专题04 椭圆知识点和常见题型(解析版)

合集下载

椭圆知识点以及题型总结

椭圆知识点以及题型总结

椭圆知识点以及题型总结一、椭圆的定义与基本性质椭圆是平面上到定点F1与F2的距离之和等于常数2a的点P的轨迹。

其中的定点F1和F2称为焦点,常数2a称为长轴的长度。

椭圆还有一个重要的参数e,称为离心率,定义为e=c/a,其中c是焦点与中心之间的距离。

椭圆是一个非常重要的几何图形,它有许多独特的性质,需要我们逐一来了解。

1. 椭圆的标准方程椭圆的标准方程一般可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(a>b)。

其中(h,k)是椭圆的中心坐标。

2. 椭圆的焦半径和半短轴椭圆的焦半径是指从焦点到椭圆上任意一点的线段,它的长度等于椭圆的长半轴的长度a。

而椭圆的半短轴的长度等于b。

3. 相邻两焦点和任意一点的距离之和椭圆上任意一点P到椭圆的两个焦点的距离之和等于2a。

即PF1+PF2=2a。

4. 椭圆的离心率椭圆的离心率e定义为e=c/a,其中c是焦点与中心之间的距离,a是长半轴的长度。

离心率是描述椭圆形状的一个重要参数,它的取值范围为0<e<1。

5. 椭圆的参数方程椭圆还可以用参数方程来表示,一般可以表示为x=h+a*cosθ,y=k+b*sinθ。

其中θ的取值范围一般为0≤θ≤2π。

二、常见椭圆的题型及解题方法1. 椭圆的焦半径与半短轴的关系题这类题目一般给定椭圆的长半轴的长度a和离心率e,要求求出椭圆的焦半径和半短轴的长度。

解题方法:根据离心率e=c/a,可以求出焦点与中心之间的距离c,然后根据椭圆的焦点与半短轴之间的关系,可以求出半短轴的长度b。

2. 椭圆的标准方程题这类题目一般给定椭圆的焦点、长轴的长度和中心坐标,要求写出椭圆的标准方程。

解题方法:根据给定的信息,可以用(x-h)²/a²+(y-k)²/b²=1的形式写出椭圆的标准方程。

3. 椭圆的参数方程题这类题目一般给定椭圆的中心坐标、长半轴、半短轴的长度,要求写出椭圆的参数方程。

高考椭圆专题知识点

高考椭圆专题知识点

高考椭圆专题知识点椭圆是高中数学中的一个重要几何形状,也是高考数学中的热点考点之一。

掌握椭圆的基本概念和相关知识点对于解题至关重要。

本文将详细介绍高考椭圆专题的知识点,帮助同学们更好地理解和应用。

一、椭圆的定义和特点椭圆是平面上到两个不重合点的距离之和等于常数的动点构成的轨迹。

其中,这两个点被称为焦点,记作F1和F2,二者之间的距离为2a。

椭圆的长轴为2a,短轴为2b,焦距为2c。

椭圆的离心率定义为e=c/a,表示椭圆的瘦胖程度。

椭圆的主要特点包括:1. 对称性:椭圆关于长轴、短轴及原点均具有对称性。

2. 焦点:椭圆上任意一点到两个焦点的距离之和为常数。

3. 直径:椭圆上的直径包括长轴和短轴,长轴和短轴的中点都在椭圆上。

4. 首尾距离:椭圆上首尾相接的两个点到两个焦点的距离之和也等于常数。

5. 扇形面积:以焦点和首尾相接的两个焦点连线为半径的扇形面积与椭圆扇形面积的和为常数。

6. 弧长性质:椭圆上的弧长与弦长的关系满足等角弧弦定理。

7. 方程表达:椭圆可以用方程的形式表达,常见的标准方程为x^2/a^2+y^2/b^2=1。

二、椭圆的性质与方程推导1. 椭圆的离心率性质:椭圆的离心率e满足0<e<1,当e=0时,为圆。

2. 椭圆的焦点距离性质:椭圆的焦点距离满足2a=c^2=a^2-b^2。

3. 椭圆的焦半径平方和:椭圆上任意一点到两个焦点距离平方之和等于两个焦点距离平方之和。

4. 椭圆的参数方程:椭圆的参数方程为x=a·cosθ,y=b·sinθ。

5. 椭圆的斜轴方程:斜轴方程为(x-h)^2/a^2+(y-k)^2/b^2=1,其中(h, k)为椭圆中心坐标。

6. 椭圆的标准方程:标准方程为x^2/a^2+y^2/b^2=1。

三、椭圆的相关定理和性质1. 弦长定理:椭圆上两个不相交的弦的长度之积与它们两个弦所夹的角的余弦值成正比。

2. 切线定理:过椭圆上一点的切线与椭圆两焦连线的夹角等于该点切线与椭圆中心连线的夹角。

椭圆综合应用重难点专题(解析版)

椭圆综合应用重难点专题(解析版)

椭圆综合应用重难点专题常考结论及公式结论一:点与椭圆的位置关系判断点P (x 0,y 0)和椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1;(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1;(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.结论二:椭圆切线有关的一些结论(1)若点P (x 0,y 0)为椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,则过点P 且与椭圆相切的切线方程为x 0x a2+y 0yb 2=1.(2)若点P (x 0,y 0)为椭圆x 2a 2+y 2b2=1(a >b >0)外一点,过点P 作两条直线分别切椭圆于A 、B 两点,则切点弦AB 所在的直线方程为x 0xa 2+y 0yb 2=1.(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的两条切线互相垂直,则两条切线的交点一定落在圆x 2+y 2=a 2+b 2上,该圆也称为蒙日圆.结论三:椭圆的弦长及中点弦有关结论(1)若点P (x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)内非原点,则被P 平分的弦所在的直线方程是x 0x a2+y 0y b 2=x 02a 2+y 02b2.(2)线段AB 是椭圆x 2a 2+y 2b 2=1(a >b >0)的不平行于对称轴的弦,M (x 0,y 0)为线段AB 的中点,则k OM ∙k AB =-b 2a 2,即k AB =-b 2x 0a 2y 0.(3)弦长公式当直线AB 的斜率为k ,且与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A (x 1,y 1),B (x 2,y 2)两个不同的点,则弦长公式的常见形式有:①|AB |=1+k 2|x 1-x 2|;②|AB |=1+1k2|y 1-y 2|(k ≠0);③|AB |=1+k 2∙(x 1+x 2)2-4x 1x 2;④|AB |=1+1k2∙(y 1+y 2)2-4y 1y 2(k ≠0).(4)椭圆的任一条焦点弦的一个端点与另一个端点在相应准线上的射影的连线过这个焦点到这条准线的垂线段的中点.(5)直线Ax +By +C =0与椭圆x 2a 2+y 2b 2=1(a >b >0)有公共点⇔A 2a 2+B 2b 2≥C 2.“=”时相切,“>”时相交.(6)焦点弦(过焦点的弦),焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长l min =2b 2a2.(7)在椭圆x 2a 2+y 2b 2=1(a >b >0)中,若MN 是过中心的一条弦,P 是椭圆上异于M 、N 的一点,则有k PM ∙k PN =-b 2a2=e 2-1.(8)过椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点F (c ,0)的直线交椭圆于A (x 1,y 1),B (x 2,y 2)两点,且有AF=λFB ,则离心率e =1+k 2λ-1λ+1.结论四:椭圆系方程(1)与椭圆x 2a 2+y 2b 2=1(a >b >0)共焦点的椭圆系方程为x 2a 2-k +y 2b 2-k=1(k <b 2);(2)与椭圆x 2a 2+y 2b 2=1(a >b >0)有共同的离心率的椭圆系方程为x 2a 2+y 2b 2=λ或y 2a 2+x 2b2=λ(λ>0);题型一椭圆的切线问题例1.已知P 2,-2 是离心率为12的椭圆x 2a 2+y 2b 2=1(a >b >0)外一点,经过点P 的光线被y 轴反射后,所有反射光线所在直线中只有一条与椭圆相切,则此条切线的斜率是()A.18B.-12C.1D.-18【答案】D【分析】由题意知b 2=34a 2,设过点P 的直线方程为:y +2=k (x -2),反射后的切线方程为:y =-kx -2k -2,联立切线方程与椭圆的方程,利用Δ=0求解即可.【详解】由题意可知e =c a =12,又a 2=b 2+c 2,故b 2=34a 2,设过点P 的直线斜率为k ,则直线方程为:y +2=k (x -2),即y =kx -2k -2则反射后的切线方程为:y =-kx -2k -2由y =-kx -2k -2x 2a2+y 2b2=1得3+4k 2 x 2+16k (k +1)x +16k 2+32k +16-3a 2=0,因为所有反射光线所在直线中只有一条与椭圆相切,∴Δ=[16k (k +1)]2-163+4k 2 16k 2+32k +16-3a 2 =0,化简得:4a 2k 2+3a 2=16k 2+32k +16,即4a 2=163a 2=32k +16 ,解得a 2=4k =18所以这条切线的斜率为-k =-18.故选:D .【点睛】思路点睛:本题考查直线与椭圆的位置关系,及关于直线对称的直线方程,解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.【跟踪训练】1.国家体育场“鸟巢”的钢结构鸟瞰图如图1所示,内外两圈的钢骨架是离心率相同的椭圆;某校体育馆的钢结构与“鸟巢”相同,其平面图如图2所示,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD ,且两切线斜率之积等于-23,则椭圆的离心率为()A.13B.23C.33D.64【答案】C【分析】设出外层椭圆方程,利用离心率表达出内层椭圆方程,设出直线方程,联立后由根的判别式得到k 21=λb 21-λ a2与k 22=1-λ b 2λa 2,利用斜率乘积列出方程,求出b 2a 2=23,从而求出离心率.【详解】设外层椭圆方程为x 2a 2+y 2b 2=1,则内层椭圆方程为x 2a 2+y 2b 2=λ0<λ<1 ,设过A 点的切线方程为y =k 1x +a ,k 1<0,与x 2a 2+y 2b 2=λ0<λ<1 联立得:b 2+a 2k 21 x 2+2a 3k 21x +a 4k 21-λa 2b 2=0,由Δ1=4a 6k 41-4b 2+a 2k21 a 4k 21-λa 2b 2=0得:k 21=λb 21-λ a2,设过点B 的切线方程为y =k 2x +b ,与x2a2+y2b2=λ0<λ<1联立得:b2+a2k22x2+2a2k2bx+1-λa2b2=0,由Δ2=4a4k22b2-4b2+a2k221-λa2b2=0得:k22=1-λb2λa2,从而k21k22=λb21-λa2⋅1-λb2λa2=b4a4=49,故b2a2=23,椭圆的离心率为1-b2a2=33.故选:C.题型二弦的中点问题例1.已知椭圆E:x2a2+y2b2=1(a>b>0)的左焦点为F,离心率为25.过点F作直线 l与椭圆E交于A,B两点,与直线y=-2x交于点P,若P恰好是AB的中点,则直线l的斜率为()A.52B.2150C.215D.-25【答案】B【分析】设椭圆焦距为2c,再设出A x1,y1,B x2,y2,P x0,y0三点,由y0=-2x0,通过计算可得到y1-y2x1-x2=b22a2,进而得到b2=2125a2,即可解得斜率.【详解】设椭圆焦距为2c,所以ca=25.设A x1,y1,B x2,y2,P x0,y0,则y0=-2x0,且x12a2+y12b2=1x22a2+y22b2=1,由两式相减可得x21-x22a2+y21-y22b2=0,即x1+x2x1-x2a2+y1+y2y1-y2b2=0,根据条件可得:x1+x2=2x0,y1+y2=2y0,故2x0x1-x2a2+2y0y1-y2b2=0,由y0=-2x0,可得y1-y2x1-x2=b22a2.因为c2=425a2,所以b2=2125a2,即直线 l的斜率为k=b22a2=2150.故选:B.【跟踪训练】1.已知A 、B 为椭圆C :x 24+y 23=1上两点,线段AB 的中点在圆x 2+y 2=1上,则直线AB 在y 轴上截距的取值范围为.【答案】-∞,-1 ∪1,+∞【解析】设A x 1,y 1 ,B x 2,y 2 ,AB 中点D x 0,y 0 ,直线AB :y =kx +m ,代入椭圆方程消去y 得到关于x 的一元二次方程,由韦达定理求出x 1+x 2,x 1x 2,即可求出x 0=x 1+x 22,y 0=y 1+y 22用k ,m 表示,再将其代入x 2+y 2=1中,看成关于k 2的方程由二次函数根的分布即可求m 的范围.【详解】设直线AB :y =kx +m ,A x 1,y 1 ,B x 2,y 2 ,AB 中点D x 0,y 0 ,由y =kx +mx 24+y 23=1可得:3x 2+4kx +m 2=12,即3+4k 2 x 2+8mkx +4m 2-12=0,所以x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2,y 1+y 2=k x 1+x 2 +2m =-8k 2m 3+4k 2+2m =6m3+4k 2,所以x 0=-4km 3+4k 2,y 0=3m3+4k 2,因为点D x 0,y 0 在圆x 2+y 2=1上,所以-4km 3+4k 22+3m3+4k 22=1,整理可得:16k 4+24-16m 2 k 2+9-9m 2=0,设t =k 2,则16t 2+24-16m 2 t +9-9m 2=0在t ≥0有解,所以Δ=24-16m 2 2-4×16×9-9m 2 ≥0,整理得:m 2≥34,解得:m ≥32或m ≤-32,①对称轴x =16m 2-2432≥0,解得:m ≥62或m ≤-62,此时方程在t ≥0一定有解;②由x =16m 2-2432<0f 0 =9-9m 2≤0 ,可得-62<m ≤-1或1≤m <62,综上所述:m ≤-1或m ≥1所以直线AB 在y 轴上截距的取值范围为-∞,-1 ∪1,+∞ .故答案为:-∞,-1 ∪1,+∞【点睛】思路点睛:设直线AB :y =kx +m ,A x 1,y 1 ,B x 2,y 2 ,AB 中点D x 0,y 0 ,将直线与椭圆方程联立,利用根与系数的关系可以将x 0,y 0用k ,m 表示,再将x 0,y 0代入圆的方程看成关于k 的方程由解即可.题型三直线与椭圆位置关系的相关问题例1.已知直线l :y =kx +2,椭圆C :x 24+y 2=1.试问当k 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.【答案】(1)k<-32或k>32;(2)k=±32;(3)-32<k<32.【分析】直线l的方程与椭圆C的方程联立,根据判别式结合条件即得.(1)由y=kx+2x24+y2=1,可得1+4k2x2+16kx+12=0,依题意,得Δ=16k2-4×(1+4k2)×12=16(4k2-3),当Δ>0,即k<-32或k>32时,方程有两个不同的实数根,可知原方程组有两组不同的实数解,这时直线l与椭圆C有两个不重合的公共点;(2)当Δ=0,即k=-32或k=32时,方程有两个相同的实数根,可知原方程组有两组相同的实数解,这时直线l与椭圆C有且只有一个公共点;(3)当Δ<0,即-32<k<32时,方程没有实数根,可知原方程组没有实数解,这时直线l与椭圆C没有公共点.【跟踪训练】1.已知动点M到两定点F1(-m,0),F2m,0的距离之和为4(0<m<2),且动点M的轨迹曲线C过点N3,12.(1)求m的值;(2)若直线l:y=kx+2与曲线C有两个不同的交点A,B,求k的取值范围.【答案】(1)3;(2)-∞,-1 2∪12,+∞.【分析】(1)根据椭圆的定义结合条件可得34+14b2=1,进而即得;(2)联立直线方程与椭圆方程,根据判别式即得.(1)由0<m<2,得2m<4,又动点M到两定点F1(-m,0),F2m,0的距离之和为4,所以曲线C是以两定点F1(-m,0),F2m,0为焦点,长半轴长为2的椭圆,设曲线C的方程为x24+y2b2=1(b>0),则得34+14b2=1,解得b2=1,由c2=a2-b2,解得c2=3,所以m=3;(2)由题可知曲线C的方程为x24+y2=1,由x24+y2=1y=kx+2,可得14+k2x2+22kx+1=0,则有Δ=22k 2-414+k 2 >0,解得k <-12或k >12,所以k 的取值范围为-∞,-12 ∪12,+∞ .题型四椭圆中的定点与定值问题例1.已知椭圆Γ:x 24+y 2=1,N 为短轴顶点,椭圆Γ上两个不同点PQ 满足∠PNQ =90°,则直线PQ 恒过的定点的横坐标为.【答案】0【分析】设直线PQ 的方程为:y =kx +t ,(t ≠1),与椭圆联立,求得韦达定理,又∠NPQ =90°,则NP ⋅NQ =0,代入化简可以得到参数t 满足的方程,解得t 的值,即可求得定点,从而解得定点的横坐标.【详解】设N (0,1),P (x 1,y 1),Q (x 2,y 2),直线PQ 的方程为:y =kx +t ,(t ≠1),由题意知k 必然存在,联立y =kx +tx 24+y 2=1,化简得(1+4k 2)x 2+8ktx +4t 2-4=0,由韦达定理知,x 1+x 2=-8kt 1+4k 2x 1x 2=4t 2-41+4k2,又∠NPQ =90°,则NP ⋅NQ=0,即x 1x 2+(y 1-1)(y 2-1)=(1+k 2)x 1x 2+k (t -1)(x 1+x 2)+t 2-2t +1=0,代入韦达定理,化简得5t 2-2t -3=0,解得t =-35或t =1(舍);所以过定点0,-35,定点的横坐标为0,同理,根据对称性可得,当N (0,-1)时,定点的横坐标为0,故答案为:0【点睛】方法点睛:求直线过定点,需要求得直线方程,根据斜率和截距的关系,判断定点的值,在求解过程中,常常联立直线与圆锥曲线方程,通过韦达定理代入条件化简来求得参数间的关系,从而求得结果.【跟踪训练】1.如图,P 为椭圆E 1:x 2a 2+y 2b 2=1(a >b >0)上的一动点,过点P 作椭圆E 2:x 2a 2+y 2b 2=λ(0<λ<1)的两条切线P A 、PB ,斜率分别为k 1、k 2,若k 1⋅k 2为定值,则λ=【答案】12【分析】根据题意,设过点P 的切线方程为y =kx +m ,联立切线与椭圆E 2的方程,由Δ=0结合韦达定理表示出k 1⋅k 2,根据k 1⋅k 2为定值,找出比例关系即可求解.【详解】设点P x 0,y 0 ,则y 20=b 2-b 2x 20a2,设过点P 的切线方程为y =kx +m ,其中m =y 0-kx 0,联立y =kx +mx 2a2+y 2b2=λ,得a 2k 2+b 2 x 2+2mka 2x +a 2m 2-λb 2 =0,由Δ=0得λa 2k 2+b 2 =m 2,又因m =y 0-kx 0,所以λa 2k 2+b 2 =y 0-kx 0 2,化简得λa 2-x 20 k 2+2x 0y 0k +λb 2-y 20=0,故k 1⋅k 2=λb 2-y20λa 2-x20=λ-1 b2+b 2a2x 20λa 2-x20,又因k 1⋅k 2为定值,所以λ-1 b2λa 2=-b 2a2,即λ=12.故答案为:12.【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.题型五椭圆中的参数范围及最值问题例1.(多选)已知F 为椭圆C :x 216+y 28=1的左焦点,经过原点O 的直线l 与椭圆C 交于A ,B 两点,AD ⊥x轴,垂足为D (异于原点),BD 与椭圆C 的另一个交点为E ,则()A.AB ⊥AEB.△ABD 面积的最大值为42C.△ABF 周长的最小值为12D.1AF +16BF的最小值为258【答案】ABD【分析】对于A,设A(m,n),则B(-m,-n),D(m,0),设E(x1,y1),利用点差法推出k AB⋅k AE=-1,判断A;利用基本不等式结合三角形面积公式,判断B;利用椭圆的定义以及几何性质判断C;利用基本不等式中“1”的巧用,结合基本不等式可判断D.【详解】对于A,设A(m,n),则B(-m,-n),D(m,0),设E(x1,y1),由题意可知m≠0,m≠x1,m+x1≠0,则m216+n28=1,x1216+y128=1,两式相减得m2-x1216+n2-y128=0,即(n+y1)(n-y1)(m+x1)(m-x1)=-12,即k BE⋅k AE=-12,由k AB=2n2m=nm,k BD=n2m,∴k BE=k BD=12k AB,则12k AB⋅k AE=-12,∴k AB⋅k AE=-1,即AB⊥AE,故A正确;对于B,由A的分析可知m216+n28=1,不妨设点A在第一象限,则m>0,n>0,所以1=m216+n28≥2m216×n28,∴mn≤42,当且仅当m=22,n=2时取等号,故S△ABD=12m×2n=mn≤42,故B正确;对于C,由题意知C:x216+y28=1左焦点为F(-22,0),设右焦点为F (-22,0),a=4,b=22,则根据椭圆的对称性可知|BF|=|AF |,故△ABF周长为2a+|AB|=8+|AB|,而|AB|的最小值为椭圆的短轴长2b=42,由题意可知AB不能与椭圆短轴重合,故△ABF周长大于8+42,C错误;对于D,由C的分析可知,|AF|+|BF|=|AF|+|AF |=2a=8,故1AF+16BF=181AF+16BF(|AF|+|BF|)=1817+BF AF +16AF BF≥1817+2BFAF⋅16AFBF=258,当且仅当|AF|=85,|BF|=325时取等号,D正确,故选:ABD【点睛】本题综合考查了椭圆的定义的应用以及几何性质的应用,涉及到线段的垂直和三角形面积以及周长的最值得求法,解答时要注意综合利用椭圆的相关知识以及基本不等式的知识解决问题,属于较难题,计算量较大.【跟踪训练】1.已知椭圆x24+y2b2=1的左、右焦点分别为F1、F2,过点F2作直线交椭圆于M、N两点,线段MN长度的最小值为3.若NF 2 =λF 2Mλ∈1,2 ,则弦长MN 的取值范围为.【答案】3,278【分析】分析可知当MN 取最小值时,MN 不与x 轴重合,设直线MN 的方程为x =my +c ,设点M x 1,y 1 、N x 2,y 2 ,将直线MN 的方程与椭圆方程联立,列出韦达定理,利用弦长公式求出MN 的表达式,由MN 的最小值求出b 2的值,可得出椭圆的方程,分析得出y 2=-λy 1,结合韦达定理可求得m 2的取值范围,进而可求得MN 的取值范围.【详解】易知点F 2c ,0 ,其中b 2+c 2=a 2=4,若直线MN 与x 轴重合时,MN =2a =4,设直线MN 的方程为x =my +c ,设点M x 1,y 1 、N x 2,y 2 ,联立x =my +cb 2x 2+4y 2=4b2,可得m 2b 2+4 y 2+2mb 2cy -b 4=0,Δ=4m 2b 4c 2+4b 4m 2b 2+4 =16b 4m 2+1 ,由韦达定理可得y 1+y 2=-2mb 2c m 2b 2+4,y 1y 2=-b 4m 2b 2+4,MN =1+m 2⋅y 1-y 2 =1+m 2⋅y 1+y 22-4y 1y 2=1+m 2⋅-2mb 2c m 2b 2+42+4b 2m 2b 2+4=4b 2m 2+1 m 2b 2+4=4-4c 2m 2b 2+4,所以,当m =0时,MN min =4b 24=b 2=3,故椭圆的方程为x 24+y 23=1,由题意可知,NF 2 =λF 2M,即1-x 2,-y 2 =λx 2-1,y 1 ,则y 2=-λy 1,由韦达定理可得y 1+y 2=-6m 3m 2+4=1-λ y 1,可得y 1=6mλ-1 3m 2+4,y 1y 2=-93m 2+4=-λy 21,即36λm 2λ-1 23m 2+4 2=93m 2+4,当λ=1时,点F 2为线段MN 的中点,则m =0;当λ∈1,2 时,可得1m 2=λλ-1 2-34=1λ+1λ-2-34,因为函数f λ =λ+1λ-2在1,2 上单调递增,所以,当λ∈1,2 时,f λ =λ+1λ-2∈0,12 ,所以,1m 2=1λ+1λ-2-34≥54,则0<m 2≤45,所以,0≤m 2≤45,MN =4b 2m 2+1 m 2b 2+4=12m 2+1 3m 2+4=4-43m 2+4∈3,278.故答案为:3,278.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型六椭圆中的定直线问题例1.已知椭圆C :x 25+y 24=1的上下顶点分别为A ,B ,过点P 0,3 且斜率为k (k <0)的直线与椭圆C 自上而下交于M ,N 两点,直线BM 与AN 交于点G .(1)设AN ,BN 的斜率分别为k 1,k 2,求k 1⋅k 2的值;(2)求证:点G 在定直线上.【答案】(1)-45(2)证明见解析【分析】(1)设M (x 1,y 1),N (x 2,y 2),表示出k 1⋅k 2,结合点N 在椭圆上,代入即可得出答案.(2)设直线PM 为y =kx +3,与椭圆联立消去y 得到关于x 的一元二次方程,列出韦达定理,写出直线MB ,NA 的方程,联立这两条直线的方程,求出G 点的纵坐标,即可得出答案.(1)设M (x 1,y 1),N (x 2,y 2),A 0,2 ,B 0,-2 ,k 1⋅k 2=y 2+2x 2⋅y 2-2x 2=y 22-4x 22,又x 225+y 224=1所以y 22=4⋅1-x 225,所以k 1⋅k 2=41-x 225 -4x 22=-45.(2)设PM :y =kx +3联立4x 2+5y 2=20,得到(4+5k 2)x 2+30kx +25=0,∴x 1+x 2=-30k 4+5k 2x 1⋅x 2=254+5k 2,Δ=900k 2-100(4+5k 2)=400(k 2-1)>0,直线MB :y =y 1+2x 1x -2,直线NA :y =y 2-2x 2x +2,联立得:y +2y -2=x 2(y 1+2)(y 2-2)x 1,法一:y +2y -2=-54⋅y 2+2 x 2y 1+2 x 1=-54⋅k 2x 1x 2+5k (x 1+x 2)+25x 1x 2=-5,解得y =43.法二:由韦达定理得x 1+x 2x 1x 2=-65k ,∴y +2y -2=x 2kx 2+1(kx 1+5)x 1=kx 1x 2+5x 2kx 1x 2+x 1-56(x 1+x 2)+5x 2-56(x 1+x 2)+x 1=-5.解得y =43,所以点G 在定直线y =43上.【跟踪训练】1.作斜率为32的直线l 与椭圆C :x 24+y 29=1交于A ,B 两点,且P 2,322 在直线l 的左上方.(1)当直线l 与椭圆C 有两个公共点时,证明直线l 与椭圆C 截得的线段AB 的中点在一条直线上;(2)证明:△P AB 的内切圆的圆心在一条定直线上.【答案】(1)设A x 1,y 1 ,B x 2,y 2 ,AB 中点坐标为x 0,y 0 ,AB :y =32x +m 所以有x 0=x 1+x 22y 0=y 1+y 22,联立x 24+y 29=1y =32x +m,得9x 2+6mx +2m 2-18=0,得Δ=6m 2-4×92m 2-18 >0,得m 2<18,由韦达定理可知x 1+x 2=-2m 3,x 1x 2=2m 2-189,所以y 1+y 2=32x 1+m +32x 2+m =32x 1+x 2+2m =m ,所以x 0=-m3y 0=m2,化简得:y 0=-32x 0,所以线段AB 的中点在直线y =-32x 上.(2)由题可知P A ,PB 的斜率分别为k P A =y 1-322x 1-2,k PB =y 2-322x 2-2,所以k P A +k PB =y 1-322x 1-2+y 2-322x 2-2=y 1-322 x 2-2 +y 2-322 x 1-2x 1x 2-2x 1+x 1 +2,因为y 1=32x 1+m ,y 2=32x 2+m 得k P A +k PB =3x 1x 2+m -32 x 1+x 1 -22m +6x 1x 2-2x 1+x 1 +2由(1)可知x 1+x 2=-2m 3,x 1x 2=2m 2-189,所以k P A +k PB =32m 2-189 +m -32 -23m -22m +62m 2-189-2-23m+2=0,又因为P 2,322在直线l 的左上方,所以∠APB 的角平分线与y 轴平行,所以△P AB 的内切圆的圆心在x =2这条直线上.【点睛】(1)计算直线与圆锥曲线相交的两点的中点,一般设直线方程,联立方程组,再用韦达定理证明即可;(2)三角形内切圆的圆心在三角形的角平分线上,角平分线是角的关系,所以利用找角与斜率的关系即可.题型七弦长及面积问题例1.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则AB 的最大值为()A.2B.455C.4105D.8105【答案】C【分析】设直线方程,与椭圆联立,利用弦长公式表示弦长,再求最值即可【详解】设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-8t 5,x 1x 2=4(t 2-1)5,∴|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=2×-85t 2-4×4(t 2-1)5=425·5-t 2,当t =0时,|AB |max =4105.故选:C .【跟踪训练】1.设直线l :2x +y +2=0关于原点对称的直线为l,若l与椭圆x 2+y 24=1的交点为A 、B ,点P 为椭圆上的动点,则使△P AB 的面积为12的点P 的个数为()A.1B.2C.3D.4【答案】B【分析】求出直线l 为y =-2x +2,与椭圆方程联立求出点A 、B 的坐标,设点P (a ,b ),利用△P AB 的面积为12,可得2a +b =3或2a +b =1与a 2+b 24=1分别联立,判别解得个数,即可选出答案.【详解】直线l :2x +y +2=0关于原点对称的直线l 为y =-2x +2联立y =-2x +2x 2+y 24=1,解得x =0y =2或x =1y =0则A (0,2),B (1,0),所以AB =5又△P AB 的面积为12,所以AB 边上的高为55设P (a ,b ),则a 2+b 24=1,点P 到直线y =-2x +2的距离d =|2a +b -2|5=55化简得:2a +b =3或2a +b =1联立2a +b =3a 2+b 24=1 ,得8a 2-12a +5=0,其中Δ=144-160=-16<0,故方程无解;或a2+b24=12a+b=1,得8a2-4a-3=0,其中Δ=16+96=112>0,方程有两个不同解.即a有两个不相等的根,对应的b也有两个不等根,所以满足题意的点P的个数为2个.故选:B题型八与椭圆有关的数学文化问题例1.(多选)法国数学家加斯帕·蒙日被称为“画法几何创始人”、“微分几何之父”.他发现与椭圆相切的两条互相垂直的切线的交点的轨迹是以该椭圆中心为圆心的圆,这个圆称为该椭圆的蒙日圆.若椭圆Γ:x2 a2+y2b2=1a>b>0的蒙日圆为C:x2+y2=32a2,过C上的动点M作Γ的两条切线,分别与C交于P,Q两点,直线PQ交Γ于A,B两点,则()A.椭圆Γ的离心率为22B.△MPQ面积的最大值为32a2C.M到Γ的左焦点的距离的最小值为2-2aD.若动点D在Γ上,将直线DA,DB的斜率分别记为k1,k2,则k1k2=-12【答案】ABD【分析】由条件可得a2=2b2,由此可求椭圆Γ的离心率,由此判断A,由条件可得PQ为圆C的直径,确定△MPQ面积的表达式求其最值,由此判断B,由条件确定MF2的表达式求其范围,由此判断C,结合点差法判断D.【详解】依题意,过椭圆Γ的上顶点作y轴的垂线,过椭圆Γ的右顶点作x轴的垂线,则这两条垂线的交点在圆C上,所以a2+b2=32a2,得a2=2b2,所以椭圆Γ的离心率e=ca=1-b2a2=22,故A正确;因为点M,P,Q都在圆C上,且∠PMQ=90°,所以PQ为圆C的直径,所以PQ=2×32a2=6a,所以△MPQ面积的最大值为12PQ×32a2=6a2×32a2=32a2,故B正确;设M(x0,y0),Γ的左焦点为F-c,0,连接MF,因为c2=a2-b2=12a2,所以MF2=x0+c2+y20=x20+y20+2x0c+c2=32a2+2x0×22a+12a2=2a2+2ax0,又-62a≤x0≤62a,所以MF2≥2-3a2,则M到Γ的左焦点的距离的最小值为6-2a2,故C不正确;由直线PQ经过坐标原点,易得点A,B关于原点对称,设A x1,y1,D x2,y2,则B-x1,-y1,k1=y1-y2x1-x2,k2=y1+y2x1+x2,又x212b2+y21b2=1x222b2+y22b2=1,所以x21-x222b2+y21-y22b2=0,所以y21-y22x21-x22=y1-y2x1-x2⋅y1+y2x1+x2=-12,所以k1k2=-12,故D 正确故选:ABD .【点睛】椭圆的蒙日圆及其几何性质过椭圆x 2a 2+y 2b 2=1a >b >0 上任意不同两点M ,N 作椭圆的切线,若两切线垂直且相交于P ,则动点P 的轨迹为圆O :x 2+y 2=a 2+b 2,此圆即椭圆的蒙日圆.椭圆的蒙日圆有如下性质:性质1:PM ⊥PN .性质2:PO 平分切点弦MN .性质3:S △MON 的最大值为ab 2,S △MON 的最小值为a 2b 2a 2+b 2.【跟踪训练】1.(多选)祖暅(公元5-6世纪,祖冲之之子),是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.如图将底面直径皆为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱体放置于同一平面β上,用平行于平面β且与β距离为d 的平面截两个几何体得到S 圆及S 环两截面,可以证明S 圆=S 环总成立,若椭半球的短轴AB =6,长半轴CD =5,则下列结论正确的是()A.椭半球体的体积为30πB.椭半球体的体积为15πC.如果CF =4FD,以F 为球心的球在该椭半球内,那么当球F 体积最大时,该椭半球体挖去球F 后,体积为863πD.如果CF =4FD,以F 为球心的球在该半球内,那么当球F 体积最大时,该椭半球体挖去球F 后,体积为29π【答案】AC【分析】由题可得V =12V 椭球=V 圆柱-V 圆锥,可判断AB ,利用椭圆的性质可得球F 的最大半径为1,进而可判断CD .【详解】由题意知,短轴AB =6,长半轴CD =5的椭半球体的体积为V =12V 椭球=V 圆柱-V 圆锥=π⋅622⋅5-13⋅π622⋅5=30π,∴A 正确,B 错误;椭球的轴截面是椭圆,它的短半轴长为3,长半轴长为5,所以半焦距为4,由于CF =4FD ,所以F 椭圆的焦点,因此FD 是椭圆的最小焦半径,即球F 的最大半径为1,该椭半球体挖去球F 后,体积为30π-43π=863π,故C 正确,D 错误.故选:AC .课后突破训练1.已知椭圆C :x 24+y 23=1,过左焦点F 的直线 l 与椭圆交于A 、B 两点,(点A 在x 轴上方),若AF =2FB ,则直线 l 的斜率的值为()A.52B.-52C.12D.-12【答案】A【分析】设出直线方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2).直线方程代入椭圆方程后应用韦达定理得x 1+x 2,x 1x 2,再转化为y 1+y 2,y 1y 2,由AF =2FB得y 1=-2y 2,与y 1+y 2,y 1y 2消去y 1,y 2得k 的方程,解方程可得,注意k >0.【详解】由已知c =4-3=1,所以F (-1,0),设直线 l 方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2).由y =k (x +1)x 24+y23=1得(3+4k 2)x 2+8k 2x +4k 2-12=0,则x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,y 1+y 2=k (x 1+x 2+2)=6k 3+4k 2①,y 1y 2=k 2(x 1+1)(x 2+1)=k 2(x 1x 2+x 1+x 2+1)=-9k 23+3k 2②,AF =2FB ,则-y 1=2y 2,y 1=-2y 2③,③代入①得-y 2=6k 3+4k 2,y 2=-6k3+4k 2④,③代入②得-2y 22=-9k 23+4k2⑤,④⑤消去y 2并整理得k 2=54,由于A 在x 轴上方,所以k >0,所以k =52.故选:A .2.已知椭圆x 2a 2+y 2b 2=1a >b >0 的右焦点和上顶点分别为点Fc ,0 b >c 和点A ,直线l :6x -5y -28=0交椭圆于P ,Q 两点,若F 恰好为△APQ 的重心,则椭圆的离心率为()A.22B.33C.55D.255【答案】C【分析】由题设F c ,0 ,A 0,b ,利用F 为△APQ 的重心,求出线段PQ 的中点为B 3c 2,-b 2,将B 代入直线方程得9c +5b2-28=0,再利用点差法可得2a 2=5bc ,结合a 2=b 2+c 2,可求出a , b , c ,进而求出离心率.【详解】由题设F c ,0 ,A 0,b ,P x 1,y 1 ,Q x 2,y 2 ,则线段PQ 的中点为B x 0,y 0 ,由三角形重心的性质知AF =2FB ,即(c ,-b )=2x 0-c ,y 0 ,解得:x 0=3c 2,y 0=-b2即B 3c 2,-b 2代入直线l :6x -5y -28=0,得9c +5b2-28=0①.又B 为线段PQ 的中点,则x 1+x 2=3c ,y 1+y 2=-b ,又P ,Q 为椭圆上两点,∴x 12a 2+y 12b 2=1,x 22a 2+y 22b2=1,以上两式相减得x 1+x 2 x 1-x 2a 2+y 1+y 2 y 1-y 2b 2=0,所以k PQ =y 1-y 2x 1-x 2=-b 2a 2⋅x 1+x 2y 1+y 2=-b 2a 2×3c -b =65,化简得2a 2=5bc ②由①②及a 2=b 2+c 2,解得:a =25b =4c =2,即离心率e =55.故选:C .【点睛】方法点睛:本题考查求椭圆的离心率,求解离心率在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出a ,c ,从而求出e ;②构造a ,c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.3.已知直线l :x +y -1=0与椭圆C :x 24+y 22=1交于A ,B 两点,P 为C 的右顶点,则△ABP 的面积为()A.153B.233C.103D.53【答案】C【分析】求得AB ,然后求得P 到直线AB 的距离,从而可求得三角形ABP 的面积.【详解】由x +y -1=0x 24+y 22=1消去y 并化简得3x 2-4x -2=0,Δ=16+24=40>0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=43,x 1⋅x 2=-23,所以AB =1+-1 2×432+4×23=453,右顶点P 2,0 ,P 到直线AB 的距离为2+0-12=22,所以S △ABP =12×453×22=103.故选:C4.(多选)已知F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1a >b >0 的左、右焦点,P 为椭圆上任意一点(不在x 轴上),△PF 1F 2外接圆的圆心为H ,△PF 1F 2内切圆的圆心为I ,直线PI 交x 轴于点M ,O 为坐标原点.则()A.存在λ∈R ,使得OI =OP +λPF 1PF 1 +PF 2 PF 2成立B.PH ⋅PO 的最小值为a 22C.过点I 的直线l 斜率为k 1,且与椭圆相交于A ,B 两点,线段AB 的中点为N ,直线ON 的斜率为k 2,则k 1k 2=b 2a2D.椭圆C 的离心率e =IMPI【答案】ABD【分析】对A ,根据PF 1PF 1 表示与PF 1 同向的单位向量,PF 2 PF 2表示与PF 2 同向的单位向量,进而判断出PF 1PF 1+PF 2PF 2与PI 共线,最后判断答案;对B ,根据PO =12PF 1 +PF 2,然后结合平面向量数量积的几何意义与基本不等式求得答案;对C ,利用“点差法”即可求得答案;对D ,运用角平分线定理即可求得答案.【详解】对A ,PF 1PF 1 表示与PF 1 同向的单位向量,PF 2 PF 2表示与PF 2 同向的单位向量,所以PF 1PF 1 +PF 2 PF 2与PI 共线,而OI =OP +λPF 1 PF1 +PF2 PF 2 ⇔OI -OP =PI =λPF 1PF 1 +PF 2 PF 2.A 正确;对B ,PH ⋅PO =12PH ⋅PF 1 +PF 2 =12PH ⋅PF 1 +PH ⋅PF 2,取线段PF 1的中点G ,则HG ⊥PF1,由平面向量数量积的定义可知,PH ⋅PF 1 =PG 2=12PF 1 2,同理PH ⋅PF 2 =12PF 2 2,所以PH ⋅PO =14PF 1 2+PF 2 2 =14|PF 1 |2+|PF 2 |2 .由基本不等式易得:|PF 1 |2+|PF 2 |22≥|PF 1 |+|PF 2|22⇒|PF 1 |2+|PF 2 |2≥12|PF 1|+|PF 2 | 2=2a 2,当且仅当|PF 1 |=|PF 2|=a 时取“=”.B 正确;对C ,设A x 1,y 1 ,B x 2,y 2 ,则N x 1+x 22,y 1+y 22 ,所以k 2=y 1+y 22x 1+x 22=y 1+y 2x 1+x 2,有因为x 21a 2+y 21b 2=1x 22a 2+y 22b 2=1⇒x 1+x 2 x 1-x 2 a 2+y 1+y 2 y 1-y 2 b 2=0⇒y 1-y 2x 1-x 2⋅y 1+y 2x 1+x 2=-b 2a 2,即k 1k 2=-b 2a 2.C 错误;对D ,易知,IF 1,IF 2分别是∠PF 1F 2,∠PF 2F 1的角平分线,由角平分线定理可知:|IM||PI |=|F 1M ||PF 1|=|F 2M ||PF 2|⇒|F 1M |+|F 2M ||PF 1|+|PF 2|=2c 2a =ca =e.D 正确.故选:ABD .5.(多选)月光石不能频繁遇水,因为其主要成分是钾钠硅酸盐.一块斯里兰卡月光石的截面可近似看成由半圆和半椭圆组成,如图所示,在平面直角坐标系,半圆的圆心在坐标原点,半圆所在的圆过椭圆的右焦点F (3,0),椭圆的短轴与半圆的直径重合.若直线y =t t >0 与半圆交于点A ,与半椭圆交于点B ,则下列结论正确的是()A.椭圆的离心率是22B.线段AB 长度的取值范围是0,3+32C.△ABF 面积的最大值是942+1 D.△OAB 的周长存在最大值【答案】ABC【分析】由题意可求出半圆和椭圆的方程,即可求得椭圆离心率,判断A ;结合半圆的半径以及椭圆的长半轴长,可确定线段AB 长度的取值范围,判断B ;设A ,B 坐标,表示出△ABF 面积,利用基本不等式求得其最大值,判断C ;表示出△OAB 的周长的表达式,结合t 的取值范围可判断D .【详解】由题意得半圆的方程为x 2+y 2=9(x ≤0),设椭圆的方程为x 2a 2+y 2b2=1(a >b >0,x ≥0),所以b =3c =3 ,∴a 2=18,所以椭圆的方程为x218+y29=1(x≥0).A.椭圆的离心率是e=ca =332=22,所以该选项正确;B.当t→0时,|AB|→3+32;当t→3时,|AB|→0,所以线段AB长度的取值范围是0,3+32,所以该选项正确;C.由题得△ABF面积S=12×|AB|t,设A(x1,t),∴x12+t2=9,∴x1=-9-t2(0<t<3),设B(x2,t),∴x2218+t29=1,∴x2=18-2t2,所以|AB|=9-t2+18-2t2,所以S=12×(9-t2+18-2t2)t=2+129-t2×t=2+12(9-t2)t2≤2+12⋅814=94(2+1),当且仅当t=322时等号成立,所以该选项正确;D.△OAB的周长=|AO|+|OB|+|AB|=3+(2+1)9-t2+18-t2,所以当t=0时,△OAB的周长最大,但是t不能取零,所以△OAB的周长没有最大值,所以该选项错误.故选:ABC.6.已知椭圆x23+y2=1,直线 l过点M1,0且与椭圆C相交于A,B两点.过点A作直线x=3的垂线,垂足为D.则直线BD过x轴上的定点坐标为.【答案】2,0【分析】当直线 l斜率不存在时,直线 l的方程为x=1,设出点A,B,D并求出直线BD,易知直线BD过点2,0;当直线 l的斜率存在时,设A x1,y1,B x2,y2,直线AB为y=k x-1,D3,y1,联立y=k x-1x2+3y2=3 ,结合根与系数的关系,证明直线BD过点2,0即可【详解】(1)当直线 l斜率不存在时,直线 l的方程为x=1,不妨设A1,6 3,B1,-63,D3,63,则k BD=63--633-1=63此时直线BD的方程为y-63=63x-3即y=63x-2,所以直线BD过点2,0.(2)当直线 l的斜率存在时,设A x1,y1,B x2,y2,直线AB为y=k x-1,D3,y1,由y=k x-1x2+3y2=3得1+3k2x2-6k2x+3k2-3=0,所以x 1+x 2=6k 21+3k 2,x 1⋅x 2=3k 2-31+3k 2直线BD :y -y 1=y 2-y 1x 2-3x -3 ,只需证明直线BD 过点2,0 即可,令y =0,得x -3=-y 1x 2-3 y 2-y 1,所以x =3y 2-3y 1-y 1x 2+3y 1y 2-y 1=3y 2-y 1x 2y 2-y 1=3k x 2-1 -k x 1-1 x 2k x 2-1 -k x 1-1 =4x 2-x 1x 2-3x 2-x 1,即证4x 2-x 1x 2-3x 2-x 1=2,即证2x 2+x 1 -x 1x 2=3,可得2x 2+x 1 -x 1x 2=2×6k 21+3k 2-3k 2-31+3k 2=9k 2+31+3k 2=3,所以直线BD 过点2,0 .综上所述,直线BD 恒过x 轴上的定点2,0 .7.如图是数学家Ge min adDandelin 用来证明一个平面截圆锥得到的截面是椭圆的模型(称为丹德林双球模型):在圆锥内放两个大小不同的小球,使得它们分别与圆锥侧面、截面相切,设图中球O 1和球O 2的半径分别为1和3,O 1O 2=8,截面分别与球O 1和球O 2切于点E和F ,则此椭圆的长轴长为.【答案】215【解析】设圆锥母线与轴的夹角为α,截面与轴的夹角为β,利用e =cos βcos α求得离心率,再利用平面几何知识求得EF =2c =43得解【详解】如图,圆锥面与其内切球O 1,O 2分别相切与B ,A ,连接O 1B ,O 2A ,则O 1B ⊥AB ,O 2A ⊥AB ,过O 1作O 1D ⊥O 2A 于D ,连接O 1F ,O 2E ,EF 交O 1O 2于点C ,设圆锥母线与轴的夹角为α,截面与轴的夹角为β,在Rt △O 1O 2D 中,DO 2=3-1=2,O 1D =82-22=215cos α=O 1D O 1O 2=2158=154∵O 1O 2=8,CO 2=8-O 1C ,∵△EO 2C ∼△FO 1C ,8-O 1C EO 2=O 1C O 1F解得O 1C =2,O 2C =6∴CF =O 1C 2-FO 12=22-12=3,即cos β=CF O 1C=32,所以椭圆离心率为e =cos βcos α=255=c a 在△EO 2C 中cos β=cos ∠ECO 2=EC O 2C =32解得EC =33,EF =43=2c23a =255⇒a =15∴2a =215故答案为:215【点睛】利用e =cos βcos α求得离心率是解题关键.8.已知F 2,0 为椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点,过点F 的直线l 与椭圆C 交于A ,B 两点,P 为AB 的中点,O 为坐标原点.若△OFP 是以OF 为底边的等腰三角形,且△OFP 外接圆的面积为2π3,则椭圆C 的长轴长为.【答案】23【分析】由外接圆面积求半径,应用正弦定理求△OFP 中的∠OFP ,结合已知有k PF =-k OP ,根据中点弦,应用点差法有k PF ⋅k OP =-b 2a2即可求椭圆C 的长轴长.【详解】由△OFP 外接圆的面积为2π3,则其外接圆半径为63.∵△OFP 是以OF 为底边的等腰三角形,设∠OFP =α,则∠OPF =π-2α,∴2sin ∠OPF=2sin2α=263,得sin2α=32,∴α=π6或α=π3.不妨设点P 在x 轴下方,由△OFP 是以OF 为底边的等腰三角形,知:k PF =-k OP =33或 3.又根据点差法可得k PF ⋅k OP =-b 2a 2,有b 2a 2=13,而b 2a 2=3(此时焦点在y 轴上,舍去).∵F 2,0 为椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点,∴a =3,故椭圆C 的长轴长为2 3.故答案为:2 3.【点睛】关键点点睛:利用外接圆的面积求半径,由正弦定理、等腰三角形的性质求相关直线斜率,应用点差法列方程求椭圆参数a .9.已知椭圆C :x 24+y 23=1的两个焦点为F 1,F 2,P 为椭圆上任意一点,点m ,n 为△PF 1F 2的内心,则m +n 的最大值为.【答案】233##233【分析】由S △PF 1F 2=12×2c ×b sin θ=bc sin θ=122c +2a ⋅r ,得到r =bc sin θ a +c=n ,再由内切圆的性质和焦半径公式得到m =c cos θ,消去θ得到内切圆圆心的轨迹方程,再利用三角换元,根据三角函数的性质求解.【详解】解:设P a cos θ,b sin θ ,内切圆的半径为r ,所以S △PF 1F 2=12×2c ×b sin θ =bc sin θ =122c +2a ⋅r ,则r =bc sin θ a +c=n ,设椭圆的左右焦点为F 1c ,0 ,F 2-c ,0 ,则PF 1 =a cos θ-c 2+b sin θ 2=a 2-2ac cos θ+c cos θ 2=a -c cos θ,同理PF 2 =a +c cos θ,又内切圆的性质得c -m -m +c =PF 1 -PF 2 =a -c cos θ -a +c cos θ ,所以m =c cos θ,消去θ得m 2c 2+n 2bc 2a +c 2=1,即m 2c 2+n 2a -c a +c⋅c 2=1,又因为a =2,c =1,所以m 2+3n 2=1n ≠0 ,设m =cos α,n =13sin α≠0,则m +n =cos α+13sin α=233sin α+π3 ,所以m +n 的最大值为233,故答案为:233【点睛】关键点点睛:解决本题的关键是内切圆性质的应用及椭圆焦半径公式的推导与应用.10.已知椭圆C :x 24+y 2=1,过点D (0,4)的直线l 与椭圆C 交于不同两点M ,N (M 在D ,N 之间),有以下四个结论:①若x =x y =2y ,椭圆C 变成曲线E ,则曲线E 的面积为4π;②若A 是椭圆C 的右顶点,且∠MAN 的角平分线是x 轴,则直线l 的斜率为-2;③若以MN 为直径的圆过原点O ,则直线l 的斜率为±25;④若DN =λDM ,则λ的取值范围是1<λ≤53.其中正确的序号是.【答案】①④【分析】对于①,根据点的坐标代入椭圆得到圆的方程,计算出面积即可判断;对于②,根据椭圆的对称性可得直线l 为y 轴,故不正确;对于③,假设直线l ,与椭圆进行联立,根据韦达定理得到x 1+x 2和x 1x 2的值,再算出y 1y 2的值,结合MN 是直径,得到OM ⋅ON =0,最终算出斜率,故不正确;对于④,当斜率存在时,利用③中的二次方程得到Δ,得到k 的范围,再利用韦达定理和DN =λDM ,最终算出λ的范围,再讨论斜率不存在的时候,两者结合得到,故正确。

椭圆基本知识点与题型总结

椭圆基本知识点与题型总结

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的简单几何性质标准方程12222=+by a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点、焦距)0,(1c F -,)0,(2c F ,cF F 221=),0(1c F -,),0(2c F cF F 221=范围a x ≤,b y ≤b x ≤,ay ≤顶点)0,(a ±,),0(b ±),0(a ±,)0,(b ±对称性关于x 轴、y 轴,轴对称,关于原点中心对称轴长长轴长=a 2,短轴长=b2离心率()10122<<-==e ab ac e e 越小,椭圆越圆;e 越大,椭圆越扁通径过焦点且垂直于长轴的弦,其长ab 22(通径为最短的焦点弦)准线方程ca x 2±=ca y 2±=焦半径01ex a PF +=,02ex a PF -=01ey a PF +=,02ey a PF -=1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=(见右图)2.椭圆的一般方程:22Ax By C +=()B A C B A 0ABC ≠≠同号,,,,且3.椭圆的参数方程:{cos sin x a y b ϕϕ==(其中ϕ为参数)4.椭圆焦点三角形问题(1)焦点三角形周长:ca 22+(2)在21F PF ∆中,有余弦定理:()θcos 2P P 22122212PF PF F F c -+=经常变形为:()()θcos 22-PF 221212212PF PF PF PF PF c -+=即:()()θcos 22-22212122PF PF PF PF a c -=(3)焦点三角形面积2tan cos 1sin sin 21S 2221P 21θθθθb b PF PF y c p F F =+=⋅=⋅=∆,其中21PF F ∠=θ5.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠为最大角。

高考数学总复习(基础知识+高频考点+解题训练)椭圆

高考数学总复习(基础知识+高频考点+解题训练)椭圆

椭__圆[知识能否忆起]1.椭圆的定义平面内到两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点F 1,F 2间的距离叫做椭圆的焦距.2.椭圆的标准方程及其几何性质条件2a >2c ,a 2=b 2+c 2,a >0,b >0,c >0图形标准方程 x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0) 范围 |x |≤a ;|y |≤b|x |≤b ;|y |≤a对称性 曲线关于x 轴、y 轴、原点对称 曲线关于x 轴、y 轴、原点对称 顶点 长轴顶点(±a,0) 短轴顶点(0,±b ) 长轴顶点(0,±a ) 短轴顶点(±b,0) 焦点 (±c,0)(0,±c )焦距 |F 1F 2|=2c (c 2=a 2-b 2)离心率 e =ca∈(0,1),其中c =a 2-b 2 通径过焦点垂直于长轴的弦叫通径,其长为2b2a[小题能否全取]1.(教材习题改编)设P 是椭圆x 24+y 29=1的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .8C .6D .18解析:选C 依定义知|PF 1|+|PF 2|=2a =6. 2.(教材习题改编)方程x 25-m +y 2m +3=1表示椭圆,则m 的范围是( )A .(-3,5)B .(-5,3)C .(-3,1)∪(1,5)D .(-5,1)∪(1,3)解析:选C 由方程表示椭圆知⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得-3<m <5且m ≠1.3.(2012·淮南五校联考)椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D.1925或21 解析:选C 若a 2=9,b 2=4+k ,则c =5-k ,由c a =45,即5-k 3=45,得k =-1925; 若a 2=4+k ,b 2=9,则c =k -5,由c a =45,即k -54+k =45,解得k =21. 4.(教材习题改编)已知椭圆的中心在原点,焦点在y 轴上,若其离心率为12,焦距为8.则该椭圆的方程是________.解析:∵2c =8,∴c =4,∴e =c a =4a =12,故a =8.又∵b 2=a 2-c 2=48,∴椭圆的方程为y 264+x 248=1.答案:y 264+x 248=15.已知F 1,F 2是椭圆C 的左,右焦点,点P 在椭圆上,且满足|PF 1|=2|PF 2|,∠PF 1F 2=30°,则椭圆的离心率为________.解析:在三角形PF 1F 2中,由正弦定理得 sin ∠PF 2F 1=1,即∠PF 2F 1=π2, 设|PF 2|=1,则|PF 1|=2,|F 2F 1|=3, 所以离心率e =2c 2a =33.答案:331.椭圆的定义中应注意常数大于|F 1F 2|.因为当平面内的动点与定点F 1,F 2的距离之和等于|F 1F 2|时,其动点轨迹就是线段F 1F 2;当平面内的动点与定点F 1,F 2的距离之和小于|F 1F 2|时,其轨迹不存在.2.已知椭圆离心率求待定系数时要注意椭圆焦点位置的判断,当焦点位置不明确时,要分两种情形讨论.椭圆的定义及标准方程典题导入[例1] (2012·山东高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )A.x 28+y 22=1B.x 212+y 26=1C.x 216+y 24=1D.x 220+y 25=1 [自主解答] ∵椭圆的离心率为32, ∴c a =a 2-b 2a =32,∴a =2b . 故椭圆方程为x 2+4y 2=4b 2.∵双曲线x 2-y 2=1的渐近线方程为x ±y =0,∴渐近线x ±y =0与椭圆x 2+4y 2=4b 2在第一象限的交点为⎝⎛⎭⎪⎫255b ,255b ,∴由圆锥曲线的对称性得四边形在第一象限部分的面积为255b ×255b =4,∴b 2=5,即a 2=4b 2=20.故椭圆C 的方程为x 220+y 25=1.[答案] D本例中条件“双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16”变为“此椭圆的长轴长等于圆x 2+y 2-2x -15=0的半径”问题不变.解:∵x 2+y 2-2x -15=0,∴(x -1)2+y 2=16,∴r =4,即2a =4,a =2. 又c a =32,∴c =3, ∴b =1,故椭圆方程为x 24+y 2=1.由题悟法1.解决与到焦点的距离有关的问题时,首先要考虑用定义来解题. 2.椭圆方程的求法多用待定系数法,其步骤为: (1)定标准;(2)设方程;(3)找关系;(4)得方程.3.当椭圆焦点位置不明确时,可设为x 2m +y 2n=1(m >0,n >0,m ≠n ),也可设为Ax 2+By 2=1(A >0,B>0,且A ≠B ).以题试法1.(2012·张家界模拟)椭圆x 24+y 2=1的两个焦点为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=( )A.72 B.32C. 3D .4解析:选A 因为a 2=4,b 2=1,所以a =2,b =1,c = 3.不妨设F 1为左焦点,P 在x 轴上方,则F 1(-3,0),设P (-3,m )(m >0),则-324+m 2=1,解得m =12,所以|PF 1|=12根据椭圆定义|PF 1|+|PF 2|=2a ,所以|PF 2|=2a -|PF 1|=22-12=72.椭圆的几何性质典题导入[例2] (1)F 1、F 2是椭圆x 24+y 2=1的左右焦点,点P 在椭圆上运动.则1PF u u u r ·2PF u u u r的最大值是( )A .-2B .1C .2D .4(2)(2012·江西高考)椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1、F 2,若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14 B.55C.12D.5-2[自主解答] (1)设P (x ,y ),依题意得F 1(-3,0),F 2(3,0),1PF u u u r ·2PF u u u r=(-3-x )(3-x )+y 2=x 2+y 2-3=34x 2-2.∵0≤x 2≤4,∴-2≤34x 2-2≤1.∴1PF u u u r ·2PF u u u r 的最大值是1.(2)由题意知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,且三者成等比数列,则|F 1F 2|2=|AF 1|·|F 1B |,即4c 2=a 2-c 2,a 2=5c 2,所以e 2=15,故e =55.[答案] (1)B (2)B由题悟法1.求椭圆的离心率实质上是建立a ,b ,c 中任意两者或三者之间的关系,利用e =c a或e = 1-⎝ ⎛⎭⎪⎫b a2去整体求解.2.解决与椭圆几何性质有关的问题时:一是要注意定义的应用;二是要注意数形结合;三是要注意-a ≤x ≤a ,-b ≤y ≤b ,0<e <1等几何性质在建立不等关系或求最值时的关键作用.以题试法2.(1)(2012·西工大附中适应性训练)已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点的坐标为(3,0),|AM u u u u r ,|=1,且PM u u u r ,·AM u u u u r ,=0,则|PM u u u r,|的最小值为________.(2)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆的离心率的取值范围是________.解析:(1)由|AM u u u u r,|=1,A (3,0)知点M 在以A (3,0)为圆心,1为半径的圆上运动,∵PM u u u r ,·AM u u u u r,=0且P 在椭圆上运动,∴PM ⊥AM ,∴PM 为⊙A 的切线,连接PA (如图),则|PM u u u r ,|= |PA u u u r |2-|AM u u u u r |2= |PA u u u r |2-1,∴当|PA u u u r ,|min=a -c =5-3=2时,|PM u u u r,|min = 3.(2)设P ⎝ ⎛⎭⎪⎫a 2c ,y ,线段F 1P 的中点Q 的坐标为⎝ ⎛⎭⎪⎫b 22c ,y 2,则直线F 1P 的斜率kF 1P =cy a 2+c 2,当直线QF 2的斜率存在时,设直线QF 2的斜率为kQF 2=cy b 2-2c2(b 2-2c 2≠0)由kF 1P ·kQF 2=-1得y 2=a 2+c 22c 2-b2c2≥0,但注意到b 2-2c 2≠0,故2c 2-b 2>0,即3c 2-a 2>0,即e 2>13,故33<e <1.当直线QF 2的斜率不存在时,y =0,F 2为线段PF 1的中点.由a 2c -c =2c 得e =33,综上得33≤e <1.答案:(1) 3 (2)⎣⎢⎡⎭⎪⎫33,1直线与椭圆的位置关系典题导入[例3] (2012·安徽高考)如图,F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.[自主解答] (1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(2)法一:a 2=4c 2,b 2=3c 2, 直线AB 的方程为y =-3(x -c ).将其代入椭圆方程3x 2+4y 2=12c 2,得B ⎝ ⎛⎭⎪⎫85c ,-335c ,所以|AB |=1+3·⎪⎪⎪⎪⎪⎪85c -0=165c .由S △AF 1B =12|AF 1|·|AB |sin ∠F 1AB =12a ·165c ·32=235a 2=403,解得a =10,b =5 3.法二:设|AB |=t .因为|AF 2|=a ,所以|BF 2|=t -a .由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t , 再由余弦定理(3a -t )2=a 2+t 2-2at cos 60°可得,t =85a .由S △AF 1B =12a ·85a ·32=235a 2=403知, a =10,b =5 3.由题悟法1.直线与椭圆位置关系的判断将直线的方程和椭圆的方程联立,通过讨论此方程组的实数解的组数来确定,即用消元后的关于x (或y )的一元二次方程的判断式Δ的符号来确定:当Δ>0时,直线和椭圆相交;当Δ=0时,直线和椭圆相切;当Δ<0时,直线和椭圆相离.2.直线和椭圆相交的弦长公式 |AB |=1+k2[x 1+x 22-4x 1x 2]或|AB |=⎝ ⎛⎭⎪⎫1+1k 2[y 1+y22-4y 1y 2].3.直线与椭圆相交时的常见处理方法当直线与椭圆相交时:涉及弦长问题,常用“根与系数的关系”,设而不求计算弦长;涉及到求平行弦中点的轨迹、求过定点的弦中点的轨迹和求被定点平分的弦所在的直线方程问题,常用“点差法”设而不求,将动点的坐标、弦所在直线的斜率、弦的中点坐标联系起来,相互转化.以题试法3.(2012·潍坊模拟)已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值. 解:(1)设椭圆的半焦距为c ,圆心O 到直线l 的距离d =61+1=3,∴b =5-3= 2.由题意知⎩⎪⎨⎪⎧c a =33,a 2=b 2+c 2,b =2,∴a 2=3,b 2=2.∴椭圆E 的方程为y 23+x 22=1.(2)证明:设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程得⎩⎪⎨⎪⎧y =k x -x 0+y 0,y 23+x22=1,消去y 得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0, ∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0, 整理得(2-x 20)k 2+2kx 0y 0-(y 20-3)=0.设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2,则k 1·k 2=-y 20-32-x 20,∵点P 在圆O 上,∴x 20+y 20=5,∴k 1·k 2=-5-x 20-32-x 20=-1.故两条切线的斜率之积为常数-1.1.(2012·海淀模拟)2<m <6是方程x 2m -2+y 26-m=1表示椭圆的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分与不必要条件解析:选B 若x 2m -2+y 26-m=1表示椭圆,则有⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,∴2<m <6且m ≠4,故2<m <6是x 2m -2+y 26-m=1表示椭圆的必要不充分条件.2.已知椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是( )A.x 216+y 27=1 B.x 216+y 27=1或x 27+y 216=1 C.x 216+y 225=1D.x 216+y 225=1或x 225+y 216=1 解析:选B ∵a =4,e =34,∴c =3.∴b 2=a 2-c 2=16-9=7.∴椭圆的标准方程是x 216+y 27=1或x 27+y 216=1.3.(2012·新课标全国卷)设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12 B.23 C.34D.45解析:选C 由题意可得|PF 2|=|F 1F 2|,∴2⎝ ⎛⎭⎪⎫32a -c =2c ,∴3a =4c ,∴e =34. 4.(2013·沈阳二中月考)已知椭圆x 24+y 2=1的两焦点为F 1,F 2,点M 在椭圆上,1MF u u u u r ,·2MF u u u u r,=0,则M 到y 轴的距离为( )A.233B.263C.33D. 3解析:选B 由条件知,点M 在以线段F 1F 2为直径的圆上,该圆的方程是x 2+y 2=3,即y 2=3-x 2,代入椭圆方程得x 24+3-x 2=1,解得x 2=83,则|x |=263,即点M 到y 轴的距离为263.5.(2012·安徽师大附中模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)的两顶点为A (a,0),B (0,b ),且左焦点为F ,△FAB 是以角B 为直角的直角三角形,则椭圆的离心率e 为( )A.3-12B.5-12 C.1+54D.3+14解析:选B 由题意得a 2+b 2+a 2=(a +c )2,即c 2+ac -a 2=0,即e 2+e -1=0,解得e =-1±52.又e >0,故所求的椭圆的离心率为5-12. 6.一个椭圆中心在原点,焦点F 1,F 2在x 轴上,P (2, 3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆方程为( )A.x 28+y 26=1B.x 216+y 26=1 C.x 28+y 24=1D.x 216+y 24=1解析:选A 设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点(2, 3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2·2c ,c a =12,又c 2=a 2-b 2,联立得a 2=8,b 2=6.7.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且椭圆上一点到椭圆的两个焦点的距离之和为12,则椭圆G 的方程为________________.解析:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),根据椭圆定义知2a =12,即a =6,由c a =32,得c =33,b 2=a 2-c 2=36-27=9,故所求椭圆方程为x 236+y 29=1.答案:x 236+y 29=18.椭圆x 216+y 24=1的两焦点F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=________.解析:易得|PF 1|=b 2a =44=1.又点P 在椭圆上,于是有|PF 1|+|PF 2|=8,|PF 2|=8-|PF 1|=7.答案:79.(2012·哈尔滨模拟)设F 1,F 2分别是椭圆x 225+y 216=1的左,右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.解析:∵P 在椭圆上,∴|PF 1|+|PF 2|=2a =10,∴|PM |+|PF 1|=|PM |+10-|PF 2|=10+|PM |-|PF 2|≤10+|MF 2|=10+5=15, 当P ,M ,F 2三点共线时取等号. 答案:1510.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l 与椭圆G交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△PAB 的面积. 解:(1)由已知得c =22,c a =63.解得a =23, 又b 2=a 2-c 2=4.所以椭圆G 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,x 212+y24=1得4x 2+6mx +3m 2-12=0.①设A 、B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2),AB 中点为E (x 0,y 0), 则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m4.因为AB 是等腰△PAB 的底边,所以PE ⊥AB . 所以PE 的斜率k =2-m4-3+3m 4=-1.解得m =2.此时方程①为4x 2+12x =0.解得x 1=-3,x 2=0. 所以y 1=-1,y 2=2.所以|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322,所以△PAB 的面积S =12|AB |·d =92.率为63,F 为11.(2013·济南模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心椭圆的右焦点,M ,N 两点在椭圆C 上,且MF u u u u r ,=λFN u u u r,(λ>0),定点A (-4,0).(1)求证:当λ=1时,MN u u u u r ,⊥AF u u u r,;(2)若当λ=1时,有AM u u u u r ,·AN u u u r ,=1063,求椭圆C 的方程.解:(1)证明:设M (x 1,y 1),N (x 2,y 2),F (c,0),则MF u u u u r ,=(c -x 1,-y 1),FN u u u r,=(x 2-c ,y 2).当λ=1时,MF u u u u r ,=FN u u u r,,∴-y 1=y 2,x 1+x 2=2c .∵M ,N 两点在椭圆C 上,∴x 21=a 2⎝ ⎛⎭⎪⎫1-y 21b 2,x 22=a 2⎝ ⎛⎭⎪⎫1-y 22b 2, ∴x 21=x 22.若x 1=-x 2,则x 1+x 2=0≠2c (舍去), ∴x 1=x 2,∴MN u u u u r ,=(0,2y 2),AF u u u r ,=(c +4,0),∴MN u u u u r ,·AF u u u r,=0,∴MN u u u u r ,⊥AF u u u r ,.(2)当λ=1时,由(1)知x 1=x 2=c ,∴M ⎝ ⎛⎭⎪⎫c ,b 2a ,N ⎝⎛⎭⎪⎫c ,-b 2a , ∴AM u u u u r ,=⎝ ⎛⎭⎪⎫c +4,b 2a ,AN u u u r ,=⎝⎛⎭⎪⎫c +4,-b 2a ,∴AM u u u u r ,·AN u u u r ,=(c +4)2-b 4a2=1063.(*)∵c a =63, ∴a 2=32c 2,b 2=c 22,代入(*)式得56c 2+8c +16=1063,∴c =2或c =-585(舍去).∴a 2=6,b 2=2,∴椭圆C 的方程为x 26+y 22=1.12.(2012·陕西高考)已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB u u u r =2OA u u u r,求直线AB 的方程.解:(1)由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2),其离心率为32,故a 2-4a =32,解得a =4,故椭圆C 2的方程为y 216+x 24=1.(2)法一:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由OB u u u r =2OA u u u r及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上,因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k2.将y =kx 代入y 216+x 24=1中,得(4+k 2)x 2=16,所以x 2B =164+k2.又由OB u u u r =2OA u u u r ,得x 2B =4x 2A ,即164+k2=161+4k2,解得k =±1.故直线AB 的方程为y =x 或y =-x . 法二:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由OB u u u r =2OA u u u r及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上,因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2.由OB u u u r =2OA u u u r ,得x 2B =161+4k 2,y 2B =16k 21+4k2.将x 2B ,y 2B 代入y 216+x 24=1中,得4+k 21+4k2=1,即4+k 2=1+4k 2,解得k =±1.故直线AB 的方程为y =x 或y =-x .1.(2012·长春模拟)以O 为中心,F 1,F 2为两个焦点的椭圆上存在一点M ,满足|1MF u u u u r,|=2|MO u u u u r ,|=2|2MF u u u u r,|,则该椭圆的离心率为( )A.33B.23C.63D.255解析:选C 不妨设F 1为椭圆的左焦点,F 2为椭圆的右焦点.过点M 作x 轴的垂线,交x 轴于N 点,则N 点坐标为⎝ ⎛⎭⎪⎫c 2,0,并设|1MF u u u u r ,|=2|MO u u u u r ,|=2|2MF u u u u r ,|=2t ,根据勾股定理可知,|1MF u u u u r ,|2-|1NF u u u u r ,|2=|2MF u u u u r ,|2-|2NF u u u u r ,|2,得到c =62t ,而a =3t 2,则e =c a =63.2.(2012·太原模拟)已知椭圆C 1:x 2a 21+y 2b 21=1(a 1>b 1>0)和椭圆C 2:x 2a 22+y 2b 22=1(a 2>b 2>0)的焦点相同且a 1>a 2.给出如下四个结论:①椭圆C 1和椭圆C 2一定没有公共点;②a 21-a 22=b 21-b 22;③a 1a 2>b 1b 2;④a 1-a 2<b 1-b 2. 其中,所有正确结论的序号是( ) A .②③④ B .①③④ C .①②④D .①②③解析:选C 由已知条件可得a 21-b 21=a 22-b 22,可得a 21-a 22=b 21-b 22,而a 1>a 2,可知两椭圆无公共点,即①正确;又a 21-a 22=b 21-b 22,知②正确;由a 21-b 21=a 22-b 22,可得a 21+b 22=b 21+a 22,则a 1b 2,a 2b 1的大小关系不确定,a 1a 2>b 1b 2不正确,即③不正确;∵a 1>b 1>0,a 2>b 2>0,∴a 1+a 2>b 1+b 2>0,而又由(a 1+a 2)(a 1-a 2)=(b 1+b 2)(b 1-b 2),可得a 1-a 2<b 1-b 2,即④正确.综上可得,正确的结论序号为①②④.3.(2012·西城模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点是F (1,0),且离心率为12.(1)求椭圆C 的方程;(2)设经过点F 的直线交椭圆C 于M ,N 两点,线段MN 的垂直平分线交y 轴于点P (0,y 0),求y 0的取值范围.解:(1)设椭圆C 的半焦距是c .依题意,得c =1. 因为椭圆C 的离心率为12,所以a =2c =2,b 2=a 2-c 2=3. 故椭圆C 的方程为x 24+y 23=1.(2)当MN ⊥x 轴时,显然y 0=0.当MN 与x 轴不垂直时,可设直线MN 的方程为y =k (x -1)(k ≠0).由⎩⎪⎨⎪⎧y =k x -1,x 24+y23=1,消去y 并整理得(3+4k 2)x 2-8k 2x +4(k 2-3)=0.设M (x 1,y 1),N (x 2,y 2),线段MN 的中点为Q (x 3,y 3), 则x 1+x 2=8k 23+4k 2.所以x 3=x 1+x 22=4k 23+4k 2,y 3=k (x 3-1)=-3k 3+4k2. 线段MN 的垂直平分线的方程为y +3k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x -4k 23+4k 2. 在上述方程中,令x =0,得y 0=k 3+4k 2=13k+4k. 当k <0时,3k +4k ≤-43;当k >0时,3k+4k ≥4 3. 所以-312≤y 0<0或0<y 0≤312. 综上,y 0的取值范围是⎣⎢⎡⎦⎥⎤-312,312.1.(2012·广东高考)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)根据椭圆的左焦点为F 1(-1,0),知a 2-b 2=1,又根据点P (0,1)在椭圆上,知b =1,所以a =2,所以椭圆C 1的方程为x 22+y 2=1.(2)因为直线l 与椭圆C 1和抛物线C 2都相切,所以其斜率存在且不为0,设直线l 的方程为y =kx +m (k ≠0),代入椭圆方程得x 22+(kx +m )2=1,即⎝ ⎛⎭⎪⎫12+k 2x 2+2kmx +m 2-1=0,由题可知此方程有唯一解,此时Δ=4k 2m 2-4⎝ ⎛⎭⎪⎫12+k 2(m 2-1)=0,即m 2=2k 2+1. ①把y =kx +m (k ≠0)代入抛物线方程得k4y 2-y +m =0,由题可知此方程有唯一解,此时Δ=1-mk =0,即mk =1. ②联立①②得⎩⎪⎨⎪⎧m 2=2k 2+1,mk =1,解得k 2=12,所以⎩⎪⎨⎪⎧k =22,m =2,或⎩⎪⎨⎪⎧k =-22,m =-2,所以直线l 的方程为y =22x +2或y =-22x - 2. 2.(2012·湖南高考)在直角坐标系xOy 中,已知中心在原点,离心率为12的椭圆E 的一个焦点为圆C :x 2+y 2-4x +2=0 的圆心.(1)求椭圆E 的方程;(2)设P 是椭圆E 上一点,过P 作两条斜率之积为12的直线l 1,l 2,当直线l 1,l 2都与圆C 相切时,求P 的坐标.解:(1)由x 2+y 2-4x +2=0得(x -2)2+y 2=2,故圆C 的圆心为点(2,0).从而可设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),其焦距为2c .由题设知c =2,e =c a =12.所以a =2c =4,b 2=a 2-c 2=12.故椭圆E 的方程为x 216+y 212=1.(2)设点P 的坐标为(x 0,y 0),l 1,l 2的斜率分别为k 1,k 2,则l 1,l 2的方程分别为l 1:y -y 0=k 1(x -x 0),l 2:y -y 0=k 2(x -x 0),且k 1k 2=12.由l 1与圆C :(x -2)2+y 2=2相切得|2k 1+y 0-k 1x 0|k 21+1=2,即[(2-x 0)2-2]k 21+2(2-x 0)y 0k 1+y 20-2=0.同理可得[(2-x 0)2-2]k 22+2(2-x 0)y 0k 2+y 20-2=0.从而k 1,k 2是方程[(2-x 0)2-2]k 2+2(2-x 0)y 0k +y 20-2=0的两个实根,于是⎩⎪⎨⎪⎧2-x 02-2≠0,Δ=8[2-x 02+y 20-2]>0,①且k 1k 2=y 20-22-x 02-2=12. 由⎩⎪⎨⎪⎧x 2016+y 212=1,y 2-22-x 02-2=12,得5x 20-8x 0-36=0.解得x 0=-2或x 0=185.由x 0=-2得y 0=±3;由x 0=185得y 0=±575,它们均满足①式.故点P 的坐标为(-2,3),或(-2,-3),或⎝ ⎛⎭⎪⎫185,575或⎝⎛⎭⎪⎫185,-575.3.(2012·河南模拟)已知中心在原点O ,焦点在x 轴上,离心率为32的椭圆过点⎝⎛⎭⎪⎫ 2,22. (1)求椭圆的方程;(2)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,满足直线OP ,PQ ,OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围.解:(1)由题意可设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则⎩⎪⎨⎪⎧a 2-b 2a =32,2a 2+12b 2=1,故⎩⎪⎨⎪⎧a =2,b =1.所以椭圆的方程为x 24+y 2=1.(2)由题意可知,直线l 的斜率存在且不为0,故可设直线l 的方程为y =kx +m (m ≠0),P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y 得(1+4k 2)x 2+8kmx +4(m 2-1)=0,则Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0, 且x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-11+4k 2. 因为直线OP ,PQ ,OQ 的斜率依次成等比数列, 又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2,所以y 1x 1·y 2x 2=k 2x 1x 2+km x 1+x 2+m 2x 1x 2=k 2,即-8k 2m 21+4k 2+m 2=0,又m ≠0,所以k 2=14,即k =±12. 由于直线OP ,OQ 的斜率存在,且Δ>0,得0<m 2<2且m 2≠1. 设点O 到直线l 的距离为d , 则S △OPQ =12d |PQ |=12·1+k2x 1-x 22·|m |1+k 2=12|x 1-x 2||m |=m 22-m2,又0<m 2<2且m 2≠1,所以S △OPQ 的取值范围为(0,1).。

(完整版)椭圆的基本知识

(完整版)椭圆的基本知识

椭圆的基本知识一、基本知识点知识点一:椭圆的定义:椭圆三定义,简称和比积1、定义1:(和)到两定点的距离之和为定值的点的轨迹叫做椭圆。

这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距,定值为_______________________ .2、定义2:(比)到定点和定直线的距离之比是定值的点的轨迹叫做椭圆。

定点为焦点,定直线为准线,定值为。

3、定义3:(积)到两定点连线的斜率之积为定值的点的轨迹是椭圆.两定点是长轴端点,定值为m = e 2 —1(-1< m <0).知识点二:椭圆的标准方程1、当焦点在%轴上时,椭圆的标准方程为,其中C2 = a2 -b2。

2、当焦点在y轴上时,椭圆的标准方程为,其中c 2 = a 2 - b 2.知识点三:椭圆的参数方程兰+2=1(a > b >0)的参数方程为___________________ 。

a2 b2知识点四:椭圆的一些重要性质(1)对称性:椭圆的标准方程是以%轴、y轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心就是椭圆的中心。

(2)范围:椭圆上所有的点都位于直线x = ±a和y= ±b所围成的矩形内,所以椭圆上点的坐标满足凶 < a,| y| < b。

(3)顶点:①椭圆的对称轴与椭圆的交点为椭圆的顶点;②椭圆土+二=1(a > b >0)与坐标轴的四个顶点分别为________________________________ 。

a2 b2③椭圆的长轴和短轴.2c c(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作e = 一二—。

2a a②因为a>c>0,所以e的取值范围是0V e<1.(5)焦半径:椭圆上任一点P(x ,y)到焦点的连线段叫做焦半径.对于焦点在x轴上的椭圆,左焦半径00r - a + ex,右焦半径r = a - ex .10 20(6)准线方程:x二士一c(7)焦准距:焦点到准线的距离,用p表示,记作p二一。

《椭圆》知识点归纳和题型归类

《椭圆》知识点归纳和题型归类

《椭圆》知识点归纳和题型归类椭圆的定义和性质- 椭圆是指平面上到两个定点的距离之和等于常数的所有点的轨迹。

- 椭圆有两个焦点和一个长轴和短轴。

- 长轴是通过两个焦点并且垂直于短轴的线段。

- 短轴是通过两个焦点并且垂直于长轴的线段。

- 椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆形。

椭圆的方程和图形特征- 椭圆的标准方程为 (x/a)^2 + (y/b)^2 = 1,其中a和b分别为长轴和短轴的一半。

- 椭圆的图形特征是:中心在原点(0, 0),x轴和y轴为对称轴。

- 椭圆在x轴和y轴上的截距分别为±a和±b。

- 椭圆的焦点坐标为(±c, 0),其中c为焦距,c^2 = a^2 - b^2。

椭圆的常见题型1. 确定椭圆的方程- 已知椭圆的焦点坐标和离心率,求椭圆的方程。

- 已知椭圆的端点坐标和离心率,求椭圆的方程。

- 已知椭圆的顶点坐标和离心率,求椭圆的方程。

2. 求椭圆的参数- 已知椭圆的方程,求椭圆的长轴、短轴、焦点和离心率。

3. 确定点的位置关系- 判断给定点是否在椭圆上。

- 判断给定点是否在椭圆内部或外部。

4. 求椭圆上的点的坐标- 已知椭圆的方程和角度,求椭圆上的点的坐标。

- 已知椭圆的方程和弧长,求椭圆上的点的坐标。

5. 求椭圆的切线和法线- 已知椭圆上的点,求椭圆的切线和法线。

6. 求椭圆的周长和面积- 已知椭圆的长轴和短轴,求椭圆的周长和面积。

以上是关于椭圆的知识点归纳和常见题型归类,希望对您有所帮助。

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义:1、椭圆的定义:平面与两个定点F i 、F 2的距离之和等于定长(大于 IRF 2I )的点的轨迹叫做椭圆。

这两个定点 F i 、F 2叫做椭圆的 焦点,两焦点的距离 厅汀2|叫做椭圆的 焦距。

对椭圆定义的几点说明:(1) “在平面”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2) “两个定点”的设定不同于圆的定义中的“一个定点” ,学习时注意区分;(3) 作为到这两个定点的距离的和的 “常数”,必须满足大于| F i F 2|这个条件。

若不然, 当这个“常数”等于| F i F 2|时,我们得到的是线段 F 1F 2;当这个“常数”小于| F i F 2|时,无 轨迹。

这两种特殊情况,同学们必须注意。

(4) 下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个 对称中心,我们把它的两条对称轴与椭圆的交点记为 A i , A 2, B i , B 2,于是我们易得| A i A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F i |、|B i F 2|+|B i F i |也等于那个“常数”。

同学们想一想 其中的道理。

(5)中心在原点、焦点分别在 x 轴上,y 轴上的椭圆标准方程分别为:2 2 2 2i (a b 0),77i (a b 0),a ba b2 2 2相同点是:形状相同、大小相同;都有 a > b > 0, a c b 。

不同点是:两种椭圆相对于坐标系的位置不同, 它们的焦点坐标也不同(第一个椭圆的 焦点坐标为(一c , 0)和(c , 0),第二个椭圆的焦点坐标为(0,— c )和(0, c )。

椭圆的 焦点在x 轴上 标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上标准方程中y 2项的分母较大。

(二)椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标; 一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只2 2要X 2 每 i (a b 0)的有关性质中横坐标x 和纵坐标y 互换,就可以得出 a b2 2^2 —2 i (a b 0)的有关性质。

椭圆中6种常考基础题型(解析版)--2024高考数学常考题型精华版

椭圆中6种常考基础题型(解析版)--2024高考数学常考题型精华版

第19讲椭圆中6种常考基础题型【考点分析】考点一:椭圆的通径过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为22b a.考点二:椭圆中有关三角形的周长问题图一图二如图一所示:21F PF ∆的周长为c a 22+如图一所示:ABC ∆的周长为a 4考点三:椭圆上一点的有关最值①椭圆上到中心距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点.②椭圆上到焦点距离最大和最小的点是长轴的两个端点.距离的最大值为a c +,距离的最小值为a c -.考点四:椭圆的离心率椭圆的离心率()10<<=e a c e ,222222221ab a b a ac e -=-==考点五:椭圆焦点三角形的面积为2tan2S b θ=⋅(θ为焦距对应的张角)考点六:中点弦问题(点差法)中点弦问题:若椭圆与直线l 交于AB 两点,M 为AB 中点,且AB k 与OM k 斜率存在时,则22ab K k OM AB -=⋅;(焦点在x 轴上时),当焦点在y 轴上时,22ba K k OMAB -=⋅若AB 过椭圆的中心,P 为椭圆上异于AB 任意一点,22ab K k PB P A -=⋅(焦点在x 轴上时),当焦点在y 轴上时,22ba K k PBP A -=⋅【题型目录】题型一:椭圆的定义有关题型题型二:椭圆的标准方程题型三:椭圆的离心率题型四:椭圆中焦点三角形面积题型五:椭圆中中点弦问题题型六:椭圆中的最值问题【典型例题】题型一:椭圆的定义有关题型【例1】已知△ABC 的周长为10,且顶点()2,0B -,()2,0C ,则顶点A 的轨迹方程是()A .221(0)95x y y +=≠B .221(0)59x y y +=≠C .221(0)64x y y +=≠D .221(0)46x y y +=≠【答案】A【解析】∵△ABC 的周长为10,顶点()2,0B -,()2,0C ,∴=4BC ,+=10464AB AC -=>,∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵3,2a c ==,∴2945b =-=,又因为,,A B C 三点构成三角形,∴椭圆的方程是()221095x y y +=≠.故选:A .【例2】如果点(),M x y =M 的轨迹是().A .不存在B .椭圆C .线段D .双曲线【答案】B=(),M x y 到点(0,3),(0,3)-的距离之和为3(3)6--=<M 的轨迹是椭圆,故选:B【例3】设1F ,2F 分别为椭圆2214x y +=的左、右焦点,点P 在椭圆上,且1223PF PF += ,则12F PF ∠=()A .6πB .4πC .3πD .2π【答案】D【解析】因32221==+PO PF PF ,所以213OF OF PO ===,所以︒=∠9021PF F 【例4】1F 、2F 是椭圆22:1259x yC +=的左、右焦点,点P 在椭圆C 上,1||6PF =,过1F 作12F PF ∠的角平分线的垂线,垂足为M ,则||OM 的长为()A .1B .2C .3D .4【答案】C【详解】如图,直线1F M 与直线2PF 相交于点N ,由于PM 是12F PF ∠的平分线,且PM ⊥1F N ,所以三角形1F PN 是等腰三角形,所以1PF PN =,点M 为1F N 中点,因为O 为12F F 的中点,所以OM 是三角形12F F N 的中位线,所以212OM F N =,其中212112226F N PF PF PF a PF =-=-=-,因61=PF ,所以62=N F ,所以3=OM ,所以选C【例5】已知椭圆22:12516x y C +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=()A .10B .15C .20D .25【答案】C【解析】设MN 的中点为G ,椭圆的左右焦点分别为21,F F ,则G 为MN 的中点,1F 为MA 的中点,所以12GF AN =,同理22GF BN =,所以()204221==+=+a GF GF BN AN【例6】方程x 2+ky 2=2表示焦点在x 轴上的椭圆的一个充分但不必要条件是()A .0k >B .12k <<C .1k >D .01k <<【答案】B【解析】方程x 2+ky 2=2可变形为:22122x y k+=,表示焦点在x 轴上的椭圆,则有:202k<<,解得k 1>.易知当12k <<时,k 1>,当k 1>时未必有12k <<,所以12k <<是k 1>的充分但不必要条件.故选B.【例7】点1F ,2F 为椭圆C :22143x y+=的两个焦点,点P 为椭圆C 内部的动点,则12PF F △周长的取值范围为()A .()2,6B .[)4,6C .()4,6D .[)4,8【答案】C【解析】由椭圆C :22143x y +=,得:2,1a c ==,当点P 在椭圆上时,12PF F △周长最大,为226a c +=,当点P 在x 轴上时,去最小值,为44c =,又因点P 为椭圆C 内部的动点,所以12PF F △周长的取值范围为()4,6.故选:C.【例8】椭圆22193x y +=的左、右焦点分别为1F ,2F ,点P 在椭圆上,如果1PF 的中点在y 轴上,那么1||PF 是2||PF 的()A .7倍B .6倍C .5倍D .4倍【答案】C【解析】由题意知:212F F PF ⊥,所以13322===a b PF ,因6221==+a PF PF ,所以51=PF ,所以521=PF PF【题型专练】1.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是()A .2213620x y +=(x≠0)B .2212036x y +=(x≠0)C .221620x y +=(x≠0)D .221206x y +=(x≠0)【答案】B【解析】∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC =8,AB +AC =20﹣8=12,∵12>8∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵a =6,c =4∴b 2=20,∴椭圆的方程是()22102036x y x +=≠故选B .2.焦点在x 轴上的椭圆222125x y a +=焦距为8,两个焦点为12,F F ,弦AB 过点1F ,则2ABF ∆的周长为()A .20B .28C .D .【答案】D【解析】由题意知252=b ,因为222c b a +=,所以16252+=a ,解得41=a ,所以2ABF ∆的周长为4144=a ,故选:D3.(2021新高考1卷)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A.13B.12C.9D.6【答案】C【解析】因2121262MF MF a MF MF ⋅≥==+,所以921≤⋅MF MF 4.已知椭圆22192x y +=的左、右焦点分别为12,F F ,点M 在椭圆上,若1||4MF =,则12F MF ∠=()A .30°B .60︒C .120︒D .150︒【答案】C 【解析】【分析】根据椭圆方程求得12F F =1226MF MF a +==,求得1||4MF =,所以22MF =,在12F MF △中,再由余弦定理列出方程,求得121cos 2F MF ∠=-,即可求解.【详解】解:由题意,椭圆方程22192x y +=,可得3,a b c ===所以焦点12(F F ,又由椭圆的定义,可得1226MF MF a +==,因为1||4MF =,所以22MF =,在12F MF △中,由余弦定理可得222121212122cos F F MF MF MF MF F MF =+-∠,所以2221242242cos F MF =+-⨯⨯∠,解得121cos 2F MF ∠=-,又由12(0,180)F MF ∠∈,所以12120F MF ∠= .故选:C .5.设1F ,2F 为椭圆22194x y +=的两个焦点,点P 在椭圆上,若线段1PF 的中点在y 轴上,则21PF PF 的值为()A .513B .45C .27D .49【答案】C 【解析】【分析】由中位线定理以及椭圆方程得出243PF =,再由椭圆的定义得出1PF ,再求21PF PF 的值.【详解】由椭圆的定义可知,1226PF PF a +==,由中位线定理可知,212PF F F ⊥,将x =22194x y+=中,解得43y =±,即243PF =,1414633PF =-=,故214323147PF PF =⨯=故选:C6.已知曲线22:1C mx ny +=A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n >>,则C 是椭圆,其焦点在x 轴上C .若0m n =>,则CD .若0m =,0n >,则C 是两条直线【答案】AD【解析】由题意得:11122=+ny m x ,所以当0>>n m ,则nm 110<<,所以表示焦点在y 轴上的椭圆,所以A 对,B 错,当0>=n m 时,曲线C 为ny x 122=+,所以表示圆,半径为n 1,当0,0>=n m 时,曲线C 为ny 12=,所以n y 1±=,所以表示两条直线,故选:AD7.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是()AB.CD.【答案】C 【解析】【分析】设线段2PF 的中点为M ,连接1PF 、1MF ,利用圆的几何性质可得出12F M PF ⊥,求得11222PF F F c ===,利用椭圆的定义可求得2PF ,可判断出12PF F △的形状,即可得解.【详解】在椭圆22143x y +=中,2a =,b =,1c =,设线段2PF 的中点为M ,连接1PF 、1MF ,则12F F 为圆O 的一条直径,则12F M PF ⊥,因为M 为2PF 的中点,则11222PF F F c ===,则2122PF a PF =-=,所以,12PF F △为等边三角形,由图可知,直线2PF 的倾斜角为3π.故选:C.8.在平面直角坐标系xOy 中,若△ABC 的顶点(0,2)A -和(0,2)C ,顶点B 在椭圆181222=+xy 上,则sin sin sin A C B +的值是()AB .2C .D .4【答案】A 【解析】【分析】由题设易知,A C 为椭圆的两个焦点,结合椭圆定义及焦点三角形性质有||||2AB CB a +=,||2AC c =,最后应用正弦定理的边角关系即可求目标式的值.【详解】由题设知:,A C 为椭圆的两个焦点,而B 在椭圆上,所以||||2AB CB a +==||24AC c ==,由正弦定理边角关系知:|||||sin sin sin |A A CB CB A BC +=+故选:A9.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .6【答案】C【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .10.已知椭圆22143x y +=的左、右焦点分别为1F 、2F ,点P 在椭圆上且在x 轴的下方,若线段2PF 的中点在以原点O 为圆心,2OF 为半径的圆上,则直线2PF 的倾斜角为()A .6πB .4πC .3πD .23π【答案】C 【解析】【分析】设线段2PF 的中点为M ,连接1PF 、1MF ,利用圆的几何性质可得出12F M PF ⊥,求得11222PF F F c ===,利用椭圆的定义可求得2PF ,可判断出12PF F △的形状,即可得解.【详解】在椭圆22143x y +=中,2a =,b =,1c =,设线段2PF 的中点为M ,连接1PF 、1MF ,则12F F 为圆O 的一条直径,则12F M PF ⊥,因为M 为2PF 的中点,则11222PF F F c ===,则2122PF a PF =-=,所以,12PF F △为等边三角形,由图可知,直线2PF 的倾斜角为3π.故选:C.11.已知A 为椭圆2212516x y +=上一点,F 为椭圆一焦点,AF 的中点为P ,O 为坐标原点,若2OP =则AF =()A .8B .6C .4D .2【答案】B【解析】不妨设椭圆2212516x y +=左焦点为F ,右焦点为E ,因为AE 的中点为P ,EF 的中点为O ,所以24AE OP ==,又由210AE AF a +==,可得1046AF =-=.故选:B .12.已知椭圆C :22194x y +=的左右焦点分别是12,F F ,过2F 的直线与椭圆C 交于A ,B 两点,且118AF BF +=,则AB =()A .4B .6C .8D .10【答案】A【解析】由椭圆22:194x y C +=知:a =3,由椭圆的定义得:121226,26AF AF a BF BF a +==+==,所以11412AF BF AB a ++==,又因为118AF BF +=,所以AB 4=,故选:A题型二:椭圆的标准方程【例1】已知椭圆E :()222210x y a b a b+=>>右焦点为),其上下顶点分别为1C ,2C ,点()1,0A ,12AC AC ⊥,则该椭圆的标准方程为()A .22134x y +=B .22143x y +=C .2213y x +=D .2213x y +=【例2】已知椭圆C :()222210x y a b a b+=>>,椭圆C 的一顶点为A ,两个焦点为1F ,2F ,12AF F △焦距为2,过1F ,且垂直于2AF 的直线与椭圆C 交于D ,E 两点,则ADE ∆的周长是()A .B .8C .D .16【例3】如图,已知椭圆C 的中心为原点O ,(F -为椭圆C 的左焦点,P 为椭圆C 上一点,满足||||OP OF =,且||4PF =,则椭圆C 的方程为()A .221255x y +=B .2214525x y +=C .2213010x y +=D .2213616x y +=故选:D【例4】阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆C 的对称轴为坐标轴,焦点在y 轴上,且椭圆C 的离心率为53,面积为12π,则椭圆C 的方程为()A .221188x y +=B .22198y x +=C .221188y x +=D .22184y x +=【例5】过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【例6】已知12,F F 分别是椭圆221(0)x y a b a b +=>>的左、右焦点,A ,B 分别为椭圆的上,下顶点,过椭圆的右焦点2F 的直线交椭圆于C ,D 两点,1FCD 的周长为8,且直线AC ,BC 的斜率之积为14-,则椭圆的方程为()A .2212x y +=B .22132x y +=C .2214x y +=D .22143x y +=【例7】已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过F 2的直线与C 交于A ,B 两点.若22||3||AF F B =,15||4||AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【题型专练】1.已知1F 、2F 是椭圆C :22221x ya b+=()0a b >>的左、右焦点,A 为椭圆的上顶点,B 在x 轴上,20AB AF ⋅= 且122AF AB AF =+.若坐标原点O 到直线AB 的距离为3,则椭圆C 的方程为()A .2214x y +=B .22143x y +=C .221169x y +=D .2211612x y +=1612故选:D2.已知椭圆()2222:10x y C a b a b +=>>,其左、右焦点分别为1F ,2F ,离心率为12,点P 为该椭圆上一点,且满足12π3F PF ∠=,若12F PF △的内切圆的面积为π,则该椭圆的方程为()A .221129x y +=B .2211612x y +=C .2212418x y +=D .2213224x y +=3.已知椭圆的两个焦点为1(F ,2F ,M 是椭圆上一点,若12MF MF ⊥,128MF MF ⋅=,则该椭圆的方程是()A .22172x y +=B .22127x y +=C .22194x y +=D .22149x y +=4.已知1(1,0)F -,2(1,0)F 是椭圆C 的两个焦点,过2F 且垂直于x 轴的直线交椭圆C 于A ,B 两点,3AB =,则椭圆C 的标准方程为()A .2213y x +=B .2213x y +=C .22143x y +=D .22132x y +=方法二:由题意,设椭圆C 的标准方程为所以a =2或12a =-(舍去),所以2a 故椭圆C 的标准方程为22143x y +=.故选:C.5.已知椭圆C :()222210x y a b a b+=>>的右焦点为),右顶点为A ,O 为坐标原点,过OA 的中点且与坐标轴垂直的直线交椭圆C 于M ,N 两点,若四边形OMAN 是正方形,则C 的方程为()A .2213x y +=B .22153x y +=C .22175x y +=D.22197x y +=6.已知椭圆22:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -=与椭圆C 相交于不同的两点,A B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为()A .2213x y +=B .22142x y +=C .22153x y +=D .22163x y +=7.阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近”的方法得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积.若椭圆C :()222210x y a b a b+=>>的左,右焦点分别是1F ,2F ,P 是C 上一点,213PF PF =,123F PF π∠=,C 的面积为12π,则C 的标准方程为()A .221364x y +=B .22112x y +=C .221169x y +=D .22143x y +=8.已知椭圆C :22=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为M ,N ,过F 2的直线l 交C 于A ,B 两点(异于M 、N ),△AF 1B 的周长为AM 与AN 的斜率之积为-23,则椭圆C的标准方程为()A .22=134y x +B .22=134x y +C .22=13x y +D .22=132x y +9.已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线交于C 与A ,B ,若222AF F B =,1AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22198x y +=1F 题型三:椭圆的离心率【例1】已知1F ,2F 为椭圆22221x ya b+=(a >b >0)的左、右焦点,以原点O 为圆心,半焦距为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为A ,B ,若1ABF 为等边三角形,则椭圆的离心率为()A1B 1C .12D 又1290F AF ∠=,∴21,3AF c AF c ==,∴32c c a +=,可得2331c a ==+故选:B .【例2】已知椭圆C :()21024b b+=<<的左焦点为1F ,直线()0y kx k =≠与C 交于点M ,N .若1120MF N ︒∠=,1183MF NF ⋅=,则椭圆C 的离心率为()A .12B .22C D 因为O 为12,MN F F 的中点,所以四边形所以12MF NF =,12NF MF =,由椭圆的定义可得:又因为1183MF NF ⋅=,所以1MF 【例3】已知椭圆()22:10x y C a b a b+=>>上存在两点,M N 关于直线3310--=x y 对称,且线段MN 中点的纵坐标为53,则椭圆C 的离心率是()A B C .23D【例4】已知椭圆C :221a b+=()0a b >>的左右焦点分别为1F ,2F ,过点2F 做倾斜角为6π的直线与椭圆相交于A ,B 两点,若222,AF F B =,则椭圆C 的离心率e 为()AB .34C .35D【例5】设B 是椭圆()22:10C a b a b+=>>的上顶点,若C 上的任意一点P 都满足2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎝⎦【例6】12,F F 是椭圆C 的两个焦点,P 是椭圆C 上异于顶点的一点,I 是12PF F △的内切圆圆心,若12PF F △的面积等于12IF F △的面积的3倍,则椭圆C 的离心率为()A .13B .12C .2D .2a b如图,设()()()12,,,0,,0,P m n F c F c ∴-三角形由椭圆的定义可得22l a c=+122222PF F S cn cnr l a c a c∴===++ ,又2121113,2322P I F F F F cn S S c n a =∴⨯⨯=⨯⨯ 故选:B【例7】用平面截圆柱面,当圆柱的轴与α所成角为锐角时,圆柱面的截线是一个椭圆.著名数学家Dandelin 创立的双球实验证明了上述结论.如图所示,将两个大小相同的球嵌入圆柱内,使它们分别位于α的上方和下方,并且与圆柱面和α均相切.给出下列三个结论:①两个球与α的切点是所得椭圆的两个焦点;②椭圆的短轴长与嵌入圆柱的球的直径相等;③当圆柱的轴与α所成的角由小变大时,所得椭圆的离心率也由小变大.其中,所有正确结论的序号是()A .①B .②③C .①②D .①③【答案】C【分析】根据切线长定理可以证明椭圆上任意一点到12,F F 的距离之和为定值,即12,F F 是焦点再运用勾股定理证明短轴长,最后构造三角形,运用三角函数表示离心率即可.【详解】如图:在椭圆上任意一点P 作平行于12O O 的直线,与球1O 交于F 点,与球2O 交于E 点,则PE ,2PF 是过点P 作球2O 的两条公切线,2PE PF =,同理1PF PF =,是椭圆的焦点;①正确;【例8】国家体育场“鸟巢”的钢结构鸟瞰图如图1所示,内外两圈的钢骨架是离心率相同的椭圆;某校体育馆的钢结构与“鸟巢”相同,其平面图如图2所示,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD ,且两切线斜率之积等于34-,则椭圆的离心率为()A .34B .58C .12D .4【题型专练】1.直线:l y =与椭圆2222:1x y C a b+=交于,P Q 两点,F 是椭圆C 的右焦点,且0PF QF ⋅= ,则椭圆的离心率为()A .4-B .3C 1D .2【详解】的左焦点为F ',由对称性可知:四边形PF QF '为平行四边形,PF QF '∴=2PF PF QF a '=+=;2.设12,F F 分别是椭圆221x ya b+=的左、右焦点,若椭圆上存在点A ,使12120F AF ∠=︒且123AF AF =,则椭圆的离心率为()AB C D3.设椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,点M ,N 在C 上(M 位于第-象限),且点M ,N 关于原点O 对称,若1222||,F F MN MF ==,则C 的离心率为()A .4B .37C .12D .377122a +故选:B4.如图,直径为4的球放地面上,球上方有一点光源P ,则球在地面上的投影为以球与地面切点F 为一个焦点的椭圆,已知是12A A 椭圆的长轴,1PA 垂直于地面且与球相切,16PA =,则椭圆的离心率为()A .12B .23C .13D .2【答案】A【分析】根据给定条件,结合球的性质作出截面12PA A ,再结合三角形内切圆性质求出12A A 长即可作答.【详解】依题意,平面12PA A 截球O 得球面大圆,如图,12Rt PA A 是球O 大圆的外切三角形,其中112,PA A A 切圆O 于点E ,F ,=5.如图圆柱12O O 的底面半径为1,母线长为6,以上下底面为大圆的半球在圆柱12O O 内部,现用一垂直于轴截面ABB A ''的平面α去截圆柱12O O ,且与上下两半球相切,求截得的圆锥曲线的离心率为()A .3B .3C D .3半径为1,12O O 平面α与底面夹角余弦值为圆柱的底面半径为1,∴又 椭圆所在平面与圆柱底面所成角余弦值为以G 为原点建立上图所示平面直角坐标系,12,332FH a EF a ∴===,则椭圆标准方程为2222c a b =-=,故离心率故选:A.6.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为坐标平面上一点,且满足120PF PF ⋅=的点P 均在椭圆C 的内部,则椭圆C 的离心率的取值范围为()A .2⎛ ⎝⎭B .10,2⎛⎫⎪⎝⎭C .,12⎛⎫ ⎪ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭7.已知点A ,P ,Q 为椭圆C :()222210x y a b a b +=>>上不重合的三点,且点P ,Q 关于原点对称,若12AP AQ k k ⋅=-,则椭圆C 的离心率为()A .2B C D8.已知椭圆22:1(0)x yC a ba b+=>>的一个焦点为F,椭圆C上存在点P,使得PF OP⊥,则椭圆C的离心率取值范围是()A.2⎛⎝⎦B.,12⎫⎪⎪⎣⎭C.10,2⎛⎤⎥⎝⎦D.1,12⎡⎫⎪⎢⎣⎭故选:B题型四:椭圆中焦点三角形面积【例1】已知椭圆()222210+=>>x y C a b a b:的左、右焦点分别为1F ,2F ,P 为C 上一点,12π3F PF ∠=,若12F PF △的面积为C 的短袖长为()A .3B .4C .5D .6【例2】(2021年全国高考甲卷数学(理)试题)已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.【题型专练】1.设P 为椭圆221259x y +=上一点,1,F 2F 为左右焦点,若1260F PF ︒∠=,则P 点的纵坐标为()A.4B.4±C.4D.4±【答案】B 【分析】根据椭圆中焦点三角形的面积公式2tan 2S b θ=求解即可.【详解】由题知12609tan2F PF S ︒=⨯= 设P 点的纵坐标为h则12421F F h h ⋅⋅=±⇒=.故选:B2.已知()()1200F c F c -,,,是椭圆E 的两个焦点,P 是E 上的一点,若120PF PF ⋅=,且122=△PF F S c ,则E 的离心率为()ABC .2D 3.已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅ 12,则12F PF △的面积为()A.B.CD .9题型五:椭圆中中点弦问题【例1】已知椭圆C :22221x y a b+=(0a b >>)的长轴为4,直线230x y +-=与椭圆C 相交于A 、B 两点,若线段AB 的中点为(1,1)M ,则椭圆C 的方程为()A .221168x y +=B .22142x y +=C .2211612x y +=D .22143x y +=【例2】平行四边形ABCD 内接于椭圆221x y a b +=()0a b >>,椭圆的离心率为2,直线AB 的斜率为1,则直线AD 的斜率为()A .1-4B .1-2C .2D .-1设E 为AD 中点,由于O 为BD 中点,所以因为1133(,),(,)A x y D x y 在椭圆上,【例3】椭圆2294144x y +=内有一点(2,3)P ,过点P 的弦恰好以P 为中点,那么这条弦所在的直线方程为()A .23120x y +-=B .32120x y +-=C .941440x y +-=D .491440x y +-=【例4】已知椭圆E :143+=上有三点A ,B ,C ,线段AB ,BC ,AC 的中点分别为D ,E ,F ,O为坐标原点,直线OD ,OE ,OF 的斜率都存在,分别记为1k ,2k ,3k ,且123k k k ++=直线AB ,BC ,AC 的斜率都存在,分别记为AB k ,BC k ,AC k ,则111AB BC ACk k k ++=()AB .C .-D .1-【例5】离心率为2的椭圆()222210x y a b a b +=>>与直线y kx =的两个交点分别为A ,B ,P 是椭圆不同于A 、B 、P 的一点,且PA 、PB 的倾斜角分别为α,β,若120αβ+=︒,则()cos αβ-=()A .16-B .13-C .13D .16【例6】(2022·全国·高考真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||MA NB MN ==l 的方程为___________.【例7】(2022·全国甲(理)T10)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A.32B.22C.12D.13【答案】A 【解析】【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.【详解】解:(),0A a -,设()11,P x y ,则()11,Q x y -,则1111,AP AQ y y k k x a x a==+-+,故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+,又2211221x y a b +=,则()2221212b a x y a -=,所以()2221222114b a x a x a -=-+,即2214b a =,所以椭圆C的离心率2c e a ===.故选:A.【例8】椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为椭圆的右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的最大值为__________.【答案】63【解析】因为,B A 关于原点对称,所以B 也在椭圆上,设左焦点为F ',根据椭圆的定义:||2AF AF a '+=,因为||BF AF'=,所以||||2AF BF a +=,O 是直角三角形ABF 斜边的中点,所以||2,||2sin ,||2cos AB c AF c BF c αα===,所以2(sin cos )2c a αα+=,所以11sin cos 4c a πααα==+⎛⎫+ ⎪⎝⎭,由于,124ππα⎡⎤∈⎢⎥⎣⎦,所以当12πα=时,离心率的最大值为63,故答案为63.【题型专练】1.已知椭圆()222210x y a b a b+=>>,()0,2P ,()0,2Q -过点P 的直线1l 与椭圆交于A ,B ,过点Q 的直线2l 与椭圆交于C ,D ,且满足12l l ∕∕,设AB 和CD 的中点分别为M ,N ,若四边形PMQN 为矩形,且面积为则该椭圆的离心率为()A .13B .23C.3D .32.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是()A .1324⎡⎤⎢⎥⎣⎦,B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦D .314⎡⎤⎢⎥⎣⎦,【答案】B【详解】由题意,椭圆C :22143x y +=的左、右顶点分别为12(2,0),(2,0)A A -,设00(,)P x y ,则()2200344y x =-,又由1220002200034PA PA y y y k k x a x a x a ⋅=⨯=-+--,可得1234PA PA k k -=,因为[]12,1PA k ∈--,即23421PA k --≤≤-,可得23384PA k ≤≤,所以直线2PA 斜率的取值范围33,84⎡⎤⎢⎥⎣⎦.故选:B3.已知椭圆22:184x y C +=,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M ,则OM 的斜率与直线l 的斜率的乘积()A .1-B .1C .12D .12-【答案】D,进而联立方程求解中点4.点A ,B 在椭圆2212x y +=上,点11,2M ⎛⎫ ⎪⎝⎭,2OA OB OM +=,则直线AB 的方程是()A .12y x =-B .522y x =-+C .32y x =-+D .322y x =-5.已知椭圆143x y +=上有三个点A 、B 、C ,AB ,BC ,AC 的中点分别为D 、E 、F ,AB ,BC ,AC 的斜率都存在且不为0,若34OD OE OF k k k ++=-(O 为坐标原点),则111AB BC ACk k k ++=()A .1B .-1C .34-D .34【答案】A的斜率转化为6.直线:20l x y-=经过椭圆22+1(0)x y a ba b=>>的左焦点F,且与椭圆交于,A B两点,若M为线段AB中点,||||MF OM=,则椭圆的标准方程为()A.22+163x y=B.22+185x y=C.2214x y+=D.22+1129x y=7.已知三角形ABC 的三个顶点都在椭圆:143x y +=上,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,M ,且三条边所在线的斜率分别为1k ,2k ,3k ,且1k ,2k ,3k 均不为0.O 为坐标原点,若直线OD ,OE ,OM 的斜率之和为1.则123111k k k ++=()A .43-B .3-C .1813-D .32-8.已知过点()1,1M 的直线l 与椭圆22184x y +=交于,A B 两点,且满足,AM BM =则直线l 的方程为()A .30x y -+=B .230x y +-=C .2230x y -+=D .230x y +-=题型六:椭圆中的最值问题【例1】已知椭圆()2222:10y x C a b a b+=>>的上、下焦点分别是1F ,2F ,点P 在椭圆C 上则下列结论正确的是()A .12PF PF ⋅有最大值无最小值B .12PF PF ⋅无最大值有最小值C .12PF PF ⋅既有最大值也有最小值D .12PF PF ⋅既无最大值也无最小值【例2】若点O 和点F 分别为椭圆()222210x y a b a b+=>>的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为()A .()a a c +B .()b a c +C .()a a c -D .()b ac -【例3】已知点P 是椭圆4x +2y =1上的动点(点P 不在坐标轴上),12F F 、为椭圆的左,右焦点,O 为坐标原点;若M 是12F PF ∠的角平分线上的一点,且1F M 丄MP ,则丨OM 丨的取值范围为()A .(0B .(0,2)C .(l ,2)D .2)【答案】A=因为1F M MP ⊥,因为PM 为12F PF ∠的角平分线,所以,PN 因为O 为12F F 的中点,所以,212OM F N =设点00(,)P x y ,由已知可得2a =,1b =,c 则022x -<<且00x ≠,且有220114y x =-,()2221000032331PF x y x x =++=+++-【例4】已知点P 在椭圆193x y +=上运动,点Q 在圆22(1)8x y -+=上运动,则PQ 的最小值为()A .2B .2C .24-D .4【答案】D【分析】先求出点P 到圆心(1,0)A 的距离的最小值,然后减去圆的半径可得答案。

专题 椭圆(知识点讲解)- 2023年高考数学一轮复习知识点讲解(解析版)

专题 椭圆(知识点讲解)- 2023年高考数学一轮复习知识点讲解(解析版)

专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;②若,则集合P为线段;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>a c=③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点焦距a c <x 2222=1(a>b>0)x y a b +y 2222=1(a>b>0)y x a b +x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a b x a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±222122()F F c c a b -==离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系.2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【详解】() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1C 17D .17【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解. 【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等.(2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为12,过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =.22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.2222423,3312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 221mx ny +=.(3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b +=,将1y 用1x 表示,整理,再结合离心率公式即可得解. 【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x ax a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a b λλ2222+=1(a>b>0)x y a b22222+=1(a>b>0,0)x y b k a k b k+>++与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .23D .3【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解 【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=. 由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :21(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果. 详解:根据题意,可知2c =,因为24b =,所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()22:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______.【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AF AF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征. 4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 2222e?b b c a=2222+=1(a>b>0)x y a b22 ,1c b e e a a=-=【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案.【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-, 由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆22:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e =(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程;(2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()2210x y a b a b +=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值; (2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程. (1)解:()2222222222234332BF b c a a b a a b ABb a b a +===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M M m y kx m k =+=+,由=OM ON 可得()()222229131m k m k +=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或,求距离. 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;1122()()M x y N x y ,,,,MN 221212(1)[()4]k x x x x ++-MN =2121221(1)[(y )4]y y y k++-(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率; (II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程.【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. (Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得:E 221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C . (1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=. (2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=.()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB =()210210b -=23b =E 221123x y +=当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+, 所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121k m k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。

高二文科椭圆知识点及例题

高二文科椭圆知识点及例题

高二文科椭圆知识点及例题在高二文科数学中,椭圆是一个重要的几何概念。

它是平面上到两个给定点的距离之和等于常数的点的集合。

本文将介绍高二文科椭圆的基本概念、性质和求解方法,并附上一些例题进行实际运用。

一、椭圆的定义和性质1. 定义:椭圆是平面上距离两个固定点F1和F2的距离之和为常数2a(a>0)的点P的集合。

2. 焦点和准线:F1和F2是椭圆的两个焦点,它们距离直线l (过椭圆中心的直线,与椭圆相切于两点)的距离为a。

3. 长轴和短轴:椭圆的长轴是通过两个焦点的直线段,而短轴是通过椭圆中心且与长轴垂直的直线段。

长轴的长度为2a,短轴的长度为2b。

4. 离心率:离心率(e)是描述椭圆形状的一个重要参数,它等于焦距的比值:e=c/a(其中c为焦距的长度)。

离心率小于1时,椭圆是闭合曲线;等于1时,椭圆是一条抛物线;大于1时,椭圆是一条双曲线。

二、椭圆的标准方程椭圆的标准方程是 x^2/a^2 + y^2/b^2 = 1(a>b>0),其中a和b分别为椭圆的长轴和短轴的长度。

此方程表示了椭圆上所有点的坐标。

三、椭圆的方程变化通过适当的平移和旋转,椭圆的标准方程可以转化为其他形式的方程。

例如,通过平移平面上的原点到椭圆的中心,可以得到以中心为原点的椭圆标准方程。

通过旋转坐标轴,可以得到以斜线为长轴的椭圆标准方程。

四、椭圆的求解方法1. 椭圆的焦点和准线的求解:已知椭圆的长轴和离心率,可以根据焦点与准线的定义,计算出焦点和准线的坐标。

2. 椭圆的参数方程求解:已知椭圆的标准方程和参数a、b,可以通过参数方程x=a*cosθ 和y=b*sinθ,其中θ为参数,求解出椭圆上每个点的坐标。

3. 椭圆的轨迹和图形绘制:根据椭圆的标准方程,可以通过给定的参数a和b,绘制出椭圆的轨迹和图形。

五、例题解析1. 题目:已知椭圆的长轴长度为12,离心率为1/2,求其焦点的坐标和准线的方程。

解析:根据给定信息,我们可以得到离心率 e=1/2 和长轴长度2a=12,由此可计算出焦距 c=a*e=12*(1/2)=6。

椭圆知识点与题型总结

椭圆知识点与题型总结

椭圆知识点与题型总结一、椭圆的定义和基本概念1. 椭圆的定义:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

这两个点F1和F2称为椭圆的焦点,常数2a称为椭圆的长轴的长度。

与椭圆的长轴垂直的轴称为短轴,其长度为常数2b。

2. 椭圆的标准方程:椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标,a为长轴长度的一半,b为短轴长度的一半。

3. 椭圆的离心率:椭圆的离心率e的定义为e=c/a,其中c为焦距的一半,a为长轴长度的一半。

离心率描述了椭圆形状的“圆”的程度,离心率越接近于0,椭圆越接近于圆。

4. 椭圆的几何性质:椭圆有关于焦点、直径、切线等方面的许多重要性质和定理,例如:椭圆的焦点到椭圆上任意一点的距离之和等于常数2a、椭圆的切线与法线的交点、椭圆的对称性等等。

二、椭圆的常见题型及解题方法1. 椭圆的参数方程题型:求椭圆的参数方程,求参数方程表示的椭圆的离心率、焦点、中心等。

解题方法包括利用椭圆的定义,代入标准方程解参数等。

2. 椭圆的焦点、离心率题型:根据给定的椭圆的标准方程或参数方程,求椭圆的焦点坐标、离心率,或者给定椭圆的离心率和一个焦点,求椭圆的方程。

解题方法包括根据离心率的定义求解,利用椭圆的参数方程计算焦点坐标等。

3. 椭圆的性质题型:求椭圆的长轴、短轴长度,椭圆的离心角、焦点、直径,椭圆的法线、切线方程等。

解题方法包括利用椭圆的定义、性质和以直径为坐标系的轴来简化计算等。

4. 椭圆的切线、法线题型:求椭圆在给定的一点上的切线、法线方程,或者求椭圆上一点的切线、法线方向角。

解题方法包括利用椭圆的参数方程求导数,利用椭圆的切线、法线的定义求解等。

5. 椭圆的面积题型:求椭圆的面积,求椭圆内切矩形的最大面积等。

解题方法包括利用椭圆的定义和参数方程求解,利用微积分求解等。

总之,椭圆是重要的数学对象,涉及到许多重要的数学定理和公式,解椭圆相关的数学题目需要运用代数、几何和微积分等多种知识和技巧。

椭圆 知识点+例题 分类全面

椭圆 知识点+例题 分类全面

点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为______________________.答案 (1)y 220+x 24=1 (2)x 2+32y 2=1解析 (1)方法一 椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知,2a =3-02+-5+42+3-02+-5-42,解得a =2 5.由c 2=a 2-b 2可得b 2=4.∴所求椭圆的标准方程为y 220+x 24=1.(2)设点B 的坐标为(x 0,y 0). ∵x 2+y 2b 2=1, ∴F 1(-1-b 2,0),F 2(1-b 2,0). ∵AF 2⊥x 轴,∴A (1-b 2,b 2). ∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →,∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0). ∴x 0=-531-b 2,y 0=-b 23.∴点B 的坐标为⎝⎛⎭⎫-531-b 2,-b23. 将B ⎝⎛⎭⎫-531-b 2,-b 23代入x 2+y2b2=1, 得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.题型二:椭圆的几何性质[例] (2014·江苏)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值. 解 设椭圆的焦距为2c ,则F 1(-c,0),F 2(c,0). (1)因为B (0,b ),所以BF 2=b 2+c 2=a . 又BF 2=2,故a = 2. 因为点C ⎝⎛⎭⎫43,13在椭圆上, 所以169a 2+19b2=1,解得b 2=1.故所求椭圆的方程为x 22+y 2=1.(2)因为B (0,b ),F 2(c,0)在直线AB 上, 所以直线AB 的方程为x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=bc 2-a 2a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b . 所以点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b c 2-a 2a 2+c 2.又AC 垂直于x 轴,由椭圆的对称性, 可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b a 2-c 2a 2+c 2. 因为直线F 1C 的斜率为ba 2-c 2a 2+c 2-02a 2c a 2+c 2--c =b a 2-c 23a 2c +c 3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b a 2-c 23a 2c +c 3·⎝⎛⎭⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2. 故e 2=15,因此e =55.[巩固](1)已知点F 1,F 2是椭圆x 2+2y 2=2的两个焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是_______.(2)(2013·辽宁)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e =________.答案 (1)2 (2)57解析 (1)设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0), PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1,∴当y 20=1时,|PF 1→+PF 2→|取最小值2.故选C.(2)如图,在△ABF 中,|AB |=10,|AF |=6,且cos ∠ABF =45,设|BF |=m , 由余弦定理,得 62=102+m 2-20m ·45,∴m 2-16m +64=0,∴m =8.因此|BF |=8,AF ⊥BF ,c =|OF |=12|AB |=5.设椭圆右焦点为F ′,连接BF ′,AF ′, 由对称性,得|BF ′|=|AF |=6, ∴2a =|BF |+|BF ′|=14. ∴a =7,因此离心率e =c a =57.题型三:直线与椭圆位置关系的相关问题[例]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为B (0,4),离心率e =55,直线l 交椭圆于M ,N 两点.(1)若直线l 的方程为y =x -4,求弦MN 的长.(2)如果△BMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式. 解 (1)由已知得b =4,且c a =55,即c 2a 2=15,∴a 2-b 2a 2=15,解得a 2=20,∴椭圆方程为x 220+y 216=1.则4x 2+5y 2=80与y =x -4联立, 消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0), 由三角形重心的性质知 BF →=2FQ →,又B (0,4),∴(2,-4)=2(x 0-2,y 0),故得x 0=3,y 0=-2, 即得Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 2120+y 2116=1,x 2220+y 2216=1, 以上两式相减得x 1+x 2x 1-x 220+y 1+y 2y 1-y 216=0,∴k MN =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=-45×6-4=65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.[巩固](2014·课标全国Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b . 解 (1)根据c =a 2-b 2及题设知M (c ,b 2a),b 2a 2c =34,2b 2=3ac . 将b 2=a 2-c 2代入2b 2=3ac , 解得c a =12,ca =-2(舍去).故C 的离心率为12.(2)由题意,得原点O 为F 1F 2的中点,MF 2∥y 轴, 所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故b 2a =4,即b 2=4a .① 由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28,故a =7,b =27.1.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 若x 2m -2+y 26-m=1表示椭圆.夯实基础训练则有⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,∴2<m <6且m ≠4.故“2<m <6”是“x 2m -2+y 26-m=1表示椭圆”的必要不充分条件.2.若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍.则m 的值为__________.解析 将原方程变形为x 2+y 21m=1. 由题意知a 2=1m ,b 2=1,∴a =1m,b =1. ∴1m =2,∴m =14. 3.(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是_______.解析 如图所示,设以(0,6)为圆心,以r 为半径的圆的方程为x 2+(y -6)2=r 2(r >0),与椭圆方程x 210+y 2=1联立得方程组,消掉x 2得9y 2+12y +r 2-46=0.令Δ=122-4×9(r 2-46)=0, 解得r 2=50,即r =5 2.由题意易知P ,Q 两点间的最大距离为r +2=62,故选D.4.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1、F 2,若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为_______.解析 由题意知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,且三者成等比数列,则|F 1F 2|2=|AF 1|·|F 1B |, 即4c 2=a 2-c 2,a 2=5c 2, 所以e 2=15,所以e =55.5.已知圆M :x 2+y 2+2mx -3=0(m <0)的半径为2,椭圆C :x 2a 2+y 23=1的左焦点为F (-c,0),若垂直于x 轴且经过F点的直线l 与圆M 相切,则a 的值为__________.解析 圆M 的方程可化为(x +m )2+y 2=3+m 2, 则由题意得m 2+3=4,即m 2=1(m <0), ∴m =-1,则圆心M 的坐标为(1,0). 由题意知直线l 的方程为x =-c ,又∵直线l 与圆M 相切,∴c =1,∴a 2-3=1,∴a =2.6.(2013·福建)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆C 的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.答案3-1解析 由直线方程为y =3(x +c ),知∠MF 1F 2=60°,又∠MF 1F 2=2∠MF 2F 1,所以∠MF 2F 1=30°,MF 1⊥MF 2,所以|MF 1|=c ,|MF 2|=3c ,所以|MF 1|+|MF 2|=c +3c =2a .即e =c a=3-1. 7.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.答案 12解析 椭圆x 29+y 24=1中,a =3. 如图,设MN 的中点为D ,则|DF 1|+|DF 2|=2a =6.∵D ,F 1,F 2分别为MN ,AM ,BM 的中点,∴|BN |=2|DF 2|,|AN |=2|DF 1|,∴|AN |+|BN |=2(|DF 1|+|DF 2|)=12.8.椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________.答案 (-263,263) 解析 设椭圆上一点P 的坐标为(x ,y ),则F 1P →=(x +3,y ),F 2P →=(x -3,y ).∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0,即x 2-3+y 2<0,①∵y 2=1-x 24,代入①得x 2-3+1-x 24<0, 34x 2<2,∴x 2<83. 解得-263<x <263,∴x ∈(-263,263). 9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其中左焦点为F (-2,0). (1)求椭圆C 的方程;(2)若直线y =x +m 与椭圆C 交于不同的两点A ,B ,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.解 (1)由题意,得⎩⎪⎨⎪⎧ c a =22,c =2,a 2=b 2+c 2.解得⎩⎨⎧a =22,b =2.∴椭圆C 的方程为x 28+y 24=1. (2)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧ x 28+y 24=1,y =x +m .消去y 得,3x 2+4mx +2m 2-8=0, Δ=96-8m 2>0,∴-23<m <23,∵x 0=x 1+x 22=-2m 3,∴y 0=x 0+m =m 3, ∵点M (x 0,y 0)在圆x 2+y 2=1上,∴(-2m 3)2+(m 3)2=1,∴m =±355. 10.(2014·大纲全国)已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为_______________.解析 ∵△AF 1B 的周长为43,∴4a =43,∴a =3,∵离心率为33,∴c =1, ∴b =a 2-c 2=2,∴椭圆C 的方程为x 23+y 22=1. 11.(2013·四川)从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是___________.解析 由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c ,k AB =-b a,由于OP ∥AB , ∴-y 0c =-b a ,y 0=bc a, 把P ⎝⎛⎭⎫-c ,bc a 代入椭圆方程得-c 2a 2+⎝⎛⎭⎫bc a 2b 2=1,而⎝⎛⎭⎫c a 2=12,∴e =c a =22. 12.已知F 1、F 2是椭圆C 的左、右焦点,点P 在椭圆上,且满足|PF 1|=2|PF 2|,∠PF 1F 2=30°,则椭圆的离心率为________.答案 33 解析 在三角形PF 1F 2中,由正弦定理得sin ∠PF 2F 1=1,即∠PF 2F 1=π2. 设|PF 2|=1,则|PF 1|=2,|F 2F 1|= 3.∴离心率e =2c 2a =33. 能力提升训练13.点P 是椭圆x 225+y 216=1上一点,F 1,F 2是椭圆的两个焦点,且△PF 1F 2的内切圆半径为1,当P 在第一象限时,P 点的纵坐标为________.答案 83解析 |PF 1|+|PF 2|=10,|F 1F 2|=6,S △PF 1F 2=12(|PF 1|+|PF 2|+|F 1F 2|)·1=8 =12|F 1F 2|·y P =3y P .所以y P =83. 14.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.答案 15解析 |PF 1|+|PF 2|=10,|PF 1|=10-|PF 2|,|PM |+|PF 1|=10+|PM |-|PF 2|,易知M 点在椭圆外,连接MF 2并延长交椭圆于P 点,此时|PM |-|PF 2|取最大值|MF 2|,故|PM |+|PF 1|的最大值为10+|MF 2|=10+6-32+42=15.15.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,且经过点M (1,32). (1)求椭圆C 的方程;(2)是否存在过点P (2,1)的直线l 1与椭圆C 相交于不同的两点A ,B ,满足P A →·PB →=PM →2?若存在,求出直线l 1的方程;若不存在,请说明理由.解 (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0), 由题意得⎩⎪⎨⎪⎧ 1a 2+94b 2=1,c a =12,a 2=b 2+c 2,解得a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1. (2)假设存在直线l 1且由题意得斜率存在,设满足条件的方程为y =k 1(x -2)+1,代入椭圆C 的方程得,(3+4k 21)x 2-8k 1(2k 1-1)x +16k 21-16k 1-8=0.因为直线l 1与椭圆C 相交于不同的两点A ,B ,设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),所以Δ=[-8k 1(2k 1-1)]2-4(3+4k 21)·(16k 21-16k 1-8)=32(6k 1+3)>0,所以k 1>-12.又x 1+x 2=8k 12k 1-13+4k 21,x 1x 2=16k 21-16k 1-83+4k 21, 因为P A →·PB →=PM →2,即(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=54, 所以(x 1-2)(x 2-2)(1+k 21)=PM →2=54. 即[x 1x 2-2(x 1+x 2)+4](1+k 21)=54. 所以[16k 21-16k 1-83+4k 21-2·8k 12k 1-13+4k 21+4]·(1+k 21) =4+4k 213+4k 21=54,解得k 1=±12. 因为k 1>-12,所以k 1=12. 于是存在直线l 1满足条件,其方程为y =12x .。

高中数学-椭圆-超经典-知识点+典型例题讲解精选全文完整版

高中数学-椭圆-超经典-知识点+典型例题讲解精选全文完整版

可编辑修改精选全文完整版学生姓名 性别 男 年级 高二 学科 数学 授课教师 上课时间2014年12月13日 第( )次课 共( )次课课时: 课时教学课题椭圆教学目标教学重点与难点选修2-1椭圆知识点一:椭圆的定义ﻫ 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.ﻫ 注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形.讲练结合一.椭圆的定义 1.方程()()10222222=++++-y x y x 化简的结果是2.若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是3.已知椭圆22169x y +=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为知识点二:椭圆的标准方程ﻫ 1.当焦点在轴上时,椭圆的标准方程:,其中;2.当焦点在轴上时,椭圆的标准方程:,其中;注意:ﻫ 1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;ﻫ 2.在椭圆的两种标准方程中,都有和;ﻫ 3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。

讲练结合二.利用标准方程确定参数1.若方程25x k -+23y k -=1(1)表示圆,则实数k的取值是 .(2)表示焦点在x 轴上的椭圆,则实数k 的取值范围是 . (3)表示焦点在y 型上的椭圆,则实数k 的取值范围是 . (4)表示椭圆,则实数k的取值范围是 .2.椭圆22425100x y +=的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 ,3.椭圆2214x y m+=的焦距为2,则m = 。

4.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。

讲练结合三.待定系数法求椭圆标准方程1.若椭圆经过点(4,0)-,(0,3)-,则该椭圆的标准方程为 。

椭圆 知识点+例题+练习

椭圆 知识点+例题+练习

教学内容椭圆教学目标掌握椭圆的定义,几何图形、标准方程及其简单几何性质.重点椭圆的定义,几何图形、标准方程及其简单几何性质难点椭圆的定义,几何图形、标准方程及其简单几何性质教学准备教学过程椭圆知识梳理1.椭圆的定义(1)第一定义:平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两个焦点的距离叫做焦距.(2)第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e(0<e<1)的动点的轨迹是椭圆,定点F叫做椭圆的焦点,定直线l叫做焦点F相应的准线,根据椭圆的对称性,椭圆有两个焦点和两条准线.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b教学效果分析教学过程考点二椭圆的几何性质【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.(1)求椭圆离心率的范围;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.规律方法(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a,c的关系.(2)椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式e=ca;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).【训练2】(1)(2013·四川卷改编)从椭圆x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是________.(2)(2012·安徽卷)如图,F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,A教学效果分析教学过程设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.【训练3】(2014·山东省实验中学诊断)设F1,F2分别是椭圆:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1倾斜角为45°的直线l与该椭圆相交于P,Q两点,且|PQ|=43a.(1)求该椭圆的离心率;(2)设点M(0,-1)满足|MP|=|MQ|,求该椭圆的方程.1.椭圆的定义揭示了椭圆的本质属性,正确理解掌握定义是关键,教学效果分析|BF |=8,cos ∠ABF =45,则C 的离心率为________.6.(2014·无锡模拟)设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为________. 7.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 8.(2013·福建卷)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.二、解答题9.已知椭圆的两焦点为F 1(-1,0),F 2(1,0),P 为椭圆上一点,且2|F 1F 2|=|PF 1|+|PF 2|. (1)求此椭圆的方程;(2)若点P 在第二象限,∠F 2F 1P =120°,求△PF 1F 2的面积.10.(2014·绍兴模拟)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0).已知点M ⎝ ⎛⎭⎪⎫3,22在椭圆上,且点M 到两焦点距离之和为4. (1)求椭圆的方程;。

椭圆知识点总结加例题

椭圆知识点总结加例题

椭圆知识点总结加例题一、椭圆的定义和性质1.1 椭圆的定义在平面上,椭圆的定义为:对于给定的两个不重合的实点F1和F2,以及一个实数2a (a>0),定义为到点F1和点F2的距离的和等于2a的点的轨迹,这个轨迹就是椭圆。

1.2 椭圆的几何性质(1)焦点性质:椭圆上到焦点的距离之和是一个常数2a。

(2)长短轴性质:椭圆有两个互相垂直的对称轴,其中较长的轴称为长轴,较短的轴称为短轴。

(3)离心率性质:椭圆的离心率e定义为焦距与长轴的比值,介于0和1之间。

(4)焦点到顶点的连线和短轴的交点为端点的线段称为短轴的焦径。

(5)焦点到顶点的连线和长轴的交点为端点的线段称为长轴的焦径。

1.3 椭圆的方程和标准方程椭圆的一般方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, 其中a、b分别为椭圆长轴和短轴的半轴长。

通过坐标平移和旋转,可以得到椭圆的标准方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, 椭圆长轴在x轴上,且椭圆的中心为原点。

1.4 椭圆的参数方程和极坐标方程椭圆的参数方程:$\begin{cases}x=a\cos \theta\\ y=b\sin \theta\end{cases}$, $\theta \in [0, 2\pi)$。

椭圆的极坐标方程:$r(\theta)=\frac{ab}{\sqrt{b^2\cos^2\theta+a^2\sin^2\theta}}$。

二、椭圆的相关性质2.1 椭圆的离心率和焦距的关系设椭圆的长轴和短轴分别为2a和2b,焦点到几点段为2c,则椭圆的离心率e满足关系:$e=\frac{c}{a}$。

2.2 椭圆的面积和周长椭圆的面积:$S=\pi ab$。

椭圆的周长:$L=4aE(e)$,其中E(e)为第二类完全椭圆积分。

2.3 椭圆的切线和法线对于椭圆上任一点P(x,y),其切线的斜率为$k=-\frac{b^2x}{a^2y}$,切线的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,且斜率为$k$的切线方程为$y-kx+ka^2=0$。

椭圆常考题型汇总及练习

椭圆常考题型汇总及练习

椭圆常考题型汇总及练习 第一部分:复习运用的知识(一)椭圆几何性质椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()012222>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5. 离心率(1)椭圆焦距与长轴的比ace =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆。

6.通径(过椭圆的焦点且垂直于长轴的弦),ab 22.7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.(二)运用的知识点及公式1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =2、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。

椭圆知识点总结附例题

椭圆知识点总结附例题

圆锥曲线与方程 椭 圆知识点一.椭圆及其标准方程1.椭圆的定义:平面内与两定点F 1,F 2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c};这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。

(212F F a =时为线段21F F ,212F F a <无轨迹)。

2.标准方程:222c a b =-①焦点在x 轴上:12222=+by a x (a >b >0); 焦点F (±c ,0)②焦点在y 轴上:12222=+bx a y (a >b >0); 焦点F (0, ±c )注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 二.椭圆的简单几何性质: 1.范围(1)椭圆12222=+by a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b(2)椭圆12222=+bx a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a2.对称性椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 3.顶点(1)椭圆的顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )(2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。

4.离心率(1)我们把椭圆的焦距与长轴长的比22c a ,即ac称为椭圆的离心率, 记作e (10<<e ),22221()b e a a==-c e 0=是圆;e 越接近于0 (e 越小),椭圆就越接近于圆; e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题四:椭圆知识点和常见题型1、定义:平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.即:。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、、、、轴长短轴的长长轴的长焦点、、焦距对称性关于轴、轴、原点对称离心率e越小,椭圆越圆;e越大,椭圆越扁通径过椭圆的焦点且垂直于对称轴的弦称为通径:2b2/a焦半径公式题型一:求椭圆的解析式例1.求椭圆224936x y +=的长轴长、焦距、焦点坐标、顶点坐标;【详解】椭圆224936x y +=化为标准方程22194x y +=,∴3a =,2b =,∴c ==∴椭圆的长轴长为26a =,焦距为2c =焦点坐标为()1F,)2F ,顶点坐标为()13,0A -,()23,0A ,()10,2B -,()20,2B . 例2.求适合下列条件的椭圆标准方程:(1)与椭圆2212x y +=有相同的焦点,且经过点3(1,)2(2)经过(2,(2A B 两点 【详解】(1)椭圆2212x y +=的焦点坐标为(1,0)±,∵椭圆过点3(1,)2,∴24a =,∴2,a b ==,∴椭圆的标准方程为22143x y +=.(2)设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(22A B -两点代入, 得:14213241mnmn⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ⎪⎭⎫ ⎝⎛-2325,∴椭圆方程为2218x y +=.题型二:求轨迹例3.在同一平面直角坐标系xOy 中,圆224x y +=经过伸缩变换:12x x y y ϕ=⎧⎪⎨=''⎪⎩后,得到曲线C .求曲线C 的方程; 【详解】设圆224x y +=上任意一点(),M x y 经过伸缩变换:12x xy y ω=⎧⎪⎨=''⎪⎩得到对应点(),M x y '''.将x x '=,2y y '=代入224x y +=,得()2224x y ''+=,化简得2214x y ''+=.∴曲线C 的方程为2214x y +=;例4.已知ABC 中,角、、A B C 所对的边分别为,>>、、a b c a c b ,且2,2=+=c a b c ,求点C 的轨迹方程. 【详解】由题意,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系, 如图所示,因为2c =,则(1,0),(1,0)A B -,设(,)C x y , 因为2a b c +=,即||||2||CB CA AB +=,4=,整理得所以22143x y +=,因为a b >,即||||CB CA >,所以点C 只能在y 轴的左边,即0x <. 又ABC 的三个顶点不能共线,所以点C 不能在x 轴上,即2x ≠-.所以所求点C 的轨迹方程为221(20)43x y x +=-<<.例5在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点Q 的轨迹方程. 【详解】解:已知在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足,设0(P x ,0)y ,(,)M x y ,0(D x ,0),M 是PD 的中点,0x x ∴=,02y y =,又P 在圆228x y +=上,22008x y ∴+=,即2248x y +=,∴22182x y +=, ∴线段PD 的中点M 的轨迹方程是22182x y +=.题型三:求参数的范围例6:已知椭圆2222:1(0)y x C a b a b+=>>的上下两个焦点分别为12,F F ,过点1F 与y 轴垂直的直线交椭圆C 于 ,M N 两点,2MNF ∆C. (1)求椭圆C 的标准方程;(2)已知O 为坐标原点,直线:l y kx m =+与y 轴交于点P ,与椭圆C 交于,A B 两个不同的点,若存在实数λ,使得4OA OB OP λ+=,求m 的取值范围.由题意2MNF ∆的面积为21212||2b cF F MN c MN a===由已知得2c a =,∴21b =,∴24a =, ∴椭圆C 的标准方程为2214y x +=.(Ⅱ)若0m =,则()0,0P ,由椭圆的对称性得AP PB =,即0OA OB +=, ∴0m =能使4OA OB OP λ+=成立. 若0m ≠,由4OA OB OP λ+=,得144OP OA OB λ=+, 因为A ,B ,P 共线,所以14λ+=,解得3λ=.设()11,A x kx m +,()22,B x kx m +,由22,{440,y kx m x y =++-= 得()2224240k x mkx m +++-=,由已知得()()222244440m k k m ∆=-+->,即2240k m -+>,且12224km x x k -+=+,212244m x x k -=+,由3AP PB =,得123x x -=,即123x x =-,∴()21212340x x x x ++=, ∴()()2222224412044m k m k k-+=++,即222240m k m k +--=.当21m =时,222240m k m k +--=不成立,∴22241m k m -=-,∵2240k m -+>,∴2224401m m m --+>-,即()222401m m m ->-, ∴214m <<,解得21m -<<-或12m <<.综上所述,m 的取值范围为{|21012}m m m m -<<-=<<或或.直线与圆锥曲线的位置关系2.直线与圆锥曲线的位置关系: ⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。

⑵.从代数角度看:设直线L 的方程与圆锥曲线的方程联立得到。

①. 若=0,当圆锥曲线是双曲线时,直线L 与双曲线的渐进线平行或重合;当圆锥曲线是抛物线时,直线L 与抛物线的对称轴平行或重合。

②.若,设。

.时,直线和圆锥曲线相交于不同两点,相交。

b.时,直线和圆锥曲线相切于一点,相切。

c.时,直线和圆锥曲线没有公共点,相离。

题型四:直线与椭圆的位置关系例7已知椭圆C :22221x y a b+=(0a b >>)的左,右焦点分别为()12,0F -,)22,0F ,且经过点)2,1M.(1)求椭圆C 的标准方程;(2)若斜率为2的直线与椭圆C 交于A ,B 两点,且2AB =,求该直线的方程. 【详解】(1)依题意可知2c =根据椭圆的定义可知122MF MF a +=,即24a ==,2a =,b ==所以椭圆C 的标准方程为22142x y +=.(2)设直线AB 的方程为2y x t =+,由222142y x tx y =+⎧⎪⎨+=⎪⎩消去y 并化简得2298240x tx t ++-=,由于直线AB 和椭圆相交,所以()()22849240t t ∆=-⨯⨯->,解得t -<<设()()1122,,,A x y B x y ,则21212824,99t t x x x x -+=-⋅=,所以2AB ==,2=,29=, 两边平方并化简得29910t =,所以t =所以直线AB的方程为2y x =. 例8.已知P 是椭圆2212x y +=上的一动点.求P 到直线220x y ++=距离的最大值.【详解】P 在椭圆2212x y +=上,设,sin )P θθ,则P 到直线220x y ++=距离为d===,其中1sin ,cos 33ϕϕ==,ϕ取锐角. ∴当sin()1θϕ+=时,max d ==弦长问题直线与圆锥曲线相交时的弦长问题是一个难点,化解这个难点的方法是:设而不求,根据根与系数的关系,进行整体代入。

即当直线与圆锥曲线交于点,时,则====题型四:弦长公式例9.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点()3,0,且经过点31,2⎛⎫- ⎪ ⎪⎝⎭,点M 是x 轴上的一点,过点M 的直线l 与椭圆C 交于,A B 两点(点A 在x 轴的上方) (1)求椭圆C 的方程;(2)若2AM MB =,且直线l 与圆224:7O x y +=相切于点N ,求MN 的长.试题解析:(1)由题意知()22222233{114a b c b -==⎛ -⎝⎭+=,即()()24430a a --=, 又2233a b =+>,故224,1a b ==,椭圆C 的方程为2214x y +=.(2)设(),0M m ,直线()()1122:,,,,l x ty m A x y B x y =+, 由2AM MB =,有122y y =-,221ax by +=由()222221{42404x y t y my m x yy m+=⇒+++-==+, 由韦达定理得212122224,44tm m y y y y t t -+=-=++, 由2122122222,2y y y y y y y y =-+=-+=-,则()()221212122y y y y y y ⎡⎤=--+=-+⎣⎦,222242,244m tm t t -⎛⎫=-- ⎪++⎝⎭,化简得()()2222448m t t m -+=-,原点O到直线的距离d =,又直线l 与圆224:7O x y +==22714t m =-,()()22224222448{2116160714mt t m m m t m -+=-⇒--==-,即()()2234740m m -+=,解得243m =,此时243t =,满足0∆>,此时M ⎛⎫ ⎪ ⎪⎝⎭, 在Rt OMN ∆中,21MN ==,所以MN. 例10在平面直角坐标系xOy 中,已知点()2,0B ,()2,0C -,设直线AB ,AC 的斜率分别为1k ,2k ,且1212k k =-,记点A 的轨迹为E . (1)求E 的方程;(2)若直线l :1y x =+与E 相交于P ,Q 两点,求PQ . 【详解】解:(1)设点(,)A x y ,则12y k x =-,2+2y k x =, 因为1212k k =-,则12122+2y y x k x k ⋅=--=, 整理得:22142x y +=,斜率存在,所以2x ≠±,所以E 的方程:22142x y +=,(0y ≠) (2)设11(,)P x y ,22(,)Q x y ,由221142y x x y =+⎧⎪⎨+=⎪⎩,消去y 得到23420x x +-=,则2443(2)400∆=-⨯⨯-=>,所以12124323x x x x ⎧+=-⎪⎪⎨⎪⋅=-⎪⎩,则12PQ x =-=,所以PQ =题型五:中点弦问题例11设椭圆22221(0)x y a b a b +=>>的短轴长为4,离心率为2.设点(2,1)M 是直线l 被椭圆所截得的线段AB 的中点,求直线l 的方程. 【详解】设()()1122,,,A x y B x y ,由(2,1)M 在椭圆内, 过点(2,1)M 的直线与椭圆有两个交点,再由椭圆的对称性可确定直线AB 的斜率一定存在.则()()()()221112121212222241640416x y x x x x y y y y x y ⎧+=⇒-++-⋅+=⎨+=⎩, 整理得:()12121212142y y x x x x y y -+==---+所以斜率12k =-,所以直线l 的方程为240x y +-=. [点评] 关于中点弦问题,一般采用两种方法解决:(1)联立方程组,消元,利用根与系数的关系进行设而不求,从而简化运算. (2)利用“点差法”求解,即若椭圆方程为x 2a 2+y 2b 2=1,直线与椭圆交于点A (x 1,y 1)、B (x 2,y 2),且弦AB 的中点为M (x 0,y 0),则⎝⎛x 21a 2+y 21b 2=1, ①x 22a 2+y 22b 2=1. ②由①-②得a 2(y 21-y 22)+b 2(x 21-x 22)=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0.这样就建立了中点坐标与直线的斜率之间的关系,从而使问题能得以解决. 题型六:定值问题1.与圆锥曲线有关的最值和范围的讨论常用以下方法(1)结合圆锥曲线的定义,利用图形中几何量之间的大小关系;(2)不等式(组)求解法,根据题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式(组),得出参数的变化范围;(3)函数值域求解法,把所讨论的参数作为一个函数,选一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围;(4)构造一个二次函数,利用判别式求解;(5)利用不等式,若能将问题转化为“和为定值”或“积为定值”,则可以用基本不等式求解;例12.(定点问题)已知椭圆()2222:10x y C a b a b +=>>的离心率为3,1(3,)2M -是椭圆C 上的一点.(1)求椭圆C 的方程;(2)过点(4,0)P -作直线l 与椭圆C 交于不同两点A 、B ,A 点关于x 轴的对称点为D ,问直线BD 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.【详解】(1)∵3c a =222a b c =+,∴224a b =,∴222214x y b b +=,将1(3,)2M -代入椭圆C ,∴21b =,∴22:14x C y +=.(2)显然AB 斜率存在,设AB 方程 为:(4)y k x =+,2222221(14)3264404(4)x y k x k x k y k x ⎧+=⎪⇒+++-=⎨⎪=+⎩, 2161920k ∆=->,∴2112k <.设11(,)A x y ,22(,)B x y ,11(,)D x y -,∴21223214k x x k +=-+,212264414k x x k -=+,∵()211121:y y BD y y x x x x ++=--,∴0y =时211112*********()()8x y x y kx x k x x x x y y k x x k -++=+=+++2233222332644322()4()1288128141413232832()814k k k k k k k k k k k k k k kk -+---++===--++-++, ∴直线BD 过定点(1,0)-.例13(定值问题)已知直线220x y 经过椭圆22221(0)x y C a b a b+=>>:的左顶点A 和上顶点D ,设椭圆C 的右顶点为B . (1)求椭圆C 的标准方程和离心率e 的值;(2)设点S 是椭圆上位于x 轴上方的动点,求证:直线AS 与BS 的斜率的乘积为定值.【详解】(1)由已知得,椭圆C 的左顶点为()20A -,,上顶点为()01D ,,2a ∴=,1b =,c =故椭圆C 的方程为2214x y += ,离心率e的值为2; (2)设()00S x y ,,且()20B ,, 220014x y ∴+=,故220014x y =-, 故200020001·2244SA SB y y y k k x x x ===-+--为定值. ∴直线AS 与BS 的斜率的乘积为定值.例14.已知椭圆2222:1(0)x y M a b a b +=>>的离心率为2,且过点.(1)求椭圆M 的方程;(2)若A ,B 分别为椭圆M 的上,下顶点,过点B 且斜率为()0k k >的直线l 交椭圆M 于另一点N (异于椭圆的右顶点),交x 轴于点P ,直线AN 与直线x a =相交于点Q .求证:直线PQ 的斜率为定值. 【详解】(1)设椭圆的焦距为2c,则2c a =①, 22421a b+=②,又222a b c =+③, 由①②③解得28a =,24b =,24c =,所以椭圆M 的标准方程为22184x y +=.(2)证明:易得(0,2)A ,(0,2)B -,直线l 的方程为2y kx =-,因为直线l不过点0),所以k ≠由22228y kx x y =-⎧⎨+=⎩,得()222180k x kx +-=,所以2821N k x k =+,从而222842,2121kk N k k ⎛⎫- ⎪++⎝⎭,2,0P k ⎛⎫⎪⎝⎭, 直线AN 的斜率为2224221218221k k k k k --+=-+,故直线AN 的方程为122y x k =-+. 令22x =,得222,2Q k ⎛⎫-+ ⎪ ⎪⎝⎭,直线PQ 的斜率22222(21)2222222(21)22PQ k k k k k k k -+-+-====---. 所以直线PQ 的斜率为定值22. 题型七:求离心率例15已知椭圆22221(0)x y a b a b+=>>上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且满足AF BF ⊥,设ABF α∠=,且,126ππα⎡⎤∈⎢⎥⎣⎦,求该椭圆的离心率e 的取值范围.【详解】如图所示,设椭圆的左焦点为1F ,连接11,AF BF ,则四边形1AFBF 为矩形,1||2,||||2∴==+=AB FF c AF BF a . ||2sin ,||2ccos αα==AF c BF ,2sin 2cos 2αα∴+=c c a ,11sin cos 24πααα∴==+⎛⎫+ ⎪⎝⎭e . ,126ππα⎡⎤⎢⎥⎣∈⎦,5,4312πππα⎡⎤∴+∈⎢⎥⎣⎦, 326sin ,424πα⎡⎤+⎛⎫∴+∈⎢⎥ ⎪⎝⎭⎣⎦,6132sin ,422πα⎡⎤+⎛⎫∴+∈⎢⎥ ⎪⎝⎭⎣⎦,∴椭圆的离心率631,⎡⎤∈-⎢⎥⎦e .例16:椭圆的两个焦点的坐标分别为F 1(﹣2,0),F 2(2,0),且椭圆经过点(,﹣) (1)求椭圆标准方程.(2)求椭圆长轴长、短轴长、离心率. 解:(1)设椭圆的标准方程为+=1(a >b >0),则2a=+=2,即a=,又∵c=2, ∴b 2=a 2﹣c 2=6, 故椭圆的标准方程为:+=1,(2)由(1)得: 椭圆的长轴长:2,短轴长2, 离心率e==. 例17:已知直线:l y kx m =+与椭圆22221(0)x y a b a b +=>>恰有一个公共点P ,l 与圆222x y a +=相交于,A B 两点.(I )求k 与m 的关系式;(II )点Q 与点P 关于坐标原点O 对称.若当12k =-时,QAB ∆的面积取到最大值2a ,求椭圆的离心率. 【详解】(I )由2222,1y kx m x y ab =+⎧⎪⎨+=⎪⎩,得()()2222222220a k b x a kmx a m b +++-=,则()()()22222222240a kma kb a m b ∆=-+-=化简整理,得2222m a k b =+;(Ⅱ)因点Q 与点P 关于坐标原点O 对称,故QAB ∆的面积是OAB ∆的面积的两倍.所以当12k =-时,OAB ∆的面积取到最大值22a ,此时OA OB ⊥,从而原点O 到直线l 的距离2d =, 又21md k =+22212m ak =+. 再由(I ),得2222212a k b a k +=+,则22221b k a =-. 又12k =-,故2222114b k a =-=,即2238b a =,从而22222518c b e a a ==-=,即104e =.例18椭圆22221(0)x y a b a b+=>>的中心在原点,12,F F 分别为左、右焦点,,A B 分别是椭圆的上顶点和右顶点,P 是椭圆上一点,且1PF x ⊥轴,2//PF AB ,求椭圆的离心率. 【详解】如图所示:()0,A b ,(),0B a ,()2,0F c ,因为1PF x ⊥轴,所以2,b P c a ⎛⎫- ⎪⎝⎭.222,b PF c a ⎛⎫=- ⎪⎝⎭,(),AB a b =-.因为2//PF AB ,所以220b bc a a-+⋅=,即2b c =.所以()222225a b c c c c =+=+=,55c e a ==.题型八:求面积例19.已知椭圆的焦点在x 轴上,长轴长为6,焦距为5P 为椭圆上的一点,1F ,2F 是该椭圆的两个焦点,若1260F PF ∠=︒,求: (1)椭圆的标准方程; (2)12PF F △的面积. 【详解】(1)设椭圆的标准方程为()222210x y a b a b+=>>,因为长轴长为6,焦距为53a =,5c =2b =,故椭圆方程为22194x y +=.(2)由椭圆的定义可得126PF PF +=,由余弦定理可得2212122cos6020PF PF PF PF +-︒=,整理得到22121220PF PF PF PF +-=,221212236PF PF PF PF ++=, 所以12163PF PF =,故121231643sin 6041323PF F S PF PF ⨯︒=⨯==⨯.例20.椭圆()2222:10x y C a b a b +=>>的离心率为3,且过其右焦点F 与长轴垂直的直线被椭圆C 截得的弦长为2.(1)求椭圆C 的方程;(2)设点P 是椭圆C 的一个动点,直线33:l y x =+C 交于,A B 两点,求PAB △面积的最大值.试题解析:解:(1)∵椭圆()2222:10x y C a b a b +=>>的离心率为32,3232c e c a a ∴==∴=,即2243c a =,又椭圆右焦点F 与长轴垂直的直线被椭圆C 截得的弦长为2,22222231141,1a c a b a b ∴+=∴+=,即24b =,又222a b c -=,所以2222344a b c a =+=+,即216a =,所以椭圆C 的方程为:221164x y ∴+=. (2)联立直线直线 33:42l x +与椭圆C 的方程,得223342{1164y x x y=++=,消去y ,整理可得2712520x x +-=,即()()72620x x +-=,解得2x =或267x =-,所以不妨设(26,,7A B ⎛- ⎝⎭,则AB ==, 设过P 点且与直线l 平行的直线L的方程为:y C =+,L 与l 的距离就是P 点到AB 的距离,即PAB △的边AB 边上的高,只要L 与椭圆相切,就有L 与的AB 最大距离,即得最大面积,将4y x C =+代入221164x y +=,消元、整理,可得:22716640x c ++-= 令判别式()()22471664c ∆=-⨯⨯-225628640c =-+⨯=,解得c == L ∴与AB19=,PAB ∴∆面积的最大值为:(1102197=.。

相关文档
最新文档