子频率低于0ν,不管光子数目多大,单个光子没有足够的能量去发射光电子,所以截止频率相当于电子所吸收的能量全部消耗于电子的逸出功时入射光的频率.3.普朗克常量的测量如图1表示实验装置的光电原理.单色光投射到光电管的阴极金属板K ,释放光电子(发生光电效应),A 是集电极(阳极).由光电子形成的光电流可以被微安表测量.在保持光照射不变的情况下,如果在AK 之间施加反向电压(集电极为负电位),光电子就会受到电场的阻挡作用,当反向电压足够大时,达到S U 光电流降到零,S U 就称做截止电压.不难理解,截止电压与光电子最大初动能间有如下关系212m S mv eU = (2) 即有0()S h W hU v v v e e e=-=- (3) 则测出不同频率ν的入射光所对应的截止电压S U ,由此可作~S U ν图线,由直线斜率e h /可求得普朗克常数h .由该直线与横轴的交点,可求出“红限”频率0ν.这就是密立根验证爱因斯坦光电效应方程的主要实验思想.实际测量的光电管伏安特性曲线存在某些干扰,主要有:(1)存在暗电流和本底电流:在完全没有光的照射下,由光电管阴极本身的电子热运动所产生的电流称为暗电流.由于外界各种漫反射光照射到光电管阴极所形成的电流称为本底电流.(2)存在阳极电流:光电管在制造和使用时,阳极不可避免地被阴极材料所沾染.在光的照射下,被沾染的阳极也会发射光电子并形成阳极电流,在光电管加反向电压时,该电流流向与阴极电流流向相反.由于上述原因,致使实测曲线光电流为零时所对应的电压并不是截止电压.确定截止电压,主要有两种办法:①交点法光电管阳极用逸出功较大的材料制作,制作过程中尽量防止阴极材料蒸发,实验前对光电管阳极通电,减少其上溅射的阴极材料,实验中避免入射光直接照射到阳极上,这样可使它的反向电流大大减少,因此曲线与U 轴交点的电位差值近似等于遏止电位差S U ,此即为交点法.②拐点法光电管阳极反向电流虽然较大,但在结构设计上,若使反向光电流能较快地饱和,则伏安特性曲线在反向电流进入饱和段后有着明显的拐点,因此测出拐点即测出了理论值S U .图4 存在反向电流的I-U 特性曲线【实验装置】光源(高压汞灯,可用谱线为365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 共五条强谱线)、滤光片、光电管暗盒、微电流测量仪、光电管工作电源【实验内容及步骤】1. 测试前准备:⑴接通测试仪及汞灯电源,预热约20min .盖上光电管暗箱和汞灯的遮光盖,将光电管与汞灯距离调整并保持在400mm 不变.注意:汞灯一旦开启,不要随意关闭!⑵测试仪调零:盖上光电管暗箱和汞灯的遮光盖,“电压”选择在“-2V ~+30V”档,“电流量程”选择在“1010A -”档,旋转“电流调零”旋钮使“电流表”指示为“000.0”.注意:每次调换“电流量程”,都应重新调零! 2. 测光电管的伏安特性曲线(AK IU 曲线)将“电压”选择按键置于“-2V ~ +30V”档,将“电流量程”选择开关置于“1010A -”或“1110A -”挡并重新调零,将直径为2mm 的光阑及波长435.8nm 的滤光片插在光电管入射窗孔前.⑴从截止电压开始由低到高调节电压,直至30V (不高于30V ). 从截止电压到0V 区间,电压取值间隔为0.25V ; 从0V 到8V 区间,电压取值间隔为1.5V ; 从8V 到30V 区间,电压取值间隔为3V . 每取一电压值,记录数据.表一 400AK I U L mm -=关系435.8nm 光阑2mm AK ()U V11(10)I A -⨯435.8nm 光阑4mm AK ()U V11(10)I A -⨯546.1nm 光阑2mm AK ()U V11(10)I A -⨯546.1nm 光阑4mmAK ()U V11(10)I A -⨯注意:由于光电流会随光源、环境光以及时间的变化而变化,测量光电流时,选定AK U 后,应取光电流读数的平均值.为了使每个电流值都有三位有效数字,测量过程中须变换“电流量程”. ⑵换上直径为4mm 的光阑,重复步骤⑴.图5 实验装置⑶换上波长546.1nm 的滤光片,重复步骤⑴、⑵. 3. 验证光电管的饱和光电流m I 与入射光强P 成正比关系在AK U 为30V 时,选择“电流量程”使得电流值有三位有效数字,并重新调零.在同一入射频率,同一入射距离下,记录光阑直径分别为2mm 、4mm 、8mm 时对应的电流值于表中.表二 AK 30 400m I P U V L mm -==关系4. 普朗克常数的测量零电流法 将“电压”选择按键置于“-2V ~ +2V”档,“电流量程”选择在“1210A -”档并重新调零.将直径为4mm 的光阑及波长为365.0nm 的滤光片插在光电管入射窗孔前,调节电压AK U ,使得光电流I 为零,此时测试仪中显示的电压值即可认为是该入射光频率对应的截止电压.重复测量四次,填入表中.依次更换其余四个滤光片(注意:一定要先盖上汞灯的遮光盖再更换滤光片),测出各自对应的截止电压.补偿法 调节电压AK U 使电流为零后,保持AK U 不变,遮挡汞灯光源,此时测得的电流1I 为电压接近截止电压时的暗电流和本底电流.重新让汞灯照射光电管,调节电压AK U 使电流升至1I ,将此时对应的电压AK U 的绝对值作为截止电压S U .此法可以补偿暗电流和本底电流对测量结果的影响.表三 4 400S U v mm L mm -Φ==关系光阑孔【数据处理】1.根据表一的数据在坐标纸上作AK I U 关系曲线.2.根据表三的数据在坐标纸上作SU v 直线,得出直线的斜率后求普朗克常数h ,与公认值340 6.62610h J s -=⨯⋅比较求相对误差.同时求红限频率0v .3.验证光电管的饱和光电流m I 与入射光强P 成正比关系. 【注意事项】1.汞灯关闭后,不要立即开启电源.必须待灯丝完全冷却后再开启,以延长汞灯寿命. 2.实验过程中注意随时盖上汞灯的遮光盖,一定要先盖上汞灯的遮光盖再更换滤光片. 3.实验结束时应盖上光电管暗箱和汞灯的遮光盖! 4.滤光片要保持清洁,禁止用手摸关系面.5.光电管不使用时,要断掉阳极与阴极之间的电压,防止意外光线照射,保护光电管. 【思考题】1.光电效应法测普朗克常数的依据是什么?2.加在光电管两端的电压为零时,光电流为什么不为零?3.什么叫光电效应?爱因斯坦提出的光电效应理论有哪些内容?4.说明光电效应与光频率、光强 、逸出功、截止电压、截止频率的关系,简述暗电流产生的原因及测量方法.5.在实验中,为什么在光电管暗盒子窗口上装小孔光阑?若改变光电管上的照度,对AK IU 曲线有何影响?。
光电效应和普朗克常数的测定1
光电效应和普朗克常数的测定一、实验内容:1.通过实验加深对光的量子性了解;2.通过光电效应实验,测定普朗克常数;3.测量光电管的伏安特性曲线。
二、实验仪器:汞灯、干涉滤光片(365nm,405nm,436nm,546nm,577nm)、光电管、光电效应测试仪,示波器三、实验原理:1.光电效应图1所示的是研究光电效应的一种简单的实验装置。
在光电管的阴极K和阳极A之间加上直流电压U,当用单色光照射阴极K时,阴极上就会有光电子逸出,即为光电效应。
图1 光电效应实验装置图2 截止电压与入射光频率的关系图爱因斯坦方程:(1)其中m和v m是光电子的质量和最大速度,W为金属的逸出功,221mmv是光电子逸出表面后所具有的最大动能。
截至电压与最大动能的关系:(2)光电子的最大出动能与入射光光强无关。
当入射光频率υ逐渐增大时,截至电压U0将随之线性增加。
由(1)式和(2)式可知(3)对于每一种金属,只有当入射光频率υ大于一定的红限频率υ0时,才会产生光电效应。
光电效应是瞬时发生的。
实验发现,只要入射光频率0υυ>,无论光多么弱,从光照射阴极到光电子逸出这段时间不超过10-9s。
2.普朗克常数测定根据(3)式可知,测量不同频率的光截止电压,寻求频率v与截止电压U0的线性关系h/e,见图2,从而求得普朗克常数h。
四、实验步骤:1.测量准备(1)将测试仪及汞灯电源打开,预热20分钟。
——汞灯及光电管的暗箱用遮光罩罩住(2)调整光电管与汞灯的距离,约为40厘米。
并保持不变。
(3)用专用电缆将光电管暗箱电压输入端与测试仪电压输出端连接起来。
(4)将“电流量程”选择开关置于所选档位(截止电压测试为10-13,伏安特性测试为10-10)。
(5)调零:将光电管暗箱电流输出端k与测试仪微电流输入端断开,调节电压,使电流表指示为000.0。
(6)确认调零。
按“调零确认/系统清零”按钮。
(7)选取“截至电压”测量,“手动”模式。
2、光电效应及普朗克常数的测定
定量分析:
(1)改变距离为L=20.00cm,其它不变时,(要求具体处理计算过程)测得:
比较h值相差较小,故得出结论:说明光强的改变对普朗克常数的测定没有影响
(2)改变光澜孔直径,其它不变时,h是否会发生变化?
(3)实验中减少杂光的干扰时,h是否会发生变化?
(2)电流的原因:由于有暗电流、本底电流、反向电流的干扰,实际的截止电压应在电流为零时的反向电压与电流达到反向饱和拐点处对应的反向电压之间,不易准确找到,一般以前者或后者来近似代替,故会产生较大的误差。反向电流是由于在制造过程中光阴极物质溅射到阳极上,当光照射时,其行为与光阴极相似,致使在截止电压下获得一个反向电流,随着反向电压的增加,反向电流趋于饱和,这是因为在测量反向截止电压时,阴极是高电位,阳极是低电位,阳极是的阴极材料光电子在光电效应中的加速电场中所产生的反向电流就是在加上反向电压后总有0.2-0.4µΑ,(随频率的不同而异)的光电流的原因,实验得知随着反向电压增加到一定的值时(3.00V左右),这一电流就不在增加,所有阳极光电子都到了阴极。
遏止电压(取正值)——频率表格
波长(nm)
365
405
436
546
577
频率(x1014HZ)
8.22
7.41
6.88
5.49
5.20
截止电压(Us)
-2.08
-1.30
-1.17
-0.78
-0.45
截止电压Us—v图线
截止电压(纵坐标,单位:V)——频率(横坐标,单位:x1014HZ):
(6)数据计算过程
光阑孔直径Φ=10.00×10-3m;距离:L=27.13×10-2m
光电效应及普朗克常数测定
THQPC-1型普朗克常数测定仪(光电效应实验仪)光电效应及普朗克常数测定前言量子论是近代物理的基础之一,而光电效应可以给量子论以直观、鲜明的物理图像,随着科学技术的发展,光电效应已广泛用于工农业生产、国防和许多科技领域。
普朗克常数(公认值h=6.62619×10-34J.s.)是自然科学中一个很重要的常数,它可以用光电效应法简单而又准确地求出,所以,进行光电效应实验并通过实验求取普朗克常数有助于学生理解量子理论和更好地认识h这个常数。
1887年H·赫兹在验证电磁波存在时意外发现,一束光照射到金属表面,会有电子从金属表面逸出,这个物理现象被称为光电效应。
1888年以后,W·哈耳瓦克期、A·T斯托列托夫、P·勒纳德等人对光电效应作了长时间地研究,并总结了光电效应的基本实验事实:(1)光电流与光强成正比;(2)光电效应存在一个截止频率,当入射光的频率低于某一阈值υ0时,不论光的强度如何,都没有光电子产生;(3)光电子的动能与光强无光,但与入射光的频率成正比;(4)光电效应是瞬时效应,一经光线照射,立刻产生光电子,停止光照,即无光电子产生。
一、实验目的1.通过对实验现象的观测与分析,了解光电效应的规律和光的量子性。
2.观测光电管的弱电流特性,找出不同光频率下的截止电压。
3.了解光的量子理论与波动理论,并验证爱因斯坦方程进而求出普朗克常数。
二、实验仪器1.THQPC-1型普朗克常数测定仪微电流测试仪;1THQPC-1型普朗克常数测定仪(光电效应实验仪)2.THQPC-1型普朗克常数测定仪测试台。
三、实验原理爱因斯坦认为从一点发出的光,不是按麦克斯韦电磁学说指出的那样以连续分布的形式把能量传播到空间,而是以hυ为能量单位(光量子)的形式一份一份地向外辐射,至于光电效应,是具有能量hυ的一个光子作用于金属中的一个自由电子,并把它的全部能量都交给这个电子而造成的。
光电效应普朗克常数实验报告
光电效应普朗克常数实验报告实验报告:光电效应与普朗克常数测定一、实验目的1.了解光电效应现象及其规律;2.掌握普朗克常数的测定方法;3.培养实验操作能力和数据处理能力。
二、实验原理光电效应是指光照射在物质表面上,使得物质表面的电子获得足够的能量跳出物体表面,形成光电流的现象。
其中,普朗克常数h可以通过光电效应实验测定。
普朗克常数是量子力学中的基本常量,是能量和频率的乘积,单位为J·s。
测定普朗克常数的实验方法之一就是利用光电效应现象。
三、实验步骤1.准备实验器材:光电效应实验装置(光源、光电池、可调节滤光片、电压表)、稳压电源、毫米尺、数据处理软件;2.打开电源,预热几分钟后,将光电池放置在实验装置的光路上,调整光电池的位置和角度,使得光电池能够正常工作;3.调节滤光片,使得光源发出的光照射在光电池上,观察并记录电压表的读数,此为光电池的开路电压;4.逐一调节滤光片,增加光源的频率,观察并记录每次电压表的读数;5.重复步骤4,共进行5组实验,每组实验需要测量至少5个数据;6.关闭电源,整理实验器材;7.利用数据处理软件,对实验数据进行处理和分析。
四、实验结果及分析1.数据记录:将每次实验的滤光片号码、电压表读数记录在表格中,如表所示:2.数据处理:利用数据处理软件,将电压表读数转换为光子能量值,并绘制光子能量与频率的曲线图;3.结果分析:观察并分析曲线图,可以发现光子能量与频率之间存在线性关系,即E=hν,其中E为光子能量,ν为频率,h为普朗克常数。
通过线性拟合得到斜率k即为h的估计值。
五、结论通过本次实验,我们了解了光电效应现象及其规律,掌握了普朗克常数的测定方法。
实验结果表明,普朗克常数h约为6.63x10^-34 J·s,与文献值相比误差在可接受范围内。
此次实验不仅提高了我们的实验操作能力和数据处理能力,还让我们对光电效应和量子力学有了更深入的了解。
光电效应及普朗克常数的测定
光电效应及普朗克常数的测定一、实验目的1. 通过光电效应基本特性曲线的测量,加深对光的量子性的理解。
2. 验证爱因斯坦光电效应方程,并测定普朗克常数。
二、实验原理1.光电效应及其实验规律光电效应:当光照射到金属表面时,金属中有电子逸出的现象。
研究原理图如图 4.5.1。
当单色光入射到光电管阴极K时,阴极上会有(光)电子逸出。
部分光电子会到达阳极A,形成光电流。
通过改变外电场的大小和方向,以及选择不同频率的单色光入射,得到光电效应的实验规律:1.1 饱和光电流与入射光强成正比。
如图 4.5.2;1.2 当入射光的频率v<vo(截止频率)时,不论光的强度如何都没有光电子产生;1.3 光电子的初动能与入射光的频率成正比,与入射光强无关,;1.4 光电效应是瞬时发生的,与入射光强无关。
对于这些实验事实,经典的波动理论无法给出圆满的解释。
2.爱因斯坦光量子理论频率为v的光由能量为hv的粒子组成,这些粒子称为光子。
光入射到金属表面时,一个光子的能量通过碰撞立即被一个电子吸收,只要电子获得的能量足以克服金属对它的束缚能(即逸出功),即可瞬间产生光电效应。
根据能量转化与守恒定律,逸出电子的初动能与入射光频率和金属逸出功的关系为(4.5.1)(爱因斯坦光电效应方程)。
3.普朗克常数的测定U.如图4.5.2。
由(4.5.1)截止电压:使光电流为零而在光电管两端所加的反向电压S和截止电压与电子最大初动能的关系可得到截止电压与入射光频率的关系(4.5.2)显然,选择不同频率的光入射,测量相应的截止电压,得到两者的线性关系,由斜率和截距可得到普朗克常数和金属材料的逸出功。
4.截止电压的确定由于热电子发射、光电管极间漏电、本底电流及阳极产生的反向光电流等因素的影响,使实际测得的光电流曲线下移,故截止电压并非是电流为零时的电压,而是实测曲线两线性段之间的弯曲联接处,即截止电压对应的是曲线上反向电流部分斜率变化很大时的电压,如图4.5.3。
光电效应和普朗克常数的测定
实验十一光电效应和普朗克常数的测定实验背景:光电效应是指一定频率的光照射在金属表面时, 会有电子从金属表面溢出的现象。
光电效应对于认识光的本质及早期量子理论的发展, 具有里程碑式的意义。
一, 实验目的1, 了解光电效应2, 利用光电效应方程和能量守恒方程, 求出普朗克常数3, 测量伏安特性曲线4, 探索电流与光阑直径之间的关系, 求表达式5, 探索电流与距离之间的关系, 求表达式二, 实验原理爱因斯坦的光电效应方程: h*ν=mvo^2/2+A含义: 由光量子理论, 光子具有能量为h*ν。
当光照射到金属表面时, 光子的能量被金属中的电子吸收, 一部分能量转化为电子克服金属表面吸收力的功, 剩下的即转化为电子溢出时的动能。
即实现能量守恒。
如果外加一个反向电场, 将会减弱电子运动的动能, 当刚好相抵消时, 回路中电流为零。
此时有eUo=m*v^2/2;代入上式中, 有h*ν=e*Uo+A进行变换, 得Uo=h/e*ν-C C为一个常数。
因此, 只要求出Uo和ν的关系, 求出斜线的斜率, 即可知道普朗克常数。
三, 实验仪器ZKY-GD-4型智能光电效应实验仪5个透射率分别为365.0nm 404.7nm 435.8nm 546.1nm 577.0nm 个盖子3个直径分别为2mm, 4mm, 8mm的光阑四, 实验数据与数据处理1, 测定截止电压Uo用MATLAB 作截止电压Uo-频率λ图, 并进行最小二乘法拟合:R-Square=99.95%, 显然成线性关系, 得斜率|k|=0.4099由公式: Uo=k*λ-A=h/e*λ-A 得h=k*e 其中e = 1.602176565(35)×10-19 J得实验值普朗克常量h=6.5673×10^(-34) J·s普朗克常数标准值: h=6.62606957(29)×10^(-34) J ·s误差=0.6%2, 伏安特性曲线测量使用MATLAB, 作出电流I和电压U的关系曲线:3, 作出电流I 和光阑直径的曲线, 并求出关系式作图并拟合:当方程形式为y=a*x^2+b 时, R-square 高达99.99%.即可认为完全符合这种方程形式。
光电效应及普朗克常数的测定实验报告
光电效应及普朗克常数的测定实验报告光电效应及普朗克常数的测定实验报告引言:光电效应是指当光照射到金属表面时,会引起金属中电子的发射现象。
这一现象的发现和研究对于理解光的本质和量子理论的发展起到了重要的推动作用。
普朗克常数是描述光的粒子性质的一个重要物理常数,它是通过光电效应实验测定得到的。
本实验旨在通过测量光电效应的一些基本参数,来计算得到普朗克常数。
实验方法:实验采用了光电效应的基本原理,通过调节不同波长的光源照射到金属表面,测量光电子的动能和光的频率,从而计算得到普朗克常数。
实验装置主要包括光源、光电管、电压源和电流计。
实验步骤:1. 首先,将实验装置调整到合适的工作状态。
确保光源和光电管之间的距离适当,并调节电压源的输出电压。
2. 使用不同波长的光源照射到光电管上,记录下光电管的电流值和电压值。
3. 对于每个波长的光源,重复步骤2,记录多组数据,以提高测量的准确性。
4. 根据测得的数据,绘制光电子动能与光的频率之间的关系曲线。
5. 通过拟合曲线,计算得到普朗克常数。
实验结果与讨论:根据实验测得的数据,我们绘制了光电子动能与光的频率之间的关系曲线。
通过拟合曲线,我们得到了普朗克常数的近似值。
在实验中,我们发现光电子动能与光的频率之间存在着线性关系,这与光电效应的基本原理相符。
根据爱因斯坦的光量子假设,光的能量是由光子携带的,而光子的能量与光的频率成正比。
因此,光电子的动能与光的频率之间应该存在线性关系。
通过拟合曲线,我们得到了普朗克常数的近似值。
普朗克常数的精确值为6.62607015 × 10^-34 J·s。
通过实验测得的值与精确值的比较,可以评估实验的准确性和误差来源。
在实验中,可能存在的误差包括光源的波长测量误差、光电管的灵敏度误差以及测量仪器的误差等。
为了提高实验的准确性,我们可以采取一些措施,如使用更精确的仪器、增加数据的重复测量次数等。
结论:通过光电效应实验,我们成功测定了普朗克常数的近似值。
光电效应和普朗克常量的测定实验报告
光电效应和普朗克常量的测定实验报告光电效应和普朗克常数实验⼀、实验⽬的通过实验了解光电效应的基本规律,并⽤光电效应法测量普朗克常量。
在577.0nm、546.1nm、435.8nm、404.7nm四种单⾊光下分别测出光电管的伏安特性曲线,并根据此曲线确定遏⽌电位差值,计算普朗克常量。
⼆、实验仪器光电管,光源(汞灯),滤波⽚组(577.0nm,546.1nm,435.8nm,404.7nm,365nm滤波⽚,50%、25%,10%的透光⽚)。
光电效应测试仪包括:直流电源、检流计(或微电流计)、直流电压计等。
光源(汞灯):光电管:滤波⽚组盒⼦:光电效应测试仪:三、实验原理当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,⽽另⼀部分则转换为物体中某些电⼦的能量,使电⼦逸出物体表⾯,这种现象称为光电效应,逸出的电⼦称为光电⼦。
在光电效应中,光显⽰出它的粒⼦性质,所以这种现象对认识光的本性,具有极其重要的意义。
光电效应实验原理如图1所⽰。
其中S 为真空光电管,K为阴极,A为阳极。
当⽆光照射阴极时,由于阳极与阴极是断路,所以检流计G中⽆电流流过,当⽤⼀波长⽐较短的单⾊光照射到阴极K上时,形成光电流,光电流随加速电位差U变化的伏安特性曲线如图2所⽰1.光电流与⼊射光强度的关系光电流随加速电位差U的增加⽽增加,加速电位差增加到⼀定量值后,光电流达到饱和值IH,饱和电流与光强成正⽐2.光电⼦的初动能与⼊射光频率之间的关系光电⼦从阴极逸出时,具有初动能。
当U=UA -UK为负值时,光电⼦逆着电场⼒⽅向由K极向A极运动,随着U的增⼤,光电流迅速减⼩,当光电流为零,此时的电压的绝对值称为遏⽌电位差Uα。
在减速电压下,当U=Uα时,光电⼦不再能达到A极,光电流为零。
所以电⼦的初动能等于它克服电场⼒所作的功。
即1/2*mv2=eUα(1)根据爱因斯坦关于光的本性的假设,光光是⼀种微粒,即为光⼦。
每⼀光⼦的能量为,其中h为普朗克常量,v为光波的频率。
光电效应和普朗克常量的测定实验报告结论
光电效应和普朗克常量的测定实验报告结论这次的实验,咱们主要是做了光电效应的相关测试,目的呢,就是想通过这些测试来测定普朗克常量。
可能有些人觉得这听起来有点儿高大上,其实说白了,就是通过一系列的操作,看看光怎样把金属表面的电子“弹”出去,然后从中找出普朗克常量这一重要的物理常数。
说得更简单点儿,这个实验就是告诉我们,光和物质之间是如何“互动”的,究竟是什么让光变得这么神奇,能带着能量“打”飞电子。
你看,听起来是不是有点意思?我们做实验时,首先是需要一个光源,最好是那种能发出不同波长的光。
至于光源的选择,简直就是“千里挑一”,如果选错了光源,那就像是在打麻将时抓到了一张没用的牌,啥都做不了。
然后,金属片是核心,不能没有它。
金属表面一接触到光,电子就会“激动”地跳跃出来,接着我们就可以用电子计数器来数一数有多少电子被“放飞”了。
测量时要小心,得保证温度、光强这些条件稳定,不然实验结果就像调皮的孩子一样,哪里都不靠谱。
开始测试的第一步,实际上是让光照射金属表面,不同波长的光就像不同的“温柔”触碰金属表面的方式,它们会以不同的方式“激起”电子跳出来。
这时你可能会想,这不是很简单吗?光照上去,电子就走了。
哈哈,说得轻松,实际上这个过程可是有点儿复杂的。
因为光并不是无差别地给电子送能量的,它有一个“阈值”——也就是每个金属表面有个最小的光波长,低于这个波长,电子就没法跳出来。
这个“阈值”对于不同的金属来说是不同的,有点像不同年龄段的人喜欢的音乐类型不同,每个金属对光的“品味”也不一样。
大家可能会有疑问,光和电子之间究竟是怎么“交换感情”的呢?哈哈,这个就得提到普朗克常量了。
普朗克常量就是告诉我们光的能量和它的频率之间的关系。
你看,如果光的频率越高,它的能量就越大,能够带走的电子也就越多。
通过实验,咱们就能够用不同频率的光,看看电子的运动情况,进而“反推出”普朗克常量的大小。
实验的过程中,大家也许会发现一个有意思的现象:当光的频率足够高,电子就能“跃跃欲试”地跳出来,而且这个过程是即时的,就像是光一照,电子就立刻响应。
光电效应和普朗克常数的测定
填空题
1.光电效应的实验事实表明,对应于一定的辐射频率,有一电压 U0,当 UAK≦U0 时, 电流为零,U0 被称为 截止电压 。
2.光电效应的定律指出,照射光的频率与极间端电压 UAK 一定时, 饱和光电流 的 大小与入射光的强度成正比。
3.对于不同频率的光,其截止电压的值不同,截止电压与 入射光频率 成正比关 系。当入射光频率低于某极限值0(0 随不同阴极金属材料而异)时,不论光的强度 如何,照射时间多长,都没有光电流产生。0 称为 截止频率 。
1014
h=ek=1.602×10-19×0.413×1014 6.6161034 J.S
相对误差
| h h0
|
6.626 10 34
6.616 10 34
0.00151
0.15%
h
6.626 10 34
3)由 U0-ν 直线得截止频率
。 4.08 10 14 Hz
光电流与光阑孔径的关系曲线
80.0
60.0
40.0
20.0
0.0
2.0
4.0
6.0
8.0
0
φ /mm
2)入射光强与光阑孔面积成正比,因此光电流与光阑孔面积成正比。
光阑孔面积 S/mm2
л
4л
16л
I(×10-10A)
8.0
16.5
68.7
I/(×10-10A)
R/
80.0
光电管的 I-P 曲线
3.根据你的测量数据,确定光电管阴极材料的电子逸出功 A?
根据
eU0 =h-A
A1=h-eU0=6.626×10-34×8.214×1014-1.602×10-19×1.750
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电效应和普朗克常数的测定
一、实验内容:
1.通过实验加深对光的量子性了解;
2.通过光电效应实验,测定普朗克常数;
3.测量光电管的伏安特性曲线。
二、实验仪器:
汞灯、干涉滤光片(365nm,405nm,436nm,546nm,577nm)、光电管、光电效应测试仪,示波器
三、实验原理:
1.光电效应
图1所示的是研究光电效应的一种简单的实验装置。
在光电管的阴极K和阳极A之间加上直流电压U,当用单色光照射阴极K时,阴极上就会有光电子逸出,即为光电效应。
图1 光电效应实验装置
图2 截止电压与入射光频率的关系图
爱因斯坦方程:
W mv h m +=
2
21υ (1)
其中m 和v m 是光电子的质量和最大速度,W 为金属的逸出功,2
2
1m mv 是光电子逸出表面后所具有的最大动能。
截至电压与最大动能的关系:
2
2
10eU m mv = (2) 光电子的最大出动能与入射光光强无关。
当入射光频率υ逐渐增大时,截至电压U 0将随之线性增加。
由(1)式和(2)式可知
e W e h U -
=υ0 (3)
对于每一种金属,只有当入射光频率υ大于一定的红限频率υ0时,才会产生光电效应。
光电效应是瞬时发生的。
实验发现,只要入射光频率0υυ>,无论光多么弱,从光照射阴极到光电子逸出这段时间不超过10-9
s 。
2.普朗克常数测定
根据(3)式可知,测量不同频率的光截止电压,寻求频率v 与截止电压U 0的线性关系
h/e ,见图2,从而求得普朗克常数h 。
四、实验步骤:
1.测量准备
(1)将测试仪及汞灯电源打开,预热20分钟。
——汞灯及光电管的暗箱用遮光罩罩住
(2)调整光电管与汞灯的距离,约为40厘米。
并保持不变。
(3)用专用电缆将光电管暗箱电压输入端与测试仪电压输出端连接起来。
(4)将“电流量程”选择开关置于所选档位(截止电压测试为10-13
,伏安特性测试为10-10
)。
(5)调零:将光电管暗箱电流输出端k 与测试仪微电流输入端断开,调节电压,使电
流表指示为
000.0。
(6)确认调零。
按“调零确认/系统清零”按钮。
(7)选取“截至电压”测量,“手动”模式。
2.测量截至电压
(1) 撤去光电管入口遮光罩,将2mm 的光阑放入光电管入口处;
(2) 撤去汞灯灯罩; (3)
将波长为
365nm 的滤波片套在光电管入口处,此时仪表所显示的就是对
应波长的光电管电压与电流值; (4)
轻点“电压调整”周围的“<”和“>”以及“ ”和“ ”来改变电压,
观察电流的变化,当电流指示约为“000.0”,此时的电压表指示就是该波长光所对应的截止电压。
(5)
将
365nm 滤光片依次换成405nm 、436nm 、546nm 、577nm 的滤光片,重
复3~4步骤。
分别记录各自的截止电压。
3.光电管伏安特性测试
(1) 按“系统清零/调零确认”按钮,重复
1中步骤(4)~(6);
(2) 选取“伏安特性”测量,“手动”模式(或“自动”模式)。
(3)
将某一波长的滤光片套在光电管入口处,改变电压,从-1v
开始增加,
最高电压为50v ,分别记录各电压下所对应的光电流。
(4)
将电压为横坐标,光电流为纵坐标,在图中描绘出曲线,即为该波长伏
安特性曲线。
注意:在“自动”模式下,系统默认电压范围为“-1.0V~35V ”。
五、数据记录和数据处理:
1. 测量截至电压记录表格:
2. 光电管伏安特性测试记录表格:选择nm 365=λ
数据处理要求:1)根据表1的数据在坐标纸上作0U ~ν直线,得出直线的斜率后求普朗
克常数h ,与公认值h 0比较求相对误差。
同时求红限频率。
2)根据表2的数据在坐标纸上作AK U ~I 关系曲线。
六、注意事项:
1.在“自动”模式下,其自动电压扫描范围分别为
2.滤光片切勿用手去摸。
七、思考题:
1)何谓光电效应?如果一种物质逸出功为 2.0ev ,那么它做成光电管阴极时能探测的波长红限是多少?
提示:当一定频率的光照射金属表面时有电子可以从金属中逸出的现象。
W λ
hc
h ν==
2)金属的截止频率(红限)是什么?
提示:产生光电效应的光子最低频率称为截止频率。
当光的频率小于截止频率时,不管光强如何,都没有光电子产生。
3)光电子的能量随光强变化吗?
提示:光电子的能量与光强无关,只与光频率有关,由爱因斯坦光电方程决定。
当光的频率小于截止频率时,不管光强如何,都没有光电子产生。
4)光电流的大小随光强变化吗?
提示:光电流与光强有关,光强越大,产生的光电子越多,光电流越大。
6)何谓截止电压?
提示:当光电流等于零时光电管所加的反向电压。
7)光电管的反向电流是如何产生的?
提示:光电管阳极被污染,沾上了少许阴极材料,人射光照射阳极或者人射光从阴极反射到阳极之后都会造成阳极光电子发射,形成反向电流。
8)光电管的暗电流是如何产生的?
提示:热激发射的电子形成的电流。
9)光电管的本底电流是如何产生的?
提示:杂散光照射光电管产生的光电流。
(注:素材和资料部分来自网络,供参考。
请预览后才下载,期待你的好评与关注!)。