概率论与数理统计发展史
数理统计学的发展历程
![数理统计学的发展历程](https://img.taocdn.com/s3/m/284df1130640be1e650e52ea551810a6f524c80f.png)
数理统计学的发展历程数理统计学是伴随着概率论的发展而发展起来的。
19世纪中叶以前已出现了若干重要的工作,如C.F.高斯和A.M.勒让德关于观测数据误差分析和最小二乘法的研究。
到19世纪末期,经过包括K.皮尔森在内的一些学者的努力,这门学科已开始形成。
但数理统计学发展成一门成熟的学科,则是20世纪上半叶的事,它在很大程度上要归功于K.皮尔森、R.A.费希尔等学者的工作。
特别是费希尔的贡献,对这门学科的建立起了决定性的作用。
1946年H.克拉默发表的《统计学数学方法》是第一部严谨且比较系统的数理统计著作,可以把它作为数理统计学进入成熟阶段的标志。
数理统计学的发展大致可分3个时期。
第一时期20 世纪以前。
这个时期又可分成两段,大致上可以把高斯和勒让德关于最小二乘法用于观测数据的误差分析的工作作为分界线,前段属萌芽时期,基本上没有超出描述性统计量的范围。
后一阶段可算作是数理统计学的幼年阶段。
首先,强调了推断的地位,而摆脱了单纯描述的性质。
由于高斯等的工作揭示了正态分布的重要性,学者们普遍认为,在实际问题中遇见的几乎所有的连续变量,都可以满意地用正态分布来刻画。
这种观点使关于正态分布的统计得到了深入的发展,但延缓了非参数统计的发展。
19世纪末,K.皮尔森给出了以他的名字命名的分布,并给出了估计参数的一种方法——矩法估计。
德国的F.赫尔梅特发现了统计上十分重要的x2 分布。
第二时期20世纪初到第二次世界大战结束。
这是数理统计学蓬勃发展达到成熟的时期。
许多重要的基本观点和方法,以及数理统计学的主要分支学科,都是在这个时期建立和发展起来的。
这个时期的成就,包含了至今仍在广泛使用的大多数统计方法。
在其发展中,以英国统计学家、生物学家费希尔为代表的英国学派起了主导作用。
第三时期战后时期。
这一时期中,数理统计学在应用和理论两方面继续获得很大的进展。
【2024版】概率论与数理统计(数理统计的基本概念)
![【2024版】概率论与数理统计(数理统计的基本概念)](https://img.taocdn.com/s3/m/00bc1c4c4a73f242336c1eb91a37f111f0850d74.png)
X
2 n
)
D(
X
2 1
)
D(
X
2 2
)
D(
X
2 n
)
nD (
X
2 i
)
n{ E (
X
4 i
)
[E(
X
2 i
)]2
}
n
x4
1
2
e
x2 2
dx
12
n3
1
2n
23
若 2 ~ 2(n) 分布函数为F ( x)
,0 1 若F ( x) P{ 2 x}
则其解称为 2 分布 的 分位数(临界值)
0.15 00.1.155
000.1..11
N(0,1)
n=10 n=10 nn==33
n增大
000.0..00555
nnn===111
000
-5--55
-4--44
-3-3
-2-2
-1-1
00
11
22
33
444
555
t 分布的密度曲线关于y轴对称 随着n的增大, t 分布的密度曲线越陡
n 时,t 分布趋于标准正态分布N (0,1)
后,还要对数据进行加工和提炼,将样本的有关 信息,利用数学的工具进行加工.
引入统计量的概念
12
定义 设( X1, X 2 ,, X n )为来自总体X的一个样本,
若n元函数f ( X1, X 2 ,, X n )不含任何未知参数,
则
称f
(
X
1
,
X
2
,,
X
n
)为X
1
,
X
2
概率论发展简史范文
![概率论发展简史范文](https://img.taocdn.com/s3/m/0fc7cc6c4a35eefdc8d376eeaeaad1f34693110e.png)
概率论发展简史范文
概率论是构建定量分析的一种重要方法。
其发展历史有着悠久的历史。
古希腊数学家杰佛逊曾提出了首批可能性理论。
17世纪,法国哲学家蒙
德里安提出他的经典概率论理论,认为结果是一种机会,并将其与他的游
戏理论相结合。
18世纪中叶,英国数学家尼古拉斯·科特斯(Nicholas Cotes)提出了概率论的普遍原理,并引入新的概念,描述可能性的数学
表示。
后来,19世纪上半叶,法国数学家安东尼·贝尔提出了概率论的基
本概念,并建立了可能性的基本概念,贝尔的哲学观点使他成为当时最重
要的概率论家。
在19世纪晚期,克莱斯勒,拉斐尔和福特继续发展概率论,引入了抽样理论,以研究大量数据,识别潜在趋势。
20世纪上半叶,统计学家和数学家又进一步发展了概率论。
20世纪
50年代,模拟计算机的发展促进了概率论的发展,使其得以应用于工程
和科学领域。
此外,哥本哈根学派在概率论中引入了新的方法,如参数估计,建模和模拟。
随着计算机技术的进一步发展,概率学得到进一步发展。
60到70年代,概率论得到了更多的应用,如蒙特卡洛技术和信息论方法。
概率论的产生与发展
![概率论的产生与发展](https://img.taocdn.com/s3/m/ca86c48af524ccbff12184ce.png)
8.2 来自保险业的推动
概率论的研究虽来源于对赌博问题的研 究,但促使它迅速发展的直接动力却是来自保 险业的需要。18世纪的欧洲,工商业迅速发展, 一门崭新的事业——保险业开始兴起。保险公 司为了获取丰厚的利润,必须预先确定火灾、 水灾、死亡等意外事件发生的概率,据此来确 定保险价格。例如,人寿保险的价格是这样确 定的,先对各种年龄死亡的人数进行统计,得 到下表(表8-1):
在七年后修改扩充为《机遇原理》发表,这是 早期概率论的专著之一。在这部著作中,他首 次定义了独立事件的乘法原理,给出二项式公 式,并讲座了许多投掷骰子和其他的赌博问题。 对概率论的了展作出了重大推进。书中提出了 概率乘法法则,以及“正态分布”、“正态分 布律”等概念,得到了现在被称为“棣莫弗— 拉普拉斯定理”的特例,这也是“中心极限定 理”的一部分。另外,他于1730年出版的概率 著作《分析杂录》中使用了概率积分
出一次4点时,梅累接到通知,要他马上 陪同国王接见外宾,君命难为,但就此收回各 自的赌注又不甘心,他们只好按照已有的成绩 分取这64个金币。这下可把他难住了。赌友说, 虽然梅累只需再碰上一次6点就赢了,但他若 再碰上两次4点,也就赢了。所以他分得的金 币应是梅累了一半,即64个金币的三分之一。 梅累不同意这样分,他说,即使下次赌友掷出 一个4点,他还可以赢得赌金的二分之一,即 32个;再加上下次他还有一半希望是6点,这 样又可分得16个金币,所以他至少应得64个金 币的四分之三。谁是谁非,争论不休,其结果 也就不得而知了。不过梅累对于此事却
明,针与其中任一直线相交的概率为p=2,当 p=2 l / a ,通过实验得到时,我们就可以用 之来确定圆周率值。蒲丰的这一方法后来发展 为著名的蒙特卡洛方法,对于解决许多繁难的 积分、线性方程和微分方程问题很有成效。 到了19世纪初,概率论的研究开始朝着 系统化的方向发展,其中贡献较大的数学家有: 法国的拉普拉斯、泊松,德国的高斯,俄国的 契比雪夫、马尔科夫等。 拉普拉斯一生写过好几本概率论专著,其 中《分析概率论》(1812年)被誉为古典概率 论系统理论的经典之作,全面总结了前一时期 概率论的研究成果,并予以亚密而又系统的。
概率论与数理统计发展史简要、主要内容概要及其主要应用
![概率论与数理统计发展史简要、主要内容概要及其主要应用](https://img.taocdn.com/s3/m/54d95eb6690203d8ce2f0066f5335a8102d2662c.png)
概率论与数理统计是一门研究随机现象和数据分析的学科。
以下是关于概率论与数理统计发展史、主要内容概要以及其主要应用的简要介绍:发展史概率论与数理统计是数学的重要分支之一,其发展可以追溯到17世纪。
以下是一些重要的里程碑事件:- 1654年,法国贵族帕斯卡尔引入概率论的基本概念。
- 18世纪,瑞士数学家伯努利家族对概率论做出了系统的研究,并提出伯努利试验和大数定律。
- 19世纪,法国数学家拉普拉斯在概率论方面有很多重要贡献,提出了拉普拉斯公式和拉普拉斯逼近定理。
-20世纪,俄国数学家科尔莫哥洛夫发展了现代概率论的基本框架,建立起了测度论和概率测度的数学基础。
主要内容概要概率论研究随机现象的规律性和不确定性,主要包括以下几个方面的内容:1. 概率基本概念:包括样本空间、事件、随机变量等。
2. 概率分布:研究随机变量的取值及其对应的概率。
3. 大数定律:研究随机变量序列的稳定性,指出当样本容量足够大时,随机现象的长期平均值收敛于期望值的概率趋近于1。
4. 中心极限定理:研究多个相互独立的随机变量之和的分布趋近于正态分布的概率。
数理统计是利用样本数据对总体特征进行推断和决策的学科,主要内容如下:1. 抽样方法:研究如何从总体中获取代表性样本的方法。
2. 统计描述:通过统计量对总体特征进行度量和描述。
3. 参数估计:利用样本数据对总体参数进行估计。
4. 假设检验:根据样本数据对关于总体的假设进行推断和判断。
5. 方差分析和回归分析:研究多个变量之间的关系和影响。
主要应用概率论与数理统计具有广泛的应用领域,涉及自然科学、社会科学、工程技术等众多领域,包括但不限于以下方面:1. 金融和风险管理:用于分析投资组合的风险、金融市场波动性的预测和金融产品的定价。
2. 医学和生物统计学:应用于疾病概率分析、药物疗效评估和流行病学研究等。
3. 工程和质量控制:用于产品质量分析、过程改进和可靠性评估。
4. 社会科学和市场调查:用于样本调查、舆论调查和社会现象的分析。
统计学发展历程简述
![统计学发展历程简述](https://img.taocdn.com/s3/m/8bc42c7d11661ed9ad51f01dc281e53a59025164.png)
统计学发展历程简述
统计学是一门通过搜索、整理、分析数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。
其中用到了大量的数学及其它学科的专业知识,它的使用范围几乎覆盖了社会科学和自然科学的各个领域。
据权威统计学史记载,从17世纪开始就有了“政治算术”、“国势学”,即初级的社会统计学,起源于英国、德国。
几乎同时在意大利出现了“赌博数学”,即初级的概率论。
直到19世纪,由于概率论出现了大数定理和误差理论,才形成了初级的数理统计学。
也就是说,社会统计学的形成早于数理统计学两个世纪。
由于社会统计学广泛地用于经济和政治,所以得到各国历届政府的极大重视,并得到系统的发展。
而数理统计在20世纪40年代以后,由于概率论的发展,而得到飞速发展。
经过近400年的变迁,目前世界上已形成社会统计学和数理统计学两大体系。
两体系争论不休,难分伯仲。
概率论简史
![概率论简史](https://img.taocdn.com/s3/m/0632464db307e87101f69619.png)
费马:结束赌局至多还要2局,结果为四种等可能情况:
情况 1 2 3 4
胜者 甲甲 甲乙 乙甲 乙乙
前3种情况,甲获全部赌金,仅第四种情况,乙获全部赌注。所以甲分得赌金的3/4,乙得赌金的1/4。
帕斯卡与费马用各自不同的方法解决了这个问题。虽然他们在解答中没有明确定义概念,但是,他们定义了使某赌徒取胜的机遇,也就是赢得情况数与所有可能情况数的比,这实际上就是概率,所以概率的发展被认为是从帕斯卡与费马开始的。
数理统计的内容
有一类随机事件,它具有两个特发生的可能性相同。具有这两个特点的随机现象叫做"古典概型"。
在客观世界中,存在大量的随机现象,随机现象产生的结果构成了随机事件。如果用变量来描述随机现象的各个结果,就叫做随机变量。
随机变量有有限和无限的区分,一般又根据变量的取值情况分成离散型随机变量和非离散型随机变量。一切可能的取值能够按一定次序一一列举,这样的随机变量叫做离散型随机变量;如果可能的取值充满了一个区间,无法按次序一一列举,这种随机变量就叫做非离散型随机变量。
四、概率论理论基础的建立:
概率论的第一本专著是1713年问世的雅各·贝努利的《推测术》。经过二十多年的艰难研究,贝努利在该树种,表述并证明了著名的"大数定律"。所谓"大数定律",简单地说就是,当实验次数很大时,事件出现的频率与概率有较大偏差的可能性很小。这一定理第一次在单一的概率值与众多现象的统计度量之间建立了演绎关系,构成了从概率论通向更广泛应用领域的桥梁。因此,贝努利被称为概率论的奠基人。
现在,概率论已发展成为一门与实际紧密相连的理论严谨的数学科学。它内容丰富,结论深刻,有别开生面的研究课题,由自己独特的概念和方法,已经成为了近代数学一个有特色的分支。
概率论与数理统计简史
![概率论与数理统计简史](https://img.taocdn.com/s3/m/d0c11d3d580216fc700afd4d.png)
概率论与数理统计简史概率论与数理统计是一门研究随机现象规律的数学分支。
其历史悠久,应用广泛,发展迅速。
概率论起源于十七世纪中叶,当时在误差、人口统计、人寿保险等范筹中,需要整理和研究大量的随机数据资料,这就孕育出一种专门研究大量随机现象的规律性的数学,但当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。
数学家费马向一法国数学家帕斯卡提出下列的问题:“现有两个赌徒相约赌若干局,谁先赢s局就算赢了,当赌徒A赢a局﹝a < s﹞,而赌徒B赢b局﹝b < s﹞时,赌博中止,那赌本应怎样分才合理呢?”于是他们从不同的理由出发,在1654年7月29日给出了正确的解法,而在三年后,即1657年,荷兰的另一数学家惠更斯﹝1629-1695﹞亦用自己的方法解决了这一问题,惠更斯写成了《论赌博中的计算》一书,这就是概率论最早的论著,他们三人提出的解法中,都首先涉及了数学期望﹝mathematical expectation﹞这一概念,并由此奠定了古典概率论的基础。
使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各·伯努利﹝1654-1705﹞。
他的主要贡献是建立了概率论中的第一个极限定理,我们称为“伯努利大数定理”,即“在多次重复试验中,频率有趋稳定的趋势”。
这一定理在他死后的1713年,发表在他的遗著《猜度术》中。
到了1730年,法国数学家棣莫弗出版其著作《分析杂论》,当中包含了著名的“棣莫弗─拉普拉斯定理”。
这就是概率论中第二个基本极限定理的原始初形。
而接着拉普拉斯在1812年出版的《概率的分析理论》中,首先明确地对概率作了古典的定义。
另外,他又和数学家高斯,勒让德等建立了关于“正态分布”及“最小二乘法”的理论。
另一在概率论发展史上的代表人物是法国的泊松。
他推广了伯努利形式下的大数定律,研究得出了一种新的分布,就是泊松分布。
概率论继他们之后,其中心研究课题则集中在推广和改进伯努利大数定律及中心极限定理。
第一章 事件与概率
![第一章 事件与概率](https://img.taocdn.com/s3/m/bd8ee7c649649b6648d74724.png)
事件的和(A∪B) : 事件A和事 件B中至少有一个发生的这 一事件称为事件A和事件B 的和, 记为A∪B. 事件的积(A∩B) : 事件A和事 件B同时发生这一事件称为 事件A和事件B的积, 记为 A∩B. 如果A∩B= Φ, 则称A和B不相 容, 即事件A和B不能同时发 生.
概率论与数理统计
概率论与数理统计
样本空间的分割
设B1, B2, · · · Bn是样本空间Ω中的两两不相 容的一组事件, 即BiBj = Φ, i ≠ j, 且满足 n i =1 Bi =Ω, 则称B1, B2, · · · , Bn 是样本空间Ω 的一 个分割(又称为完备事件群,英文为partition).
Ac
对立事件: A不发生这一 事件称为事件A的对立 事件(或余事件) .
事件A和事件B的差A−B: 事件A发生而事件B不发 生这一事件称为事件A 和事件B的差, 记为A−B.
概率论与数理统计
De Morgan对偶法则
De Morgan对偶法则
上面公式可以推广到n个事件:
概率论与数理统计
什么是概率
概率论与数理统计
随机现象和随机试验
随机现象:自然界中的客观现象, 当人们观测它时, 所得结果不能预先确定, 而仅仅是多种可能结果 之一.
随机试验: 随机现象的实现和对它某特征的观测.
随机试验的要求: 结果至少有两个;每次只得到其 中一种结果且之前不能预知;在相同条件下能重复 试验. 举例说明随机现象和随机试验.
概率论与数理统计
(三)主观概率
人们常谈论种种事件出现机会的大小, 如某人有80% 的可能性办成某事. 而另一人则可能认为仅有50%的 可能性. 即我们常常会拿一个数字去估计这类事件发 生的可能性, 而心目中并不把它与频率挂钩.
概率论与数理统计教学PPT浙大第三版
![概率论与数理统计教学PPT浙大第三版](https://img.taocdn.com/s3/m/dfa3a203e55c3b3567ec102de2bd960591c6d944.png)
数据挖掘
02
通过对大量数据进行挖掘和分析,发现数据间的关联和规律,
为人工智能系统的决策提供依据。
自然语言处理
03
自然语言处理中需要进行文本分类、情感分析等任务,需要概
率论与数理统计的知识进行模型训练和优化。
05
概率论与数理统计的未来发展
概率论与数理统计与其他学科的交叉发展
概率论与数理统计与计算机科学的交叉
概率论与数理统计的应用领域
金融
风险评估、投资组合优化、保 险精算等。
科学研究
物理、生物、化学、医学等领 域的数据分析和实验设计。
工程
可靠性工程、质量控制、系统 优化等。
人工智能和机器学习
数据挖掘、模型训练和评估等 。
概率论与数理统计的发展历程
概率论的起源
可以追溯到17世纪中叶,当时赌 博游戏引发了对概率计算的兴趣。
掌握点估计的概念和方法, 如矩估计和最大似然估计。
区间估计
了解区间估计的概念,掌 握单个和多个参数的区间 估计方法。
估计量的评价准则
了解无偏性、有效性和一 致性等评价估计量的准则。
假设检验
假设检验的基本原理
理解假设检验的基本思想、假设的设定和检验步骤。
单个总体参数的检验
掌握单个总体均值、比例和方差的假设检验方法。
概率论与数理统计教学 ppt浙大第三版
• 概率论与数理统计简介 • 概率论基础 • 数理统计基础 • 概率论与数理统计的应用 • 概率论与数理统计的未来发展
01
概率论与数理统计简介
概率论与数理统计的定义
概率论
研究随机现象的数学学科,通过 概率模型和随机变量描述随机事 件和随机结果。
数理统计
概率论第一章
![概率论第一章](https://img.taocdn.com/s3/m/9d5c97d6240c844769eaee3a.png)
(1) 0 f ( A) 1; (2) f () 1, f () 0; (3) 若A, B互斥, 则 f ( A B) f ( A) f ( B).
推广:(两两互斥事件组) 设 A1 , A2 ,..., An ,... 是样本空间中有限个 或可列个事件,若满足 Ai Aj ,(i j ) ,则称 A1 , A2 ,..., An ,... 是两两互斥的,或称其是两两互斥事件组。 (7) 互逆(对立)事件:若 AB 且A B ,则称A,B为互逆 事件,或称A与B互相对立。逆事件可表示为: A A (8) 完备事件组:设事件组 A1 , A2 ,..., An 为两两互斥事件组,且 A1 A2 ... An ,则称 A1 , A2 ,..., An 是一个完备事件组。 划分 剖分 分解 事件间的运算规律: 与集合运算相似 交换律 结合律 分配律
2. 设 X 是一个随机变量,C 是常数, 则有
E( X C) E( X ) C
3. 设 X 是一个随机变量,C 是常数, 则有
E (CX ) CE ( X )
例如 E ( X ) 5, 则 E ( 3 X ) 3 E ( X ) 3 5 15.
对偶律 自反律
例4 一射手连续向某个目标射击三次,事件 Ai 表示该射手第i次射 击时击中目标,使用文字叙述下列事件:
A1 A2
A2 A1 A2 A3
A1 A2 A3
前两次至少有一次击中目标 第二次没有击中目标 三次射击至少有一次击中目标 三次射击都击中目标
概率论的起源和发展
![概率论的起源和发展](https://img.taocdn.com/s3/m/9cc1d12a5727a5e9856a61a6.png)
概率论发展简史概率思想早在文明早期就己经开始萌芽,但因为它在十八世纪以前的发展极为缓慢,现代数学家和哲学家们往往忽略了那段历史,他们更愿意把1654年帕斯卡和费马之间的七封通信看作是概率论的开端。
这样,概率论的“年龄”就比数学大家族中的其它多数成员小很多。
一般认为,概率论的历史只有短短的三百多年时间。
虽然在早期概率论的发展非常缓慢,但是十八世纪以后,由于社会学,天文学等其它学科的研究需要,使得概率本身的理论得到了迅速发展,它的思想和方法也逐渐受到了其它学科的重视和借鉴。
在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用非常广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。
无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。
概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。
1、古典概率时期(十七世纪)人们对偶然现象(即随机现象)规律性的探求,经历了相当长的历史时期。
最早,人们对事物的偶然性并不重视,他们认为这是“微不足道的”,而只注意那些有一定必然规律的现象。
但是,严酷的现实使人们感到这种观点是错误的,因为火灾、水灾、地震等偶然现象一当发生,便给人们的生命财产带来不可估量的损失。
随之,又认为偶然现象是“可怕的”,“严重的”。
但是,在实践中人们又发现,事物的偶然性不仅有可怕的一面,也有造福于人类的一面,例如久旱后偶遇甘霖,就是大喜之事。
这样,人们开始探讨偶然现象发生的规律性。
直到唯物辩证法产生,才开始从研究偶然性与必然性这一对矛盾的对立统一中加深了认识。
现代人认为概率论的早期研究大约在十六世纪到十七世纪之间。
这段期间,欧洲进入文艺复兴时期,工业革命已开始蔓延。
伴随工业发展提出的误差问题,伴随航海事业发展产生的天气预报问题,伴随商业发展而产生的贸易、股票、彩票和银行、保险公司等,加之人们越来越需要了解的患病率、死亡率、灾害规律等问题,急需创立一门分析研究随机现象的数学学科。
概率论与数理统计发展及应用1
![概率论与数理统计发展及应用1](https://img.taocdn.com/s3/m/3d592b54804d2b160b4ec078.png)
概率论与数理统计发展及应用摘要:通过上半学期概率论与数理统计这门课的学习,我大概了解了基本的概率知识,意识到这门课对于自己以后的发展和创新有着很大的帮助。
本文将根据自己的学习心得以及在网上,图书中查找的资料,从概率论的发展历程,以及其在各重要领域中的应用两个方面来阐述我对本门课的理解。
关键词:概率论,数理统计,发展,主要应用正文一、概率论及数理统计的发展1、历史背景17、18世纪,数学获得了巨大的进步。
数学家们冲破了古希腊的演绎框架,向自然界和社会生活的多方面汲取灵感,数学领域出现了众多崭新的生长点,而后都发展成完整的数学分支。
除了分析学这一大系统之外,概率论就是这一时期"使欧几里得几何相形见绌"的若干重大成就之一。
2、概率论的起源与发展概率论是一门研究随机现象规律的数学分支。
概率论的研究始于意大利文艺复兴时期当时在误差、人口统计、人寿保险等范畴中,需要整理和研究大量的随机数据资料,这就孕育出一种专门研究大量随机现象的规律性的数学,但当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。
当时赌博盛行,而且赌法复杂,赌注量大,一些职业赌徒,为求增加获胜机会,迫切需要计算取胜的思路,研究不输的方法。
十七世纪中叶,帕斯卡和当时一流的数学家费尔马一起,研究了德·美黑提出的关于骰子赌博的问题,这就是概率论的萌芽。
1657年荷兰物理学家惠更斯发表了“论赌博中的计算”的重要论文,提出了数学期望的概念,伯努利把概率论的发展向前推进了一步,于1713年出版了《猜测的艺术》,指出概率是频率的稳定值,他第一次阐明了大数定律的意义。
1718年法国数学家棣莫弗发表了重要著作《机遇原理》,书中叙述了概率乘法公式和复合事件概率的计算方法,并在1733年发现了正态分布密度函数,但他没有把这一结果应用到实际数据上,直到1924年菜被英国统计学家K·皮尔森在一家图书馆中发现。
德国数学家高斯从测量同一物体所引起的误差这一随机现象独立的发现正态分布密度函数方程,并发展了误差理论,提出了最小二乘法。
概率论与数理统计论文
![概率论与数理统计论文](https://img.taocdn.com/s3/m/f7118d1b551810a6f4248614.png)
概率论与数理统计论文学院:航天学院班级:1421201姓名:郭兴达学号:1142120133经过一个学期的的概率论学习,我想将我的感想和收获写在论文中,那么我就先介绍一下概率论的发展简史吧。
一、发展简史统计学是关于数字资料收集、组织、分析与解释的科学.“资料收集"是取得数量或数据的方法.正确的结论只能来源于正确的资料,来源于有代表性的资料。
“资料组织”是以适当形式表现所收集的资料,以得出符合逻辑的结论。
“资料分析”是从给定的量或数,抽出有关问题,从而得出一个简要的综合姓的结果。
达到这个日的的最重要的量(平均数、中位数、极差、标推差,等等).“资料解释"是通过资料分析来作出结论的工作,它通常是通过类似对象的小的集合提供的信息来对有关对象的大的集合形成预测的。
因此,统计学是一门科学,它处理在某种程度上可用数量信息回答的问题,而信息是通过计数和量度得到的.不论我们在生物研究中调查昆虫数、还是在工厂中调查工人数或工时数,统计工作者的职责首先是选择所裔的那类信息,其次是指导适当的有效的收集与加工信息,最后是解释结果。
在解释结果中,特别是在资料不完全的情况下,统计工作者必须运用原理与方法以得出有效的调查结果。
他常常要求面对不肯定的情况做出明智的决策.统计一词有两个显然不同的意义。
当用作如上所指的情况时,它是.一种研究和评价数量资料的科学方法。
当用作复数时,它是“数量资料:一词的同义语。
因此,如果我们说在“世界年鉴”或“美国统计摘要"中有统计,即是说在它们中有数量资料。
这是一个古老的、有普遍意义酌词。
原先,统计着重为政府首脑管理国家政务提供资料.用数字资料表现的这种信息可以上溯到亚里斯多德及他的“国家政务论”。
事实上,“statistics与“state”源于同一词根,就是一个明证.早期大多数文明国家,由于军事的与财政的原因,曾经编制大规模的统计资料,以确定国家的入力与物力.我们在基督教圣经中曾看到诸如此类的户口调查,以及罗马帝国各地普遍编制的税册。
在概率论与数理统计学科发展史上有重要贡献的人和事
![在概率论与数理统计学科发展史上有重要贡献的人和事](https://img.taocdn.com/s3/m/6018eb23591b6bd97f192279168884868662b84d.png)
在概率论与数理统计学科发展史上有重要贡献的人和事概率论与数理统计学的发展史上,有不少古今中外科学家和重要事件对其贡献良多。
从古希腊开始,当时哲学家苏格拉底就提出,客观事务存在确定性和不确定性相结合的原则,为概率概念的形成奠定了基础。
又有哲学家亚里士多德建立了概率实质论的基础,认为具体结果的发生可能是多种情况出现其中的一种,可以有确定的概率。
进而,里尔兹将概率限制为多事件的同时发生的组合,将它们应用到概率的计算方面,写下了很多思考和研究。
英国数学家斯特林从15中取9的实验,探究随机变量之间的关系,为统计学立下汗马功劳。
此后,17世纪英国数学家斯莱德将斯特林定理推广至平均数的概念,为推动概率论和数理统计的发展做出了重要贡献。
18世纪,英国数学家乔治·拉什泰尔将概率论从数学上开展实际应用,他系统地研究了关于随机变量、概率分布、异方差和期望值等概念,为概率理论发展奠定了关键理论基础。
20世纪初,美国科学家杰里·库珀完善了拉什泰尔为基础,提出了期望值对观测值和简单统计量的统计推断,为数理统计学的发展做出了宝贵贡献,使贝叶斯定理、蒙特卡罗方法和粒子滤波等方法的发展受到推动。
20世纪40年代,日本科学家坂田慎治将概率统计理论应用到气象领域,提出了实时气象预报的概率理论,加之发展了统计模式和统计方法;此后,更多的科学家加入了气象概率理论的研究,比如美国科学家弗雷德里克·施莱克利尔,他将统计与概率理论结合起来,为概率论和数理统计学的研究发展做出了积极贡献。
在概率论和数理统计学发展史上,贝叶斯和高斯等人对概率论和数理统计学上的成就,不能被忽视。
他们的作品,不仅普遍被认为是现代概率论和数理统计的典范,还激励了无数后来的科学家,并催生了今天统计分析技术发展如此迅速的趋势。
概率统计发展简史
![概率统计发展简史](https://img.taocdn.com/s3/m/e468fe120b4e767f5acfce2f.png)
一、概率论发展简史1.20世纪以前的概率论概率论起源于博弈问题。
15-16世纪,意大利数学家帕乔利(L.Pacioli,1445-1517)、塔塔利亚(N.Tartaglia,1499-1557)和卡尔丹(G.cardano,1501-1576)的著作中都曾讨论过俩人赌博的赌金分配等概率问题。
1657年,荷兰数学家惠更斯(C.Huygens,1629-1695)发表了《论赌博中的计算》,这是最早的概率论著作。
这些数学家的著述中所出现的第一批概率论概念与定理,标志着概率论的诞生。
而概率论最为一门独立的数学分支,真正的奠基人是雅格布•伯努利(Jacob Bernoulli,1654-1705)。
他在遗著《猜度术》中首次提出了后来以“伯努利定理”著称的极限定理,在概率论发展史上占有重要地位。
伯努利之后,法国数学家棣莫弗(A.de Moivre,1667-1754)把概率论又作了巨大推进,他提出了概率乘法法则,正态分布和正态分布率的概念,并给出了概率论的一些重要结果。
之后法国数学家蒲丰(C.de Buffon,1707-1788)提出了著名的“普丰问题”,引进了几何概率。
另外,拉普拉斯、高斯和泊松(S.D.Poisson,1781-1840)等对概率论做出了进一步奠基性工作。
特别是拉普拉斯,他是严密的、系统的科学概率论的最卓越的创建者,在1812年出版的《概率的分析理论》中,拉普拉斯以强有力的分析工具处理了概率论的基本内容,实现了从组合技巧向分析方法的过渡,使以往零散的结果系统化,开辟了概率论发展的新时期。
泊松则推广了大数定理,提出了著名的泊松分布。
19世纪后期,极限理论的发展称为概率论研究的中心课题,俄国数学家切比雪夫对此做出了重要贡献。
他建立了关于独立随机变量序列的大数定律,推广了棣莫弗—拉普拉斯的极限定理。
切比雪夫的成果后被其学生马尔可夫发扬光大,影响了20世纪概率论发展的进程。
19世纪末,一方面概率论在统计物理等领域的应用提出了对概率论基本概念与原理进行解释的需要,另一方面,科学家们在这一时期发现的一些概率论悖论也揭示出古典概率论中基本概念存在的矛盾与含糊之处。
概率论与数理统计第一章随机事件及其概率
![概率论与数理统计第一章随机事件及其概率](https://img.taocdn.com/s3/m/c7050e6700f69e3143323968011ca300a6c3f648.png)
概率论与数理统计配套教材:苏德矿等,概率论与数理统计,高等教育出版社概率论产生于17世纪,本来是由保险事业发展而产生的,但是来自赌博者的请求,却是数学家们思考概率论问题的源泉1>. 早在1654年,有一个赌徒梅勒向当时的数学家帕斯卡提出了一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢m局就算获胜,全部赌本就归胜者,但是当其中一个人甲赢了a(a<m)局的时候,赌博中止,问赌本应当如何分配才算合理?”概率论在物理、化学、生物、生态、天文、地质、医学等学科中,在控制论、信息论、电子技术、预报、运筹等工程技术中的应用都非常广泛。
序言自然界和社会上发生的现象是多种多样的.在观察、分析、研究各种现象时,通常我们将它们分为两类:(1)可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或者根据它过去的状况,在相同条件下完全可以预言将来的发展,例如,在标准大气压下,纯水加热到100℃必然沸腾;向空中抛掷一颗骰子,骰子必然会下落;在没有外力作用下,物体必然静止或作匀速直线运动;太阳每天必然从东边升起,西边落下等等,称这一类现象为确定性现象或必然现象.第一章随机事件及其概率人们经过长期实践和深入研究之后,发现随机现象在个别试验中,偶然性起着支配作用,呈现出不确定性,但在相同条件下的大量重复试验中,却呈现出某种规律性.随机现象的这种规律性我们称之为统计规律性.概率论与数理统计是研究和揭示随机现象的统计规律性的一门数学学科.(2)在个别试验中呈现不确定的结果,而在相同条件下大量重复试验中呈现规律性的现象称为随机现象(或偶然现象).例如,在相同条件下,抛掷一枚硬币,其结果可能是正面朝上,也可能是反面朝上,并且在每次抛掷之前无法确定抛掷的结果是什么.§1 随机事件在一定条件下,并不总是出现相同结果的现象称为随机现象.§1.1 随机试验与样本空间(1)抛一枚硬币,有可能正面H朝上,也有可能反面T朝上.(2)抛一粒骰子,出现的点数.(3)一只灯泡使用的寿命.在相同条件下可以重复的随机现象称为随机试验(Random experiment).随机试验具有以下特点:(1)可以在相同条件下重复进行;(2)每次试验的可能结果不止一个,并且事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.试验的样本空间的实例E1:抛一枚硬币,观察正面H、反面T出现的情况.则样本空间为Ω1 ={H,T}E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况.则样本空间为Ω 2={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}E3:将一枚硬币抛掷三次,观察正面H出现的次数.则样本空间为Ω 3={0,1,2,3}E7:记录某地一昼夜的最高温度和最低温度.则样本空间为Ω 7={(x,y)|T0≤x≤y≤T1}这里x表示最低温度,y表示最高温度;并设这一地区的温度不会小于T0,不会大于T1.E4:抛一粒骰子,观察出现的点数.则样本空间为Ω 4={1,2,3,4,5,6}E5:记录电话交换台一分钟内接到的呼唤次数.则样本空间为Ω5={0,1,2,3,…}E6:在一批灯泡中任意抽取一只,测试它的寿命.则样本空间为Ω 6={t|t≥0}于是样本空间是由三个样本点构成的集合这个例子表明:试验的样本点与样本空间是根据试验的内容而确定的.例:抛二粒骰子的样本空间为:§1.2 随机事件(random event)(6)空集?? 称为不可能事件(Impossible event ).(5)样本空间Ω称为必然事件(Certain event) .(4)由样本空间中的单个元素组成的子集称为基本事件(Basic events) . 随机现象的某些样本点组成的集合称为随机事件,简称事件.(2)事件A发生当且仅当A中的某个样本点出现.(1)任一事件A是相应样本空间的一个子集.(3)事件可用集合A表示,也可用语言描述.例:对于试验E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况. A2={HHH,TTT}(2)事件A2:“三次出现同一面”,则A1={HHH,HHT,HTH,HTT}(1)事件A1:“第一次出现的是正面H”,则A2={HHT,HTH,THH}(3)事件A3:“出现二次正面”,则例:对于试验E6:在一批灯泡中任意抽取一只,测试它的寿命.B={t|0≤t<1000}事件B:“寿命小于1000小时”,则例:对于试验E7:记录某地一昼夜的最高温度和最低温度.C={(x,y)|y-x=10, T0≤x≤y≤T1}事件C:“最高温度与最低温度相差10度”,则§1.3 事件的关系(Relation of events )设试验E的样本空间为Ω ,而A,B,Ak(k=1,2,…)是Ω的子集.事件是一个集合,因而事件间的关系与事件的运算自然按照集合论中集合之间的关系和集合运算来处理.根据“事件发生”的含义,下面给出事件的关系和运算在概率论中的提法.§1.3.1 包含关系(Inclusion relation)定义:若属于A的样本点必属于B,则称事件B包含事件A,记为A ?? B .即事件A发生必然导致事件B发生.例:抛一粒骰子,事件A=“出现4点”,B=“出现偶数点” .则事件A发生必然导致B发生,所以A ?? B .§1.3.2 相等关系(equivalent relation)定义:若属于A的样本点必属于B,且属于B的样本点必属于A,则称事件A 与事件B相等,记为A= B .A=B ?? A??B且B??A例:抛二粒骰子,A=“二粒骰子点数之和为奇数”,B=“二粒骰子的点数为一奇一偶” .则事件A发生必然导致B发生,而且B发生必然导致A发生,所以A = B .§1.3.3 互不相容(Incompatible events)定义:若事件A与事件B没有相同的样本点,则称事件A与B互不相容 .A与B互不相容,即事件A与事件B不可能同时发生.A与B互不相容?? AB=??§1.4.1 事件的并(Union of events)定义:由事件A与B中所有样本点(相同的样本点只计入一次)组成的新事件称为事件A与B的并.§1.4 事件的运算(operation of events )(1)A∪B={x|x∈A或x∈B}(2)当且仅当A,B中至少有一个发生时,事件A∪B发生.例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” .则A={1,2,3}, B={2,4,6} .所以,A∪B={1,2,3,4,6}§1.4.2 事件的交(Product of events)定义:由事件A与B中公共的样本点组成的新事件称为事件A与B的交.(2)当且仅当A与B同时发生时,事件AB发生.(1)A∩B=AB={x|x∈A且x∈B}例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” .则A={1,2,3}, B={2,4,6} .所以,A∩B={2}§1.4.3 事件的差(Difference of events)定义:由事件A中而不B中的样本点组成的新事件称为事件A对B的差.(1)A-B={x|x∈A且x∈B}(2)当且仅当A发生,而B不发生时,事件A-B发生.例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” . 则A={1,2,3}, B={2,4,6} .所以,A-B={1,3}问:B-A=?§1.4.4 对立事件(Opposite events)定义:由在Ω中而不在A中的样本点组成的新事件称为A的对立事件. (1)事件A与B互为对立事件?? A∪B= Ω且AB=?? .(2)A的对立事件记作B=? .例:抛一粒骰子,事件A=“出现点数不超过3”.则A={1,2,3},而Ω={1,2,3,4,5,6,}.所以, ? ={4,5,6}§1.4.5 事件运算的规则1、交换律(Exchange law) :A??B=B??A,AB=BA2、结合律(Combination law) :(A??B)??C=A??(B??C),(AB)C=A(BC)3、分配律(Distributive law) :(A??B)C=(AC)??(BC),(AB)??C=(A??C)(B??C)4、 7>De Morgan对偶律(Dual law) :(1)第三次未中奖(2)第三次才中奖(3)恰有一次中奖(4)至少有一次中奖(5)不止一次中奖(6)至多中奖二次§2 随机事件的概率定义:随机事件A发生可能性大小的度量(数值),称为A发生的概率,记作P(A).对于一个随机事件(必然事件和不可能事件除外)来说,它在一次试验中可能发生,也可能不发生.我们希望知道某些事件在一次试验中发生的可能性究竟有多大,找到一个合适的数来表示事件在一次试验中发生的可能性大小.§2.1 概率的公理化定义定义:设Ω为一个样本空间,如果对任一事件A,赋予一个实数P(A).如果集合函数P(.)满足下列条件:(1)非负性公理:对于每一事件A,有P(A)≥0;(2)正则性公理:P(Ω)=1;(3)可列可加性公理:设A1,A2,…是互不相容的事件,即对于i≠j,AiAj=??,i,j=1,2,…,则有则称P(A)为事件A的概率(Probability).§2.2 概率的统计定义(The statistic definition of probability)定义:在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数nA称为事件A发生的频数.比值nA/n称为事件A发生的频率,并记为fn(A).频率具有下述性质:(1)0≤fn(A)≤1;(2)fn(Ω )=1;(3)若A1,A2,…,Ak是两两互不相容的事件,则§2.2.1 频率(Frequency)历史上抛掷匀质硬币的若干结果§2.2.2 概率的统计定义0.49981499430000维尼0.50051201224000皮尔逊0.5016601912000皮尔逊0.506920484040蒲丰0.51810612048德.摩尔根正面出现频率m/n正面出现次数m抛掷次数n试验者定义:在相同的条件下,进行了n次重复试验,在这n次试验中,事件A发生了nA次,当试验的次数n很大时,如果事件A发生的频率fn(A)=nA/n稳定在某一数值p的附近摆动,而且随着试验次数的增大,这种摆动的幅度越变越小,则称数值p为事件A在这组条件下发生的概率,记作P(A)=p.这样定义的概率称为统计概率.性质1:P(??)=0.§2.3 概率的性质于是由可列可加性得又由P(??)≥0得, P(??)=0证明: 令An+1=An+2=…=??,则由可列可加性及P(??)=0得即性质3:对于任一事件A,有证明:由A ?? B知B=A∪(B-A),且A(B-A)=??,性质4:设A,B是两个事件,若A ?? B,则有P(B-A)=P(B)-P(A)推论:若A ?? B,则P(B)≥P(A)证明:由P(B)=P(A)+P(B-A)又由概率的定义知P(B-A)≥0因此有P(B)≥P(A)因此由概率的有限可加性得P(B)=P(A)+P(B-A)从而有 P(B-A)=P(B)-P(A)证明:因为A-B=A-AB,且AB ?? A性质6:对于任意两事件A,B,有P(A-B)=P(A)-P(AB)故 P(A-B)=P(A-AB)=P(A)-P(AB)证明:因为A ?? Ω,因此有P(A)≤P(Ω)=1性质5:对于任一事件A,有P(A)≤1证明:因为A∪B=A∪(B-AB),且A(B-AB)=??,AB?? B故 P(A∪ B)=P(A)+P(B-AB)=P(A)+P(B)-P(AB)性质7:对于任意两事件A,B,有P(A∪B)=P(A)+P(B)-P(AB)上式称为概率的加法公式.概率的加法公式可推广到多个事件的情况.设A,B,C是任意三个事件,则有P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(CA)+P(ABC)一般,对于任意n个事件A1,A2,…,An,有§3 古典概型与几何概率具有以上两个特点的随机试验称为古典概型,也称为等可能概型. 在概率论发展的初期主要研究具有如下两个特点的随机试验: (1)试验的样本空间的元素只有有限个;(2)试验中每个基本事件发生的可能性相同.§3.1 古典概型古典概型的计算公式因此,若事件A={ei1}∪{ei2}∪…∪{eik}包含k个基本事件,则有P(A)=k/n.设随机试验的样本空间为Ω ={e1,e2,…,en},由于在试验中每个基本事件发生的可能性相同,即有P({e1})=P({e2})=…=P({en})又由于基本事件是两两不相容的,于是有1=P(Ω )=P({e1}∪{e2}∪…∪{en})=P({e1})+ P({e2})+…+P({en})=nP({ei}) i=1,2,…,n所以 P({ei})=1/n i=1,2,…,n即样本空间有4个样本点,而随机事件A1包含2个样本点,随机事件A2包含3个样本点,故P(A1)=2/4=1/2P(A2)=3/4例:将一枚硬币抛掷二次,设事件A1为“恰有一次出现正面”; 事件A2为“至少有一次出现正面”.求P(A1)和P(A2).解:正面记为H,反面记为T,则随机试验的样本空间为Ω ={HH,HT,TH,TT}而 A1={HT,TH}A2={HH,HT,TH}例: 抛掷一颗匀质骰子,观察出现的点数,求出现的点数是不小于3的偶数的概率.解设A表示出现的点数是大小于3的偶数,则基本事件总数n=6,A包含的基本事件是“出现4点”和“出现6点”即m=2,故§3.2 排列与组合公式乘法原理:设完成一件事需分两步,第一步有n1种方法,第二步有n2种方法,则完成这件事共有n1n2种方法A B C加法原理:设完成一件事可有两种途径,第一种途径有n1种方法,第二种途径有n2种方法,则完成这件事共有n1+n2种方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计发展史标准化工作室编码[XX968T-XX89628-XJ668-XT689N]概率论与数理统计发展简史姓名:苗壮班级:1108105指导教师:曹莉摘要:在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献.关键词:概率论、数理统计、发展史正文:1.概率论的发展17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论.早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性,卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验.促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了.不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性,比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论.荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期着作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名着《推想的艺术》发表.在这部着作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括.继贝努利之后,法国数学家棣谟佛(AbrahamdeMoiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础.1706年法国数学家蒲丰(ComtedeBuffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.通过贝努利和棣谟佛的努力,使数学方法有效地应用于概率研究之中,这就把概率论的特殊发展同数学的一般发展联系起来,使概率论一开始就成为数学的一个分支.概率论问世不久,就在应用方面发挥了重要的作用.牛痘在欧洲大规模接种之后,曾因副作用引起争议.这时贝努利的侄子丹尼尔·贝努利(DanielBernoulli)根据大量的统计资料,作出了种牛痘能延长人类平均寿命三年的结论,消除了一些人的恐惧和怀疑;欧拉(Euler)将概率论应用于人口统计和保险,写出了《关于死亡率和人口增长率问题的研究》,《关于孤儿保险》等文章;泊松(Poisson)又将概率应用于射击的各种问题的研究,提出了《打靶概率研究报告》.总之,概率论在18世纪确立后,就充分地反映了其广泛的实践意义.19世纪概率论朝着建立完整的理论体系和更广泛的应用方向发展.其中为之作出较大贡献的有:法国数学家拉普拉斯(Laplace),德国数学家高斯(Gauss),英国物理学家、数学家麦克斯韦(Maxwell),美国数学家、物理学家吉布斯(Gibbs)等.概率论的广泛应用,使它于18和19两个世纪成为热门学科,几乎所有的科学领域,包括神学等社会科学都企图借助于概率论去解决问题,这在一定程度上造成了“滥用”的情况,因此到19世纪后半期时,人们不得不重新对概率进行检查,为它奠定牢固的逻辑基础,使它成为一门强有力的学科.1917年苏联科学家伯恩斯坦首先给出了概率论的公理体系.1933年柯尔莫哥洛夫又以更完整的形式提出了概率论的公理结构,从此,更现代意义上的完整的概率论臻于完成.相对于其它许多数学分支而言,数理统计是一个比较年轻的数学分支.多数人认为它的形成是在20世纪40年代克拉美(H.Carmer)的着作《统计学的数学方法》问世之时,它使得1945年以前的25年间英、美统计学家在统计学方面的工作与法、俄数学家在概率论方面的工作结合起来,从而形成数理统计这门学科.它是以对随机现象观测所取得的资料为出发点,以概率论为基础来研究随机现象的一门学科,它有很多分支,但其基本内容为采集样本和统计推断两大部分.发展到今天的现代数理统计学,又经历了各种历史变迁.2.统计的发展统计的早期开端大约是在公元前1世纪初的人口普查计算中,这是统计性质的工作,但还不能算作是现代意义下的统计学.到了18世纪,统计才开始向一门独立的学科发展,用于描述表征一个状态的条件的一些特征,这是由于受到概率论的影响.高斯从描述天文观测的误差而引进正态分布,并使用最小二乘法作为估计方法,是近代数理统计学发展初期的重大事件,18世纪到19世纪初期的这些贡献,对社会发展有很大的影响.例如,用正态分布描述观测数据后来被广泛地用到生物学中,其应用是如此普遍,以至在19世纪相当长的时期内,包括高尔顿(Galton)在内的一些学者,认为这个分布可用于描述几乎是一切常见的数据.直到现在,有关正态分布的统计方法,仍占据着常用统计方法中很重要的一部分.最小二乘法方面的工作,在20世纪初以来,又经过了一些学者的发展,如今成了数理统计学中的主要方法.从高斯到20世纪初这一段时间,统计学理论发展不快,但仍有若干工作对后世产生了很大的影响.其中,如贝叶斯(Bayes)在1763年发表的《论有关机遇问题的求解》,提出了进行统计推断的方法论方面的一种见解,在这个时期中逐步发展成统计学中的贝叶斯学派(如今,这个学派的影响愈来愈大).现在我们所理解的统计推断程序,最早的是贝叶斯方法,高斯和拉普拉斯应用贝叶斯定理讨论了参数的估计法,那时使用的符号和术语,至今仍然沿用.再如前面提到的高尔顿在回归方面的先驱性工作,也是这个时期中的主要发展,他在遗传研究中为了弄清父子两辈特征的相关关系,揭示了统计方法在生物学研究中的应用,他引进回归直线、相关系数的概念,创始了回归分析.数理统计学发展史上极重要的一个时期是从19世纪到二次大战结束.现在,多数人倾向于把现代数理统计学的起点和达到成熟定为这个时期的始末.这确是数理统计学蓬勃发展的一个时期,许多重要的基本观点、方法,统计学中主要的分支学科,都是在这个时期建立和发展起来的.以费歇尔(R.A.Fisher)和皮尔逊(K.Pearson)为首的英国统计学派,在这个时期起了主导作用,特别是费歇尔.继高尔顿之后,皮尔逊进一步发展了回归与相关的理论,成功地创建了生物统计学,并得到了“总体”的概念,1891年之后,皮尔逊潜心研究区分物种时用的数据的分布理论,提出了“概率”和“相关”的概念.接着,又提出标准差、正态曲线、平均变差、均方根误差等一系列数理统计基本术语.皮尔逊致力于大样本理论的研究,他发现不少生物方面的数据有显着的偏态,不适合用正态分布去刻画,为此他提出了后来以他的名字命名的分布族,为估计这个分布族中的参数,他提出了“矩法”.为考察实际数据与这族分布的拟合分布优劣问题,他引进了着名“χ2检验法”,并在理论上研究了其性质.这个检验法是假设检验最早、最典型的方法,他在理论分布完全给定的情况下求出了检验统计量的极限分布.1901年,他创办了《生物统计学》,使数理统计有了自己的阵地,这是20世纪初叶数学的重大收获之一.1908年皮尔逊的学生戈赛特(Gosset)发现了Z的精确分布,创始了“精确样本理论”.他署名“Student”在《生物统计学》上发表文章,改进了皮尔逊的方法.他的发现不仅不再依靠近似计算,而且能用所谓小样本进行统计推断,并使统计学的对象由集团现象转变为随机现象.现“Student分布”已成为数理统计学中的常用工具,“Student氏”也是一个常见的术语.英国实验遗传学家兼统计学家费歇尔,是将数理统计作为一门数学学科的奠基者,他开创的试验设计法,凭借随机化的手段成功地把概率模型带进了实验领域,并建立了方差分析法来分析这种模型.费歇尔的试验设计,既把实践带入理论的视野内,又促进了实践的进展,从而大量地节省了人力、物力,试验设计这个主题,后来为众多数学家所发展.费歇尔还引进了显着性检验的概念,成为假设检验理论的先驱.他考察了估计的精度与样本所具有的信息之间的关系而得到信息量概念,他对测量数据中的信息,压缩数据而不损失信息,以及对一个模型的参数估计等贡献了完善的理论概念,他把一致性、有效性和充分性作为参数估计量应具备的基本性质.同时还在1912年提出了极大似然法,这是应用上最广的一种估计法.他在20年代的工作,奠定了参数估计的理论基础.关于χ2检验,费歇尔1924年解决了理论分布包含有限个参数情况,基于此方法的列表检验,在应用上有重要意义.费歇尔在一般的统计思想方面也作出过重要的贡献,他提出的“信任推断法”,在统计学界引起了相当大的兴趣和争论,费歇尔给出了许多现代统计学的基础概念,思考方法十分直观,他造就了一个学派,在纯粹数学和应用数学方面都建树卓越.这个时期作出重要贡献的统计学家中,还应提到奈曼(J.Neyman)和皮尔逊(E.Pearson).他们在从1928年开始的一系列重要工作中,发展了假设检验的系列理论.奈曼-皮尔逊假设检验理论提出和精确化了一些重要概念.该理论对后世也产生了巨大影响,它是现今统计教科书中不可缺少的一个组成部分,奈曼还创立了系统的置信区间估计理论,早在奈曼工作之前,区间估计就已是一种常用形式,奈曼从1934年开始的一系列工作,把区间估计理论置于柯尔莫哥洛夫概率论公理体系的基础之上,因而奠定了严格的理论基础,而且他还把求区间估计的问题表达为一种数学上的最优解问题,这个理论与奈曼-皮尔逊假设检验理论,对于数理统计形成为一门严格的数学分支起了重大作用.以费歇尔为代表人物的英国成为数理统计研究的中心时,美国在二战中发展亦快,有三个统计研究组在投弹问题上进行了9项研究,其中最有成效的哥伦比亚大学研究小组在理论和实践上都有重大建树,而最为着名的是首先系统地研究了“序贯分析”,它被称为“30年代最有威力”的统计思想.“序贯分析”系统理论的创始人是着名统计学家沃德(Wald).他是原籍罗马尼亚的英国统计学家,他于1934年系统发展了早在20年代就受到注意的序贯分析法.沃德在统计方法中引进的“停止规则”的数学描述,是序贯分析的概念基础,并已证明是现代概率论与数理统计学中最富于成果的概念之一.从二战后到现在,是统计学发展的第三个时期,这是一个在前一段发展的基础上,随着生产和科技的普遍进步,而使这个学科得到飞速发展的一个时期,同时,也出现了不少有待解决的大问题.这一时期的发展可总结如下:一是在应用上愈来愈广泛,统计学的发展一开始就是应实际的要求,并与实际密切结合的.在二战前,已在生物、农业、医学、社会、经济等方面有不少应用,在工业和科技方面也有一些应用,而后一方面在战后得到了特别引人注目的进展.例如,归纳“统计质量管理”名目下的众多的统计方法,在大规模工业生产中的应用得到了很大的成功,目前已被认为是不可缺少的.统计学应用的广泛性,也可以从下述情况得到印证:统计学已成为高等学校中许多专业必修的内容;统计学专业的毕业生的人数,以及从事统计学的应用、教学和研究工作的人数的大幅度的增长;有关统计学的着作和期刊杂志的数量的显着增长.二是统计学理论也取得重大进展.理论上的成就,综合起来大致有两个主要方面:一个方面与沃德提出的“统计决策理论”,另一方面就是大样本理论.沃德是20世纪对统计学面貌的改观有重大影响的少数几个统计学家之一.1950年,他发表了题为《统计决策函数》的着作,正式提出了“统计决策理论”.沃德本来的想法,是要把统计学的各分支都统一在“人与大自然的博奕”这个模式下,以便作出统一处理.不过,往后的发展表明,他最初的设想并未取得很大的成功,但却有着两方面的重要影响:一是沃德把统计推断的后果与经济上的得失联系起来,这使统计方法更直接用到经济性决策的领域;二是沃德理论中所引进的许多概念和问题的新提法,丰富了以往的统计理论.贝叶斯统计学派的基本思想,源出于英国学者贝叶斯的一项工作,发表于他去世后的1763年后世的学者把它发展为一整套关于统计推断的系统理论.信奉这种理论的统计学者,就组成了贝叶斯学派.这个理论在两个方面与传统理论(即基于概率的频率解释的那个理论)有根本的区别:一是否定概率的频率的解释,这涉及到与此有关的大量统计概念,而提倡给概率以“主观上的相信程度”这样的解释;二是“先验分布”的使用,先验分布被理解为在抽样前对推断对象的知识的概括.按照贝叶斯学派的观点,样本的作用在于且仅在于对先验分布作修改,而过渡到“后验分布”――其中综合了先验分布中的信息与样本中包含的信息.近几十年来其信奉者愈来愈多,二者之间的争论,是战后时期统计学的一个重要特点.在这种争论中,提出了不少问题促使人们进行研究,其中有的是很根本性的.贝叶斯学派与沃德统计决策理论的联系在于:这二者的结合,产生“贝叶斯决策理论”,它构成了统计决策理论在实际应用上的主要内容.三是电子计算机的应用对统计学的影响.这主要在以下几个方面.首先,一些需要大量计算的统计方法,过去因计算工具不行而无法使用,有了计算机,这一切都不成问题.在战后,统计学应用愈来愈广泛,这在相当程度上要归公功于计算机,特别是对高维数据的情况.计算机的使用对统计学另一方面的影响是:按传统数理统计学理论,一个统计方法效果如何,甚至一个统计方法如何付诸实施,都有赖于决定某些统计量的分布,而这常常是极困难的.有了计算机,就提供了一个新的途径:模拟.为了把一个统计方法与其它方法比较,可以选择若干组在应用上有代表性的条件,在这些条件下,通过模拟去比较两个方法的性能如何,然后作出综合分析,这避开了理论上难以解决的难题,有极大的实用意义.参考文献:(无)百度文库。