第11章机械波作业答案
第十一章--机械波作业答案
![第十一章--机械波作业答案](https://img.taocdn.com/s3/m/4350dd482a160b4e767f5acfa1c7aa00b52a9d44.png)
一. 选择题[ C ]1. 一沿x 轴负方向传播的平面简谐波在t = 2 s 时的波形曲线如图所示,则原点O 的振动方程为<A> )21(cos 50.0ππ+=t y , <SI>.<B> )2121(cos 50.0ππ-=t y , <SI>.<C> )2121(cos 50.0ππ+=t y , <SI>.<D> )2141(cos 50.0ππ+=t y ,<SI>.提示:设O 点的振动方程为O 0()cos()y t A t ωϕ=+.由图知,当t=2s 时,O 点的振动状态为:[ B ]2. 图中画出一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为提示:由题中所给波形图可知,入射波在P 点的振动方向向下;而BC 为波密介质反射面,故在P 点反射波存在"半波损失〞,即反射波与入射波反相,所以,反射波在P 点的振动方向向上,又P 点为波节,因而得答案B.[ A ]3. 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是[ B ]4.一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是<A> 动能为零,势能最大. <B> 动能为零,势能为零. <C>动能最大,势能最大. <D> 动能最大,势能为零.提示:动能=势能,在负的最大位移处时,速度=0,所以动能为零,势能也为零.[ B ]5. 在驻波中,两个相邻波节间各质点的振动<A> 振幅相同,相位相同. <B> 振幅不同,相位相同.<C>振幅相同,相位不同. <D> 振幅不同,相位不同.提示:根据驻波的特点判断.[ C ]6. 在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是<A> A 1 / A 2 = 16.<B> A 1 / A 2 = 4.<C> A 1 / A 2 = 2.<D> A 1 / A 2 = 1 /4.二. 填空题1. 一平面简谐机械波在媒质中传播时,若一媒质质元在t 时刻的总机械能是10 J,则在)(T t +2. 一列强度为I 的平面简谐波通过一面积为S 的平面,波速u 与该平面的法线0n 的夹角为θ,则通过该平面的能流是cos IS θ.提示:θIScos IS ==⊥流过该平面的能流3. 如图所示,波源S 1和S 2发出的波在P 点相遇,P 点距波源S 1和S 2的距离分别为 3λ 和10 λ / 3 ,λ 为两列波在介质中的波长,若P 点的合振幅总是极大值,则两波在P 点的振动频率相同,波源S 1 的相位比S 2 的相位领先43π.4.设沿弦线传播的一入射波的表达式为]2cos[1λωxt A y π-=,波在x = L 处〔B 点〕发生反射,反射点为自由端〔如图〕.设波在传播和反射过程中振幅不变,则反射波的表达式是y 2 = 24cos xL A t ππωλλ⎛⎫=+-⎪⎝⎭. 提示:因为反射点为自由端,所以反射波没有半波损失,反射波与入射波在B 点引起的振动同相.PS S5. 一静止的报警器,其频率为1000 Hz,有一汽车以79.2 km 的时速驶向和背离报警器时,坐在汽车里的人听到报警声的频率分别是1065Hz 和935Hz 〔设空气中声速为340 m/s 〕.6. 一球面波在各向同性均匀介质中传播,已知波源的功率为100W,若介质不吸收能量,则距波源10 m 处的波的平均能流密度为7.96×10-2 W/m 2.提示:根据平均能流密度I 和功率P 的关系,得7. 一弦上的驻波表达式为t x y 1500cos 15cos 100.22-⨯= <SI>.形成该驻波的两个反向传播的行波的波速为100 m/s .场强度为)312cos(300π+π=t E x ν<SI>,则O 点处磁场强度为0.796cos(2ππ/3) (A/m)y H t ν=-+.在图上表示出电场强度,磁场强度和传播速度之间的相互关系.提示:根据电磁波的性质,E H S ⨯=,三者的关系如图所示.E H 和同相,H ∴三. 计算题1.图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求 <1> 坐标原点处介质质点的振动方程;<2> 该波的波动表达式.解:<1> 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播〔向x 轴负向传播〕.设坐标原点O 处质点的振动方程为()00,cos()y t A t ωϕ=+.在t = 0时刻,O 处质点的振动状态为:0(0,0)cos 0y A ϕ==,00v sin 0A ωϕ=->, 故02ϕ=-π又t = 2 s,O 处质点位移为/cos(2)2A A ω=-π,且振动速度>0,所以224ω-=-ππ, 得 8ω=π∴振动方程为()0,cos()82y t A t =-ππ<SI><2> 由图中可见,波速为u = 20 /2 m/s = 10 m/s,向x 轴负向传播;又有()0,cos()82y t A t =-ππ ∴波动表达式为(),cos 8102x y x t A t ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦ππ 〔SI 〕2. 一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示. <1> 求P 处质点的振动方程; <2> 求此波的波动表达式;<3> 若图中λ21=d ,求坐标原点O 处质点的振动方程.解:<1> 设P 处质点振动方程为0()cos()P y t A t ωϕ=+,由振动曲线可知,在t = 0时刻,0cos A A ϕ-=,∴0ϕπ=; t=1s 时,0cos()A ωπ=+,且振动速度>0,∴32πωπ+=,2πω=; ∴cos()2P y A t π=+π <SI><2> 设波速为u,则24u Tλωλλπ===,且波沿Ox 轴的负方向传播, ∴波动表达式为2(,)cos cos ()22x d y x t A t A t x d u λ⎡π-⎤ππ⎛⎫⎡⎤=++π=+-+π ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦<SI> <3> λ21=d 时,将x=0代入波动表达式,即得O 处质点的振动方程3. 如图所示,两相干波源在x 轴上的位置为S 1和S 2,其间距离为d = 30 m,S 1位于坐标原点O .设波只沿x 轴正负方向传播,单独传播时强度保持不变.x 1 = 9 m 和x 2 = 12 m 处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.解:设S 1和S 2的振动初相位分别为10ϕ和20ϕ,在x 1点两波因干涉而静止,所以在x 1点两波引起的振动相位差为π的奇数倍,即()()12010112πd x x ϕϕϕλ∆=----⎡⎤⎣⎦π+=)12(K ① 同理,在x 2点两波引起的振动相位差()()22010222πd x x ϕϕϕλ∆=----⎡⎤⎣⎦π+=)32(K ② ②-①得:214()2x x λ-=ππ, ∴6)(212=-=x x λm ;由①得:120102(21)2(25)d x K K ϕϕλ--=++=+πππ;当K = -2、-3时相位差最小:2010ϕϕ-=±π4. 一平面简谐波在介质中以速度u = 20 m/s 自左向右传播.已知在传播路径上的某点A 的振动方程为)4cos(3.0π-π=t y <SI>.另一点D 在A 点右方9米处.<1> 若取x 轴方向向左,并以A 为坐标原点,试写出波的表达式,并求出D 点的振动方程.<2> 若取x 轴方向向右,以A 点左方5米处的O 点为x 轴原点,再写出波的表达式与D 点的振动方程.解:该波波速u = 20 m/s,(1) 若取x 轴方向向左,并以A 为坐标原点,则由已知条件知:)4cos(3.0),0(ππ-=t t y 〔m 〕所以,波的表达式为⎥⎦⎤⎢⎣⎡-+=-+=πππ)20(4cos 3.0))(4cos(3.0),(x t u x t t x y π〔m 〕 D 点的坐标为x D = -9 m 代入上式有)544cos(3.0)5144cos(3.0)209(4cos 3.0),(ππππππ-=-=⎥⎦⎤⎢⎣⎡--+=t t t t x y D 〔m 〕(2) 若取x 轴方向向右,以A 点左方5米处的O 点为x 轴原点,则由已知条件知:)4cos(3.0),5(ππ-=t t y 〔m 〕所以,波的表达式为)54cos(3.0)5(4cos 3.0),(x t u x t t x y πππ-=⎥⎦⎤⎢⎣⎡---=π〔m 〕 D 点的坐标为x D = 14 m 代入上式, 有)544cos(3.0)5/144cos(3.0ππ-=-=t t y D ππ<m>此式与<1> 结果相同.5. 由振动频率为 400 Hz 的音叉在两端固定拉紧的弦线上建立驻波.这个驻波共有三个波腹,其振幅为0.30 cm .波在弦上的速度为320 m/s .<1> 求此弦线的长度.<2> 若以弦线中点为坐标原点,试写出弦线上驻波的表达式.解:<1> 23λ⨯=Lλν = u∴20.14003202323=⨯==νu L m 〔2〕设驻波的表达式为)cos()cos(103),('3ϕωϕ++⨯=-t kx t x y πππνλπ25320400222=⨯===u k 〔m -1〕πππνω80040022=⨯== 〔rad/s 〕弦的中点x=0是波腹, 故πϕϕϕor kx x 0,1cos )cos(''0'=∴==+=所以)800cos(25cos 100.3),(3ϕπ+⨯±=-t x t x y π <m>式中的ϕ由初始条件决定.[选做题]1.如图,一角频率为ω,振幅为A 的平面简谐波沿x 轴正方向传播,设在t = 0时该波在原点O 处引起的振动使媒质元由平衡位置向y 轴的负方向运动.M 是垂直于x 轴的波密媒质反射面.已知OO '= 7 λ /4,PO '= λ /4〔λ为该波波长〕;设反射波不衰减,求: <1> 入射波与反射波的表达式;;<2> P 点的振动方程.解:<1> 设O 处振动方程为00cos()y A t ωϕ=+当t = 0时,y 0 = 0,v 0 < 0,∴012ϕπ=∴)21cos(0π+=t A y ω入射波朝x 轴正向传播,故入射波表达式为)22cos(2)(cos ),πλωπω+-=⎥⎦⎤⎢⎣⎡+-=x t A ux t A t x y π(入在O ′处入射波引起的振动方程为由于M 是波密媒质反射面,所以O ′处反射波振动有一个相位的突变π.∴)cos(t 47π+π-=t A y ωλ),(反t A ωcos = 所以反射波表达式为<2> 合成波为),(),(),(t x y t x y t x y 反入+=]22cos[π+π-=x t A λω]22cos[π+π++x t A λω 将P 点坐标λλλ234147=-=x 代入上述方程,得P 点的振动方程为)2cos(2π+-=t A y P ω。
第11章机械波作业答案
![第11章机械波作业答案](https://img.taocdn.com/s3/m/b5f6f1ebe45c3b3566ec8b3f.png)
4. 平面简谐波在同一介质中传播,下列说法中正确的 是
A. 波源的频率与振动的频率不相同。 B.波源的振动速度与波速相同 ; C. 在波的传播方向上各质点都在各自的平衡位置附近振
动。 D.单位体积介质中的波动能量(能量密度)为恒量。
20 π t
?
π 10
x
?
π) 2
则弦线上波腹的位置__1_0_k__?_5__(。k ? 0 ? 1,? 2,? )
cos(? ? ? ) ? cos(? ? ? ) ? 2 cos ? ?cos ?
y ? 10 cos( π x ? π ) ?cos 2p t
10 2
6. 在简谐驻波中,同一波节两侧的两个媒质元 (在距该波节二分之一波长的范围内)的振动相
B两点间的距离为 30m ,波速为400m·s-1,求AB间连线上
因干涉而静止的各点的位置。
驻波法求解:取 A点为坐标原点, A、B连线为x轴。
在A点相遇的相位差:
x
O
x
??
l?
?p
u?
? 2π
l
4m
?
30
?
?14p
?
A
30 ? x B
30 m
A点是波腹点,节点在距 A为l /4处,满足:
x ? (2 k ? 1) l ? 2k ? 1
A. 1 , 1 ,? 0.05 22
B. 1 ,1,?0.05 2
C. 1 , 1 ,0.05 22
D. 2,2,0.05
9. 一列机械横波,能量为最大值的媒质质元的位 置是:
A.正方向最大位移处 B.负方向最大位移处
程守洙《普通物理学》(第6版)(下册)笔记和课后习题(含考研真题)详解-第11章 机械波和电磁波【圣
![程守洙《普通物理学》(第6版)(下册)笔记和课后习题(含考研真题)详解-第11章 机械波和电磁波【圣](https://img.taocdn.com/s3/m/3679909210661ed9ad51f3f9.png)
四、波的能量 波的强度 1.波的能量 在介质中任取体积为ΔV、质量为Δm(Δm=ρΔV,ρ为介质的体密度)的质元.当波 动传播到这个质元时,该质元将具有动能ΔEk和弹性势能ΔEp. 质元的总机械能ΔE
其中,Z=ρu为介质的特性阻抗,是表征特性的一个常量. 3.波的吸收 平面行波在均匀介质中传播时,介质总是要吸收波的一部分能量,波的强度和振幅
都将逐渐减小.所吸收的波动能量将转换成其他形式的能量(例如介质的内能).这种现象 称为波的吸收.
五、声波 超声波 次声波 1.声压 声压:介质中有声波传播时的压强与无声波时的静压强之间的差额. 声压振幅:pm=ρuωA. 2.声强 声强级 (1)声强 ①声强是指声波的平均能流密度,即单位时间内通过垂直于声波传播方向的单位面积 的声波能量. ②声强 I 为
4.电磁波谱 电磁波谱:按照频率或波长的顺序把电磁波排列而成的图表.
七、惠更斯原理 波的衍射、反射和折射
7 / 70
能量密度
平均能量密度(波能量密度在一个周期内的平均值)
w 1 A2 2 2
式中,ρ是介质的密度. 2.波的强度 能流:单位时间通过介质某面积的能量.
4 / 70
圣才电子书
十万种考研考证电子书、题库视频学习平
台
平均能流密度(波的强度):通过与波动传播方向垂直的单位面积的平均能流.
(3)E 和 H 同相位
十万种考研考证电子书、题库视频学习平 台
(4)E 和 H 的量值成比例
(5)传播速度
在真空中为光速,即
人教版江苏专用高中物理选择性必修第一册课时分层作业11波的形成含答案
![人教版江苏专用高中物理选择性必修第一册课时分层作业11波的形成含答案](https://img.taocdn.com/s3/m/09e8cd5d974bcf84b9d528ea81c758f5f61f29bb.png)
课时分层作业(十一)波的形成◎题组一机械波的形成和传播1.科学探测表明,月球表面无大气层,在月球上,两名宇航员面对面讲话也无法听到,这是因为()A.月球太冷,声音传播太慢B.月球上没有空气,声音无法传播C.宇航员不适应月球,声音太轻D.月球上太嘈杂,声音听不清楚[答案]B2.下列关于机械波的说法正确的是()A.机械波是机械振动在介质中传播形成的B.把小石头扔到平静的湖水里,水面上便会激起水波,水波将促使水面上的漂浮物向远方运动C.某空间找不到机械波,则在这一空间一定没有波源D.横波与纵波,其质点的振动方向不同,因此,横波和纵波不可能沿同方向传播A[机械波是机械振动在介质中传播形成的,A项正确;若只有波源而无介质,不能产生机械波,所以C项错误;丢石块不可以使漂浮物远去,漂浮物只在原平衡位置做上下振动,不随波迁移,故B项错误;横波和纵波的质点振动方向不同,但可沿同一方向传播,例如地震波包含横波和纵波,且两种波的传播方向可能相同,所以D项错误。
]3.在敲响大钟时,有的同学发现,停止对大钟的撞击后,大钟仍“余音未绝”,分析其原因是()A.大钟的回声B.大钟在继续振动,空气中继续形成声波C.人的听觉发生“暂留”D.大钟停止振动,但空气仍在振动B[停止对大钟的撞击后,大钟的振动不会立即停止,振动的能量不会凭空消失,大钟做阻尼振动一段时间,因此还会在空气中形成声波,所以选项A、C、D错误,B正确。
]◎题组二横波与纵波4.关于横波和纵波,下列说法不正确的是()A.质点的振动方向和波的传播方向垂直的波叫作横波B.质点的振动方向跟波的传播方向在同一直线上的波叫作纵波C.横波有波峰和波谷,纵波有密部和疏部D.声波是横波D[本题考查纵波和横波的概念。
由定义知,A、B、C正确;声波是纵波,故D错误。
]5.下列关于横波、纵波的说法不正确的是()A.凸凹相间的波叫横波,凸起的最高处叫波峰,凹下的最低处叫波谷B.质点振动方向和波的传播方向在同一直线上的波叫纵波C.横波和纵波传播的都只是振动这种运动形式D.沿横向传播的波叫横波,沿纵向传播的波叫纵波D[质点的振动方向与波的传播方向垂直的波为横波,质点的振动方向与波的传播方向在同一直线上的波为纵波;横波具有波峰和波谷,两种波传播的都是运动形式,A、B、C正确,D错误。
程守洙《普通物理学》(第5版)辅导系列-章节题库-第11章 机械波和电磁波【圣才出品】
![程守洙《普通物理学》(第5版)辅导系列-章节题库-第11章 机械波和电磁波【圣才出品】](https://img.taocdn.com/s3/m/16387e8058fb770bf68a551e.png)
7.图 11-3 所示为一沿 Ox 轴正方向传播的横波在 t=T/6 时刻的波形图,式中 T 为 周期,设波源位于坐标原点,那么波源的初相为______。
3 / 32
圣才电子书
十万种考研考证电子书、题库视频学习平 台
图 11-3
【答案】0
8.一警笛发射频率为 1500Hz 的声波,并以 25m/s 的速度向前运动,在警笛后方有 一人,他在静止时听到警笛的频率是______;若他以 6m/s 的速度跟踪警笛,他听到的频 率是______;在警笛后方空气中声波的波长是______。(空气中声速:330m/s)
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 11 章 机械波和电磁波
一、选择题 1.一横波沿绳子传播时的波动表达式为 y=0.05cos(4πx-10πt),则其( )。 A.波长为 0.5 m B.波速为 5m·s-1 C.波速为 25m·s-1 D.频率为 2Hz 【答案】A 【解析】
1 / 32
圣才电子书
A.A1+A2
十万种考研考证电子书、题库视频学习平 台
B.
C. D.
图 11-1
【答案】A
4.如图 11-2 所示,一平面简谐波沿 x 轴正方向传播,已知 P 点的振动方程为 ,则波动方程为( )。
图 11-2
A. B. C. D. 【答案】A 【解析】在 x 轴取任意点 Q,其平衡位置为 x。由于波沿轴正方向传播,则 Q 点的振
2.在驻波中,两个相邻波节间各质点的振动为( )。 A.振幅相同,相位相同; B.振幅不同,相位相同; C.振幅相同,相位不同; D.振幅不同,相位不同。 【答案】B 【解析】在驻波中,两相邻波节之间的质元振动相位相同,振幅不等。
高考物理总复习第11章机械振动机械波光电磁波实验十六探究单摆周期与摆长的关系鸭课件
![高考物理总复习第11章机械振动机械波光电磁波实验十六探究单摆周期与摆长的关系鸭课件](https://img.taocdn.com/s3/m/a26225276edb6f1aff001f80.png)
4π2
g
A.g
B.g
C. g
D.4π2
解析 (1)摆球的直径为 d=20 mm+6×110mm=20.6 mm=2.06 cm。 (2)秒表的读数为 t=60 s+7.4 s=67.4 s,根据题意 t=60- 2 1T=529T,所以周期 T=529t =2.28 s。 (3)根据单摆的周期公式 T=2π Lg,可得 TL2=4gπ2=k(常数),所以选项 C 正确。 答案 (1)2.06 (2)2.28 (3)C
测出单摆的_摆__长__l_和_周__期__T_,就可以求出当地的重力加速度。来自考点一 实验原理及实验操作
实验操作时应注意 1.悬线顶端不能晃动,需用夹子夹住,保证顶点固定。 2.摆球在同一平面内振动且摆角小于10°。 3.选择在摆球摆到平衡位置处开始计时,并数准全振动的次数。 4.小球自然下垂时,用毫米刻度尺量出悬线长l′,用游标卡尺测
实验十六 探究单摆周期与摆长的关系(选考)
[考纲解读] (1)练习使用秒表和米尺,测单摆的周期和摆长。 (2)求出当地重力加速度g的值。(3)考查单摆的系统误差对测重 力加速度的影响。
1.实验原理图
2.定性探究单摆的振幅、质量、摆长对周期的影响 (1)探究方法:_控__制__变__量__法。 (2)实验结论 ①单摆振动的周期与摆球的质量_无__关__。 ②振幅较小时,周期与振幅_无__关__。 ③摆长越长,周期_越__长__;摆长越短,周期_越__短__。
3.定量探究单摆的周期与摆长的关系 (1)周期的测量:用停表测出单摆 N(30~50)次全振动的时间 t,利用 T=Nt 计算它的周期。 (2)摆长的测量:用刻度尺测出细线长度 l0,用游标卡尺测出 小球直径 D,利用 l=l0+D2 求出摆长。 (3)数据处理:改变摆长,测量不同摆长及对应周期,作出 T -l、Tl2 或 T- l图象,得出结论。
鲁科版高三物理11.2机械波专项练习(带答案与解析)解答解析、考点详解.doc
![鲁科版高三物理11.2机械波专项练习(带答案与解析)解答解析、考点详解.doc](https://img.taocdn.com/s3/m/3cb9f6dfd4d8d15abf234e1f.png)
鲁科版高三物理11.2机械波专项练习(带答案与解析)的正确答案、解答解析、考点详解姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分1.【题文】(2010年高考大纲全国卷Ⅱ改编)一简谐横波以4 m/s的波速沿x轴正方向传播.已知t=0时的波形如图11-2-14所示,则( )图11-2-14A.波的周期为0.5 sB.x=0处的质点在t=0时向y轴负向运动C.x=0处的质点在t=s时速度为0D.x=0处的质点在t=s时速度值最大【答案】B【解析】选B.由题图可得半波长为2 m,波长为4 m.周期T==s =1 s,选项A错误.波沿x轴正方向传播,则x=0处的质点在沿y轴的负方向运动,选项B正确.Δt=s=,x=0的质点经过后不在平衡位置也不在最大位移处,而位于平衡位置和负向最大位移之间,所以该质点在s时速度既不为0,也不是最大值,故C、D错误.2.【题文】(2011年莆田质检)如图11-2-15所示,处在O点的波源形成简谐横波沿+x方向传播,该波经2 s恰传至Q点,则这列波的传播速度和质点P开始运动的方向应是( )图11-2-15评卷人得分A.5.5 m/s,沿+y方向B.5.5 m/s,沿-y方向C.6.0 m/s,沿+y方向D.7.0 m/s,沿-y方向【答案】B【解析】选B.由图象可知该波在2 s内传播的距离为s=OP+PQ=11 m,所以该波的传播速度为v==5.50 m/s;P点的起振方向与波源的起振方向一致,所以P点的起振方向与Q点在2 s时的振动方向一样,由上坡下、下坡上可知,P点的起振方向沿-y方向.3.【题文】(2011年北京东城检测)某质点在坐标原点O处做简谐运动,其振幅为5 cm,振动周期为0.4 s,振动在介质中沿x轴正向传播,传播速度为1.0 m/s.若质点在平衡位置O向上振动0.2 s后立即停止振动,则停止振动后又经过0.2 s的时刻的波形可能是图11-2-16中的( )图11-2-16【答案】B【解析】选B.0.2 s等于半个周期的时间,产生一个向上的波形,停止振动后的0.2 s内,已经产生的波形继续向前传播0.5个周期,传播的距离为0.5个波长,B选项正确.4.【题文】(2010年高考上海卷)利用发波水槽得到的水面波形如图11-2-17a、b所示,则( )图11-2-17A.图a、b均显示了波的干涉现象B.图a、b均显示了波的衍射现象C.图a显示了波的干涉现象,图b显示了波的衍射现象D.图a显示了波的衍射现象,图b显示了波的干涉现象【答案】D【解析】波绕过障碍物继续传播的现象就是波的衍射现象,故图a说明发生了明显的衍射现象.当频率相同的两列波相遇时当波程差为波长的整数倍时振动加强,当波程差为半个波长的奇数倍时振动减弱,使有的地方振动加强有的地方振动减弱,且加强和减弱的区域交替出现,故图b是发生了干涉现象.故D正确.5.【题文】(2010年高考重庆卷)一列简谐波在两时刻的波形如图11-2-18中实线和虚线所示,由图可确定这列波的( )图11-2-18A.周期B.波速C.波长D.频率【答案】C【解析】A、题中未给出实线波形和虚线波形的时刻,不知道时间差或波的传播方向,无法确定周期.故A 错误.B、周期无法确定,波长可读出,波速也无法确定.故B错误.C、由波的图象直接读出波长为4m.故C正确.D、f=,周期不确定,则频率不确定.故D错误本题画出了两个时刻的波形,如给出时间差,就可求出周期、波速、频率的通项式.要注意波的双向性和周期性,防止漏解.。
第十一章机械波作业任务答案解析
![第十一章机械波作业任务答案解析](https://img.taocdn.com/s3/m/1029e64d650e52ea551898b9.png)
一. 选择题[ C ]1. 一沿x 轴负方向传播的平面简谐波在t = 2 s 时的波形曲线如图所示,则原点O 的振动方程为(A) )21(cos 50.0ππ+=t y , (SI).(B) )2121(cos 50.0ππ-=t y , (SI).(C) )2121(cos 50.0ππ+=t y , (SI).(D) )2141(cos 50.0ππ+=t y ,(SI).提示:设O 点的振动方程为O 0()cos()y t A t ωϕ=+。
由图知,当t=2s 时,O 点的振动状是正确的。
[ B ]2. 图中画出一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为提示:由题中所给波形图可知,入射波在P 点的振动方向向下;而BC 为波密介质反射面,故在P 点反射波存在“半波损失”,即反射波与入射波反相,所以,反射波在P 点的振动方向向上,又P 点为波节,因而得答案B 。
[ A ]3. 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是ωSAϖO ′ωSA ϖO ′ωϖO ′ωSAϖO ′(A)(B)(C)(D)S[ B ]4. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能为零,势能最大.(B) 动能为零,势能为零.(C) 动能最大,势能最大.(D) 动能最大,势能为零.提示:动能=势能,在负的最大位移处时,速度=0,所以动能为零,势能也为零。
[ B ]5. 在驻波中,两个相邻波节间各质点的振动(A) 振幅相同,相位相同.(B) 振幅不同,相位相同.(C) 振幅相同,相位不同.(D) 振幅不同,相位不同.提示:根据驻波的特点判断。
[ C ]6. 在同一媒质中两列相干的平面简谐波的强度之比是I1 / I2 = 4,则两列波的振幅之比是(A) A1 / A2 = 16.(B) A1 / A2 = 4.(C) A1 / A2 = 2.(D) A1 / A2 = 1 /4.二.填空题1. 一平面简谐机械波在媒质中传播时,若一媒质质元在t时刻的总机械能是10 J,则(t+在2. 一列强度为I 的平面简谐波通过一面积为S 的平面,波速u ϖ与该平面的法线0n v的夹角为θ,则通过该平面的能流是cos IS θ。
4第十一章机械波(习题解答20171110
![4第十一章机械波(习题解答20171110](https://img.taocdn.com/s3/m/f7ab0736ef06eff9aef8941ea76e58fafab0453f.png)
篇一:选修(xuǎnxiū)3-4 第十二章机械波教案篇二:3-4机械振动及机械波复习题和答案(dá àn)(二)最新机械波复习(fùxí)一、机械波的传播(chuánbō)1.一列简谐横波沿x轴负方向(fāngxiàng)传播,图1是t=1s时的波形图,图2是波中某振动质元位移随时间变化的振动图线(两图用同一时间起点),则图2可能是图1中哪个质元的振动图线?A.x=0处的质元 B.x=1m处的质元C.x=2m处的质元 D.x=3m处的质元2.一列沿着x正方向传播的横波,振幅为A,波长为λ,某时刻的波形如图所示。
该时刻某一质点的坐标为(5λ,0),经过T/4的时间,该质点的坐标为 435A.(λ,0)B. (λ,-A) 2453C. (λ,A) D. (λ,A) 244.如图所示,一根张紧的水平弹性长绳上的 a、b两点,相距14.0 m ,b 点在 a点的右方.当一列简谐横波沿此绳向右传播时,若 a点的位移达到正极大时,b点的位移恰为零,且向下运动.经过1.00 s 后,a点的位移为零,且向下运动,而 b点的位移恰达到负极大.则这简谐横波的波速可能等于A.14 m/sB.10 m/sC.6 m/sD.4.67 m/s5.简谐横波在某时刻的波形图线如图所示,由此图可知A.若质点 a向下运动,则波是从左向右传播的B.若质点b向上运动,则波是从左向右传播的C. 若波从右向左传播,则质点 c向下运动D.若波从右向左传播,则质点d向上运动6.如图所示,O是波源,a、b、c、d是波传播方向上各质点的平衡位置,且Oa=ab=bc=cd=3 m,开始各质点均静止在平衡位置,t=0时波源O开始向上做简谐运动,振幅是0.1 m,波沿Ox 方向传播,波长是8 m,当O 点振动了一段时间后,经过的路程是0.5 m ,各质点运动的方向是A.a 质点向上 B.b质点向上 C.c质点向下 D.d质点向下7.如图在x y平面内有一沿x轴正方向传播的简谐横波,波速为1 m/s,振幅为4 cm,频率为2.5 Hz.在t=0时刻,P点位于其平衡位置上方最大位移处,则距P为0.2 m的Q点A.在0.1 s时的位移是4 cm B.在0.1 s时的速度最大C.在0.1 s时的速度向下 D.在0到0.1 s时间内的路程是4 cm8.一列简谐横波,在t=0时刻的波形如图8-13所示,自右向左传播,已知在t1=0.7 s时,P点出现(chūxiàn)第二次波峰(0.7 s内P点出现两次波峰),Q点的坐标是(-7,0),则以下(yǐxià)判断中正确的是A.质点A和质点B在t=0时刻的位移是相等B.在t=0时刻,质点C向上(xiàngshàng)运动C..在t2=0.9 s 末Q点第一次出现(chūxiàn)波峰D.在t3=1.26 s 末Q点第一次出现波峰二、波的特性(tèxìng)1.类比是一种有效的学习方法,通过归类和比较,有助于掌握新知识,提高学习效率。
第11章 机械波
![第11章 机械波](https://img.taocdn.com/s3/m/a10bca7a1711cc7931b71625.png)
2π 2π A1 sin 10 r1 A2 sin 20 r2 2π 2π A1 cos 10 r1 A2 cos 20 r2
相位差 - - 2π r2 - r1 20 10
横波
固体
u
E
纵波
液、气体
u
K
343 m s 空气,常温 4000 m s 左右,混凝土
5
如声音的传播速度
11.2 平面简谐波
11.2.1 平面简谐波的表达式
简谐波:简谐振动在媒质中的传播 平面简谐波:波面是平面的简谐波 1)一维平面简谐波的波函数
设一维平面简谐波以相速 u 沿 x 轴正向传播, y t时刻波形如图 u
单位时间内通过垂直于波线上单位面积的平均能量
P I S
wu
1 I 2 A2 u 2
17
11.2 平面简谐波
例: 证明球面波的振幅与离开 其波源的距离成反比,并求球面 简谐波的波函数. 证: 介质无吸收,通过两个 球面的平均能流相等.s2Βιβλιοθήκη s1r1r2
1uS1 2uS2
即
λ反映了波的空间周期性
--- t0 时刻各点振动周相不同
y
t0时刻的波形
10
11.2 平面简谐波
2π 当 0 = 0 y A cos ( t0 0 ) - x 2π (1) t0= 0 y A cos - x --- t=0 时各质点的位移 T T 2π (2) t0 y A cos x 4 4 T T 2π t0 y A cos x (3) 2 2 t0 = T 波形恢复原样, 而在一个 T 内波形向右移动了
机械波习题答案
![机械波习题答案](https://img.taocdn.com/s3/m/d55a0a40852458fb770b5698.png)
第十一章 机械波一. 选择题[ C ]1. 一沿x 轴负方向传播的平面简谐波在t = 2 s 时的波形曲线如图所示,则原点O 的振动方程为 (A) )21(cos 50.0ππ+=t y , (SI). (B) )2121(cos 50.0ππ-=t y , (SI).(C) )2121(cos 50.0ππ+=t y , (SI).(D) )2141(cos 50.0ππ+=t y ,(SI).提示:设O 点的振动方程为O 0()cos()y t A t ωϕ=+。
由图知,当t=2s 时,O 点的振动状态为:O 0(2)cos(2)=0 0y A v ωϕ=+>,且,∴0322πωϕ+=,0322πϕω=-,将0ϕ代入振动方程得:O 3()cos(2)2y t A t πωω=+-。
由题中所给的四种选择,ω取值有三种:,,24πππ,将ω的三种取值分别代入O 3()cos(2)2y t A t πωω=+-中,发现只有答案(C )是正确的。
[ B ]2. 图中画出一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为提示:由题中所给波形图可知,入射波在P 点的振动方向向下;而BC 为波密介质反射面,故在P 点反射波存在“半波损失”,即反射波与入射波反相,所以,反射波在P 点的振动方向向上,又P 点为波节,因而得答案B 。
[ A ]3. 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是提示:由图可知,P 点的振动在t=0[ B ]4. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零.提示:动能=势能,在负的最大位移处时,速度=0,所以动能为零,势能也为零。
第十一章 机械波与电磁波练习 答案
![第十一章 机械波与电磁波练习 答案](https://img.taocdn.com/s3/m/7a00c90552ea551810a6872f.png)
第十一章 机械波与电磁波练习一一、选择题1、当一列机械波在弹性介质中由近向远传播的时候,下列描述错误的是( A ) (A)机械波传播的是介质原子(B)机械波传播的是介质原子的振动状态 (C)机械波传播的是介质原子的振动相位 (D)机械波传播的是介质原子的振动能量2、已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则( D ) (A )波的频率为a ; (B )波的传播速度为 b/a ; (C )波长为 π / b ; (D )波的周期为2π / a 。
解释:由22cos()cos()2/2/y A at bx A t x a b ππππ=-=-,可知周期2T a π=。
波长为bπ2。
3、一平面简谐波的波形曲线如右图所示,则( D )(A)其周期为8s (B)其波长为10m(C)x =6m 的质点向右运动(D)x =6m 的质点向下运动4、如右图所示,一平面简谐波以波速u 沿x 轴正方向传播,O 为坐标原点.已知P 点的振动方程为cos y A t ω=,则( C )(A )O 点的振动方程为 []cos (/)y A t l u ω=-; (B )波的表达式为 {}cos [(/)(/)]y A t l u x u ω=--; (C )波的表达式为 {}cos [(/)(/)]y A t l u x u ω=+-; (D )C 点的振动方程为 []cos (3/)y A t l u ω=-。
二、填空题1、有一平面简谐波沿Ox 轴的正方向传播,已知其周期为s 5.0,振幅为m 1,波长为m 2,且在0=t 时坐标原点处的质点位于负的最大位移处,则该简谐波的波动方程为()πππ--=x t y 4cos 。
2、已知一简谐波在介质A 中的传播速度为u ,若该简谐波进入介质B 时,波长变为在介质A 中的波长的两倍,则该简谐波在介质B 中的传播速度为2u 。
第十一章+波动答案[1]..
![第十一章+波动答案[1]..](https://img.taocdn.com/s3/m/c246b14369eae009581bec4a.png)
一. 选择题[D] 1.(基础训练2)一平面简谐波,沿x 轴负方向传播.角频率为ω ,波速为u .设 t = T /4 时刻的波形如图14-11所示,则该波的表达式为:(A) )(cos xu t A y -=ω.(B)]21)/(cos[π+-=u x t A y ω.(C) )]/(cos[u x t A y +=ω.(D)])/(cos[π++=u x t A y ω. 【提示】}])4[(cos{ϕω++-=uxT t A y 。
ϕ为0=x 处初相。
[C] 2.(基础训练4) 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是 (A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零. 【提示】波的能量特点。
[B] 3.(基础训练5)在驻波中,两个相邻波节间各质点的振动 (A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. 【提示】驻波特点。
[C] 4.(基础训练8)如图14-15所示两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B) π21. (C) π. (D) π23. 【提示】21212()r r πϕϕϕπλ-∆=--=-[D] 5.(自测提高6)如图14-25所示,S 1和S 2为两相干波源,它们的振动方向均垂直于图面,发出波长为λ 的简谐波,P 点是两列波相遇区域中的一点,已知 λ21=P S ,λ2.22=P S ,两列波在P 点发生相消干涉.若S 1的振动方程为 )212cos(1π+π=t A y ,则S 2的振动方程为图14-25(A) )212cos(2π-π=t A y . (B) )2cos(2π-π=t A y . (C) )212cos(2π+π=t A y . (D) )1.02cos(22π-π=t A y【提示】21212()r r πϕϕϕλ∆=---22(2.2 2.0)(21)2k ππϕλλπλ=---=+[C] 6.(自测提高7)在弦线上有一简谐波,其表达式是 ]3)2002.0(2cos[100.221π+-π⨯=-x t y (SI) 为了在此弦线上形成驻波,并且在x = 0处为一波节,此弦线上还应有一简谐波,其表达式为:(A) ]3)2002.0(2cos[100.222π++π⨯=-x t y (SI). (B) ]32)2002.0(2cos[100.222π++π⨯=-x t y (SI).(C) ]34)2002.0(2cos[100.222π++π⨯=-x t y (SI).(D) ]3)2002.0(2cos[100.222π-+π⨯=-x t y (SI).【提示】两沿反方向传播的波在0x =处振动合成为零。
大学物理第十一章测试解答
![大学物理第十一章测试解答](https://img.taocdn.com/s3/m/796a3b88d4d8d15abe234e74.png)
答:C
o
3. 在下面几种说法中,正确的是: [ ] (A)波源不动时,波源的振动周期与波动的周期在数值上是不同的; (B)波源振动的速度与波速相同; (C)在波传播方向上,任一质点的振动位相总是比波源的位相滞后; (D)在波传播方向上,任一质点的振动位相总是比波源的位相超前。
答:C
大学物理
4. 两相干平面简谐波沿不同方向传播,如图所示, 波速均为 u 0.40m/s ,其中一列波在A点引起的振动 y1 A1 cos(2,另一列波在B点引起的振动 t / 2) 方程为 y2,它们在P点相 / 2) A2 cos(2 t 方程为 遇, , AP 0.80m ,则两波在P点的相位差为: BP 1.00m [ ] (A)0 (C) (B)
大学物理
340 340 3( ) 2040 340 S 340 S
S 0.25(m/s)
(2)vS=2040Hz,v=4Hz,u=340m/s,=0.2m/s 反射面接收到的频率
v 反R
u vS u
A
S
反 射 面
大学物理
观察者接收到的反射波频率
u u u u vS v R1 v 反R vS u u u u
大学物理
二、填空题:
1、 产生机械波的必要条件是 波源和 传播机械波的介质。 2、 处于原点(x=0)的一波源所发出的平面简谐波 的波动方程为 y A cos( Bt Cx) ,其中A、B、C皆为 常数。此波的速度为 B C ;波的周期为 2 B ;波长 为 2 C ;离波源距离为l处的质元振动相位比波源 落后 lC ;此质元的初相位为 lC 。 x 2x y A cos( (t )) y A cos(t ) u t 3. 一驻波表式为 y 4 102 cos 2x cos 400(SI制),在 x=1/6(m)处的一质元的振幅为 2 102 m ,振动速度 的表式为 v 8 sin 400t m/s 。
普通物理学第十一章 机械波试题
![普通物理学第十一章 机械波试题](https://img.taocdn.com/s3/m/c8a65f4b2b160b4e777fcf05.png)
第十一章机械波一、是非题1.机械波的强度与振幅的平方、频率的平方成正比,与媒质的密度无关··················()2.机械波的强度与媒质的密度成正比,与振幅无关。
··································()3.声强30dB的声音听起来一定比20dB的声音响。
···································()4.声波在空气中只能以横波的形式传播············································()5.波动方程表示在沿波的传播方向上各个不同质点在不同时刻的位移··················()6.机械波的强度既与振幅和频率有关,还与媒质的密度和波速有关·····················()7.机械波传播过程中,任意时刻,体元中动能与势能相等。
最新-4第十一章机械波(习题解答2019201910 精品
![最新-4第十一章机械波(习题解答2019201910 精品](https://img.taocdn.com/s3/m/fb2b7e86b0717fd5360cdcf8.png)
4第十一章机械波(习题解答20191110 篇一:选修3-4第十二章机械波教案篇二:3-4机械振动及机械波复习题和答案(二)最新机械波复习一、机械波的传播1.一列简谐横波沿轴负方向传播,图1是=1时的波形图,图2是波中某振动质元位移随时间变化的振动图线(两图用同一时间起点),则图2可能是图1中哪个质元的振动图线?.=0处的质元.=1处的质元.=2处的质元.=3处的质元2.一列沿着正方向传播的横波,振幅为,波长为λ,某时刻的波形如图所示。
该时刻某一质点的坐标为(5λ,0),经过4的时间,该质点的坐标为435.(λ,0)(λ,-)2453(λ,)(λ,)244.如图所示,一根张紧的水平弹性长绳上的、两点,相距140,点在点的右方当一列简谐横波沿此绳向右传播时,若点的位移达到正极大时,点的位移恰为零,且向下运动经过100后,点的位移为零,且向下运动,而点的位移恰达到负极大则这简谐横波的波速可能等于141064675.简谐横波在某时刻的波形图线如图所示,由此图可知.若质点向下运动,则波是从左向右传播的.若质点向上运动,则波是从左向右传播的若波从右向左传播,则质点向下运动.若波从右向左传播,则质点向上运动6.如图所示,是波源,、、、是波传播方向上各质点的平衡位置,且====3,开始各质点均静止在平衡位置,=0时波源开始向上做简谐运动,振幅是01,波沿方向传播,波长是8,当点振动了一段时间后,经过的路程是05,各质点运动的方向是.质点向上.质点向上.质点向下.质点向下7.如图在平面内有一沿轴正方向传播的简谐横波,波速为1,振幅为4,频率为25在=0时刻,点位于其平衡位置上方最大位移处,则距为02的点.在01时的位移是4.在01时的速度最大.在01时的速度向下.在0到01时间内的路程是48.一列简谐横波,在=0时刻的波形如图8-13所示,自右向左传播,已知在1=07时,点出现第二次波峰(07内点出现两次波峰),点的坐标是(-7,0),则以下判断中正确的是.质点和质点在=0时刻的位移是相等.在=0时刻,质点向上运动.在2=09末点第一次出现波峰.在3=126末点第一次出现波峰二、波的特性1类比是一种有效的学习方法,通过归类和比较,有助于掌握新知识,提高学习效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P处质点________ l 时刻的振动状态与 L O处的质点t1时刻的振动状态相同。 p
2. 如图所示,两列波长为l 的相干波在P点相遇, 11点到P点的距离是r1,S2点 S1的初相位是 ,S 的初相位是 , S 22到P点的距离是r2,以k代表 零或正、负数,则P点是干涉极大的条件为()
S1
r1
Pπ B. 2 - 1 ( r2 - r1 ) 2 kπ l C. 2 - 1 2 kπ
A. B. 1 1 , , 0.05 2 2 1 ,1, 0.05 2 1 1 C. , ,0.05 2 2 D . 2 , 2 , 0 .05
9. 一列机械横波,能量为最大值的媒质质元的位 置是: A.正方向最大位移处 B.负方向最大位移处 C.平衡位置处 D.其它位置处
10. 一端固定,另一端自由的棒中有余弦驻波存 在,其中三个最低振动频率之比为() A.1:2:3 B.1:2:4
r1 10 x , r2 10 x 2π Δ = π ( r2 r1 ) (2 k 1)π λ x =4 k 4( k 0 1, 2, ) 或 x =-4k
10 2 π π y2 5 cos( 20 πt x ) 10 2 k 0 1, 2 , ) 则弦线上波腹的位置_________ 10 k 5 (。 cos( ) cos( ) 2 cos cos π π y 10 cos ( x ) cos2p t 10 2
B.波源的振动速度与波速相同;
C. 在波的传播方向上各质点都在各自的平衡位置附近振 动。
D.单位体积介质中的波动能量(能量密度)为恒量。
5. 两列振幅相同的相干波在空间P点相遇, 某 时刻观测到P点的合成振动的位移既不等于这 两列振幅之和,又不等于这两列波的振幅之差, 则我们可以断言( )
A. P点不可能是振动最弱的点 B. P点不可能是振动最强的点 C. P点不是振动最强的点,也不是最 弱的点 D. P点可能是振动最强的点
6. 关于驻波,以下见解正确的是( )
A. 波形不变 B. 波腹处质点位移恒不为零 C. 波节处质点位移恒为零 D. 两相邻波腹间的距离为四分之一波长
7. 在驻波中,两个相邻波节间各质点的振动( ) A.振幅相同,位相相同 B.振幅不同,位相相同 C.振幅相同,位相不同 D.振幅不同,位相不同
8. 一平面简谐波表达式为 y 0 .05 sin π ( t 2 x )( SI ) 则该波的频率 ( H z ) ,波速u(m/s)及波线上各 点振幅A(m)依次为( )
C.1:3:5
D.1:4:9
(二) 填空题 1.一横波的波动方程为: y 0 .01 cos( 250 π t 10 π x )( m ) 若t=0.1s,则x=2m处质点的位移为_______m , -0.01 该处质点的振动速度为________m· s-1,加速度 0 为________m· s-2。 625p2
2π D. 2 - 1 ( r2 - r1 ) 2 kπ l
3. 对于波动方程 y A cos(t x ) 中的 ( x ) 表示 A. 波源的振动相位; B. 波源的振动初相位; C. x处质点的振动相位; D. x处质点的振动初相位。 4. 平面简谐波在同一介质中传播,下列说法中正确的 是 A. 波源的频率与振动的频率不相同。
L y p ( t ) yo ( t1 ) t t1 u
t1
l
x
O
3. 一平面简谐波在媒质中传播,在某时刻,某 质元的动能为最大值时,其势能________ 最大 。 4. 两相干波源S1和S2,相距20m,其振幅相等, 周期为0.2s,在同一媒质中传播,波速度均为40 y1 A cos(10π t π/ 2) , m· s-1。S1的振动方程: S2的振动方程:y2 A cos(10πt π/ 2) 。以S1、S2 连线为坐标轴x,以S1、S2连线中点为原点,则 S1S2间因干涉而静止的各点的坐标:x=_______。
S2
10l / 3
9. 已知波源的振动周期为4.00×10-2s,波的传播 速度为300m· s-1,波沿x轴正方向传播,则位于 x1=10.0m和x2=16.0m的两质点的振动相位差为 __________ π或 - π 。
*10. 一日本妇女的喊声创吉尼斯世界记录,达到 115dB,则其喊声的声强为__________ 0.316W/m 2 。
5. 两列平面简谐波在一很长的弦上传播,设其方 程为 y 5 cos( 20 πt π x π )
1
6. 在简谐驻波中,同一波节两侧的两个媒质元 (在距该波节二分之一波长的范围内)的振动相 位差是_______ 。 π
7. 在截面积为S的圆管中,有一列平面简谐波传播, 表达式为y = A cos(t - 2px/l),管中波的平均能量 l 密度是 w ,则通过截面 S 的平均能流是_____ 。 wS 2π P IS wuS wS l 2p 8. 如图所示,波源S1和S2发出的波在P点相遇,P 点距波源的距离分别为3l和10l /3,l为两列波 在介质中的波长,若P点的合振幅总是极大值, 相同 (填相同或不同), 则两波源振动方向_______ 相同 (填相同或不同),波源S 的 振动频率________ 2 3l 2π / 3 。 S 相位比S1的相位领先________ P 1