《杨辉三角》课件1
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈杨辉三角的奥秘及应用
这个表就称为杨辉三角
1
1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
n( n 1) an 2
与数字11的幂的关系
y 11
n
11 1 11 2 11 3 11
0
1
1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
1
1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
(a+b)4= 1a4+4a3b+6a2b2+4ab3+1b4
(a+b)5= 1a5+5a4b+10a3b2+10a2b3+5ab4+1b5 (a+b)6=1a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+1b
6
(a+b)n 展开式的系数就是杨辉三角的第n行
斐波那契数列
换一角度“斜”向看: 斜线的和依次为: 1,1,2,3,5,8,13,21,34,... a1=1,a2=1, a3 =2,…… 1 1 1 有:an=an-1+an-2 (n≥3) 2 3 1 1 5 8 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1
杨辉三角
这样的二项式 系数表,早在我国 南宋数学家杨辉 1261 年所著的《详 解九章算法》一书 里就已经出现了, 在这本书里,记载 着类似下面的表:
杨辉
中国南宋末年数学家、数 学教育家。大约在13世纪 中叶至后半叶活动于苏、 杭一带。字谦光,钱塘 (今杭州)人。其生卒年 及生平无从详考。杨辉的 数学著作甚多有《日用算 法》 《杨辉算法》等
斐波那契数与植物花瓣 3……百合和蝴蝶花
5…蓝花耧斗菜、金凤花、飞燕草、毛茛花
8………………………翠雀花 13………………………金盏和玫瑰
21……………紫宛 34、55、89……………雏菊
兔子繁殖问题
一般而言,兔子在出生两个月后,就有繁殖能力, 一对兔子每个月能生出一对小兔子来。如果所有 兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下: 第一个月小兔子没有繁殖能力,所以还是一对; 两个月后,生下一对小兔民数共有两对; 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖 能力,所以一共是三对;
第2k行的数字特征
所有数的和Hale Waihona Puke Baidu偶数
1
1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
与数字2的幂的关系
y2
n
2
3
1+1 2 1 + 2 +1 1 + 3 + 3 +1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
2 2
1
2
0
1
杨辉三角第n行中n个数之和等于2的n-1次幂。
斜行和水平行之间的关系
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
1
1.三角形的两条斜边上都是 数字1,而其余的数都等于 它肩上的两个数字相加 2.杨辉三角具有对称性(对 称美),与首末两端“等距 离 ”的两个数相等
1 1 3.每一行的第二个数就是这 1 2 1 行的行数 1 3 3 1 1 4 6 4 1 4.所有行的第二个数构成等 1 5 10 10 5 1 差数列 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 5.第n行包含n+1个数 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
第
2
n
行的数字特征
1
1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
n行中的第i个数是斜行i-1中前n-1个数之和
1 1 与二项式展开系数的关系 1 2 1 1 3 3 1 (a+b)1= 1a+1b 1 4 6 4 1 1 5 10 10 5 1 2 2 2 (a+b) = 1a +2ab+1b 1 6 15 20 15 6 1
(a+b)3= 1a3+3a2b+3ab2+1b3
“杨辉三角”出现在杨辉 编著的《详解九章算法》一 书中,且我国北宋数学家贾 宪(约公元11世纪)已经用 过它,这表明我国发现这个 表不晚于11世纪.在欧洲, 这个表被认为是法国数学家 物理学家帕斯卡首先发现的, 他们把这个表叫做帕斯卡三 角.杨辉三角的发现要比欧 洲早500年左右.
杨辉三角基本性质
这个表就称为杨辉三角
1
1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
n( n 1) an 2
与数字11的幂的关系
y 11
n
11 1 11 2 11 3 11
0
1
1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
1
1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
(a+b)4= 1a4+4a3b+6a2b2+4ab3+1b4
(a+b)5= 1a5+5a4b+10a3b2+10a2b3+5ab4+1b5 (a+b)6=1a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+1b
6
(a+b)n 展开式的系数就是杨辉三角的第n行
斐波那契数列
换一角度“斜”向看: 斜线的和依次为: 1,1,2,3,5,8,13,21,34,... a1=1,a2=1, a3 =2,…… 1 1 1 有:an=an-1+an-2 (n≥3) 2 3 1 1 5 8 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1
杨辉三角
这样的二项式 系数表,早在我国 南宋数学家杨辉 1261 年所著的《详 解九章算法》一书 里就已经出现了, 在这本书里,记载 着类似下面的表:
杨辉
中国南宋末年数学家、数 学教育家。大约在13世纪 中叶至后半叶活动于苏、 杭一带。字谦光,钱塘 (今杭州)人。其生卒年 及生平无从详考。杨辉的 数学著作甚多有《日用算 法》 《杨辉算法》等
斐波那契数与植物花瓣 3……百合和蝴蝶花
5…蓝花耧斗菜、金凤花、飞燕草、毛茛花
8………………………翠雀花 13………………………金盏和玫瑰
21……………紫宛 34、55、89……………雏菊
兔子繁殖问题
一般而言,兔子在出生两个月后,就有繁殖能力, 一对兔子每个月能生出一对小兔子来。如果所有 兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下: 第一个月小兔子没有繁殖能力,所以还是一对; 两个月后,生下一对小兔民数共有两对; 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖 能力,所以一共是三对;
第2k行的数字特征
所有数的和Hale Waihona Puke Baidu偶数
1
1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
与数字2的幂的关系
y2
n
2
3
1+1 2 1 + 2 +1 1 + 3 + 3 +1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
2 2
1
2
0
1
杨辉三角第n行中n个数之和等于2的n-1次幂。
斜行和水平行之间的关系
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
1
1.三角形的两条斜边上都是 数字1,而其余的数都等于 它肩上的两个数字相加 2.杨辉三角具有对称性(对 称美),与首末两端“等距 离 ”的两个数相等
1 1 3.每一行的第二个数就是这 1 2 1 行的行数 1 3 3 1 1 4 6 4 1 4.所有行的第二个数构成等 1 5 10 10 5 1 差数列 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 5.第n行包含n+1个数 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
第
2
n
行的数字特征
1
1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 ………………………………
n行中的第i个数是斜行i-1中前n-1个数之和
1 1 与二项式展开系数的关系 1 2 1 1 3 3 1 (a+b)1= 1a+1b 1 4 6 4 1 1 5 10 10 5 1 2 2 2 (a+b) = 1a +2ab+1b 1 6 15 20 15 6 1
(a+b)3= 1a3+3a2b+3ab2+1b3
“杨辉三角”出现在杨辉 编著的《详解九章算法》一 书中,且我国北宋数学家贾 宪(约公元11世纪)已经用 过它,这表明我国发现这个 表不晚于11世纪.在欧洲, 这个表被认为是法国数学家 物理学家帕斯卡首先发现的, 他们把这个表叫做帕斯卡三 角.杨辉三角的发现要比欧 洲早500年左右.
杨辉三角基本性质