数字化设计与制造技术的研究现状

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字化设计与制造技术的研究现状

摘要:数字化设计与制造在先进制造技术、医疗康复器械与生物工程等众多相关领域中占有越来越重要的地位。从20世纪50年代数控机床的出现开始,经过了单元制造技术、集成制造技术和网络化制造技术的发展过程,数字化制造技术得到了迅猛的发展。本文在大量阅读相关文献的基础上,对数字化技术进行了介绍,综述了国内外数字化制造技术的研究现状,论述了数字化制造技术是先进制造技术的核心,对数字化制造技术的几个核心技术进行了较为详细的介绍,并分析数字化制造技术的发展现状、展望其未来发展趋势,最后概括总结了数字化制造经历的深刻变化与发展。

关键词:数字化;国内外研究现状;制造技术;计算机辅助工业设计。

正文:1.数字化制造技术的概念

所谓数字化制造,指的是在虚拟现实、计算机网络、快速原型、数据库和多媒体等支撑技术的支持下,根据用户的需求,迅速收集资源信息,对产品信息、工艺信息和资源信息进行分析、规划和重组,实现对产品设计和功能的仿真以及型制造,进而快速生产出达到用户要求性能的产品的整个制造过程。也就是说,数字制造实际上就是在对制造过程进行数字化的描述中建立数字空间,并在其中完成产品制造的过程[1]。

由于计算机的发展以及计算机图形学与机械设计技术的结合,产生了以数据库为核心,以交互图形系统为手段,以工程分析计算为主体的一体化计算机辅助设计( C A D )系统。

C A D系统能够在二维与三维的空间精确地描述物体,大大地提高了生产过程中描述产品的能力和效率。正如数控技术与数控机床一样,C A D的产生和发展,为制造业产品的设计过程数字化和自动化打下了基础。将C A D的产品设计信息转换为产品的制造、工艺规则等信息,使加工机械按照预定的工序组合和排序,选择刀具、夹具、量具,确定切削用量,并计算每个工序的机动时间和辅助时间,这就是计算机辅助工艺规划(C A P P)。将包括制造、检测、装配等方面的所有规划,以及面向产品设计、制造、工艺、管理、成本核算等所有信息的数字化,转换为能被计算机所理解并被制造过程的全阶段所共享,从而形成所谓的C A D/C A M/C A P P,这就是基于产品设计的数字制造观。

从数字制造的要领出发,可以清楚地看到,数字制造是计算机数字技术、网络信息技术与制造技术不断融合、发展和应用的结果,也是制造企业、制造系统和生产系统不断实现数字化的必然。对制造设备而言,其控制参数均为数字信号。对制造企业而言,各种信息(包

括图形、数据,甚至知识和技能)均以数字的形式通过数字网络在企业内部传递。对全球制造业而言,用户通过数字网络发布需求信息,各大中小型企业则通过数字网络,根据需求优势互补、动态组合,迅速敏捷地协同设计制造出相应的产品。在数字制造环境下,在广域内形成了一个由数字织成的网,个人、企业、车间、设备、经销商和市场成为网上的一个个结点,由产品在设计、制造、销售过程中所赋予的数字信息成为主宰制造业最活跃的驱动因素。当前,网络制造是数字制造的全球化实现,虚拟制造是数字工厂和数字产品的一种具体体现,而电子商务制造是数字制造的一种动态联盟。所以,数字化制造是在计算机和网络技术与制造技术的不断融合、发展和广泛应用的基础上诞生的,其内涵是:以C A D/C A M/C A E为主体的技术,以M R P I、M I S、P D M为主体的制造信息支持系统和数字控制制造技术。

2.数字化制造技术的发展现状

目前在工业技术先进国家,数字化制造技术已经成为提高企业和产品竞争力的重要手段[5]。特别是近30年来,数字化制造技术发展日益加快,在发达国家的大型企业中,已开始实现无图纸生产,全面使用CAD/CAM,实现100%数字化设计。数字化制造技术在数字化设计、数字化制造、数字化产品、信息传递与协作、数字化管理等方面都有不同程度的发展。

总体来看,数字化制造技术的发展大致分为以下三个阶段。

(1).数字制造装备化

20世纪50年代,数控机床的出现开辟了制造装备的新纪元[5]。随着微型计算机的产生和发展,计算机数控的广泛应用,数控机床得到广泛应用和提高。相继出现的数控三坐标测量机(CMM)、工业机器人和数控机床一起成为重要的数字化加工、测量和操作装备,其本质是用数字控制代替凸轮行程控制,实现运动数字化。数控技术发展的趋势是提升各种装备性能甚至使其更新换代,即所谓的数字制造装备(简称数字装备)。

(2).海量信息处理能力和加工精细化

20世纪90年代,数字装备的一个重要的发展是对海量信息处理能力的提高[6]。在数字仿形技术的基础上,利用H794/937、EI、核磁共振等数字测量设备实现零件几何形状的数字化然后通过数据预处理、表面建模、实体建模、后置处理等过程生成STL文件(或数控代码),驱动快速成型机(或数控机床)加工出新零件。伽马刀、电镜——视觉引导的机器人等数字医疗设备扩展了基于视觉的数

字测量仪器的应用范围,实现了人体内腔器官的数字化。

数字装备的另一个重要的发展是加工对象的尺度变化,由毫米、微米到纳米,陆续出现了显微数字图像处理设备、电子制造装备等精密数字制造装备。在技术方面,数字装备与数字制造的研究已从单纯的制造过程的几何量(位移、多坐标联动位移、运动形状、微观形状等)的数字描述,发展到对制造过程的物理量(温度、流量场、应力场、热变形、密度、物质材料等)以及知识、经验、信息等的数字描述。系统的形式化、数字化描述与处理成为当前研究热点,包括海量信息处理,微纳识别和分辨率,物理过程仿真与分析(包括有限元方法、三角划分、复杂边界物理方程求解等)、网格计算以及物理本质的探索等。在20世纪90年代中期.通过并联机构与数控技术的结合,产生了并联机床.又称虚拟轴机床,其应用逐渐扩展到虚拟轴坐标测量机、六维力传感器等精密测量平台设备。但从目前的技术发展来看,并联机床还不能成为数控机床的主流产品。只在轻工、食品加工以及大型天文望远镜方面等具有一定用武之地。在数字装备的研究方面应该扩大范围.要大力发展以电子制造装备、大型医疗装备、精密科学仪器、精密数控装备等数字装备为代表的高技术产业所需装备。

(3).虚拟制造阶段

作为现代制造装备“灵魂”的数控系统已由NC、CNC时代进入了PC—NC和NET—NC时代[7]。其主要目标都是开发具有智能化和柔性化的新一代开放式数控系统,将各种新工艺、新技术、新方法集成于控制系统的基础平台,开发先进制造装备的支撑环境。

数字化制造技术起源于美国,经过多年的发展,现已进入了基于产品数字样机的虚拟制造阶段,并形成了完备的应用体系。波音公司设计的777型大型客机是世界上首架以三维无纸化方式设计出的飞机,它的制造成功已经成为虚拟制造技术从理论研究转向实用化的一个里程碑。目前,美国、欧洲、日本等国在新产品研制中,均全面应用了以敏捷制造、精益制造和虚拟制造、复合高效加工、自适应控制为代表的先进制造技术,并大大缩短了产品的制造周期。目前,虚拟制造技术已经用于产品的装配和加工过程仿真、产品维修性分析等;自适应控制技术在数控加工程序的优化已得到广泛应用。

3.数字化制造技术的未来发展趋势

相关文档
最新文档