华中师大一附中2017专县生试题
华中师大一附中2017年自主招生考试数学试题(word版附答案)
华中师大一附中2017年高中招生考试数学试题考试时间:80分钟卷面满分:150分说明:所有答案一律书写在答题卡上,写在试卷上作答无效.一、选择题(本大题共6小题,每小题7分,共42分.在每小题给出的四个选项中,有且只有一项是正确的.)1.实数a,b,c在数轴上对应的点如右图所示,化简代数式√a2−2a+1+∣b−c∣-√a2−2ab+b2的结果为( )A.2b-c-1 B.-1 C.2a-c-1 D.b-c+12.已知点A,B分别是双曲线y=4x和直线y=-x上任意一点,则AB的最小值为( ) A.2 B.4√2C.4 D.2√23.如图,反比例函数y=kx(k为非零常数)的图象经过二次函数y=ax2+bx(a,b为常数,且a≠0)的图象的顶点(-12,m) (m>0)则( )A.a=b+2k B.a=b-2kC.k<b<0 D.a<k<04.若实数a,b满足a2+b2=4,则√a(b−4)3+√ab−3a+2b−6=( )A.-2 B.0 C.2 D.45.已知y=f(x)满足:(1)f(1)=1(f(1)表示x=1时对应的y的值,下同) ;(2)当0<x<1时f(x)>0;(3)对任意实数x,y有f(x+y)-f(x-y)=2 f(1-x) f(y),则f(13)=( )A.1 B.12C.√22D.√336.如图,矩形ABCD中,AB=4,AD=6,点E,F分别是AB,BC边上的两动点,且EF=2,点G为EF的中点,点H为AD边上一动点,连接CH,GH,则GH+CH的最小值为( )A.4√5B.9C.√83D.√85二、填空题(本大题共6小题,每小题7分,共42分)7.x=b−√b2−4122(b>21),则x2-bx+103=__________.8.已知关于x的方程x−1x−2−xx+1=ax+1x2−x−2无解,则a的值为__________.9.已知√x2−1+√x2+6=7,则√x2−9+√x2−6=__________.10.如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,若折痕AE=5√5,且tan∠EFC=34,连接DF.则点A到DF的距离为__________.第10题图第11题图11.如图,PA,PB分别切⊙O于点A、点B,AC是⊙O的直径,AC,PB的延长线交于点E,F为AP的中点,AB分别交OP、EF于点T、点S.若BEBP =23,则ATSB=__________.12.定义:使函数y=f(x)的函数值为零的x的值叫函数y=f(x)的幸运点(如:y=x2-2x+1 的幸运点为x=1;y=x2-2x-3的幸运点为x=3,x=-1;y=x+1的幸运点为x=-1).设f(x) ={(x+1)2−3(x≤1)1x(x>1),若g(x) =f(x)-b恰好有两个幸运点,则实数b的取值范围为__________.三、解答题(本大题共4小题,共66分.解答应写出文字说明、证明过程和演算步骤) 13.(本小题满分16分)如图,AB是⊙O的直径,点C为⊙O外一点,连接AC交⊙O于点E,连接BC交⊙O于点D,AD、BE交于点F,连接DE.(1)求证:点F在△ABC的AB边的高上;(2)若AB=√2DE,求∠AFB的度数.14.(本小题满分16分)(1)设k,t为常数,解关于x的方程kx2+(3-3k)x+2k-6=0…①(2)在(1)的条件下,若方程①只有整数根,且关于y的一元二次方程(k+3)y2-15y+t=0…②有两个正整数根y1,y2,则t为何值时,y21+y22有最小值?15.(本小题满分16分)已知ABCD 的对角线AC 、BD 相交于E 点,∠CAD=a ,∠BAC=β. (1)如图1,若a =2β,BD=10,AD=8,求AC 的长;(2)如图2,若a =β=45°,点M 为线段AB 上一动点,连接DM ,将DM 绕D 点逆时针旋转60°得线段DN ,连接BN .若点M 由A →E 匀速运动,点M 到达E 点后运动停止,在点M 运动的过程中,∠CBN 的度数是否变化?若变化,求其取值范围;若不变,求其值.16.(本小题满分18分)已知抛物线y =x 2的图象如图1所示,A (0,a )(a >0),直线l :y =−14,点B 为抛物线上的任意一点且恒满足点B 到A 点距离与点B 到l 的距离相等. (1)求a 的值;(2)如图2,若直线l 1:y =kx +14交抛物线于E ,D 两点,连接DO 、OE . ①过点E 作EC ⊥x 轴于点C ,过点D 作DF ⊥x 轴于点F ,求tan ∠OEC tan ∠DOF的值;②过点E 作EM ⊥l 于点M ,过点D 作DN ⊥l 于点N ,点G 为MN 的中点,若点G 到DE 的距离为√52,求k 值.ABCDE MA BDCEN 图1图2华中师大一附中2017年高中招生考试数学试题参考答案考试时间:80分钟 卷面满分:150分说明:所有答案一律书写在答题卡上,写在试卷上作答无效.一、选择题(本大题共6小题,每小题7分,共42分.在每小题给出的四个选项中,有且只有一项是正确的.)7.08.1,2,49.310.4√511.7412.-3<b ≤0或b =1三、解答题(本大题共4小题,共66分.解答应写出文字说明、证明过程和演算步骤) 13.(1)∵AB 为直径,∴∠ADB =90°,∠AEB =90° ∴AD 、BE 是△ABC 的两条高, ∴F 是△ABC 的AB 边上的高.(2)∵∠CDE =∠CAB ,∠C =∠C ,∴△CDE ∽△CAB , ∴CD AC=DE AB=√22=cosC ,∴∠C=45°,∵∠C +∠EFD =180°,∴∠AFB =∠EFD =135°. 14.(1)当k =0时,x =2符合题意;当k ≠0时,则(x -2)(kx +3-k )=0,∴x 1=2,x 2=k−3k(2)由(1)得,k =0时,x =2∴y 1+y 2=5,y 1·y 2=tk+3,∴(y 1,y 2,t )=(4,1,12)或(3,2,18)或(1,4,12)或(2,3,8) ∴y 21+y 22=17或13 当k ≠0时,x 1=2,x 2=k−3k∴k =31−x 2,则k +3=6−3x 21−x 2,y 1+y 2=5(1−x 2)2−x 2=5+5x 2−2≥2,∴x 2-2=-5,1,5,∴x 2=-3,3,7 ∴k =34,−32,12,∴y 1+y 2=4,10,6当y 1+y 2=4时,(y 1,y 2)=(3,1)或(2,2)或(1,3),y 21+y 22=8或10 当y 1+y 2=6时,y 21+y 22=(6-y 2)2+y 22=2(y 2-3)2+18≥18 当y 1+y 2=10时,y 21+y 22=(10-y 2)2+y 22=2(y 2-5)2+50≥50∴(y 21+y 22)min =8,∴y 1=y 2=2,k =34,又y 1·y 2=tk+3,∴t =(k +3)y 1·y 2=15 综上,当t =15时,y 21+y 22有最小值.15.(1)以B 为圆心,BC 为半径画弧交AC 于C ,F 两点,连接BF ,作BS ⊥AC 于S ∵a =2β,∠BCA =∠DAC =∠BFC ,∴∠ABF =∠BAF ∴BC =AD =BF =AF =8∴ES =CE -CS =12AC -12CF=12AF =4∴BS =√52−42=3,∴CS =√82−32=√55,∴CE =4+√55 ∴AC=8+2√55或延长EC 至T ,使CT =BC ,连接BT ,做法与上法类似. (2)法1:以AD 为边作等边△AFD ,以DE 为边作等边△DEG (如图所示),连NG ,FG ∵a =β=45°,易证四边形ABCD 为正方形, 易证△MDE ≌△NDG ,△ADE ≌△FDG , ∠FGD =∠AED =∠NGD =90°, ∴F ,N ,G 三点共线∠ABF =∠AFB =75°,∠DBF =30°延长BF 交直线DG 于G ′,∴∠BG ′D =90°, ∴BD =2DG ′=2DG ,∴G 与G ′重合,∴B 、F 、N 、G 四点共线,∴∠NBD =30°,∠CBN =15°不变. 法2:作等边△DEG ,连接NG ,易证△MDE ≌△NDG ,∴∠MED =∠NGD =90°,∠EDG =60°,延长GN 交直线BD 于B ′,则DB ′=2DG , 又∵BD =2DG ,∴BD =DB ′,∴B 与B ′重合,∴∠DBG =30°,∴∠CBN =15°. 16.(1)设B(x ,y ),∴y =x 2,∴x 2+(y -a )2=(y +14)2,∴(12-2a )y +a 2-116=0, ∴{12-2a =0a 2-116=0,∴a =14,或B 与O 重合,a =14,再证BA 与B 到直线l 的距离相等. (2)①作BC ⊥x 轴于C ,DF ⊥x 轴于F ,设ED 的解析式为y =kx +14,E(x 1,y 1),D(x 2,y 2),{y =x 2y =kx +14,∴x 2-kx -14=0,∴x 1+x 2=k ,x 1·x 2=-14,∴y 1=x 21,y 2=x 22 ∴tan ∠OEC =−x 1y 1,tan ∠DOF =y 2x 2,∴tan ∠OECtan ∠DOF=−x 1y 1·y 2x 2=4(3)∵EA =EM ,DN =DA ,∴∠EAM +∠DAN =12(180°-∠AEM +180°+∠ADM )=90°,∴∠MAN =90°∴GA =GM =GN ,∴△GME ≌△GAE ,∴∠GAE =∠GMA =90°,∴GA ⊥DE ,MN =∣x 1-x 2∣=√(x 1−x 2)2−4x 1x 2=√k 2+1=2GA =√5,∴k =±2.。
湖北省华中师范大学第一附属中学2017届高三语文5月押题考试试题(含解析)_6028
华中师范大学第一附属中学2017届高三5月押题考试语文试题【注意事项】1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷阅读题现代文阅读论述类文本阅读阅读下面的文字,完成下列各题。
所谓“人文信仰”,它的启发来自现代学者提出的“人文宗教”。
新儒家认为,儒家传统是一种不出世的却具有超越性的东方宗教,它不像其他的宗教,需要有神,有耶稣、安拉等外在权威。
它不需要外在的权威,它有一种具有内在超越性的信仰。
内在超越性,也就是道德心,如孟子所谓“仁义礼智”。
儒家传统的这一特质,若称为中华“人文信仰”更准确。
“人文信仰”在儒释道中都有,儒家比较典型,儒家是“以出世的心态行入世的功德”,在世俗社会中要完成人之为人的使命。
一是个体生命的健全,即诚意、正心、修身;另外就是建功立业,即把“立德、立功、立言”当作人生追求。
人的本质是一切“社会关系的总和”,人类具有经济的、政治的、道德文化的属性。
但道德文化属性应是人的最高属性,是人之为人的最高本质。
信仰体系当中,儒家肯定人首先要解决肉体的存在问题,这并非一般人理解的儒家是重义轻利的。
儒家主张在道义的引领下对物质生活的安顿,认为这也是治国理政者须关注的重中之重。
如孔子所说“富之”“足食”“因民之所利而利之”;孟子所说“易其田畴,薄其税敛,民可使富也”;荀子也说“足国之道:节用裕民,而善臧其余。
节用以礼,裕民以政”。
在这个基础上,儒家重视和强调人的精神生活,特别是人的道德、文化。
这是儒家生命大智慧的主要内涵。
儒学是仁学,但一般只讲“仁者爱人”“己所不欲,勿施于人”“已欲立而立人,已欲达而达人”。
湖北省华中师范大学第一附属中学2017届高三5月押题考试理科综合试题Word版含答案..
湖北省华中师范大学第一附属中学2017届高三5月押题考试理科综合试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 下列关于叶绿体和线粒体的叙述,正确的是A. 线粒体在有氧和无氧条件下都能分解葡萄糖B. 叶绿体在光照和黑暗环境中都能分解水C. 线粒体基质和叶绿体基质都能产生ATPD. 线粒体和叶绿体都能参与物质和能量代谢2. 线虫发育过程中由受精卵共产生671个子细胞,最终发育成的幼虫只有558个细胞。
下列有关叙述错误的是A. 受精卵有丝分裂产生的所有细胞具有相同的核遗传信息B. 细胞数目的减少是由基因所决定的细胞自动结束生命的过程C. 受精卵发育成幼虫过程细胞内蛋白质种类和数量未发生改变D. 线虫的发育过程是基因组在一定时空上程序性表达的结果3. 下列以洋葱(见下图)为材料的实验,不能达到实验目的的是A. 用绿色叶片提取叶绿体中的光合色素B. 用鱗片叶外表皮观察细胞的失水和吸水C. 用鱗片叶内表皮观察RNA在细胞中的分布D. 用根尖细胞观察减数分裂中染色体的变化4. 大鼠某神经元白天胞内Cl-浓度高于胞外,夜晚则相反。
该神经元主要受递质丫-氨基丁酸的蹴片叶调节,丫-氨基丁酸与受体结合后会引起Cl-通道开放,使Cl-顺浓度梯度通过离子通道转移。
下列有关叙述错误的是A. Y -氨基丁酸在神经元之间传递信息B. Y -氨基丁酸与受体结合后使C1-外流C. 白天丫-氨基丁酸使该神经元兴奋D. 夜晚丫-氨基丁酸使该神经元抑制5. 下列关于内环境及其稳态的叙述中,正确的是A. 人体剧烈运动后大量乳酸导致血浆PH明显下降B. T细胞既参与体液免疫也参与细胞免疫过程C. 人体内环境稳态的失调与外界环境无关D. 内环境渗透压下降会引起人体尿量减少6. 人类红绿色盲的基因(A、a)位于X染色体上,秃顶的基因(B b)位于常染色体上,但其性状表现与性别有关,Bb和BB的女性表现为非秃顶,而只有BB的男性才表现为非秃顶。
湖北省武汉市华中师大一附中2017-2018学年高二上期末数学试题(理科)(无答案
湖北省武汉市华中师⼤⼀附中2017-2018学年⾼⼆上期末数学试题(理科)(⽆答案华中师⼤⼀附中2017-2018学年度上学期⾼⼆期末检测数学试题(理)时限:120分钟满分:150分命题⼈:蔡卉帅建成审题⼈:钟涛⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分在下列每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.)1.已知随机变量X 服从正态分布N(5,2σ),且P(X >k)=P(X <k-4),则k 的值为 A.6 B.7 C.8 D.92.⼆项式(1+x)17的展开式中,系数最⼤的项为A.第9项B.第10项C.第8或9项D.第9或10项3.从混有5张假钞的20张⼀百元纸币中任意抽取2张,事件A 为“取到的两张中⾄少有⼀张为假钞”,事件B 为“取到的两张均为假钞”,则()=A B P | A.191 B.1817 C.194 D.1724.据天⽓预报:在春节假期武汉地区降雪的概率为0.2,长沙地区降雪的概率为0.3.假定这段时间内两地是否降雪相互之间没有影响,则0.44等于 A.两地都降雪的概率 B.两地都不降雪的概率 C.⾄少有⼀地降雪的概率 D.恰有⼀地降雪的概率5.如图所⽰程序框图(算法流程图)的输出结果是A.3B.11C.38D.1236.已知双曲线()0b 0a 1by -a x 2222>,>=与直线y=2x 有交点,则双曲线的离⼼率的取值范围为A.(1,5)B.(1,5]C.(5,+∞)D.[5,+∞) 7.有以下四个命题:①从匀速传递的产品⽣产流⽔线上,质检员每15分钟从中抽取⼀件产品进⾏某项指标检测,这样的抽样是系统抽样;②对两个分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越⼤,说明“X 与Y 有关系”的把握程度越⼤;③在线性回归模型中,如果散点图中所有的样本点都落在⼀条斜率为⾮0实数的直线上,则R 2=1;④对于⼀组数据x i (i=1,2,3,…,n),如果将它们改变为x i +C(i=1,2,3,…,n),其中常数C ≠0,则改变后的数据的平均数发⽣了改变,但⽅差保持不变.其中正确的说法个数为A.1B.2C.3D.48. 在[-2,2]上随机取两个实数a,b,则事件“圆C 1:x 2+y 2=41与圆()22a -x :C +()1b -y 2=有公共点”发⽣的概率为A.8π B.649π C.4π D.2π 9.⼝袋⾥放有⼤⼩相同,质量相等的两个红球和⼀个⽩球,有放回地每次摸取⼀个球,若摸出红球,扣1分;若摸到⽩球,则加1分.则摸取七次后,总分为3分的概率为A.52573231??? ?????? ??C B.52273132??? ?????? ??C C.75731??? ??C D.52373231??C 10.学校要安排⼀场⽂艺晚会,共有10个演出节⽬除第1个节⽬和最后⼀个节⽬已确定外,还有4个⾳乐节⽬,2个舞蹈节⽬和2个曲艺节⽬.要求2个曲艺节⽬⼀定要排在第4、7的位置,2个舞蹈节⽬不能相邻,则节⽬单不同的排法种数有 A.192 B.576 C.960 D.11521.已知圆O 的半径为定长r,点4是平⾯内⼀定点(点A 不与坐标原点O 重合),P 是圆O 上任意⼀点,线段AP 的垂直平分线l 和直线OP 相交于点Q.当点P 在圆上运动时,点Q 的轨迹可能是下列⼏种类型:①椭圆,②双曲线③抛物线,④直线,⑤点,其中正确的是 A.①②⑤ B.①②③ C.①④⑤ D.②③④12.5⽀篮球队进⾏单循环⽐赛(任两⽀球队之间恰进⾏⼀场⽐赛),任两⽀球队之间的胜率都是21(任两⽀球队之间⽐赛没有平局的情况出现)。
湖北省华中师范大学第一附属中学2016-2017学年高一上学期期末考试数学试题 Word版
华中师大一附中2016—2017学年度上学期高一期末检测数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.设集合{}{}2||lg 0M x x x N x x ===≤,则M N = A. []0,1 B. (]0,1 C. [)0,1 D.(],1-∞2.已知函数()21f x x =+,那么()1f a += A.22a a +- B. 21a + C. 222a a ++ D. 221a a ++ 3.454sin cos tan 363πππ⎛⎫-= ⎪⎝⎭A. 4.要得到函数sin y x =的图象,只需将函数cos 3y x π⎛⎫=-⎪⎝⎭的图象 A.向右平移6π个单位长度 B.向右平移3π个单位长度 C.向左平移3π个单位长度 D. 向左平移6π个单位长度 5.设0.13592,lg ,log 210a b c ===,则,,a b c 的大小关系是 A. b c a >> B. a c b >> C. b a c >> D. a b c >>6.函数cos 2sin 2cos 2sin 2x x y x x+=-的最小正周期为 A. 2π B. π C.2π D.4π 7.已知函数()1lg12ax f x x+=-是定义在(),b b -上的奇函数,(,a b R ∈且2a ≠-),则b a 的取值范围是A. (B. (C. (D.(8.若()sin 3πα-=-,且3,2παπ⎛⎫∈ ⎪⎝⎭,则sin 22πα⎛⎫+ ⎪⎝⎭等于A. 3-B. 6-C. 639.函数()f x 的零点与()ln 28g x x x =+-的零点之差的绝对值不超过0.5,则()f x 可以是A. ()36f x x =-B. ()24x -C.21x e --D.5ln 2x ⎛⎫- ⎪⎝⎭ 10.定义在R 上的函数()f x 对任意210x x <<都有()()12121f x f x x x -<-,且函数()f x 的图象关于原点对称,若()22f =,则不等式()0f x x ->的解集是A.()()2,00,2-B.()(),22,-∞-+∞C.()(),20,2-∞-D.()()2,02,-+∞11.()()()sin 0,0f x A x A ωωπω=+>>在33,24ππ⎡⎤--⎢⎥⎣⎦上单调,则ω的最大值为 A. 12 B.34 C. 1 D.4312.已知函数()()2102x f x x e x =+-<与()()2ln g x x x a =++的图象上存在关于y 轴的对称点,则a 的取值范围是A.⎛-∞ ⎝ B. (-∞ C. ⎛ ⎝ D.⎛ ⎝第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.若函数()f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域为 .14.计算:lg 4lg9++= .15.已知11,,2sin cos πθπθθ⎛⎫∈+= ⎪⎝⎭,则cos 23πθ⎛⎫+ ⎪⎝⎭的值为 . 16.已知集合()()(){}|sin 2cos 2log 1a f x x x ϕϕπϕπϕ=-+-<⎡⎤⎣⎦为奇函数,且的子集个数为4,则a 的取值范围为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分10分)已知幂函数()()()2m m f x x m N +*=∈的图象经过点(. (1)试求m 的值并写出该幂函数的解析式;(2)试求满足()(13f a f +>的实数a 的取值范围.18.(本题满分12分)已知()()()()3sin cos 2sin 2.sin sin 2f ππαπαααπαπα⎛⎫---+ ⎪⎝⎭=⎛⎫+-- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且3cos 35πα⎛⎫+= ⎪⎝⎭,求()f α的值.19.(本题满分12分)已知函数()12.2x x f x =- (1)若()2f x =,求x 的值;(2)若()()220tf t mf t +≥对于[]1,2t ∈恒成立,求实数m 的取值范围.20.(本题满分12分)已知函数()()()cos 0,02f x x x πωωωωϕω⎛⎫=+-+-<<> ⎪⎝⎭为偶函数,且函数的()y f x =图象相邻的两条对称轴间的距离为2π. (1)求24f π⎛⎫ ⎪⎝⎭的值; (2)将()y f x =的图象向右平移6π个单位后,再将所得的图象上个点的横坐标伸长为原来的4倍,纵坐标不变,得到函数()y g x =的图象,求()y g x =的单调区间,并求其在5,36ππ⎡⎤-⎢⎥⎣⎦上的最值.21.(本题满分12分)现有一圆心角为2π,半径为12cm 的扇形铁皮(如图).,P Q 是弧AB 上的动点且劣弧 PQ的长为2cm π,过,P Q 分别作与,OA OB 平行或垂直的线,从扇形上裁剪出多边形OHPRQT ,将该多边形面积表示为角α的函数,并求出其最大面积是多少?22.(本题满分12分)函数()(),,.nn f x x bx c n Z b c R =++∈∈ (1)若1n =-,且()111142f f --⎛⎫== ⎪⎝⎭,试求实数,b c 的值;(2)设2n =,若对任意[]12,1,1x x ∈-有()()21224f x f x -≤恒成立,求b 的取值范围;(3)当1n =时,已知20bx cx a +-=,设()g x =,是否存在正数a ,使得对于区间⎡⎢⎣⎦上的任意三个实数,,m n p ,都存在以()()()()()()111,,f g m f g n f g p 为边长的三角形?若存在,求出a 的取值范围;若不存在,请说明理由.。
湖北华中师大一附中2017届高三(上)期中数学试卷(文科)(解析版)
2016-2017学年湖北华中师大一附中高三(上)期中数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x |x 2﹣2x=0},B={0,1,2},则A ∩B=( )A .{0}B .{0,1}C .{0,2}D .{0,1,2}2.已知i 是虚数单位,复数z=(a ∈R )在复平面内对应的点位于直线x +2y=0上,则a=( )A .2B .C .﹣2D .3.已知命题p ;≤x ≤1,命题q :(x ﹣a )(x ﹣a ﹣1)≤0,若¬p 是¬q 的必要不充分条件,则实数a 的取值范围是( )A .[0,]B .[,1]C .[,]D .4.已知△ABC 是边长为1的等边三角形,点D 、E 分别是边AB 、BC 的中点,连接DE 并延长到点F ,使得DE=2EF ,则•的值为( )A .﹣B .C .D .5.已知x ,y 满足不等式组,则z=x +y 的最大值为( ) A .8 B .10 C .12 D .146.已知函数y=2sin (ωx +)(ω∈N *)经过点(2π,),则ω的最小值为( ) A .1 B .2 C .3 D .47.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d=2,S k +2﹣S k =28,则k=( ) A .8 B .7 C .6 D .58.设两正数a ,b (a ≠b )满足a 2+ab +b 2=a +b ,则a +b 的取值范围是( )A .(1,+∞)B .(1,)C .[1,]D .(0,1)9.一几何体的三视图如图,则它的体积是( )A. B. C.D.10.在△ABC中,角A、B、C的对边分别为a、b、c,则以下结论错误的为()A.若,则A=90°B.C.若sinA>sinB,则A>B;反之,若A>B,则sinA>sinBD.若sin2A=sin2B,则a=b11.若圆(x﹣5)2+(y﹣1)2=r2上有且仅有两点到直线4x+3y+2=0的距离等于1,则r的取值范围为()A.[4,6]B.(4,6)C.[5,7]D.(5,7)12.已知f(x)=,存在x2>x1≥0,使得f(x1)=f(x2),则x1•f(x2)的取值范围为()A.[,)B.[,)C.[,1)D.[1,)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填写在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.数列{a n}满足a n=,记其前n项和为S n.若S n=5,则项数n的值为.14.在平面直角坐标系xOy中,过点M(﹣4,0)的直线l与圆C:(x﹣1)2+y2=5相交于A,B两点,若点A恰好是线段MB的中点,则直线l的方程为.15.已知向量=(1,t),=(﹣2,1)满足(2﹣)⊥,则t=.16.已知函数f(x)=(2x﹣3)e x+有三个零点,则实数a的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知•=•,sinA=.(1)求sinC的值;(2)设D为AC的中点,若△ABC的面积为6,求BD的长.18.已知数列{a n}满足a1=2,n(a n+1﹣n﹣1)=(n+1)(a n+n)(n∈N*).(1)求证:数列{}是等差数列,并求其通项公式;(2)设b n=﹣15,求数列{|b n|}的前n项和T n.19.如图所示,边长为2的正方形ABCD所在的平面与△CDE所在的平面交于CD,且AE ⊥平面CDE,AE=1.(1)求证;平面ABCD⊥平面ADE;(2)求几何体A﹣BDE的体积.20.在平面直角坐标系中,已知动点T到点A(﹣4,0),B(﹣1,0)的距离比为2.(1)求动点T的轨迹方程Γ;(2)已知点P是直线l:y=x与曲线Γ在第一象限内的交点,过点P引两条直线分别交曲线Γ于Q,R,且直线PQ,PR的倾斜角互补,试判断直线QR的斜率是否为定值,若是定值,请求出这个定值;若不是,请说明理由.21.已知函数f(x)=lnx+.(1)讨论函数f(x)的单调性;(2)当a=2时,且函数f(x)满足f(x1)=f(x2)(x1≠x2),求证x1+x2>4.(参考公式:[ln(m﹣x)]'=,m为常数)22.已知函数f(x)=|x﹣1|﹣|2x+3|.(I)解不等式f(x)>2;(II)若关于x的不等式f(x)≤a2﹣a的解集为R,求正数a的取值范围.2016-2017学年湖北华中师大一附中高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【考点】交集及其运算.【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选C2.已知i是虚数单位,复数z=(a∈R)在复平面内对应的点位于直线x+2y=0上,则a=()A.2 B.C.﹣2 D.【考点】复数的代数表示法及其几何意义.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:∵复数z===+i在复平面内对应的点(,)在位于直线x+2y=0上,∴+2×=0,解得a=﹣2.故选:C.3.已知命题p;≤x≤1,命题q:(x﹣a)(x﹣a﹣1)≤0,若¬p是¬q的必要不充分条件,则实数a的取值范围是()A.[0,]B.[,1]C.[,]D.【考点】必要条件、充分条件与充要条件的判断.【分析】命题q:(x﹣a)(x﹣a﹣1)≤0,解得a≤x≤a+1.由于¬p是¬q的必要不充分条件,可得q是p的必要不充分条件.即可得出.【解答】解:命题q:(x﹣a)(x﹣a﹣1)≤0,解得a≤x≤a+1.∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件.∴,且等号不能同时成立.解得.则实数a的取值范围是.故选:A.4.已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣ B.C.D.【考点】平面向量数量积的运算.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:B.5.已知x,y满足不等式组,则z=x+y的最大值为()A.8 B.10 C.12 D.14【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即A(4,6),代入目标函数z=x+y得z=4+6=10.即目标函数z=x+y的最大值为10.故选:B6.已知函数y=2sin(ωx+)(ω∈N*)经过点(2π,),则ω的最小值为()A.1 B.2 C.3 D.4【考点】y=Asin(ωx+φ)中参数的物理意义.【分析】根据函数y的图象过点(2π,),代入解析式,再结合ω∈N*,即可求出答案.【解答】解:函数y=2sin(ωx+)图象经过点(2π,),∴2sin(2πω+)=,即sin(2πω+)=;又ω∈N*,∴ω的最小值为1.故选:A.7.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=28,则k=()A.8 B.7 C.6 D.5【考点】等差数列的通项公式.【分析】利用等差数列的通项公式即可得出.【解答】解:S k+2﹣S k=28=a k+2+a k+1=2×1+(2k+1)×2,解得:k=6.故选:C.8.设两正数a,b(a≠b)满足a2+ab+b2=a+b,则a+b的取值范围是()A.(1,+∞)B.(1,)C.[1,]D.(0,1)【考点】基本不等式.【分析】两正数a,b(a≠b)满足a2+ab+b2=a+b,可得0<(a+b)2﹣(a+b)=ab<,即可得出.【解答】解:∵两正数a,b(a≠b)满足a2+ab+b2=a+b,∴0<(a+b)2﹣(a+b)=ab<,解得.则a+b的取值范围是.故选:B.9.一几何体的三视图如图,则它的体积是()A. B. C.D.【考点】由三视图求面积、体积.【分析】几何体是一个简单组合体,上面是一个圆锥,圆锥的高是a,底面直径是2a,这些都比较好看出,再根据圆锥的体积公式,得到结果,下面是一个特正方体,棱长是a,做出体积把两个体积相加得到结果.【解答】解:由三视图知,几何体是一个简单组合体,上面是一个圆锥,圆锥的高是a,底面直径是2a,∴圆锥的体积是=,下面是一个棱长是a的正方体,正方体的体积是a3,∴空间几何体的体积是,故选A.10.在△ABC中,角A、B、C的对边分别为a、b、c,则以下结论错误的为()A.若,则A=90°B.C.若sinA>sinB,则A>B;反之,若A>B,则sinA>sinBD.若sin2A=sin2B,则a=b【考点】正弦定理.【分析】A、由题设中的条件可以得出B,C两角的正弦与余弦都对应相等,由此关系即可得出正确答案B、利用正弦定理及等比性质,即可求得结论.C、在△ABC中,设外接圆的半径为R,运用正弦定理和三角形的边角关系,即可得到结论.D、利用题设等式,根据和差化积公式整理求得cos(A+B)=0或sin(A﹣B)=0,推断出A+B=或A=B,则根据三角形形状可判断出.【解答】解:A,∵,∴由正弦定理sinB=cosB,sinC=cosC,又∵B,C为△ABC的内角,∴B=C=45°,故A=90°,A正确;B,∵由正弦定理可得=2R,∴==2R=,故B正确;C,在△ABC中,设外接圆的半径为R,若sinA>sinB,则2RsinA>2RsinB,由正弦定理可得a>b,即A>B;若A>B,即有a>b,即2RsinA>2RsinB,即a>b.则在△ABC中,sinA>sinB⇔A>B,故C正确;D,∵sin2A=sin2B∴sin2A﹣sin2B=cos(A+B)sin(A﹣B)=0∴cos(A+B)=0或sin(A﹣B)=0∴A+B=或A=B∴三角形为直角三角形或等腰三角形.故D错误.故选:D.11.若圆(x﹣5)2+(y﹣1)2=r2上有且仅有两点到直线4x+3y+2=0的距离等于1,则r的取值范围为()A.[4,6]B.(4,6)C.[5,7]D.(5,7)【考点】直线与圆相交的性质.【分析】先求出圆心到直线的距离,将此距离和圆的半径结合在一起考虑,求出圆上有三个点到直线的距离等于1,以及圆上只有一个点到直线的距离等于1的条件,可得要求的r的范围.【解答】解:∵圆(x﹣5)2+(y﹣1)2=r2(r>0)的圆心到直线4x+3y+2=0的距离为:d==5,当r=4时,圆上只有一个点到直线的距离等于1,当r=6时,圆上有三个点到直线的距离等于1,∴圆(x﹣5)2+(y﹣1)2=r2上有且仅有两点到直线4x+3y+2=0的距离等于1时,圆的半径r的取值范围是:4<r<6,故选:B.12.已知f(x)=,存在x2>x1≥0,使得f(x1)=f(x2),则x1•f(x2)的取值范围为()A.[,)B.[,)C.[,1)D.[1,)【考点】分段函数的应用.【分析】根据函数的解析式画出函数的图象,根据题意数形结合求得x1•f(x2)的取值范围.【解答】解:①当0≤x<1时,≤f(x)<,②当x>1时,f(x)≥1,如图所示,若存在x2>x1≥0使得f(x1)=f(x2)=k,则≤x1<1≤x2≤log23,则1≤f(x2)≤,∴×1≤x1•f(x2)<1×,即≤x1•f(x2)<,故x1•f(x2)的取值范围为[,),故选:A二、填空题:本大题共4小题,每小题5分,共20分.请将答案填写在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.数列{a n}满足a n=,记其前n项和为S n.若S n=5,则项数n的值为35.【考点】数列的求和;数列的函数特性.【分析】化简数列的表达式,列出关系式求解即可.【解答】解:数列{a n}满足a n==.前n项和为S n=()+()+…+()=,S n=5,可得=5,解得n=35.故答案为:3514.在平面直角坐标系xOy中,过点M(﹣4,0)的直线l与圆C:(x﹣1)2+y2=5相交于A,B两点,若点A恰好是线段MB的中点,则直线l的方程为y=(x+4).【考点】直线与圆相交的性质.【分析】利用割线定理求出AB,再利用点到直线的距离公式建立方程,即可得出结论.【解答】解:由割线定理可得,MA•MB=(5﹣)(5+),∵点A恰好是线段MB的中点,∴2AB2=20,∴AB=,∴圆心到直线的距离为=,设直线方程为y=k(x+4),即kx﹣y+4k=0,∴=,∴k=,∴直线l的方程为y=(x+4).故答案为y=(x+4).15.已知向量=(1,t),=(﹣2,1)满足(2﹣)⊥,则t=.【考点】数量积判断两个平面向量的垂直关系.【分析】根据两向量垂直,它们的数量积为0,列出方程求出t的值.【解答】解:向量=(1,t),=(﹣2,1),且(2﹣)⊥,∴(2﹣)•=2•﹣=0,2×(﹣2+t)﹣5=0,解得t=.故答案为:.16.已知函数f(x)=(2x﹣3)e x+有三个零点,则实数a的取值范围是﹣9<a<0.【考点】根的存在性及根的个数判断.【分析】由f(x)=(2x﹣3)e x+=0,可得a=x(3﹣2x)e x,令y=x(3﹣2x)e x,则y′=﹣(x﹣1)(2x+3)e x,取得函数的单调性,求出函数的极值,即可得出结论.【解答】解:由f(x)=(2x﹣3)e x+=0,可得a=x(3﹣2x)e x,(x≠0)令y=x(3﹣2x)e x,则y′=﹣(x﹣1)(2x+3)e x,∴x<﹣或x>1时,y′<0,函数单调递减,﹣<x<0或0<x<1时,y′>0,函数单调递增,∴x=﹣时,函数取得极小值﹣9,x=1时,函数取得极大值0,∵f(x)=(2x﹣3)e x+有三个零点,∴﹣9<a<0,故答案为﹣9<a<0.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知•=•,sinA=.(1)求sinC的值;(2)设D为AC的中点,若△ABC的面积为6,求BD的长.【考点】余弦定理;平面向量数量积的运算;正弦定理.【分析】(1)由已知及向量的运算可求||=||,进而可得A=B,A与B都是锐角,利用同角三角函数基本关系式可求cosA,利用二倍角公式即可得解sinC的值.(2)由(1)及三角形面积公式可求a=b=,由二倍角公式求得cosC 的值,利用余弦定理可求BD 的值.【解答】解:(1)•=•,得=0,即()•()=||2﹣||2=0,故||=||,(也可以由向量数量积的几何意义得出||=||)从而A=B ,A 与B 都是锐角则cosA==.sinC=sin (A +B )=sin2A=2sinAcosA=,即sinC=.(2)由题意知,S △ABC =absinC==6,得a=b=,如右图,CD=,BC=,又cosC=cos (π﹣2A )=﹣cos2A=﹣(1﹣2sin 2A )=﹣,在△BCD 中,由余弦定理得:BD 2=CD 2+BC 2﹣2CD •BCcosC=+﹣2×××(﹣)=.故BD=.18.已知数列{a n }满足a 1=2,n (a n +1﹣n ﹣1)=(n +1)(a n +n )(n ∈N *).(1)求证:数列{}是等差数列,并求其通项公式;(2)设b n =﹣15,求数列{|b n |}的前n 项和T n .【考点】数列递推式. 【分析】(1)n (a n +1﹣n ﹣1)=(n +1)(a n +n )(n ∈N *),可得na n +1﹣(n +1)a n =2n (n +1),变形﹣=2.利用等差数列的定义及其通项公式即可证明.(2)b n =﹣15=2n ﹣15,可得数列{b n }的前n 项和S n =n 2﹣14n .令b n ≤0,解得n ≤7.∴n ≤7时,数列{|b n |}的前n 项和T n =﹣b 1﹣b 2﹣…﹣b n =﹣S n .n ≥8时,数列{|b n |}的前n 项和T n =﹣b 1﹣b 2﹣…﹣b 7+b 8+…+b n =﹣2S 7+S n . 【解答】(1)证明:∵n (a n +1﹣n ﹣1)=(n +1)(a n +n )(n ∈N *),∴na n +1﹣(n +1)a n =2n (n +1),∴﹣=2.∴数列是等差数列,公差为2,首项为2.∴=2+2(n ﹣1)=2n ,∴a n =2n 2.(2)解:b n =﹣15=2n ﹣15,则数列{b n }的前n 项和S n ==n 2﹣14n .令b n =2n ﹣15≤0,解得n ≤7.∴n ≤7时,数列{|b n |}的前n 项和T n =﹣b 1﹣b 2﹣…﹣b n =﹣S n =﹣n 2+14n .n ≥8时,数列{|b n |}的前n 项和T n =﹣b 1﹣b 2﹣…﹣b 7+b 8+…+b n =﹣2S 7+S n =﹣2×(72﹣14×7)+n 2﹣14n=n 2﹣14n +98.∴T n =.19.如图所示,边长为2的正方形ABCD 所在的平面与△CDE 所在的平面交于CD ,且AE ⊥平面CDE ,AE=1.(1)求证;平面ABCD ⊥平面ADE ; (2)求几何体A ﹣BDE 的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定. 【分析】(1)由AE ⊥平面CDE 得AE ⊥CD ,又CD ⊥AD ,故CD ⊥平面ADE ,于是平面ABCD ⊥平面ADE ;(2)由AE ⊥平面CDE 得AE ⊥DE ,利用勾股定理计算DE ,求出S △ADE ,由CD ⊥平面ADE ,CD ∥AB 可知AB ⊥平面ADE ,故V A ﹣BDE =V B ﹣ADE =S △ADE •AB . 【解答】证明:(1)∵AE ⊥平面CDE ,CD ⊂平面CDE , ∴AE ⊥CD ,∵四边形ABCD 是正方形,∴CD ⊥AD ,又AD ⊂平面ADE ,AE ⊂平面ADE ,AD ∩AE=A , ∴CD ⊥平面ADE ,∵CD ⊂平面ABCD , ∴平面ABCD ⊥平面ADE . 解:(2)∵AE ⊥平面CDE ,DE ⊂平面CDE ,∴AE ⊥DE ,∴DE==.∴S △ADE ==.∵CD ⊥平面ADE ,CD ∥AB , ∴AB ⊥平面ADE ,∴V A ﹣BDE =V B ﹣ADE =S △ADE •AB=.20.在平面直角坐标系中,已知动点T 到点A (﹣4,0),B (﹣1,0)的距离比为2. (1)求动点T 的轨迹方程Γ;(2)已知点P 是直线l :y=x 与曲线Γ在第一象限内的交点,过点P 引两条直线分别交曲线Γ于Q ,R ,且直线PQ ,PR 的倾斜角互补,试判断直线QR 的斜率是否为定值,若是定值,请求出这个定值;若不是,请说明理由. 【考点】轨迹方程. 【分析】(1)设T (x ,y ),由题意知:|TA |=2|TB |,由此即可求得曲线C 的方程; (2)确定Q ,R 的坐标,从而可得直线QR 的斜率. 【解答】解:(1)设T (x ,y ),由题意知:|TA |=2|TB |.即=2,化简得x 2+y 2=4,即为动点T 的轨迹方程.(2)直线QR 的斜率为定值1.证明过程如下:当x=y 时,代入x 2+y 2=4,得P ()(第一象限内).显然,直线PQ 的斜率存在,不妨设直线PQ :y=k (x ﹣)+,Q (x 1,y 1),R (x 2,y 2),联立圆的方程,得(1+k 2)x 2﹣2k (k ﹣1)x +2(k 2﹣2k ﹣1)=0.则x 1=,y 1=﹣.即Q (,﹣).同理,直线PR 的斜率为﹣k ,用﹣k 代替k ,则R (,﹣).那么直线QR 的斜率为1为定值.21.已知函数f (x )=lnx +.(1)讨论函数f (x )的单调性;(2)当a=2时,且函数f (x )满足f (x 1)=f (x 2)(x 1≠x 2),求证x 1+x 2>4.(参考公式:[ln (m ﹣x )]'=,m 为常数)【考点】利用导数研究函数的单调性.【分析】(1)求出=,x>0,由此利用导数性质能讨论函数f(x)的单调性.(2)当a=2时,f(x)=lnx+.不妨令x1<x2,要证明x1+x2>4,即证x2>4﹣x1.只需证f(x1)>f(4﹣x1).设g(x)=lnx+﹣ln(4﹣x)﹣,g′(x)=≤0,由此能证明x1+x2>4.【解答】解:(1)∵f(x)=lnx+,∴=,x>0,当a≤0时,f′(x)≥0总成立;当a>0时,令f′(x)=0,得x=a.当x∈(0,a)时,f′(x)<0.当x∈(0,+∞)时,f′(x)>0.综上:当a≤0时,f(x)在(0,+∞)上单调递增;当a>0时,f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.证明:(2)当a=2时,f(x)=lnx+.不妨令x1<x2,要证明x1+x2>4,即证x2>4﹣x1.由(1)知f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.则0<x1<2,x2>2,只需证f(x2)>f(4﹣x1),有f(x1)=f(x2),即证f(x1)>f(4﹣x1).设g(x)=f(x)﹣f(4﹣x),(0<x<2),则令g(x)=lnx+﹣ln(4﹣x)﹣,g′(x)=﹣﹣﹣=≤0,那么g(x)在(0,2)内单调递减,g(x)>g(2)=0,故证得f(x1)>f(4﹣x1).∴x1+x2>4.22.已知函数f(x)=|x﹣1|﹣|2x+3|.(I)解不等式f(x)>2;(II)若关于x的不等式f(x)≤a2﹣a的解集为R,求正数a的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(Ⅰ)通过讨论x的范围,解不等式,求出不等式的解集即可;(Ⅱ)求出f(x)的最大值,问题转化为a2﹣a≥,求出a的范围即可.【解答】解:(Ⅰ)函数f(x)=|x﹣1|﹣|2x+3|=,当x≤﹣时,由x+4>2,解得:x>﹣2,即﹣2<x≤﹣;当﹣<x<1时,由﹣3x﹣2>2,解得:x<2,即﹣<x<﹣;当x≥1时,由﹣x﹣4>2,解得:x<﹣6,无解;所以原不等式的解集为{x|﹣2<x<﹣};(Ⅱ)由(Ⅰ)知函数f(x)在x=﹣处取函数的最大值f(﹣)=,要使关于x的不等式f(x)≤a2﹣a的解集为R,只需a2﹣a≥,即3a2﹣2a﹣5≥0,解得a≤﹣1或a≥,又a为正数,则a≥.2016年11月27日。
湖北省华中师大一附中2016-2017学年高二下学期期中考试数学(理)试题
华中师大一附中2016—2017学年度下学期高二期中检测数学(理科)试题考试时间:120分钟 试卷满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答题卡相应位置上.) 1.已知X 的分布列为右表,且37)(3=+=Y E aX Y ,,则a 的值为 A .1 B .2 C .3 D . 4 2.甲、乙两地都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占%20,乙市占%18,两市同时下雨占%12.则某一天当甲市为雨天时,乙市也为雨天的概率为 A .6.0B .7.0C .8.0D .66.03. P 是抛物线2y x =上的动点,Q 是直线240x y --=上的动点,则||PQ 的最小值为 A.553 B. 554 C. 2 D. 44. 某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼 到三楼用8步走完,则上楼梯的方法有 A .45种B .36种C .28种D . 25种5.在实验室进行的一项物理实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一 步,程序B 和C 在实施时必须相邻,则实验顺序的编排方法共有 A .34种B .48种C .96种D .144种6.25()x x y ++的展开式中,52x y 的系数为 A .10 B .20C .30D .607.三个好朋友同时考进同一所高中,该校高一有10个班级,则至少有2人分在同一个班级的概 率为 A.257 B.1825C.13D.238.62)1()1(x ax +-的展开式中,3x 项的系数为16-,则实数a 的值为 A .2B .3C .2-D .2或39.设集合}420{,,=A ,}531{,,=B ,分别从B A ,中任取2个元素组成无重复数字的四位数,其 中能被5整除的数共有 A .24个B .48个C .64个D . 116个10. 已知某盒中有10个灯泡,其中有8个是正品,2个是次品.现需要从中取出2个正品.若每次 只取出1个灯泡,取出后不放回,直到取出2个正品为止.设ξ为摸取的次数,则==)4(ξP A.154 B. 151 C.2845D.144511.设()f x '为函数()f x 的导函数,e 为自然对数的底数,且()ln ()xf x x f x '>,则 A .2(2)()ln 2,2()()f f e f e f e <> B .2(2)()ln 2,2()()f f e f e f e << C .2(2)()ln 2,2()()f f e f e f e >< D .2(2)()ln 2,2()()f f e f e f e >> 12.定义在R 上的奇函数()f x 对任意()1212,x x x x ≠都有()()1212()[]0x x f x f x --<,若正实数a 使得不等式()()2230a f a e af ba -+<恒成立,则b 的取值范围是A .[1,)-+∞B .[,)e -+∞C .[1,]e -D .(,1]-∞二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置上.) 13.设随机变量X ~2(2,)N σ,且(4)=0.84P X ≤,则(0)=P X <14.计算383321nnnn C C -++=15.函数()4xf x x a=-在(1,)+∞上单调递减.则实数a 的取值范围是16.已知3()3f x x x m =-+,在区间[02],上任取三个数,,a b c ,均存在以)(),(),(c f b f a f 为边 长的三角形,则m 的取值范围是三.解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤,把答案填在答题卡相应位置上.)17.(本小题满分10分)如图,从左到右有5个空格.(1)若向这5个格子填入43210,,,,五个数,要求每个数都要用到,且第三个格子不能填0,则一共有多少不同的填法?(2)若给这5个空格涂上颜色,要求相邻格子不同色,现有红黄蓝3种颜色可供使用,问一共有多少不同的涂法?(3)若向这5个格子放入7个不同的小球,要求每个格子里都有球,问有多少种不同的放法? 18.(本小题满分12分) 某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.19.(本小题满分12分)已知函数1()ln(1),01xf x ax x x-=++≥+,其中0a > (1)若()f x 在1=x 处取得极值,求a 的值; (2)求()f x 的单调区间;(3)若()f x 的最小值为1,求a 的取值范围.20.(本小题满分12分) 某地农民种植A 种蔬菜,每亩每年生产成本为7000元,A 种蔬菜每亩产量及价格受天气、市场双重影响,预计明年雨水正常的概率为32,雨水偏少的概率为31,若雨水正常,A 种蔬菜每亩产量为2000公斤,单价为6元/公斤的概率为41,单价为3元/公斤的概率为43,若雨水偏少,A 种蔬菜每亩产量为1500公斤,单价为6元/公斤的概率为32,单价为3元/公斤的概率为31, (1)计算明年农民种植A 种蔬菜不亏本的概率;(2)在政府引导下,计划明年采取“公司加农户,订单农业”的生产模式,某公司未来不增加农民生产成本,给农民投资建立大棚,建立大棚后,产量不受天气影响,因此每亩产量为2500公斤,农民生产的A 种蔬菜全部由公司收购,为保证农民的每亩预期利润增加1000元,收购价格至少为多少?21.(本小题满分12分) 已知223(3)n xx +的展开式中,各项系数和比它的二项式系数和大992.(1)求nx 2)21(-的展开式中各项系数的最大值和最小值; (2)已知nn n x a x a x a a x x 2222102)1(++++=++ ,求下列各式的值:①n a a a a 2321++++ ; ②n na a a a 2321232++++ ;③n n a a a a 2224232222-++++ .22.(本小题满分12分)已知函数,ln 1)(,12)(2x k xx g x k x e x f x +=--=(k 为常数, 2.71828e =⋅⋅⋅)(1)记)()()(x g x f x h -=,若函数()h x 在(0,2)内存在两个极值点,求k 的取值范围; (2)若在区间],0(e 内至少存在一个数0x ,使得0)(0<x g 成立,求k 的取值范围.华中师大一附中2016—2017学年度下学期高二期中检测数学(理科)试题参考答案与评分标准考试时间:120分钟 试卷满分:150分 命题人:陈开懋 审题人:吴巨龙一、选择题: BAACC CADCB BA二、填空题:13.16.0; 14.466; 15.]4,0(; 16.),6(+∞. 三.解答题17.解:(1)96444=A ; ……………………3分 (2)4822223=⨯⨯⨯⨯; ……………………6分(3)16800)(5537222527=+A C A C C . ……………………10分 18.解:(1)法1:454565710101010101010P =⨯+⨯+⨯=; 法2:6571101010P =-⨯=;……………6分 (2)顾客抽奖3次,相当于3次独立重复试验,顾客抽奖1次获一等奖的概率为51105104=⨯, 所以)51,3(~B X ,于是0331464(0)()()55125P X C ===,11231448(1)()()55125P X C ===, 22131412(2)()()55125P X C ===, 3303141(3)()()55125P X C ===,故X 的分布列为所以X 的数学期望为553)(=⨯=X E . ……………12分 19.解:(1)22222'(),1(1)(1)(1)a ax a f x ax x ax x +-=-=++++ ∵()f x 在x=1处取得极值,∴2'(1)0,120,f a a =+-=即解得 1.a = ………4分(2)222'(),(1)(1)ax a f x ax x +-=++ ∵0,0,x a ≥> ∴10.ax +>①当2a ≥时,在区间(0,)'()0,f x +∞>上,∴()f x 在),0[+∞上单调递增; ②当02a <<时,由'()0'()0f x x f x x >><<解得由解得 ∴()f x 在)2,0(a a -单调递减,在)2(∞+-,aa单调递增, 综上,当2a ≥时,增区间为),0[+∞,无减区间; 当02a <<时,减区间为)2,0(a a -,增区间为)2(∞+-,aa. ………8分 (3)当2a ≥时,由(Ⅱ)①知,()(0)1;f x f =的最小值为 当02a <<时,由(Ⅱ)②知,()f x在x =处取得最小值(0)1,f f <= 综上可知,若()f x 得最小值为1,则a 的取值范围是[2,).+∞ ………12分 20.解:(1)只有当价格为6元/公斤时,农民种植A 种蔬菜才不亏本, 所以农民种植A 种蔬菜不亏本的概率是18732314132=⨯+⨯=p . ……………4分 (2)按原来模式种植,设农民种植A 种蔬菜每亩利润为ξ元, 则ξ可能取值为:2500,1000,2000,5000--. 614132)5000(=⨯==ξp ,923231)2000(=⨯==ξp , 214332)1000(=⨯=-=ξp ,913131)2500(=⨯=-=ξp , 所以500912500211000922000615000)(=⨯-⨯-⨯+⨯=ξE ……………8分 设收购价格为a 元/公斤,农民每亩预期利润增加1000元,则150070002500+≥a , 即4.3≥a ,所以收购价格至少为4.3元/公斤. ……………12分 21.解:令1x =,则展开式中各项系数和为2(13)2nn+=, 又展开式中二项式系数和为2n ,∴222992n n -=,.0)312)(322(=+-nn,故322=n ,5n = ……………2分 (1)当5n =时, 10)21(x-的展开式中,各项系数为10,,2,1,0)21(10 =-=k C a k kk,,设||k a 最大,则⎪⎪⎩⎪⎪⎨⎧≥≥--++111010111010)21()21()21()21(k k k k k k k k C C C C ,解得31138≤≤k , Z k ∈ ,3=∴k ,故系数最小值为15)21(33103-=-=C a , ……………4分又因为445)21(22102=-=C a ,8105)21(44104=-=C a ,42a a <,故系数最大值为81054=a . ……………6分 (2)当5n =时,1010221052)1(x a x a x a a x x ++++=++ ,① 令0=x 得,10=a ,令1=x 得,2433510210==++++a a a a ,所以24212431021=-=+++a a a ……………8分② 对 1010221052)1(x a x a x a a x x ++++=++ 两边求导得, 9102142102)21()1(5x a x a a x x x +++=+++ ,令1=x 得,1215103210321=++++a a a a , ……………10分 ③ 在上式中, 令0=x 得,51=a ,又在 1010221052)1(x a x a x a a x x ++++=++ 中,令2=x 得,5101022107222=++++a a a a , 所以167962722105101022=--=++a a a a ,两边同时除以4,得41992221084232=++++a a a a . ……………12分22.解:(1)解法1:)ln 2()()()(2x xk x e x g x f x h x +-=-=,323242))(2()2(2)12(2)(xkx e x x x k x e xe x x k x xe e x x h x x x x x --=---=+---=' 令)2,0(,)(∈-=x kx e x g x,原问题等价于)(x g 在)2,0(上有两个变号零点.又k e x g x-=')(, ①当1≤k 时,0)(>-='k e x g x,)(x g 递增,在)2,0(上不可能有两个变号零点. ②当21e k <<时,)2,0(ln 0)(∈=⇒=-='k x k e x g x. 当)ln ,0(k x ∈时, 0)(<'x g ,)(x g 递减, 当),(ln +∞∈k x 时, 0)(>'x g , )(x g 递增, 所以)ln 1()(ln )(min k k k g x g -==,故)(x g 在)2,0(上有两个变号零点的充要条件是⎪⎩⎪⎨⎧><>0)2(0)(ln 0)0(g k g g ,解得22e k e <<.③当2e k ≥时,0)(<-='k e x g x ,)(x g 递减,在)2,0(上不可能有两个变号零点.综上所述,函数()h x 在(0,2)内存在两个极值点,k 的取值范围是)2,(2e e . ……………6分解法2:)ln 2()()()(2x xk x e x g x f x h x +-=-=,323242))(2()2(2)12(2)(xkx e x x x k x e xe x x k x xe e x x h x x x x x --=---=+---=' 若函数()h x 在(0,2)内存在两个极值点,则()h x '在(0,2)有两个变号零点,所以方程xe kx =,即x e k x =在(0,2)有两个不相等的实数根.记()x e x xϕ=,则2(1)()x e x x x ϕ-'=,所以()xe x xϕ=在(0,1)递减,在(1,2)递增,故min min ()(1)x e ϕϕ==,又因为()0x lim x ϕ+→=+∞,()222x e lim x ϕ→=,2(,)2e k e ∴∈ . ……………6分 (2)解法1:在区间],0(e 内至少存在一个数0x ,使得0)(0<x g 成立, 其充要条件是)(x g 在],0(e 上的最小值小于0.又21)(x kx x g -=', (ⅰ)当0<k 时,01)(2<-='x kx x g 对],0(e ∈∀恒成立, 所以)(x g 在],0(e 上单调递减, 故ek k e e g x g 101)()(min -<⇒<+==. (ⅱ)当0=k 时,,1)(xx g =在区间],0(e 内不存在0x ,使得0)(0<x g 成立. (ⅲ)当0>k 时, ①若e k 10≤<时,01)(2≤-='xkx x g ,所以)(x g 在],0(e 上单调递减, 此时,ek k e e g x g 101)()(min -<⇒<+==不成立. ②若e k 1>时,令01)(2=-='x kx x g ,得),0(1e kx ∈=, 所以)(x g 在]1,0(k上单调递减,在],1(e k上单调递增, 此时,e k k k kk k k g x g >⇒<-=+==0)ln 1(1ln)1()(min .综上可知,),()1,(+∞--∞∈e ek . ……………12分 解法2:若0)(≥x g 在区间],0(e 上恒成成立,即],0(0ln 1e x x k x∈∀≥+,,则 ①当1=x 时,原不等式即为01≥,恒成立; ②当)1,0(∈x 时,,0ln <x 原不等式等价于,xx k ln 1-≤ 记,xx x m ln 1)(-=则,2)ln (ln 1)(x x x x m +=' 令,0)(='x m 得e x 1=,所以)(x m 在)1,0(e 单调递减,在)1,1(e单调递增, 所以,e em x m ==)1()(min 故e k ≤. ③当],1(e x ∈时,,0ln >x 原不等式等价于,xx k ln 1-≥ 此时,0)ln (ln 1)(2>+='x x xx m 所以)(x m 在],1(e 单调递增, 所以,ee m x m 1)()(max -==故ek 1-≥. 综上可知,若0)(≥x g 在区间],0(e 上恒成成立,则e k e≤≤-1, 所以,在区间],0(e 内至少存在一个数0x ,使得0)(0<x g 成立,则),()1,(+∞--∞∈e ek . ……………12分。
湖北省武汉市华中师大一附中2017届高三上学期综合物理
2016-2017学年湖北省武汉市华中师大一附中高三(上)综合物理试卷(6)(8.28)一、选择题:本大题共8小题,每小题6分.在每小题给出的四个选项中,第1~4题只有一项是符合题目要求,第5~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分.有选错的得0分.1.如图,两个轻环a和b套在位于竖直面内的一段固定圆弧上:一细线穿过两轻环,其两端各系一质量为m的小球,在a和b之间的细线上悬挂一小物块.平衡时,a、b间的距离恰好等于圆弧的半径.不计所有摩擦,小物块的质量为()A.B.m C.m D.2m2.国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440km,远地点高度约为2060km;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35786km的地球同步轨道上.设东方红一号在远地点的加速度为a1,东方红二号的加速度为a2,固定在地球赤道上的物体随地球自转的加速度为a3,则a1、a2、a3的大小关系为()A.a2>a1>a3B.a3>a2>a1C.a3>a1>a2D.a1>a2>a33.如图所示,一物体自倾角为θ的固定斜面上某一位置P处斜向上抛出,到达斜面顶端Q处时速度恰好变为水平方向,已知P、Q间的距离为L,重力加速度为g,则关于抛出时物体的初速度v0的大小及其与斜面间的夹角α,以下关系中正确的有()A.tanα=tanθB.tanα=C.v0=D.v0=cosθ4.如图所示,一根细线下端拴一个金属小球A,细线的上端固定在金属块B上,B放在带小孔的水平桌面上,小球A在某一水平面内做匀速圆周运动.现使小球A改到一个更低一些的水平面上做匀速圆周运动(图上未画出),金属块B在桌面上始终保持静止,则后一种情况与原来相比较,下面的判断中正确的是()A.金属块B受到桌面的静摩擦力变大B.金属块B受到桌面的支持力变小C.细线的张力变大D.小球A运动的角速度减小5.如图所示,小球沿足够长的斜面向上做匀减速运动,依次经a、b、c、d到达最高点e.已知ab=bd=6m,bc=1m,小球从a到c和从c到d 所用的时间都是2s,设小球经b、c时的速度分别为v b、v c,则()A.v b=m/s B.v c=3m/sC.de=3m D.从d到e所用时间为4s6.如图所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面.若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中()A.桌布对鱼缸摩擦力的方向向左B.鱼缸在桌布上的滑动时间和在桌面上的相等C.若猫增大拉力,鱼缸受到的摩擦力将增大D.若猫减小拉力,鱼缸有可能滑出桌面7.如图所示,一固定容器的内壁是半径为R的半球面,在半球面水平直径的一端有一质量为m的质点P.它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W.重力加速度大小为g.设质点P在最低点时,向心加速度的大小为a,速度为v,容器对它的支持力大小为N,则()A.a= B.v=C.N=D.N=8.如图,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连.现将小球从M点由静止释放,它在下降的过程中经过了N点.已知M、N两点处,弹簧对小球的弹力大小相等,且∠ONM<∠OMN<.在小球从M点运动到N点的过程中()A.弹力对小球先做正功后做负功B.有两个时刻小球的加速度等于重力加速度C.弹簧长度最短时,弹力对小球做功的功率为零D.小球到达N点时的动能等于其在M、N两点的重力势能差二、非选择题(一)必考题9.某同学用如图1所示的装置验证机械能守恒定律.一根细线系住钢球,悬挂着铁架台上,钢球静止于A点,光电门固定在A的正下方.在钢球底部竖直地粘住一片宽带为d的遮光条.将钢球拉至不同位置由静止释放,遮光条经过光电门的挡光时间t时由计时器测出,取v=作为钢球经过A点时的速度.记录钢球每次下落的高度h和计时器示数t,计算并比较钢球在释放点和A点之间的势能变化大小△E p与动能变化大小△E k,就能验证机械能是否守恒.(1)△E p=mgh计算钢球重力势能变化的大小,式中钢球下落高度h应测量释放时的钢球球心到之间的竖直距离.(A)钢球在A点时的顶端(B)钢球在A点时的球心(C)钢球在A点时的底端(2)用△E k=mv2计算钢球动能变化的大小,用刻度尺测量遮光条宽度,示数如图2所示,其读数为cm.某次测量中,计时器的示数为0.0100s,则钢球的速度为v=m/s.(3)下表为该同学的实验结果:他发现表中的△E p与△E k之间存在差异,认为这是由于空气阻力造成的.你是否同意他的观点?请说明理由.(4)请你提出一条减小上述差异的改进建议.10.某物理兴趣小组为“验证动能定理”和“测当地的重力加速度”,采用了如图甲所示的装置,其中m1=50g、m2=150g.开始时保持装置静止,然后释放物块m2,m2可以带动m1拖着纸带打出一系列的点,对纸带上的点进行测量,只要证明(m2﹣m1)gh=(m1+m2)v2,即可验证动能定理,同时也可测出重力加速度的数值,其中h为m2的下落高度,v是对应时刻m1、m2的速度大小.某次实验打出的纸带如图乙所示,0是打下的第一个点,两相邻点间还有4个点没有标出,交流电频率为50Hz.(以下计算结果均保留三位有效数字)(1)系统的加速度大小为m/s2,在打点0~5的过程中,系统动能的增量△E1=J.(2)某同学作出的﹣h图象如图丙所示,若忽略一切阻力的情况下,则当地的重力加速度g=m/s2.11.如图1所示,斜面体ABC放在粗糙的水平地面上.小滑块在斜面底端以初速度v0=9.6m/s沿斜面上滑.斜面倾角θ=37°,滑块与斜面的动摩擦因数μ=0.45.整个过程斜面体保持静止不动,已知小滑块的质量m=1kg,sin37°=0.6,cos37°=0.8,g取10m/s2.试求:(1)小滑块回到出发点时的速度大小.(2)请选取合适的标度,定量画出斜面与水平地面之间的摩擦力F f随时间t变化的图象.12.如图所示,有一水平传送带以6m/s的速度按顺时针方向匀速转动,传送带右端连着一段光滑水平面BC,紧挨着BC的水平地面DE上放置一个质量M=1kg 的木板,木板上表面刚好与BC面等高.现将质量m=1kg的滑块轻轻放到传送带的左端A处,当滑块滑到传送带右端B时刚好与传送带的速度相同,之后滑块又通过光滑水平面BC滑上木板.滑块与传送带间的动摩擦因数μ1=0.45,滑块与木板间的动摩擦因素μ2=0.2,木板与地面间的动摩擦因素μ3=0.05,g=10m/s2.求(1)滑块从传送带A端滑到B端,相对传送带滑动的路程;(2)滑块从传送带A端滑到B端,传送带因传送该滑块多消耗的电能.(3)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从木板上掉下来.(二)选考题[物理--选修3-3]13.雾霾天气对大气中各种悬浮颗粒物含量超标的笼统表述,是特定气候条件与人类活动相互作用的结果.雾霾中,各种悬浮颗粒物形状不规则,但可视为密度相同、直径不同的球体,并用PM10、PM2.5分别表示直径小于或等于10μm、2.5μm的颗粒物(PM是颗粒物的英文缩写).某科研机构对北京地区的检测结果表明,在静稳的雾霾天气中,近地面高度百米的范围内,PM10的浓度随高度的增加略有减小,大于PM10的大悬浮颗粒物的浓度随高度的增加明显减小,且两种浓度分布基本不随时间变化.据此材料,以下叙述正确的是()A.PM10表示直径小于或等于1.0×10﹣6m的悬浮颗粒物B.PM10受到的空气分子作用力的合力始终大于其受到的重力C.PM10和大悬浮颗粒物都在做布朗运动D.PM2.5浓度随高度的增加逐渐增大14.把一定质量的理想气体用活塞封闭在可导热的气缸内,活塞相对于底部的高度为h,可沿气缸无摩擦地滑动,整体放在冰水混合物中.取一小盒砂子缓慢地倒在活塞的上表面上.砂子倒完时,活塞下降了h/4.再取相同质量的一小盒砂子缓慢地倒在活塞的上表面上.外界的压强和温度始终保持不变,求第二次砂子倒完时活塞距气缸底部的高度是多少?在第二次倒砂子的过程中外界对气体做功145J,封闭气体吸热还是放热,热量是多少?[物理--选修3-4]15.该试题已被管理员删除16.如图所示,半径为R的透明半球体的折射率为,在离透明半球体2.8R处有一与透明半球体平面平行的光屏.某种平行光垂直透明半球体的平面射入,在光屏上形成一个圆形亮斑.(1)求光屏上亮斑的直径;(不考虑光线在球内的多次反射)(2)若入射光的频率变大,则亮斑的直径如何变化?【物理--选修3-5】17.下列说法正确的是()A.爱因斯坦在光的粒子性的基础上,建立了光电效应方程B.康普顿效应表明光子只具有能量,不具有动量C.波尔的原子理论成功地解释了氢原子光谱的实验规律D.卢瑟福根据α粒子散射实验提出了原子的核式结构模型E.德布罗意指出微观粒子的动量越大,其对应的波长就越长18.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30kg,冰块的质量为m2=10kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10m/s2.(i)求斜面体的质量;(ii)通过计算判断,冰块与斜面体分离后能否追上小孩?2016-2017学年湖北省武汉市华中师大一附中高三(上)综合物理试卷(6)(8.28)参考答案与试题解析一、选择题:本大题共8小题,每小题6分.在每小题给出的四个选项中,第1~4题只有一项是符合题目要求,第5~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分.有选错的得0分.1.如图,两个轻环a和b套在位于竖直面内的一段固定圆弧上:一细线穿过两轻环,其两端各系一质量为m的小球,在a和b之间的细线上悬挂一小物块.平衡时,a、b间的距离恰好等于圆弧的半径.不计所有摩擦,小物块的质量为()A.B.m C.m D.2m【考点】共点力平衡的条件及其应用.【分析】同一根绳子上的张力大小相等,根据ab距离等于圆环半径可知绳所成角度,据此由平衡分析即可.【解答】解:设悬挂小物块的点为O',圆弧的圆心为O,由于ab=R,所以三角形Oab为等边三角形.由于圆弧对轻环的支持力垂直于半径,所以小球和小物块对轻环的合力方向由轻环指向圆心O,因为小物块和小球对轻环的作用力大小相等,所以aO、bO是∠maO′、∠mbO′的角平分线,所以∠O'Oa=∠maO=∠mbO=30°,那么∠mbO′=60°,所以由几何关系可得∠aO'b=120°,而在一条绳子上的张力大小相等,故有T=mg,小物块受到两条绳子的拉力作用大小相等,夹角为120°,故受到的合力等于mg,因为小物块受到绳子的拉力和重力作用,且处于平衡状态,故拉力的合力等于小物块的重力为mg,所以小物块的质量为m故ABD错误,C正确.故选:C.2.国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440km,远地点高度约为2060km;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35786km的地球同步轨道上.设东方红一号在远地点的加速度为a1,东方红二号的加速度为a2,固定在地球赤道上的物体随地球自转的加速度为a3,则a1、a2、a3的大小关系为()A.a2>a1>a3B.a3>a2>a1C.a3>a1>a2D.a1>a2>a3【考点】人造卫星的加速度、周期和轨道的关系.【分析】根据万有引力提供向心力可比较东方红一号和东方红二号的加速度;同步卫星的运行周期和地球自转周期相等,角速度相等,根据比较固定在地球赤道上的物体和东方红二号的加速度.【解答】解:东方红二号地球同步卫星和地球自转的角速度相同,由a=ω2r可知,a2>a3;由万有引力提供向心力可得:a=,东方红一号的轨道半径小于东方红二号的轨道半径,所以有:a1>a2,所以有:a1>a2>a3,故ABC错误,D正确.故选:D.3.如图所示,一物体自倾角为θ的固定斜面上某一位置P处斜向上抛出,到达斜面顶端Q处时速度恰好变为水平方向,已知P、Q间的距离为L,重力加速度为g,则关于抛出时物体的初速度v0的大小及其与斜面间的夹角α,以下关系中正确的有()A.tanα=tanθB.tanα=C.v0=D.v0=cosθ【考点】平抛运动.【分析】采用逆向思维,物体做平抛运动,抓住竖直位移和水平位移,结合运动学公式求出初速度以及夹角的关系.【解答】解:运用逆向思维,物体做平抛运动,根据得,t=,则P点的竖直分速度,P点的水平分速度=,则=.故C、D错误.设初速度方向与水平方向的夹角为β,根据平抛运动的推论有tanβ=2tanθ,又α=β﹣θ,根据数学三角函数关系可求得tanα=.故B正确,A错误.故选:B.4.如图所示,一根细线下端拴一个金属小球A,细线的上端固定在金属块B上,B放在带小孔的水平桌面上,小球A在某一水平面内做匀速圆周运动.现使小球A改到一个更低一些的水平面上做匀速圆周运动(图上未画出),金属块B在桌面上始终保持静止,则后一种情况与原来相比较,下面的判断中正确的是()A.金属块B受到桌面的静摩擦力变大B.金属块B受到桌面的支持力变小C.细线的张力变大D.小球A运动的角速度减小【考点】向心力;牛顿第二定律.【分析】通过隔离对A和B分析,A靠拉力和重力在水平方向上的合力提供向心力,B在水平方向上受拉力的分力和摩擦力处于平衡,通过平衡和牛顿第二定律得出静摩擦力的变化.对整体分析,求出支持力的变化,隔离对A分析,根据竖直方向上合力为零判断张力的变化,根据牛顿第二定律得出角速度的表达式,从而分析角速度的变化.【解答】解:A、设A、B质量分别为m、M,A做匀速圆周运动的向心加速度为a,细线与竖直方向的夹角为θ,对B研究,B受到的静摩擦力f=Tsinθ,对A,有:Tsinθ=ma,Tcosθ=mg,解得a=gtan θ,θ变小,a减小,则静摩擦力大小变小,故A错误;B、以整体为研究对象知,B受到桌面的支持力大小不变,应等于(M+m)g,故B错误;C、细线的拉力T=,θ变小,T变小,故C错误;D、设细线长为l,则a=gtan θ=ω2lsin θ,ω=,θ变小,ω变小,故D正确.故选:D.5.如图所示,小球沿足够长的斜面向上做匀减速运动,依次经a、b、c、d到达最高点e.已知ab=bd=6m,bc=1m,小球从a到c和从c到d 所用的时间都是2s,设小球经b、c时的速度分别为v b、v c,则()A.v b=m/s B.v c=3m/sC.de=3m D.从d到e所用时间为4s【考点】匀变速直线运动的位移与时间的关系.【分析】由题,小球从a到c和从c到d所用的时间都是2s,则根据推论得知,c点的速度等于ad间的平均速度,并利用推论求出ac间和cd间中点时刻的瞬时速度,即可求出加速度,再由位移公式求出b点的速度,由速度公式求出从d 到e所用时间.【解答】解:A、B由题,小球从a到c和从c到d所用的时间都是2s,根据推论得知,c点的速度等于ad间的平均速度,则有:,ac间中点时刻的瞬时速度为,cd间中点时刻的瞬时速度为v2=,故物体的加速度大小为a=,由得,,故A错误,B正确.设c点到最高点的距离为S,则:S=,则de=S﹣cd=9m﹣5m=4m.故C错误.D、设d到e的时间为T,则de=,代入数据解得T=4s,故D正确.故选:BD.6.如图所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面.若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中()A.桌布对鱼缸摩擦力的方向向左B .鱼缸在桌布上的滑动时间和在桌面上的相等C .若猫增大拉力,鱼缸受到的摩擦力将增大D .若猫减小拉力,鱼缸有可能滑出桌面【考点】牛顿运动定律的综合应用;滑动摩擦力.【分析】根据摩擦力性质可判断鱼缸受到的摩擦力方向以及拉力变化时摩擦力的变化情况;再根据牛顿第二定律以及运动学公式进行分析,明确拉力变化后运动位移的变化情况.【解答】解:A 、桌布向右拉出时,鱼缸相对于桌布有向左的运动,故鱼缸受到的摩擦力向右;故A 错误;B 、由于鱼缸在桌面上和在桌布上的动摩擦因数相同,故受到的摩擦力相等,则由牛顿第二定律可知,加速度大小相等;但在桌面上做减速运动,则由v=at 可知,它在桌布上的滑动时间和在桌面上的相等;故B 正确;C 、鱼缸受到的摩擦力为滑动摩擦力,其大小与拉力无关,只与压力和动摩擦因数有关,因此增大拉力时,摩擦力不变;故C 错误;D 、猫减小拉力时,桌布在桌面上运动的加速度减小,则运动时间变长;因此鱼缸加速时间变长,桌布抽出时的位移以及速度均变大,则有可能滑出桌面;故D 正确;故选:BD .7.如图所示,一固定容器的内壁是半径为R 的半球面,在半球面水平直径的一端有一质量为m 的质点P .它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W .重力加速度大小为g .设质点P 在最低点时,向心加速度的大小为a ,速度为v ,容器对它的支持力大小为N ,则( )A .a=B .v=C .N=D .N=【考点】功能关系;向心力.【分析】质点P 下滑的过程中,重力做正功,摩擦力做负功,根据动能定理求出质点P 到达最低点时的速度,在最低点,质点受重力和支持力,根据合力提供向心力,列式求解.【解答】解:B、质点P下滑的过程,由动能定理得:mgR﹣W=,解得:v=,故B正确;A、在最低点,向心加速度为:a===,故A正确;CD、在最低点,支持力和重力的合力提供向心力,故:N﹣mg=ma,故N=m(g+a)=m[g+]=,故C正确,D错误;故选:ABC8.如图,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连.现将小球从M点由静止释放,它在下降的过程中经过了N点.已知M、N两点处,弹簧对小球的弹力大小相等,且∠ONM<∠OMN<.在小球从M点运动到N点的过程中()A.弹力对小球先做正功后做负功B.有两个时刻小球的加速度等于重力加速度C.弹簧长度最短时,弹力对小球做功的功率为零D.小球到达N点时的动能等于其在M、N两点的重力势能差【考点】功能关系;功的计算.【分析】弹力为0时或弹力方向与杆垂直时物体加速度为g,且弹力功率为0.因M,N弹力大小相等则弹性势能相等.据此分析各选项.【解答】解:A、由题可知,M、N两点处,弹簧对小球的弹力大小相等,则在运动过程中OM为压缩状态,N点为伸长状态;小球向下运动的过程中弹簧的长度先减小后增大,则弹簧的弹性势能先增大,后减小,再增大,所以弹力对小球先做负功再做正功,最后再做负功.故A错误.B、在运动过程中M点为压缩状态,N点为伸长状态,则由M到N有一状态弹力为0且此时弹力与杆不垂直,加速度为g;当弹簧与杆垂直时小球加速度为g.则有两处加速度为g.故B正确.C、由图可知,弹簧长度最短时,弹簧与杆的方向相互垂直,则弹力的方向与运动的方向相互垂直,所以弹力对小球做功的功率为零,故C正确.D、因M点与N点弹簧的弹力相等,所以弹簧的形变量相等,弹性势能相同,弹力对小球做的总功为零,则弹簧弹力对小球所做的正功等于小球克服弹簧弹力所做的功;小球向下运动的过程中只有重力做正功,所以小球到达N点时的动能等于其在M、N两点的重力势能差.故D正确故选:BCD二、非选择题(一)必考题9.某同学用如图1所示的装置验证机械能守恒定律.一根细线系住钢球,悬挂着铁架台上,钢球静止于A点,光电门固定在A的正下方.在钢球底部竖直地粘住一片宽带为d的遮光条.将钢球拉至不同位置由静止释放,遮光条经过光电门的挡光时间t时由计时器测出,取v=作为钢球经过A点时的速度.记录钢球每次下落的高度h和计时器示数t,计算并比较钢球在释放点和A点之间的势能变化大小△E p与动能变化大小△E k,就能验证机械能是否守恒.(1)△E p=mgh计算钢球重力势能变化的大小,式中钢球下落高度h应测量释放时的钢球球心到B之间的竖直距离.(A)钢球在A点时的顶端(B)钢球在A点时的球心(C)钢球在A点时的底端(2)用△E k=mv2计算钢球动能变化的大小,用刻度尺测量遮光条宽度,示数如图2所示,其读数为 1.50cm.某次测量中,计时器的示数为0.0100s,则钢球的速度为v= 1.50m/s.(3)下表为该同学的实验结果:他发现表中的△E p与△E k之间存在差异,认为这是由于空气阻力造成的.你是否同意他的观点?请说明理由.(4)请你提出一条减小上述差异的改进建议.【考点】验证机械能守恒定律.【分析】小球下落的高度h是初末位置球心之间的高度差;掌握刻度尺读数的方法,需估读一位;根据某段时间内的平均速度等于中间时刻的瞬时速度求出最低点小球的速度;根据动能表达式,从而得出动能的量增加,再结合下降的高度求出重力势能的减小量.结合实验的装置与实验的原理,分析误差产生的原因,从而提出建议.【解答】解:(1)小球下落的高度h是初末位置球心之间的高度差,所以要选B;(2)刻度尺读数的方法,需估读一位,所以读数为1.50cm;某次测量中,计时器的示数为0.0100s,则钢球的速度为:v=m/s(3)不同意.从表中的数据可知,小球动能的增加量大于小球的重力势能的减小量;若空气的阻力造成的,则△E K要小于△W P,所以误差不是空气的阻力造成的.(4)由图可知,在该实验中所求的速度是遮光片的速度,而不是小球的速度,二者之间的速度略有差别.由于小球与遮光片都做圆周运动,它们具有相等的角速度ω,根据角速度与线速度之间的关系:v=ωr可知,小球的速度与遮光片的速度之间的关系为:l和L分别是小球的球心到悬点的距离和光电门到悬点的距离,所以在计算小球的动能时,使用的速度为:故答案为:(1)B;(2)1.5,1.5;(3)不同意,空气的阻力造成的,则△E K要小于△W P,所以误差不是空气的阻力造成的;(4)分别是小球的球心到悬点的距离和光电门到悬点的距离l和L,在计算小球的动能时,使用的速度为:.10.某物理兴趣小组为“验证动能定理”和“测当地的重力加速度”,采用了如图甲所示的装置,其中m1=50g、m2=150g.开始时保持装置静止,然后释放物块m2,m2可以带动m1拖着纸带打出一系列的点,对纸带上的点进行测量,只要证明(m2﹣m1)gh=(m1+m2)v2,即可验证动能定理,同时也可测出重力加速度的数值,其中h为m2的下落高度,v是对应时刻m1、m2的速度大小.某次实验打出的纸带如图乙所示,0是打下的第一个点,两相邻点间还有4个点没有标出,交流电频率为50Hz.(以下计算结果均保留三位有效数字)(1)系统的加速度大小为 4.80m/s2,在打点0~5的过程中,系统动能的增量△E1=0.576J.(2)某同学作出的﹣h图象如图丙所示,若忽略一切阻力的情况下,则当地的重力加速度g=9.67m/s2.【考点】探究功与速度变化的关系;测定匀变速直线运动的加速度.【分析】1、根据匀变速直线运动的推论公式△x=aT2可以求出加速度的大小,根据某段时间内的平均速度等于中间时刻的瞬时速度求出点5的速度,从而求出系。
湖北省华中师范大学第一附属中学2017届高三上学期训练7(9.3)理科综合-物理试题(教师版)含答案
华师一附中理科综合试题7(9. 3)物理部分二、选择题:本大题共8小题,每小题6分。
在每小题给出的四个选项中,第14—17题只有一项是符合题目要求,第18—21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分。
有选错的得0分。
14.不计空气阻力情形下将一物体以一定的初速度竖直上拋一物体,从拋出至回到拋出点的时间为2t ,若在物体上升的最大高度的一半处设置一水平挡板,仍将该物体以相同的初速度竖直上抛,物体撞击挡板前后的速度大小相等、方向相反。
撞击所需时间不计,则这种情况下物体上升和下降的总时间约为A 、 0.2tB 、0。
3tC 、0。
5tD 、0.6t15.如图,战机在斜坡上方进行投弹演练。
战机水平匀速飞行,每隔相等时间释放一颗炸弹,第一颗落在a 点,第二颗落在b 点。
斜坡上c 、d 两点与a 、b 共线,且ab=bc=cd ,不计空气阻力.第三颗炸弹将落在A .bc 之间B .c 点C .cd 之间D .d 点16.甲、乙两球质量分别为1m 、2m ,从同一地点(足够高)处同时由静止释放。
两球下落过程所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即f=kv (k 为正的常量)。
两球的v-t O vt v 1甲球 乙球 v 2 t图象如图所示。
落地前,经时间0t 两球的速度都已达到各自的稳定值v 1、v 2。
则下列判断正确的是 ( )A .释放瞬间甲球加速度较大B .1221v v m m C .甲球质量大于乙球 D . t 0时间内两球下落的高度相等17.我国高铁技术处于世界领先水平,和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车.假设动车组各车厢质量均相等,动车的额定功率都相同,动车组在水平直轨道上运行过程中阻力与车重成正比.某列动车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,则该动车组( )A .启动时乘客受到车厢作用力的方向与车运动的方向相反B .做匀加速运动时,第5、6节与第6、7节车厢间的作用力之比为3∶2C .进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度成正比D .与改为4节动车带4节拖车的动车组最大速度之比为1∶418.如图所示,真空空间中四点O 、A 、B 、C恰为一棱长为L 的正四面体的四个顶点,其中A 、B 、C 三点在水平面内,O′为三角形ABC 的几何中心.已知静电力常量为k ,重力加速度为g ,下列说法正确的是A .若A 、B 、C 三点各固定一电荷量为Q 的正点电荷,则O 点电势比O′点电势高B .若A 、B 、C 三点各固定一电荷量为Q 的正点电荷,将另一质量为m的带正电的小球(可视为点电荷)放置在O 点恰静止,则小球所带的电荷量为kQmgL 662 C .若A 、B 、C 三点各固定一电荷量为Q的负点电荷,则O 点与AB 、BC 、AC 三边中点的电势差相等D .若A 、B 、C 三点各固定一电荷量为Q的负点电荷,则O 点的场强比O′点的场强大19.如图所示,足够长的传送带与水平方向的倾角为θ,物块a 通过平行于传送带的轻绳跨过光滑轻滑轮与物块b 相连,b 的质量为m .开始时,a 、b 及传送带均静止,且a 不受传送带摩擦力作用,现让传送带逆时针匀速转动,则在b 上升h 高度(未与滑轮相碰)过程中A .物块a 的重力势能减少mghB .摩擦力对a 做的功等于a 机械能的增量C .摩擦力对a 做的功等于物块a 、b 动能增量之和D .任意时刻,重力对a 、b 做功的瞬时功率大小相等20.如图所示,某卫星S 绕地球做周期为T 的匀速圆周运动,地球相对卫星S 的张角为θ,地球视为质量分布均匀的球体,其表面重力加速度为g ,引力常量为G ,下列说法正确的是A .卫星S 的轨道半径2224sin πθg T r = B .卫星S 的速度大小2sin 22θπTg v = C .地球的密度为2sin 332θπGT D .地球的第一宇宙速度大小为2sin 2θπTg21.一颗子弹以水平速度v 0穿透一块在光滑水平面上迎面滑来的木块后,二者运动方向均不变.设子弹与木块间相互作用力恒定,木块最后速度为v ,则A .v 0越大,v 越大B .v 0越小,v 越大C .子弹质量越大,v 越大D .木块质量越小,v 越大第Ⅱ卷(非选择题 共174分)三、非选择题(包括必考题和选考题两部分。
湖北省华中师范大学第一附属中学2017届高三上学期期中考试理科综合-生物试题 Word版含答案
华中师大一附中2016—2017学年度上学期期中考试高三理科综合-生物试卷本试卷共300分,考试用时150分钟。
★祝考试顺利★本卷分第Ⅰ卷(选择题)和第Ⅱ卷(必考题和选考题)两部分。
本卷共 14 页。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡指定位置,认真核对与准考证号条形码上的信息是否一致,并将准考证号条形码粘贴在答题卡上的指定位置。
2.第Ⅰ卷的作答:选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
3.第Ⅱ卷的作答:用黑色墨水的签字笔直接答在答题卡上的每题所对应的答题区域内。
答在试题卷上或答题卡指定区域外无效。
4.选考题的作答:先把所选题目的题号在答题卡指定位置用2B铅笔涂黑。
考生应根据自己选做的题目准确填涂题号,不得多选。
答题答在答题卡对应的答题区域内,答在试题卷、草稿纸上无效。
第Ⅰ卷(选择题共126分)本卷共21小题,每小题6分,共126分。
可能用到的相对原子质量:H-1 C-12 N-14 O-16 S-32 K-39 Fe-56一、选择题:本大题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 蛋白质、糖类和脂肪都是生物体内重要的有机物。
下列说法不正确...的是( )A.糖类是生物体主要的能源物质,但并非所有的糖都可以作为能源物质B.相同质量的糖类和脂肪相比较,脂肪完全氧化分解需要更多的氧气C.糖蛋白可以与某些信息分子特异性结合而起到传递信息的作用D.组成蛋白质的氨基酸都至少含有一个氨基、一个羧基和一个含碳的R基2.下列有关结构与功能相统一的观点不正确...的是( )A.细胞内的生物膜把各种细胞器分隔开,保证了细胞生命活动高效、有序地进行B.神经细胞轴突末梢有大量突起,有利于接受更多神经递质进行信息传递C.某些低等植物细胞中心体的存在,有利于其有丝分裂的正常进行D.线粒体内膜向内突起形成嵴,有利于有氧呼吸快速进行3.下列关于细胞分裂有关的说法不正确...的是( )A.与有丝分裂相比,减数分裂过程中染色体最显著的变化之一是同源染色体联会B.某动物在精子形成过程中,若姐妹染色单体未分离,则可形成染色体组成为XXY的后代C.二倍体动物在细胞分裂后期含有10条染色体,则该细胞可处于减数第二次分裂的后期D.某二倍体正常分裂的细胞若含有两条Y染色体,则该细胞一定不可能是初级精母细胞4.下列实验操作能够达到预期结果的是( )A.在“用过氧化氢酶探究pH对酶活性的影响”实验中,过氧化氢分解速率最快的实验组的pH就是过氧化氢酶的最适pH值B.在“探究细胞大小与物质运输的关系”实验中,计算紫红色区域的体积与整个琼脂块的体积之比,能反映NaOH进入琼脂块的速率C.用澄清的石灰水是否变混浊,可准确判断酵母菌细胞呼吸方式D.在“观察根尖分生组织细胞的有丝分裂”实验中,统计每一时期细胞数占计数细胞总数的比例,能比较细胞周期各时期的时间长短5.豌豆种群中偶尔会出现一种三体植株(多1条2号染色体),减数分裂时2号染色体的任意两条移向细胞一极,剩下一条移向另一极。
湖北省武汉市华中师大一附中2017届高三上学期综合物理试卷(8)(11.12)
2016-2017学年湖北省武汉市华中师大一附中高三(上)综合物理试卷(8)(11.12)一、选择题:本大题共8小题,每小题6分.在每小题给出的四个选项中,第1~4题只有一项是符合题目要求,第5~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分.有选错的得0分.1.天宫二号空间实验室已于2016年9月15日在酒泉卫星发射中心发射成功.经北京航天飞行控制中心两次轨道控制,天宫二号已调整至距地面393km的轨道上运行.对稳定后的天宫二号,以下说法正确的是()A.运行轨道一定在酒泉卫星发射中心正上方B.相对于站在地球赤道上的人静止不动C.向心加速度大于站在地球赤道上的人随地球一起自转的向心加速度D.由于经过多次点火加速,运行线速度大于第一宇宙速度2.如图所示,倾角为θ的斜面体C置于水平面上,B置于斜面上,通过轻绳跨过光滑的定滑轮与A相连接,连接B的一段轻绳与斜面平行,A、B、C都处于静止状态.则()A.水平面对C的支持力等于B、C的总重力B.C对B一定有摩擦力C.水平面对C一定有摩擦力D.水平面对C可能没有摩擦力3.铁路在弯道处的内外轨道高低是不同的,已知内外轨道对水平面倾角为θ(如图),弯道处的圆弧半径为R,若质量为m的火车转弯时速度大于,则()A.内轨对内侧车轮轮缘有挤压B.外轨对外侧车轮轮缘有挤压C.火车所受合力大小等于mgtanθD.火车所受合力为零4.如图所示的直角坐标系中,两电荷量分别为Q(Q>0)和﹣Q的点电荷对称地放置在x轴上原点O的两侧,a点位于x轴上O点与点电荷Q之间,b位于y 轴O点上方,取无穷远处的电势为零.下列说法正确的是()A.b点的电势为零,电场强度也为零B.正的试探电荷在a点的电势能大于零,所受电场力方向向右C.将正的试探电荷从O点移到a点,电势能减少D.将同一正的试探电荷先后分别从O、b点移到a点,第二次电势能的变化较大5.一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍,该质点的加速度为()A.B.C.D.6.如图所示的电路中,电源内阻忽略不计,R1=R2=R3=R.闭合电键S,电压表V 的示数为U,电流表A的示数为I.在滑动变阻器R1的滑片P由a端滑到b端的过程中,电压表V的示数变化大小为△U,电流表A的示数变化大小为△I,下列说法正确的是()A.U先变小后变大 B.I先变大后变小C.△U与△I的比值保持不变D.U与I乘积先变小后变大7.如图所示的直角坐标系中,第一象限内分布着均匀辐射的电场.坐标原点与四分之一圆弧的荧光屏间电压为U;第三象限内分布着竖直向下的匀强电场,场强大小为E,大量电荷量为﹣q(q>0)、质量为m的粒子,某时刻起从第三象限不同位置连续以相同的初速度v0沿x轴正方向射入匀强电场,若粒子只能从坐标原点进入第一象限,其它粒子均被坐标轴上的物质吸收并导走并不影响原来的电场分布,不计粒子的重力及它们间的相互作用,下列说法正确的是()A.能进入第一象限的粒子,在匀强电场中的初始位置分布在一条直线上B.到达坐标原点的粒子速度越大,到达O点的速度方向与y轴的夹角θ越大C.能打到荧光屏的粒子,进入O点的动能必须大于qUD.若U<,荧光屏各处均有粒子到达而被完全点亮8.如图所示,倾角为α的斜面A被固定在水平面上,细线的一端固定于墙面,另一端跨过斜面顶端的小滑轮与物块B相连,B静止在斜面上.滑轮左侧的细线水平,右侧的细线与斜面平行.A的质量为B质量的2倍.撤去固定A的装置后,A、B均做直线运动.不计一切摩擦,重力加速度为g.在B没有离开斜面的过程中,下列说法正确的是(可能用到的数学公式1﹣cosα=2sin2)()A.A、B组成的系统机械能守恒B.B的速度方向一定沿斜面向下C.A、B速度v A、v B满足v B=2v A sinD.当A滑动的位移为x时,A的速度大小v A=二、非选择题(包括必考题和选考题两部分.第9题~第12题为必考题,每个试题考生都必须作答.第13题~第16题为选考题,考生根据要求作答.)(一)必考题(共129分)9.在“探究小车速度随时间变化的规律”实验中,测得纸带上计数点的情况如图所示,A、B、C、D、E为选好的计数点,在相邻的两个计数点之间还有4个点未标出,图中数据的单位是cm,实验中使用的电源频率为50Hz.由此可知:小车的加速度a=m/s2;打点计时器打下C点时,小车的瞬时速度v C=m/s.(结果保留两位有效数字)10.实验室中有一个未知电阻R x,为测其阻值,小明同学进行了以下实验探究:(1)小明先用多用电表欧姆挡粗测其阻值.选用倍率为“×10”的电阻挡测量时,按规范操作,指针的位置如图1中的a.现要较准确的测量该电阻的阻值,在用红、黑表笔接触这个电阻两端之前,应进行的具体操作是;按正常顺序操作后,指针的位置如图中b,则该电阻的阻值为Ω.(2)为了更加精确的测量其阻值,小明同学首先利用如下器材设计了实验方案甲A.电压表(量程6V,内阻约几千欧)B.电流表(量程0.4A,内阻约几欧)C.滑动变阻器R(阻值0~20Ω,额定电流1A)D.电池组E(电动势约为6V,内阻不计)E.开关S和导线若干在保证各仪器安全的情况下,该实验方案存在的主要问题是.(3)经过认真思考,小明对实验方案甲进行了改进.改进方案如图乙所示.已知实验中调节滑动变阻器两次测得电压表和电流表的示数分别为U1、I1和U2、I2,由以上数据可得R x=.11.以某一初速度水平抛出一物体,若以抛出点为坐标原点O,初速度方向为x 轴的正方向,物体所受重力方向为y轴的正方向,建立如图所示坐标系.它的运动轨迹满足方程y=0.05x2,经过一段时间物体的速度大小变为初速度的倍,不计空气阻力,取g=10m/s2,求:(1)物体水平抛出的初速度v0;(2)该过程平均速度大小.12.如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向.(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小.(二)选考题,任选一模块作答【物理--选修3-3】13.下列说法正确的是()A.布朗运动虽然不是液体分子的运动,但是它可以说明分子在永不停息地做无规则运动B.只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏伽德罗常数C.在使两个分子间的距离由很远(r>10﹣9m)减小到很难再靠近的过程中,分子间作用力先减小后增大;分子势能不断增大D.在温度不变的条件下,增大饱和汽的体积,就可减小饱和汽的压强E.液晶既有液体的流动性,又具有单晶体的各向异性F.通过科技创新,我们能够研制出内能全部转化为机械能的热机14.如图所示,一圆柱形绝热气缸竖直放置,通过绝热活塞封闭着一定质量的理想气体,活塞的质量为m,横截面积为S,与容器底部相距h.现通过电热丝缓慢加热气体,当气体吸收热量Q时,活塞上升高度h,此时气体的温度为T1.已知大气压强为p0,重力加速度为g,不计活塞与气缸的摩擦.求:(1)加热过程中气体的内能增加量;(2)现停止对气体加热,同时在活塞上缓慢添加砂粒,当添加砂粒的质量为m0时,活塞恰好回到原来的位置,求此时气体的温度.【物理--选修3-4】15.下列说法中正确的有()A.不管光源与观察者是否存在相对运动,观察者观察到的光速是不变的B.水面上的油膜呈现彩色是光的干涉现象C.在光导纤维束内传送图象是利用光的色散现象D.声源向静止的观察者运动,观察者接收到的频率小于声源的频率E.未见其人先闻其声,是因为声波波长较长,容易发生衍射现象16.一列简谐横波沿直线传播,在传播方向上有P、Q两个质点,它们相距为0.8m,当t=0时,P、Q两点的位移恰好是正最大值,且P、Q间只有一个波谷,t=0.6s 末时,P、Q两点正好都处在平衡位置,且P、Q两点间只有一个波峰和一个波谷,且波峰距Q点的距离第一次为,试求:(1)波由P传至Q,波的周期;(2)波由Q传至P,波的速度;(3)波由Q传至P,从t=0时开始观察,哪些时刻P、Q间(P、Q除外)只有一个质点的位移大小等于振幅?2016-2017学年湖北省武汉市华中师大一附中高三(上)综合物理试卷(8)(11.12)参考答案与试题解析一、选择题:本大题共8小题,每小题6分.在每小题给出的四个选项中,第1~4题只有一项是符合题目要求,第5~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分.有选错的得0分.1.天宫二号空间实验室已于2016年9月15日在酒泉卫星发射中心发射成功.经北京航天飞行控制中心两次轨道控制,天宫二号已调整至距地面393km的轨道上运行.对稳定后的天宫二号,以下说法正确的是()A.运行轨道一定在酒泉卫星发射中心正上方B.相对于站在地球赤道上的人静止不动C.向心加速度大于站在地球赤道上的人随地球一起自转的向心加速度D.由于经过多次点火加速,运行线速度大于第一宇宙速度【考点】人造卫星的加速度、周期和轨道的关系.【分析】地球同步卫星即地球同步轨道卫星,又称对地静止卫星,只能在赤道的上空;根据万有引力提供圆周运动向心力展开讨论.【解答】解:A、所有的卫星中,只有赤道上空的卫星轨道相对于地球是不变的,不在赤道上空的轨道相对于地球是运动的.故A错误;B、同步卫星的轨道距离地面的高度约为36000km,大于393km,所以天宫二号不可能相对于站在地球赤道上的人静止不动.故B错误;C、根据万有引力提供向心力可知:,得:,由于天宫二号的轨道半径小于同步卫星的轨道半径,所以天宫二号的向心加速度大于同步卫星的向心加速度;而同步卫星的角速度与站在地球赤道上的人的角速度相等,根据a=rω2知,同步卫星的向心加速度大于站在地球赤道上的人的向心加速度,所以向心加速度大于站在地球赤道上的人随地球一起自转的向心加速度.故C正确.D、第一宇宙速度是近地卫星的线速度,根据万有引力提供向心力:,所以v=,知天宫二号的运行线速度小于第一宇宙速度.故D错误.故选:C2.如图所示,倾角为θ的斜面体C置于水平面上,B置于斜面上,通过轻绳跨过光滑的定滑轮与A相连接,连接B的一段轻绳与斜面平行,A、B、C都处于静止状态.则()A.水平面对C的支持力等于B、C的总重力B.C对B一定有摩擦力C.水平面对C一定有摩擦力D.水平面对C可能没有摩擦力【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【分析】对于B物体:当B的重力沿斜面向下的分力等于绳子的拉力时,B不受摩擦力.以BC组成的整体为研究对象,分析受力,画出力图,根据平衡条件分析地面对C的支持力和摩擦力大小和方向【解答】解:A、以BC组成的整体为研究对象,分析受力,画出受力分析图如图所示.由图得到水平面对C的支持力大小N=G C+G B﹣G A sinθ<G C+G B.故A错误.B、当B的重力沿斜面向下的分力等于绳子的拉力时,B不受摩擦力.当B的重力沿斜面向下的分力不等于绳子的拉力时,B受摩擦力.B与C间一定有摩擦力,故B错误;C、对BC整体分析,根据平衡条件得,水平面对C的摩擦力f=Fcosθ.方向水平向左.故C正确,D错误;故选:C.3.铁路在弯道处的内外轨道高低是不同的,已知内外轨道对水平面倾角为θ(如图),弯道处的圆弧半径为R,若质量为m的火车转弯时速度大于,则()A.内轨对内侧车轮轮缘有挤压B.外轨对外侧车轮轮缘有挤压C.火车所受合力大小等于mgtanθD.火车所受合力为零【考点】向心力;牛顿第二定律.【分析】火车在弯道处拐弯时火车的重力和轨道对火车的支持力的合力做为转弯需要的向心力,当合力恰好等于需要的向心力时,火车对内外轨道都没有力的作用,速度增加,就要对外轨挤压,速度减小就要对内轨挤压.【解答】解:AB、火车的重力和轨道对火车的支持力的合力恰好等于需要的向心力时,此时火车的速度正好是,当火车火车转弯的速度大于时,需要的向心力增大,而重力与支持力的合力不变,所以合力小于所需要的向心力,外轨就要对火车产生一个向内的力来补偿一部分向心力,所以此时外轨对内外侧车轮轮缘有挤压,A错误,B正确.CD、由火车做曲线运动,合力一定不为零,因为速度大于,所以合力大于mgtanθ,所以CD错误.故选:B4.如图所示的直角坐标系中,两电荷量分别为Q(Q>0)和﹣Q的点电荷对称地放置在x轴上原点O的两侧,a点位于x轴上O点与点电荷Q之间,b位于y 轴O点上方,取无穷远处的电势为零.下列说法正确的是()A.b点的电势为零,电场强度也为零B.正的试探电荷在a点的电势能大于零,所受电场力方向向右C.将正的试探电荷从O点移到a点,电势能减少D.将同一正的试探电荷先后分别从O、b点移到a点,第二次电势能的变化较大【考点】匀强电场中电势差和电场强度的关系.【分析】两个等量异种电荷连线的垂直平分线是一条等势线.电场强度方向与等势面方向垂直,而且指向电势低的方向.根据等势面和电场线分布情况,分析电势和场强的关系.【解答】解:A、结合等量异种点电荷的电场的特点可知,两个等量异种电荷连线的垂直平分线是一条等势线.电场强度方向与等势面方向垂直,而且指向电势低的方向,所以B点的电势等于0,而电场强度不等于0.故A错误;B、由图,两个点电荷在a点产生的电场强度的方向都向右,所以合场强的方向一定向右,则正电荷在a点受到的电场力的方向向右;故B正确;C、电场线由Q指向﹣Q,故正电荷从o向a运动的过程中,电场力做负功,电势能减增加;故C错误;D、两个等量异种电荷连线的垂直平分线是一条等势线,所以O、b两点的电势是相等的,将同一正的试探电荷先后从O、b两点移到a点,二者电势能的变化相等.故D错误.故选:B5.一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍,该质点的加速度为()A.B.C.D.【考点】动能;匀变速直线运动规律的综合运用.【分析】由题意知,动能变为原来的9倍,可解得末速度和初速度的倍数关系,结合位移公式,可分别求出初速度和末速度,再由加速度的定义求得质点的加速度.【解答】解:设初速度为v0,末速度为v t,加速度为a,则位移为:s=(v0+v t)t,初动能为mv02,末动能为mv t2,因为动能变为原来的9倍,所以有=9联立解得:v0=;v t=.由加速度定义可得:a===,故A正确,BCD错误.故选:A.6.如图所示的电路中,电源内阻忽略不计,R1=R2=R3=R.闭合电键S,电压表V 的示数为U,电流表A的示数为I.在滑动变阻器R1的滑片P由a端滑到b端的过程中,电压表V的示数变化大小为△U,电流表A的示数变化大小为△I,下列说法正确的是()A.U先变小后变大 B.I先变大后变小C.△U与△I的比值保持不变D.U与I乘积先变小后变大【考点】闭合电路的欧姆定律.【分析】电源内阻忽略不计,将等效为电源内阻,电压表测量等效电源的电源路端电压.滑动变阻器R1的滑片P由a端滑到b端的过程中,电阻先曾大后减小,由欧姆定律可判断电流表示数的变化和和U与I比值的变化.【解答】解:A、将等效为电源的内阻,由图可知电压表测量的是等效电源的路端电压,滑动变阻器R1的滑片P由a端滑到b端的过程中,电阻先曾大后减小,根据欧姆定律电流先减小后增大,两端的电压先减小后增大,电压表的读数先变大后变小,故A正错误;B、由图可知,在滑动变阻器R1的滑片P由a端滑到b端的过程中,滑动变阻器R1的电阻先增大后减小,由于电压不变,根据闭合电路欧姆定律可知电流表示数先减小后增大,故B错误;C、由于电压表示数没有变化,所以U变化量与I变化量比值等于等效电源的内阻即,故C正确;D、因为U先变大后变小,I先减小后增大,U与I的乘积无法判断,故D错误;故选:C7.如图所示的直角坐标系中,第一象限内分布着均匀辐射的电场.坐标原点与四分之一圆弧的荧光屏间电压为U;第三象限内分布着竖直向下的匀强电场,场强大小为E,大量电荷量为﹣q(q>0)、质量为m的粒子,某时刻起从第三象限不同位置连续以相同的初速度v0沿x轴正方向射入匀强电场,若粒子只能从坐标原点进入第一象限,其它粒子均被坐标轴上的物质吸收并导走并不影响原来的电场分布,不计粒子的重力及它们间的相互作用,下列说法正确的是()A.能进入第一象限的粒子,在匀强电场中的初始位置分布在一条直线上B.到达坐标原点的粒子速度越大,到达O点的速度方向与y轴的夹角θ越大C.能打到荧光屏的粒子,进入O点的动能必须大于qUD.若U<,荧光屏各处均有粒子到达而被完全点亮【考点】带电粒子在匀强电场中的运动.【分析】(1)带电粒子在电场中做类平抛运动,由平抛运动规律列方程求解粒子的初位置的坐标,由初位置的坐标的函数进行判断即可;(2)粒子在竖直方向做匀加速直线运动由速度时间公式求出v y,根据tanθ=求正切值;(3)负电荷进入第一象限后电场力做负功,由功能关系分析到达荧光屏的粒子的特点;(4)求出粒子速度的偏转角与时间的关系,判断出粒子可以以任意夹角进入第一象限即可.【解答】解:A、设粒子开始时的坐标为(﹣x,﹣h),粒子在电场中运动过程中,由平抛运动规律及牛顿运动定律得x=v0t ①h=at2 ②qE=ma ③联立得:④可知能进入第一象限的粒子,在匀强电场中的初始位置分布在一条抛物线上.故A错误;B、粒子的初速度是相等的,到达O点的粒子速度越大,则沿y方向的分速度越大.粒子到达O点时,沿+y方向的分速度v y速度与x正方向的夹角θ满足:⑥可知到达坐标原点的粒子速度越大,到达O点的速度方向与y轴的夹角θ越大.故B正确;C、负电荷进入第一象限后电场力做负功,而到达荧光屏的粒子的速度必须大于等于0,由功能关系可知:0⑦即能打到荧光屏的粒子,进入O点的动能必须大于qU.故C正确;D、粒子在电场中的偏转角:=⑧,粒子在偏转电场中运动的时间不同,则进入第一象限后速度与y轴之间的夹角不同.所以从不同的位置开始偏转的粒子,可以以任意夹角进入第一象限,所以若U<,荧光屏各处均有粒子到达而被完全点亮.故D正确.故选:BCD8.如图所示,倾角为α的斜面A被固定在水平面上,细线的一端固定于墙面,另一端跨过斜面顶端的小滑轮与物块B相连,B静止在斜面上.滑轮左侧的细线水平,右侧的细线与斜面平行.A的质量为B质量的2倍.撤去固定A的装置后,A、B均做直线运动.不计一切摩擦,重力加速度为g.在B没有离开斜面的过程中,下列说法正确的是(可能用到的数学公式1﹣cosα=2sin2)()A.A、B组成的系统机械能守恒B.B的速度方向一定沿斜面向下C.A、B速度v A、v B满足v B=2v A sinD.当A滑动的位移为x时,A的速度大小v A=【考点】机械能守恒定律.【分析】分析各力的做功情况,明确系统只有重力做功,机械能守恒;同时分析物体的运动情况,明确二者运动的关系,根据运动的合成与分解,结合各自位移存在的几何关系,及三角知识,结合相似三角形,得出速度之比等于位移之比,从而求出AB速度的关系,并求出位移为x时的速度大小.【解答】解:A、由于细线的拉力看作内力,且左侧绳头处不做功,故系统只有重力做功,故AB组成的系统机械能守恒,故A正确;B、两物体运动如图所示,由图可知,B不是沿斜面运动,故B错误;C、撤去固定A的装置后,A、B均做直线运动,根据运动的合成与分解,当A 滑动的位移为x时,设B的位移大小s,依据几何关系有:则有:s x=x(1﹣cosα)s y=xsinα且s=;解得:s=x=2xsin;因B的下降的高度为s y=xsinα;根据系统只有重力做功,机械能守恒定律,则有:mgs y=mv A2+mv B2如下图所示,画阴影部分的三角形相似,依据位移之比等于速度之比,可得:=则有:v B=v A=2v A sin解得:v A=,故CD正确.故选:ACD.二、非选择题(包括必考题和选考题两部分.第9题~第12题为必考题,每个试题考生都必须作答.第13题~第16题为选考题,考生根据要求作答.)(一)必考题(共129分)9.在“探究小车速度随时间变化的规律”实验中,测得纸带上计数点的情况如图所示,A、B、C、D、E为选好的计数点,在相邻的两个计数点之间还有4个点未标出,图中数据的单位是cm,实验中使用的电源频率为50Hz.由此可知:小车的加速度a=0.34m/s2;打点计时器打下C点时,小车的瞬时速度v C=0.44 m/s.(结果保留两位有效数字)【考点】测定匀变速直线运动的加速度.【分析】根据匀变速直线运动的推论公式△x=aT2可以求出加速度的大小,根据匀变速直线运动中,中间时刻的速度等于该过程中的平均速度,可以求出打纸带上C点小车的瞬时速度大小.【解答】解:每相邻的两计数点间都有四个点未画出,因此计数点之间的时间间隔为T=0.1s;根据△x=aT2,可得a=;代入数据,解得a=≈0.34m/s2.根据匀变速直线运动中,中间时刻的速度等于该过程中的平均速度有:v C==≈0.44m/s故答案为:0.34;0.44.10.实验室中有一个未知电阻R x,为测其阻值,小明同学进行了以下实验探究:(1)小明先用多用电表欧姆挡粗测其阻值.选用倍率为“×10”的电阻挡测量时,按规范操作,指针的位置如图1中的a.现要较准确的测量该电阻的阻值,在用红、黑表笔接触这个电阻两端之前,应进行的具体操作是选择×1电阻挡,重新进行欧姆调零;按正常顺序操作后,指针的位置如图中b,则该电阻的阻值为3Ω.(2)为了更加精确的测量其阻值,小明同学首先利用如下器材设计了实验方案甲A.电压表(量程6V,内阻约几千欧)B.电流表(量程0.4A,内阻约几欧)C.滑动变阻器R(阻值0~20Ω,额定电流1A)D.电池组E(电动势约为6V,内阻不计)E.开关S和导线若干在保证各仪器安全的情况下,该实验方案存在的主要问题是电压表指针偏转角度太小,读数带来的误差比较大.(3)经过认真思考,小明对实验方案甲进行了改进.改进方案如图乙所示.已知实验中调节滑动变阻器两次测得电压表和电流表的示数分别为U1、I1和U2、I2,由以上数据可得R x=.【考点】伏安法测电阻.【分析】(1)用欧姆表测电阻要选择合适的挡位使指针指在中央刻度线附近,欧姆表指针示数与挡位的乘积是欧姆表示数.(2)当电表指针偏角太小时读数误差较大,实验误差较大.(3)根据实验数据应用闭合电路欧姆定律求出待测电阻阻值.【解答】解:(1)选用倍率为“×10”的电阻挡测量,指针的位置如图1中的a,指针偏角太大,说明所选挡位太大,要较准确的测量该电阻的阻值,应选择×1电阻挡,重新进行欧姆调零,然后再测电阻;按正常顺序操作后,指针的位置如图中b,则该电阻的阻值为:3×1=3Ω.(2)待测电阻阻值约为3Ω,电流表量程为0.4A,则待测电阻两端最大电压约为:U=IR=0.4×3=1.2V,电压表量程为6V,电压表量程太大,电压表指针偏转角度太小,读数误差较大,实验误差较大.(3)电源内阻不计,由图乙所示可知,电源电动势:E=U1+I1R X,E=U2+I2R X,解得:R X=;故答案为:(1)选择×1电阻挡,重新进行欧姆调零;3;(2)电压表指针偏转角度太小,读数带来的误差比较大;(3).11.以某一初速度水平抛出一物体,若以抛出点为坐标原点O,初速度方向为x 轴的正方向,物体所受重力方向为y轴的正方向,建立如图所示坐标系.它的运动轨迹满足方程y=0.05x2,经过一段时间物体的速度大小变为初速度的倍,不计空气阻力,取g=10m/s2,求:(1)物体水平抛出的初速度v0;(2)该过程平均速度大小.。
湖北省华中师范大学第一附属中学2017-2018学年高一上学期期中考试数学试题含解析
湖北省华中师范大学第一附属中学2017-2018学年高一上学期期中考试数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第I 卷(选择题)一、单选题1.设全集错误!未找到引用源。
,集合错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
( ).A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
2.下列对应不是映射的是( ).A. B. C. D.3.已知函数错误!未找到引用源。
,则错误!未找到引用源。
等于( )A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
4.函数错误!未找到引用源。
的零点错误!未找到引用源。
所在一个区间是( ).A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
5.函数错误!未找到引用源。
的定义域为( ).A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
6.函数错误!未找到引用源。
的图象是( )7.若关于错误!未找到引用源。
的不等式错误!未找到引用源。
无解,则实数错误!未找到引用源。
的取值范围是( ).A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
8.已知错误!未找到引用源。
,则 ( )A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
湖北省华中师范大学第一附属中学2017-2018学年高二上学期期中考试语文试题
华中师大一附中2017—2018学年度上学期高二期中检测语文试题时限:150分钟满分:150分一、现代文阅读(35分)<-)论述类文本阅读(本題共3小题,9分〉阅读下面的文字,完成1—3临。
新媒体技术推动阅读便式变革移动互联网和社交媒体的快速发展.形成了新的阅读方式•社会化阅读,它是以读者为中心. 强调分亨、互动和可移动性的全新阅读模式.首先,新媒体技术打彼了b(隔的今间、格合了碎片化的时间,极犬地捉升了信息传递的时效. 推动了信息的跨域传播.解化出一个个集合的阅读其次.以兴趣和情感为核心的亚文化传播.让网络社群升级到文化层血的情感共很及价值认同,促使阅读从传统的私人化行为演化为• 种以互动和共/为核心的礼会化行为:凤后,移动互联网E寸代•传统的丫活场景不斷转移到线上. 线上的社乳文化也开始嵌入现实生活,这使碎片化的侑息互动升级为更其系统性的知识交流,让阅读的社会化作用更加凸显,这就是社会化阅读•社会化阅读住给人们带来便捷的同时.也存在需要注总的问題"为适应移动状态卜•的阅读需耍.社会化阅读的内容大都以浓缩的形式出现•可谓短平快:微信朋友圈或群推荐的阅读材料. 基于熟人、朋友关系.容易引起重视并被优先阅读.也容易产生先入为主的效应• •般来说.群上或眸里比较活跃的人的推荐弃时不可避免地带有引导性,甚至经过了“再创造”。
聊友任分/ 阅读材料时,会冇即时的评论发衣.这就形成社会化阅辻的一个突出特点:阅读分亨与舆论的酝熬、形成儿乎同时出现.没有留给理性思维以时间•以微信朋友圈为例.因:rt转发分孕功能十分强大,如果不注童,很容易让“朋友僵”变成“谣言圈”・任亍加网络时代卜.俏息知识过剩、俏息污染.俏息干扰等何AS.存易造诫阅谀浪费.林会化阅读潜藏着一吃危机.如时间和空间的碎片化促使"浅阅读”人行英道、过多地沉迷虚拟空何会使得现实社会的文化互动变得廉缺等.社会化阅读方式对传统文化.教傅以及传统价仇观的冲击是不言而喻的.住传统社会屮. 岀版物是经过审査、去朵质化的.社会化阅读则很嫌实现对内容的把关.因为在社会化媒体上. 微新闻、微评论、微小说等随时可以上线.对于内客管理而盲也是一个挑战。
湖北省华中师大一附中2017届高三(上)期中数学试卷(理科)(解析版)
2016-2017学年湖北省华中师大一附中高三(上)期中数学试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在给出的四个选项中,只有一项是符合要求的.1.集合A={y|y=2x﹣1},B={x||2x﹣3|≤3},则A∩B=()A.{x|0<x≤3}B.{x|1≤x≤3}C.{x|0≤x≤3}D.{x|1<x≤3}2.设复数z满足(1﹣i)z=2i,则z在复平面内对应的点在()A.第四象限 B.第三象限 C.第二象限 D.第一象限=2a n﹣2n,则a17()3.数列{a n}中,a1=1,a n+1A.﹣15×216B.15×217C.﹣16×216D.16×2174.sinθ+cosθ=﹣,θ是第二象限的角,则tanθ()A.﹣3 B.﹣2 C.﹣D.﹣5.已知向量=(2cos2x,),=(1,sin2x).设f(x)=•,若f(α﹣)=2,α∈[,π],则sin(2α﹣)=()A.﹣B.C.﹣D.6.两个单位向量,的夹角为60°,点C在以O圆心的圆弧AB上移动,=x+y,则x+y的最大值为()A.1 B.C.D.7.已知函数f(x)=,若函数y=f(x)﹣4有3个零点,则a的值为()A.3 B.4 C.5 D.68.下列四个命题中,正确的个数是()①命题“存在x∈R,x2﹣x>0”的否定是“对于任意的x∈R,x2﹣x<0”;②若函数f(x)在上有零点,则f<0;③在公差为d的等差数列{a n}中,a1=2,a1,a3,a4成等比数列,则公差d为﹣;④函数y=sin2x+cos2x在[0,]上的单调递增区间为[0,].A.0 B.1 C.2 D.39.若<θ<π,P=3cosθ,Q=(cosθ)3,R=(cosθ),则P,Q,R的大小关系为()A.R<Q<P B.Q<R<P C.P<Q<R D.R<P<Q10.实数x,y满足,若目标函数z=mx+y(m>0)的最大值为5,则m的值为()A.B.C.2 D.511.定义在R上的函数y=f(x)满足f(x)=f(2﹣x),f'(x)(x﹣1)>0,则对任意的x1<x2,f(x1)>f(x2)是x1+x2<2的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件12.已知函数y=f(x)的定义域的R,当x<0时,f(x)>1,且对任意的实数x,y∈R,)f()=1(n∈N*),且a1=f 等式f(x)f(y)=f(x+y)成立,若数列{a n}满足f(a n+1(0),则下列结论成立的是()A.f(a2013)>f(a2016)B.f(a2014)>f(a2017)C.f(a2016)<f(a2015)D.f(a2013)>f(a2015)二、填空题:本题共4小题,每小题5分,共20分,请将答案填写在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.关于x的不等式表示的平面区域是等腰直角三角形,则该三角形的面积为.14.在△ABC中,a,b,c分别为角A,B,C的对边,且满足4cos2﹣cos2(B+C)=,若a=2,则△ABC的面积的最大值是.15.已知x>1,y>1,且lnx,,lny成等比数列,则xy的最小值为.16.已知函数f(x)=m(x+m+5),g(x)=2x﹣2,若任意的x∈R,总有f(x)<0或g(x)<0,则m的取值范围是.三、解答题:写出文字说明,证明过程或演算过程.17.已知f(x)=(xinωx+cosωx)cosωx﹣,其中ω>0,若f(x)的最小正周期为4π.(1)求函数f(x)的单调递增区间;(2)锐角三角形ABC中,(2a﹣c)cosB=bcosC,求f(A)的取值范围.18.如图所示,△ABC中,D为AC的中点,AB=2,BC=,∠A=.(1)求cos∠ABC的值;(2)求BD的值.19.数列{a n}的前n项和S n=3n2+2n+1.(1)求{a n}的通项公式;(2)令b n=a n2n,求{b n}的前n项和T n.20.已知函数f(x)=(a≠0).(1)试讨论y=f(x)的极值;(2)若a>0,设g(x)=x2e mx,且任意的x1,x2∈[0,2],f(x1)﹣g(x2)≥﹣1恒成立,求m的取值范围.21.已知函数f(x)=x2﹣ax+2lnx(其中a是实数).(1)求f(x)的单调区间;(2)若设2(e+)<a<,且f(x)有两个极值点x1,x2(x1<x2),求f(x1)﹣f(x2)取值范围.(其中e为自然对数的底数).22.已知f(x)=|x﹣1|﹣|2x+3|.(1)解不等式f(x)>2;(2)关于x的不等式f(x)≤a2﹣a的解集为R,求a的取值范围.2016-2017学年湖北省华中师大一附中高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在给出的四个选项中,只有一项是符合要求的.1.集合A={y|y=2x﹣1},B={x||2x﹣3|≤3},则A∩B=()A.{x|0<x≤3}B.{x|1≤x≤3}C.{x|0≤x≤3}D.{x|1<x≤3}【考点】交集及其运算.【分析】求出集合A,B,然后求解交集即可.【解答】解:集合A={y|y=2x﹣1}={y|y>0},B={x||2x﹣3|≤3}={x|0≤x≤3},则A∩B={x|0<x≤3}.故选:A.2.设复数z满足(1﹣i)z=2i,则z在复平面内对应的点在()A.第四象限 B.第三象限 C.第二象限 D.第一象限【考点】复数的代数表示法及其几何意义.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:∵(1﹣i)z=2i,∴(1+i)(1﹣i)z=2i(1+i),化为z=i﹣1则z在复平面内对应的点(﹣1,1)在第二象限.故选:C.=2a n﹣2n,则a17()3.数列{a n}中,a1=1,a n+1A.﹣15×216B.15×217C.﹣16×216D.16×217【考点】数列递推式.=2a n﹣2n,变形为﹣=﹣,利用等差数列的通项公式即可得出.【分析】a n+1=2a n﹣2n,【解答】解:∵a n+1∴﹣=﹣,∴数列是等差数列,公差为﹣.∴=﹣(n﹣1)=,可得a n=(2﹣n)•2n﹣1,∴a17=﹣15×216.故选:A.4.sinθ+cosθ=﹣,θ是第二象限的角,则tanθ()A.﹣3 B.﹣2 C.﹣D.﹣【考点】三角函数的化简求值.【分析】已知等式两边平方,利用同角三角函数间基本关系化简求出sinθcosθ的值,然后由倍角公式进行计算.【解答】解:∵sinθ+cosθ=﹣,∴1+2sinθcosθ=1+sin2θ=,则sin2θ=﹣.又∵θ是第二象限的角,即<θ<π,∴π<2θ<2π,∴cos2θ=,∴tanθ===﹣.故选:C.5.已知向量=(2cos2x,),=(1,sin2x).设f(x)=•,若f(α﹣)=2,α∈[,π],则sin(2α﹣)=()A.﹣B.C.﹣D.【考点】平面向量数量积的运算.【分析】进行数量积的运算,并化简即可得出f(x)=,这样根据即可得出cos2α=,而由α的范围便可得出2α的范围,从而求出α,这样便可求出的范围.【解答】解:f(x)====;∴=﹣2cos2α+1=2;∴;∵;∴2α∈[π,2π];∴;∴.故选C.6.两个单位向量,的夹角为60°,点C在以O圆心的圆弧AB上移动,=x+y,则x+y的最大值为()A.1 B.C.D.【考点】数量积表示两个向量的夹角;基本不等式.【分析】本题是向量的坐标表示的应用,结合图形,利用三角函数的性质,即可求出结果.【解答】解:∵两个单位向量,的夹角为60°,点C在以O圆心的圆弧AB上移动,=x+y,建立如图所示的坐标系,则B(1,0),A(cos60°,sin60°),即A(,).设∠BOC=α,则=x+y=(cosα,sinα)=(x+y,x),∴∴x=sinα,y=cosα﹣sinα,∴x+y=cosα+sinα=sin(α+60°).∵0°≤α≤60°,∴60°≤α+60°≤120°,∴≤sin(α+60°)≤1,故当α+60°=90°时,x+y取得最大值为,故选:D.7.已知函数f(x)=,若函数y=f(x)﹣4有3个零点,则a的值为()A.3 B.4 C.5 D.6【考点】根的存在性及根的个数判断.【分析】由已知中函数函数y=f(x)﹣4=,我们分别判断出x≠4时,函数的零点,及x=4时,函数的零点,进而可得实数a的值.【解答】解:由题意,函数y=f(x)﹣4=x≠a时,函数关于x=a对称,此时f(x)=4一定有两个零点,则当x=a时,f(x)=4,∴a=4.若x≠4,则﹣2=0,则x=1.5或x=5.5;若x=4,则a﹣4=0,则a=4,满足函数y=f(x)﹣4有3个零点故选B.8.下列四个命题中,正确的个数是()①命题“存在x∈R,x2﹣x>0”的否定是“对于任意的x∈R,x2﹣x<0”;②若函数f(x)在上有零点,则f<0;③在公差为d的等差数列{a n}中,a1=2,a1,a3,a4成等比数列,则公差d为﹣;④函数y=sin2x+cos2x在[0,]上的单调递增区间为[0,].A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】写出原命题的否定,可判断①;根据函数零点的存在定理,可判断②;求出满足条件的公差,可判断③;根据三角函数的单调性,可判断④【解答】解:①命题“存在x∈R,x2﹣x>0”的否定是“对于任意的x∈R,x2﹣x≤0”;故错误;②若函数f(x)在上有零点,则f<0不一定成立,故错误;③在公差为d的等差数列{a n}中,a1=2,a1,a3,a4成等比数列,则(2+2d)2=2(2+3d),解得:d=﹣,或d=0,故错误;④函数y=sin2x+cos2x=sin(2x+),x∈[0,]时,2x+∈[,],令2x+∈[,],解得:x∈[0,].即在[0,]上函数y=sin2x+cos2x的单调递增区间为[0,].故正确;故选:B.9.若<θ<π,P=3cosθ,Q=(cosθ)3,R=(cosθ),则P,Q,R的大小关系为()A.R<Q<P B.Q<R<P C.P<Q<R D.R<P<Q【考点】不等式比较大小.【分析】判断三个数的范围,即可比较大小.【解答】解:<θ<π,cosθ∈(﹣1,0)且P=3cosθ<1,Q=(cosθ)3∈(﹣1,0);R=(cosθ),∈(0,1).(cosθ)3>(cosθ),可得:R<Q<P.故选:A.10.实数x,y满足,若目标函数z=mx+y(m>0)的最大值为5,则m的值为()A.B.C.2 D.5【考点】简单线性规划.【分析】由z=mx+y(m>0),得y=﹣mx+z,利用z与直线截距之间的关系确定直线的斜率满足的条件即可求出a的值.【解答】解:由z=mx+y(m>0),得y=﹣mx+z,∵m>0,∴直线的斜率为﹣m<0,作出不等式组对应的平面区域如图:若﹣m≥﹣1,即0<m≤1时,平移直线y=﹣mx+z,得直线经过点A时直线截距最大,由得,即A(,),此时m+=5,得m=7,此时m不成立,若﹣m<﹣1,即m>1时,平移直线y=﹣mx+z,得直线经过点C时直线截距最大,由得,即C(2,1),此时2m+1=5,得m=2,故选:C11.定义在R上的函数y=f(x)满足f(x)=f(2﹣x),f'(x)(x﹣1)>0,则对任意的x1<x2,f(x1)>f(x2)是x1+x2<2的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据条件判断函数的对称性和单调性,结合函数单调性和对称性之间的关系进行转化求解即可.【解答】解:由f(x)=f(2﹣x),得函数关于x=1对称,由f'(x)(x﹣1)>0得,当x>1时,f′(x)>0,此时函数为增函数,当x<1时,f′(x)<0,此时函数f(x)为减函数,若x1<x2,当x2≤1,函数为减函数,满足对任意的x1<x2,f(x1)>f(x2),此时x1+x2<2,若x2>1,∵函数f(x)关于x=1对称,则f(x2)=f(2﹣x2),则2﹣x2<1,则由f(x1)>f(x2)得f(x1)>f(x2)=f(2﹣x2),此时函数在x<1时为减函数,则x1<2﹣x2,即x1+x2<2,即对任意的x1<x2,f(x1)>f(x2)得x1+x2<2,反之也成立,即对任意的x1<x2,f(x1)>f(x2)是x1+x2<2的充要条件,故选:B12.已知函数y=f (x )的定义域的R ,当x <0时,f (x )>1,且对任意的实数x ,y ∈R ,等式f (x )f (y )=f (x +y )成立,若数列{a n }满足f (a n +1)f ()=1(n ∈N *),且a 1=f(0),则下列结论成立的是( )A .f (a 2013)>f (a 2016)B .f (a 2014)>f (a 2017)C .f (a 2016)<f (a 2015)D .f (a 2013)>f (a 2015) 【考点】抽象函数及其应用.【分析】利用恒等式和赋值法求f (0)的值,由恒等式化简f (a n +1)f ()=1,得到数列的递推公式,依次求出a 2、a 3、a 4,判断数列{a n }是周期数列,再由周期性求出a 2013、a 2014、a 2015、a 2016、a 2017,即可比较大小,选出答案项.【解答】解:∵对任意的实数x ,y ∈R ,f (x )•f (y )=f (x +y )恒成立, ∴令x=﹣1,y=0,则f (﹣1)•f (0)=f (﹣1),∵当x <0时,f (x )>1,∴f (﹣1)≠0,则f (0)=1,∵f (a n +1)f ()=1=f (0),∴f (a n +1+)=f (0)=a 1,则a n +1+=0,即a n +1=﹣,且a 1=1,当n=1时,a 2=﹣;当n=2时,a 3=﹣2;当n=3时,a 4=1, ∴数列{a n }是以3为周期的周期数列,∴a 2013=a 3=﹣2,a 2014=a 1=1,a 2015=a 2=﹣,a 2016=a 3=﹣2,a 2017=a 1=1,故选:C .二、填空题:本题共4小题,每小题5分,共20分,请将答案填写在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.关于x 的不等式表示的平面区域是等腰直角三角形,则该三角形的面积为 或 .【考点】简单线性规划.【分析】讨论直线斜率,作出对应的区域,求出交点坐标,结合三角形的面积公式进行求解即可.【解答】解:当k=0时,对应的三角形为△OAB ,此时三角形为等腰直角三角形,满足条件,此时OB=1,则对应的面积S=,若k≠0,直线kx﹣y+1=0与x+y=0垂直,则k=1,此时对应的三角形为△OAB,此时三角形为等腰直角三角形,满足条件,由得,得A(﹣,),则三角形的面积S==,综上该三角形的面积为或,故答案为:或.14.在△ABC中,a,b,c分别为角A,B,C的对边,且满足4cos2﹣cos2(B+C)=,若a=2,则△ABC的面积的最大值是.【考点】余弦定理;正弦定理.【分析】利用三角形的内角和,结合已知条件等式,可得关于A的三角方程,从而可以求得A的大小,利用余弦定理及基本不等式,可求得bc,从而可求△ABC的面积的最大值.【解答】(本题满分为10分)解:∵A+B+C=π,∴4cos2﹣cos2(B+C)=2(1+cosA)﹣cos2A=﹣2cos2A+2cosA+3=,∴2cos2A﹣2cosA+=0.…∴cosA=.∵0<A <π,∴A=°.…∵a=2,由余弦定理可得:4=b 2+c 2﹣bc ≥2bc ﹣bc=bc ,(当且仅当b=c=2,不等式等号成立).∴bc ≤4.∴S △ABC =bcsinA ≤×=.…故答案为:.15.已知x >1,y >1,且lnx ,,lny 成等比数列,则xy 的最小值为 e . 【考点】等比数列的通项公式;基本不等式.【分析】由题意可得lnx >0,lny >0,lnx •lny=,由基本不等式可得lnx +lny 的最小值,由对数的运算可得xy 的最小值.【解答】解:∵x >1,y >1,∴lnx >0,lny >0,又∵成等比数列,∴=,解得lnx •lny=,由基本不等式可得lnx +lny ≥2=1,当且仅当lnx=lny ,即x=y=时取等号, 故ln (xy )=lnx +lny ≥1=lne ,即xy ≥e , 故xy 的最小值为:e 故答案为:e16.已知函数f (x )=m (x +m +5),g (x )=2x ﹣2,若任意的x ∈R ,总有f (x )<0或g (x )<0,则m 的取值范围是 ﹣6<m <0 . 【考点】函数恒成立问题.【分析】画出函数图象,结合图象求出m 的范围即可. 【解答】解:结合题意,画出图象,如图示:,若任意的x ∈R ,总有f (x )<0或g (x )<0, 显然m <0,且1+m +5>0,即m >﹣6, 故答案为:﹣6<m <0.三、解答题:写出文字说明,证明过程或演算过程.17.已知f(x)=(xinωx+cosωx)cosωx﹣,其中ω>0,若f(x)的最小正周期为4π.(1)求函数f(x)的单调递增区间;(2)锐角三角形ABC中,(2a﹣c)cosB=bcosC,求f(A)的取值范围.【考点】正弦定理;三角函数中的恒等变换应用;正弦函数的单调性.【分析】(1)利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2ωx+),利用周期公式可求ω,可得函数解析式:f(x)=sin(x+),令2kπ﹣≤x+≤2kπ+,k∈Z,可得f(x)的单调递增区间.(2)利用正弦定理化简已知,整理得cosB=,进而解得B=,利用已知求得范围<A+<,根据正弦函数的性质可求f(A)的取值范围.【解答】(本题满分为12分)解:(1)∵f(x)=(xinωx+cosωx)cosωx﹣=sin2ωx+cos2ωx=sin(2ωx+),…∵最小正周期为4π,∴ω==,可得:f(x)=sin(x+),…∴令2kπ﹣≤x+≤2kπ+,k∈Z,可得:4kπ﹣≤x≤3kπ+,k∈Z,∴f(x)的单调递增区间为[4kπ﹣,3kπ+],k∈Z…(2)∵(2a﹣c)cosB=bcosC,∴(2sinA﹣sinC)cosB=sinBcosC,整理得2sinAcosB=sinA,可得:cosB=,解得:B=,…∵锐角三角形ABC,∴,∴<A<,…∴<A+<,可得:<f(A)<.…18.如图所示,△ABC中,D为AC的中点,AB=2,BC=,∠A=.(1)求cos∠ABC的值;(2)求BD的值.【考点】余弦定理.【分析】(1)在△ABC中利用正弦定理可求sinC,利用大边对大角可得C为锐角,利用同角三角函数基本关系式可求cosC,利用两角差的余弦函数公式即可计算得解cos∠ABC的值.(2)由已知在△ABC中,利用余弦定理可求AC,进而在△ABD中,利用余弦定理可求BD.【解答】(本题满分为12分)解:(1)∵在△ABC中,,sinA=,∴sinC===,由BC>AB,可得:A>C,C为锐角,∴cosC==,∴cos∠ABC=cos(﹣C)=cos cosC+sin sinC=.(2)∵AB=2,BC=,cos∠ABC=.∴在△ABC中,AC2=AB2+BC2﹣2AB•BC•cos∠ABC=9,可得:AC=3,∴在△ABD中,BD2=AB2+AD2﹣2AB×ADcosA=,∴BD=.…19.数列{a n}的前n项和S n=3n2+2n+1.(1)求{a n}的通项公式;(2)令b n=a n2n,求{b n}的前n项和T n.【考点】数列的求和.=6n﹣1,验证n=1时是否适合,【分析】(1)由S n=3n2+2n+1知,当n≥2时,a n=S n﹣S n﹣1即可求得{a n}的通项公式;(2)b n=a n2n,易求T1=12,n>1时,T n=6×2+11×22+17×23+…+(6n﹣1)×2n,利用错位相减法可求得{b n}的前n项和T n.【解答】解:(1)∵S n=3n2+2n+1,=3n2+2n+1﹣[3(n﹣1)2+2(n﹣1)+1]=6n﹣1,∴当n≥2时,a n=S n﹣S n﹣1当n=1时,a1=6,不适合上式,∴a n=…..(2)∵b n=a n2n,∴n=1时,T1=b1=a1×2=12…..n>1时,T n=6×2+11×22+17×23+…+(6n﹣1)×2n,①2T n=6×22+11×23+17×24+…+(6n﹣7)×2n+(6n﹣1)2n+1,②…②﹣①得:T n=﹣32﹣6(23+24+…+2n)+(6n﹣1)2n+1=16+(6n﹣7)×2n+1.…..∴T n=.…20.已知函数f(x)=(a≠0).(1)试讨论y=f(x)的极值;(2)若a>0,设g(x)=x2e mx,且任意的x1,x2∈[0,2],f(x1)﹣g(x2)≥﹣1恒成立,求m的取值范围.【考点】利用导数研究函数的极值;函数恒成立问题.【分析】(1)求出函数的导数,通过讨论a的范围,求出函数的极值即可;(2)结合题意得到f(x)min(x1)+1≥g max(x2),法一:分离参数问题转化为m≤﹣,从而求出m的范围即可;法二:通过分类讨论求出m的范围即可.【解答】解:(1)f′(x)=﹣,a>0时,当x=﹣1时,f(x)的极小值为f(﹣1)=﹣,当x=1时,f(x)的极大值为f(1)=,a<0时,当x=﹣1时,f(x)的极大值为f(﹣1)=﹣,当x=1时,f(x)的极小值为f(1)=;(2)方法一:由题意知,x1,x2∈[0,2],f(x)min(x1)+1≥g max(x2),x1∈[0,2],f min(x1)+1=1,x∈[0,2],x2e mx≤1,m≤﹣,m≤{﹣}min,m≤﹣ln2,方法二:分类讨论x1∈[0,2],f min(x1)+1=1,∴x∈[0,2],g max(x)≤1,g(x)=x2e mx,g′(x)=e mx x(mx+2),1)当m≥0时,g(x)在[0,2]上单调递增,g max(x)=g(2)=4•e2m≤1,解得:m≤﹣ln2(舍),2)当﹣1<m<0时,g(x)在[0,2]上单调递增,g max(x)=g(2)=4e2m≤1,解得:m≤﹣ln2,∴﹣1<m≤﹣ln2,3)当m≤﹣1时,g(x)在[0,﹣]上单调递增,在[﹣,2]上单调递减,g max(x)=g(﹣)=≤1,解得:m≤﹣,∴m≤﹣1,综合得:m≤﹣ln2.21.已知函数f(x)=x2﹣ax+2lnx(其中a是实数).(1)求f(x)的单调区间;(2)若设2(e+)<a<,且f(x)有两个极值点x1,x2(x1<x2),求f(x1)﹣f(x2)取值范围.(其中e为自然对数的底数).【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(1)求出f(x)的定义域为(0,+∞),=,由此利用导数性质和分类讨论思想能求出f(x)的单调区间.(2)推导出f(x1)﹣f(x2)=,令h(x)=,(),则<0恒成立,由此能求出f(x1)﹣f(x2)的取值范围.【解答】解:(1)∵f(x)=x2﹣ax+2lnx(其中a是实数),∴f(x)的定义域为(0,+∞),=,….令g(x)=2x2﹣ax+2,△=a2﹣16,对称轴x=,g(0)=2,当△=a2﹣16≤0,即﹣4≤a≤4时,f′(x)≥0,∴函数f(x)的单调递增区间为(0,+∞),无单调递减区间.…当△=a2﹣16>0,即a<﹣4或a>4时,①若a<﹣4,则f′(x)>0恒成立,∴f(x)的单调递增区间为(0,+∞),无减区间.…②若a>4,令f′(x)=0,得,,当x∈(0,x1)∪(x2,+∞)时,f′(x)>0,当x∈(x1,x2)时,f′(x)<0.∴f(x)的单调递增区间为(0,x1),(x2,+∞),单调递减区间为(x1,x2).…综上所述:当a≤4时,f(x)的单调递增区间为(0,+∞),无单调递减区间.当a>4时,f(x)的单调递增区间为(0,x1)和(x2,+∞),单调递减区间为(x1,x2).…(2)由(1)知,若f(x)有两个极值点,则a>4,且x1+x2=>0,x1x2=1,∴0<x1<1<x2,又∵,a=2(),,e+<<3+,又0<x1<1,解得.…∴f(x1)﹣f(x2)=()﹣()=()﹣a(x1﹣x2)+2(lnx1﹣lnx2)=(x1﹣x2)﹣a(x1﹣x2)+2ln=﹣()•(x1+)+4lnx1=,…令h(x)=,(),则<0恒成立,∴h(x)在()单调递减,∴h()<h(x)<h(),即﹣4<f(x1)﹣f(x2)<﹣4ln3,故f(x1)﹣f(x2)的取值范围为(,).…22.已知f(x)=|x﹣1|﹣|2x+3|.(1)解不等式f(x)>2;(2)关于x的不等式f(x)≤a2﹣a的解集为R,求a的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(1)通过讨论x的范围,求出各个区间上的x的范围,取并集即可;(2)求出f(x)的范围,得到关于a的不等式,解出即可.【解答】解:(1),①,或,②,或,③,解①得:﹣2<x≤﹣,解②得:﹣<x<﹣,解③得:x∈∅,综上得解集为:{x|﹣2<x<﹣};(2)f(x)=,f(x)∈∴a2﹣a≥,解得:a≥或a≤﹣1.2016年11月27日。
湖北省华中师范大学第一附属中学2017届高三5月押题考试数学(理)试题含答案
华中师范大学第一附属中学2017届高三5月押题考试理科数学第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.若复数z 满足()121i z i +=-,则复数z 的虚部为 A.35 B. 35- C. 35i D.35i - 2.设集合{}12,2,|2M N x x ⎧⎫=-=<⎨⎬⎩⎭,则下列结论正确的是 A. N M ⊆ B. M N ⊆ C. {}2NM = D. NM R =3.设函数()f x 是以2为周期的奇函数,已知()0,1x ∈时,()2x f x =,则()f x 在()2017,2018上是 A. 增函数,且()0f x > B. 减函数,且()0f x < C. 增函数,且()0f x < D. 减函数,且()0f x >4.已知向量,a b 满足(1,2,3,2a b a b ==-=,则2a b +=A. 17155 5.在 “五一”促销活动中,某商场对5月1日19时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为14万元,则9时到11时的销售额为A. 3万元B. 6万元C.8万元D. 10万元 6.将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的左视图是7.已知命题():,0,23x x p x ∀∈-∞>;命题:0,,sin 2q x x x π⎛⎫∃∈> ⎪⎝⎭,则下列命题为真命题的是 A.p q ∧ B. ()p q ⌝∨ C. ()p q ⌝∧ D. ()p q ∧⌝ 8.函数()()cos f x A x ωϕ=+满足33f x f x ππ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,且66f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭则ω的一个可能值是 A. 2 B. 3 C.4 D. 59.已知双曲线C 的中心在原点,焦点在y 轴上,若双曲线C 210x y --=平行,则双曲线C 的离心率为23610.公元263年左右,我国数学家刘徽发现,当圆内正多边形的边数无限增多时,正多边形的面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的割圆术设计的程序框图,则输出n 的值为31,732,sin150.258,sin 7.50.1305.=≈≈ A. 12 B. 24 C. 48 D. 96 11.二面角AB αβ--的平面角是锐角,,,,M MN C AB MCB θαβ∈⊥∈∠为锐角,则A. MCN θ∠<B. MCN θ∠=C. MCN θ∠>D.以上三种情况都有可能 12.已知函数212y x =的图象在点2001,2x x ⎛⎫⎪⎝⎭处的切线为l ,若l 也为函数()ln 01y x x =<<的图象的切线,则0x 必须满足A.012x << B. 01x <<0x <<02x <<二、填空题:本大题共4小题,每小题5分,共20分.13.()5221x x +-的展开式中,3x 的系数为 .(用数字作答)14.已知,x y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若可行域内存在(),x y 使不等式20x y k ++≥有解,则实数k 的取值范围为 .15.已知椭圆()222210x y a b a b+=>>3过椭圆上一点M 作直线MA,MB 交椭圆于A,B 两点,且斜率分别为12,k k ,若点A,B 关于原点对称,则12k k ⋅的值为 .16.在ABC ∆中,,5,6B ACD π∠==是AB 边上一点,2,CD ACD =∆的面积为2,ACD ∠为锐角,则BC = .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)已知公比不为1的等比数列{}n a 的前3项积为27,且22a 为13a 和3a 的等差中项. (1)求数列{}n a 的通项公式n a ;(2)若数列{}n b 满足()131log 2,n n n b b a n n N *-+=⋅≥∈,且11b =,求数列2n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S .18.(本题满分12分)华中师大附中中科教处为了研究高一学生对物理和数学的学习是否与性别有关,从高一年级抽取60名同学(男同学30名,女同学30名),给所有同学物理题和数学题各一题,让每位同学自由选择一道题进行解答.选题情况如下表:(单位:人)(1)在犯错误的概率不超过1%的条件下,能否判断高一学生对物理和数学的学习与性别有关?(2)经过多次测试后发现,甲每次解答一道物理题所用的时间为5—8分钟,乙每次解答一道物理题所用的时间为6—8分钟,现甲、乙解同一道物理题,求甲比乙先解答完的概率;(3)现从选择做物理题的8名女生中任意选取两人,对他们的解答情况进行全程研究,记甲、乙两女生被抽到的人数为X ,求X 的分布列和数学期望.19.(本题满分12分)如图,在四棱锥P ABCD -中,AB ⊥平面,//BCP CD 平面,ABP AB BC ==2 2.CP BP CD ===(1)证明:平面ABP ⊥平面ADP ;(2)若直线PA 与平面PCD 所成角为α,求sin α的值.20.(本题满分12分)已知抛物线2:2C x y =的焦点为F,过抛物线上一点M 作抛物线C 的切线l ,l 交y 轴于点N. (1)判断MNF ∆的形状;(2)若A,B 两点在抛物线C 上,点()1,1D 满足0AD BD +=,若抛物线C 上存在异于A,B 的点E,使得经过A,B,E 三点的圆与抛物线在点E 处的有相同的切线,求点E 的坐标.21.(本题满分12分)已知函数()ln f x x ax =+在点()(),t f t 处的切线方程为3 1.y x =+ (1)求a 的值;(2)已知2k ≤,当1x >时,()3121f x k x x ⎛⎫>-+- ⎪⎝⎭恒成立,求实数k 的取值范围; (3)对于在()0,1中的任意一个常数b ,是否存在正数0x ,使得()001322012f x x b e x +--+<?请说明理由.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
华师一附中2017年高中招生专县生考试英语试题(word版有答案)
华师大一附中2017年高中招生考试英语部分(共75分)一、完型填空。
(本题共20小题;每小题1.5分,共30分)For many young Chinese living in the country’s rural areas, the only way to find a 1 job is to leave their hometown and move far away from their parents.Qi Jianguang, 27, from a village in Hebei province, is one of them. 2 graduating from Shijiazhuang Tiedao University in 2014, he has worked in a bridge construction in Jiangxi Province.His job 3 frequent relocation from one place to another and his first task meant he had to move to a construction 4 in Shandong province.But Qi had to 5 his 54-year-old father, Qi Wenjiang, who was partially paralyzed by a stroke in September 2015. “My father is just a famer. He never attended school and raised me 6 his own hard work,” he said.“He had to care for me on his own after my mom left us when I was 2 years old, so when I heard that he had been hospitalized I 7 home. I saw my father lying in his bed, unable to talk or take care of himself. I had two 8 quit my job and stay at home to look after my father, or bring him with me to my 9 ”.As he was unable to 10 the cost of his father’s treatment without a steady 11, Qi chose to bring him to Shandong.“My company has 12 me assistance with looking after my father. Some of my workmates visit my home to help take care of him. It really makes me feel like 13 .”Every lunch time, he returns to the farmhouse 14 they live to feed his father, gives him his medicines and nurses him.“My father cannot talk. I can only guess what he wants from his 15 and his body language,”he said.“Sometimes, he 16 his temper when there is a misunderstanding and on those occasions, I can’t help but think that our 17 are reversed I must have been the same way when I was a baby.”For his 18 of responsibility and tenacity(坚韧) in taking care of his father, Qi has been 19 the National May I Labor Medal. “No matter where I work in the future, I will always 20 my father withme,” he said.1. A useful B. good. C. well-paid D. meaningful2. A. When. B. Since C. After D. Before3. A. requires. B. wants C. hopes. D. requests4. A. site B. park. C. sight D. store5. A. think over B. call up C. think about D. call on6. A. in. B. through C. for D. across7. A. went B. got C. ran D. rushed8. A. decisions. B. plans C. choices D. challenges9. A. home. B. work C. school D. friend10. A. meet B. match. C. spend D. cover11. A. income. B. money C. thing. D. environment12. A. Offered B. provided. C. helped D. gave13. A. achieve B. expect. C. appreciate D. belong14. A. which B. when. C. where. D. what15. A. legs. B. eyes C. hands. D. ears16. A. has B. warm C. loses D. takes17. A. families. B. duties. C. places D. roles18. A. sense. B. means. C. mind D. action19. A. Praised B. awarded C. celebrated. D. congratulated20. A. remember B. ask C. hold D. bring二、阅读理解(共10小题,每小题3分,共30分)AAn American boy said he didn’t want an 11th birthday party because he had no friends. But now he is getting something exciting—to be a professional hockey player.Colin and his family visited players and coaches of the Kalamazoo Wings at a restaurant this week. Colin said, “I knew we were going to the restaurant, but I was not expecting the rest .”The team provided the boy with a one-day contract (合同). It will allow him to join the Wings for their home (主场) game on Sunday. Colin will get his own jersey. He will drop the game puck (冰球) and even sit on the bench with the players.Colin has trouble communicating with other people. This makes it hard for him to make friends with kids of his age. Children and adults with such trouble often have high IQ, but have problems in social situations. They often have trouble understanding jokes.So his mother created a “Happy Birthday Colin” on a Face book page. It went viral and drew more than 2 million “likes.” Colin’s mom said the best reward for her efforts was seeing Colin grow. “I have seen him change greatly because he knows he has 2.1 million friends. His self-con fidence has grown.”K-Wings Head Coach Nick Boot land said, “There are things that are much bigger than the game. If we can put a smile on a kid’s face that deals with a lot of trouble, we’re excited about that chance.”21. When did Colin get a chance to be in the Wings for a day?A. After he got his own sweater.B. After he has his llm birthday party.C. When he and his family were in a restaurant.D. After his mother created a “Happy Birthday Colin”.22. What does the underlined sentences “It went viral and drew more than 2 million ‘likes’” mean?A. It was unknown to many people.B. It was very popular and many people liked it.C. It because useless and few people liked itD. It because interesting and many people liked it.23. According to the passage, which of the followings is true?A. Children and adults who have low IQ can understand jokes easily.B. Colin can’t communicate well with others but kids of his age.C. The result of a game is more important than anything elseD. Children and adults who have high IQ can’t communicate well with others.24. Why did Colin’s mother create a “Happy Birthday Colin” on a Face book age?A. Because she wanted Colin to be famous.B. Because she wanted to make a lot of money in this wayC. Because she wanted to help Colin make more friends.D. Because she wanted Colin to be in the Wings.25. The writer wants to tell us _______.A. it’s important to help children deal with trouble in a wise wayB. for a child, it’s important to have a lot of friends.C. for a child, it’s important to be in a sports teamD. Face book can help children develop their confidence.BWhen I was five, my mother took me to a painting class. There I received my first art message, not in my own class, but the one next-door.On a sunny morning my mother sat me in class, a teacher was drawing on a piece of paper pasted on the blackboard. The children followed lum in drawing simple lines filling blocks to produce a strange mixture of colors. At the end of that class, everyone handed in a disk-faced owl feathered like a parrot.Then came the break, I ran out and peeked into the classroom next-door. That stolen glance changed my school holidays for the nest few years.In that classroom, there was no laughing, no children’s frustrated crying out or their long-suffering parents’usually useless attempts to calm them down. There was only silence---just the sound of pencils on the painting paper.And the works displayed no color but black and white and millions of shades in between. I later learned that what they were doing was pencil sketch. At the time my mind was a blank canvasopen for any artistic influence, and just as easily as the lead of a 6B pencil leaves its mark on paper, the picture of that room became ingrained(根深蒂固的) in my mind. I told myself and my parents that this was where I belonged.“We adults want to give children what we believe they want,”said Wang Wei, founder of Color Edu, a children’s art education center in Beijing, referring to the so—called qian bi hua, or colorful simple drawing, a type of cartoonish. We think children are going to like it, exactly because we ourselves consider the painting style ‘childish’.‘Today I consider the theory false,’says Wang . A painting made by a young child may often include vivid colors and random lines, but they come directly from their own creativity and imagination, instead of some pre-formulated rules. I think we should give them all these elements---colors, lines and even light, But they should come together in a way that we consider beautiful. And remember, a child’s untrained mind more prepared for beauty than any of us. At his organization, children are introduced to the likes of Joan Miro, Pablo Picasso, artists whose greatness is matched only be their power of imagination---the there most people pay for growing up.In my case, I never, had the opportunity to be exposed to those great works as a child. However, that glimpse through the door opened another world for me. It was my artistic beginning.26. On the first day, what impressed the author most was ________.A. the disk-faced owl feathered like parrot of their ownB. the scene in the next-doorC. the children’s laughing and frustrated cryingD. their parents’ useless attempts to calm them down.27. What does the underlined word “pre-formulated” mean?A. 假想的B. 人为的C. 陈旧的D. 预设的28. From the article, we can learn that _______.A. adults should care more about children’s creativity and imaginationB. a painting made by a young child may be more vividC. adults always try to influence their childrenD. a child’s trained mind is more prepared for beauty than anyone else29. Why did the author consider the glimpse through the door as his artistic beginning?A. Because he began to know the theory was false.B. Because he understood what pencil sketch really wasC. Because it showed another world of art for himD. Because it changed his school holidays for the next few years.30. The beat title of the article is ________.A. My First Painting ClassB. The Pencil Marks on My MindC. Children’s Colorful Drawings.D. Color Education.三、阅读理解填词(本题共10小题;每小题1.5分,共15分)Suppose you find a bright yellow bike on a street comer in the city. You hop on it and ride away. But wait—isn’t this strange? No one s 31 . “Stop! ThieP. “That’s because this free ride is j 32 fine with the city . You can find h 33 of free yellow bikes in some U. S. cities. The idea began in Portland, Oregon. In 1994, people saw a n 34 for free transportation, and they wanted to help c 35 pollution. So to get citizens out of their cars and onto pollution free bikes, they s 36 the Yellow Bike Project. The public bikes are p 37 bright yellow and placed throughout the city. People can hop on a yellow like and ride to work, to school or to run errands. They then leave the bike for the next h 38 . There have been times when bikes have been stolen or broken, but most people they the rule. W 39 would be the point of stealing something that’s already free? Portland’s idea quickly became P 40 . Within two years of its start, similar programs were setup in cities in six other states.华中师大一附中2017年高中招生考试参考答案英语部分一、完型填空。
湖北华中师范大学第一附属中学2016-2017学年高二下学期期中考试语文试题及答案 人教版高二下册
湖北华中师范大学第一附属中学2016-2017学年高二下学期期中考试语文试题及答案人教版高二下册华中师大一附中2016—2017学年度下学期高二期中检测语文试题命题人:王旭东夏禹盛玲黄敏涂平张莉李夏审题人:乐晓峰试卷满分150分考试用时150分钟注意事项:1.本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷阅读题(70分)一、现代文阅读(35分)(一)论述类文本阅读(9分,每小题3分)阅读下面的文字,完成1-3题。
中国古代小说对现当代小说的影响最为典型地表现在“故事新编”这一小说创作形式上。
“故事新编”指从20世纪20年代以来直至目前都盛行不衰的一种小说艺术创作手法:即通过对中国远古神话、历史故事、民间传说或古代小说的改写来创作具有明显的现代意识的新小说,这一方式已成为传统题材和现代手法融汇的重要表现之一。
“故事新编”这一术语作为鲁迅小说集《故事新编》之书名,是鲁迅对这本小说集创作方法的一个理论概括。
但如果要追根溯源,仅从创作方法的角度说开创者并非鲁迅。
周作人认为“故事新编”的小说创作方法古已有之,其中最独特的乃清初拟话本小说集《豆棚闲话》,他把《故事新编》跟这部拟话本小说集相提并论,显然是看到了二者之间在创作手法上极为相似,但就小说的思想价值和现代意义而言,两者则绝不可同日而语。
《故事新编》的《铸剑》这一篇,完全据魏晋志怪故事“三王冢”改编而成,如果追溯其本国传统,则可以上接宋元话本、“三言”、“二拍”中那些改编自文言小说或历史故事的篇目,但是就其在细节、情节方面的创造性增饰与主题上的极大深入、极具现代意识而言,则已经远过于宋元明之紧紧依傍于原作之拘谨撰作,从这个层面上说,“故事新编”的现代意义比其创作手法本身更为重要。
到20世纪30年代初,或许是受周氏兄弟译介的日本小说与鲁迅本人创作之影响,也可能出于其他原因,当时的青年作家施蛰存与沈从文几乎是同时进行了一系列“故事新编”式的小说创作尝试。
湖北省华中师范大学第一附属中学2017届高三上学期期中考试数学(理)试题含答案
.
14.在△ABC 中,4 cos2 A cos2(B C) 7 ,a 2 ,则△ABC 面积的最大值是
2
2
15.已知 a 1, b 1 ,且 1 ln a , 1 , ln b 成等比数列,则 ab 的最小值为
4
4
. .
16.已知函数 f (x) m(x m 5) ,g(x) 2x 2 ,若任意的 x R ,总有 f (x) 0 或 g(x) 0 ,
20. (本小题满分 12 分)
已知函数
f
(x)
ax 1 x2
(a
0)
.
(1)试讨论 y f (x) 的极值;
(2)若 a 0 ,设 g(x) x2emx ,且任意的 x1, x2 [0,2] , f (x1) g(x2 ) 1 恒成立,求 m 的取
值范围.
21. (本小题满分 12 分)
1 m ln 2 ……………………………………………………………………10 分
3) 当 m≤-1 时,g(x)在[0, 2 ] 上单调递增,在[ 2 , 2] 上单调递减,
m
m
gmax (x)
g(
2) m
4 m2e2
1, m
2 e
,∴m≤-1……………………………………………11
分
综合得 m ln 2 ……………………………………………………………………………………………………..12 分
7
7
cos ABC cos( 2 C) cos 2 cos C sin 2 sin C
3
3
3
= 7 ………………………………………………………………………………………………………………………6 分 14
湖北省武汉市华中师大一附中2017-2018学年高二下学期期中生物试卷 Word版含解析
湖北省武汉市华中师大一附中2017-2018学年高二下学期期中生物试卷一、选择题(第1-30题每题1分,第31-40题每题2分,共50分)1.(1分)某同学在制作腐乳的过程中,发现豆腐腐败变质,下列不属于其原因的是()A.用盐腌制时,加盐量太少B.用来腌制腐乳的玻璃瓶,没有用沸水消毒C.制作卤汤时,料酒加的量较多D.装瓶后,没有将瓶口密封2.(1分)在一普通锥形瓶中,加入含有酵母菌的葡萄糖溶液,如下面图1,在图2的相关坐标曲线图中,正确的是()A.①②③B.②③④C.①③④D.①②④3.(1分)如图是微生物平板划线示意图.划线的顺序为1、2、3、4、5.下列操作方法正确的是()A.操作前要将接种环放在火焰旁灭菌B.划线操作须在火焰上进行C.在5区域中才有可能得到所需菌落D.在1、2、3、4、5区域中划线前后都要对接种环进行灭菌4.(1分)下列是关于“检测土壤中细菌总数”实验操作的叙述,其中错误的是()A.用蒸馏水配制牛肉膏蛋白胨培养基,经高温、高压灭菌后倒平板B.取104、105、106倍的土壤稀释液和无菌水各0.1mL,分别涂布于各组平板上C.将实验组和对照组平板倒置,37℃恒温培养24~48小时D.确定对照组无菌后,选择菌落数在300以上的实验组平板进行计数5.(1分)在以尿素作为唯一氮源的培养基上大部分微生物无法生长;在培养基中加入青霉素可以抑制细菌和放线菌;在培养基中加入10%酚可以抑制细菌和霉菌.利用上述选择培养基依次能从混杂的微生物群体中分离出()A.乳酸菌、金黄色葡萄球菌、放线菌B.分解尿素的细菌、大肠杆菌、放线菌C.分解尿素的细菌、霉菌、放线菌D.固氮细菌、金黄色葡萄球菌、放线菌6.(1分)果酒和果醋制作过程中,发酵条件的控制至关重要,相关措施正确的是()A.葡萄汁要装满发酵瓶,造成无氧环境,有利于发酵B.在葡萄酒发酵过程中,每隔12 h左右打开瓶盖一次,放出CO2C.果酒发酵过程温度控制在30℃,果醋发酵过程温度控制在20℃D.在果醋发酵过程中,要适时通过充气口充气,有利于醋酸菌的代谢7.(1分)培养基下列成分中属于供微生物生长繁殖的营养物质是()①水②无机盐③碳源④氮源⑤琼脂.A.①②③④⑤B.①②③④C.①②④⑤D.①②③8.(1分)橘皮精油提取时一般采用压榨法的主要原因是()A.水中蒸馏会产生原料焦糊的问题B.有效成分在蒸馏时会发生部分水解C.柠檬烯化学性质稳定D.压榨法的出油率更高9.(1分)产生标准菌落的最初细菌数目和培养基分别是()A.同种少数细菌,液体培养基B.许多细菌,液体培养基C.同种少数细菌,固体培养基D.许多细菌,固体培养基10.(1分)在植物组织培养过程中,植物激素的作用非常重要,下列说法正确的是()A.先使用生长素,后使用细胞分裂素,有利于细胞分裂、不利于细胞分化B.同时使用生长素和细胞分裂素,有利于愈伤组织的形成C.生长素和细胞分裂素的用量相等,有利于根的分化D.生长素的用量大于细胞分裂素的用量,有利于芽的分化、抑制根的分化11.(1分)在家庭中用鲜葡萄制作果酒时,正确的操作是()A.让发酵装置接受光照B.给发酵装置适时排气C.向发酵装置通入空气D.酵母菌装置放在45℃处12.(1分)以鸡血细胞为材料对DNA的粗提取和鉴定中有三次过滤,下列说法中正确的是()A.第一次过滤取的是滤布上的残留物(滤渣)B.第二次过滤取的是滤布上的残留物(滤渣)C.第三次过滤取的是滤液D.A、B、C均不正确13.(1分)制果醋时,要适时通过充气口进行充气是因为()A.醋酸菌是好氧菌,将酒精变成醋酸时需要氧气的参与B.酵母菌进行酒精发酵时需要氧气C.通气可防止发酵液霉变D.防止发酵时产生的二氧化碳气体过多而引起发酵瓶的爆裂14.(1分)下列有关生物技术的叙述,不正确的是()A.制作果醋时,必需向发酵装置不断地补充无菌空气,以保证醋酸菌的生长B.制作腐乳时,加盐腌制可使豆腐块变硬且能抑制杂菌生长C.变酸的酒表面的菌膜是醋酸菌大量繁殖形成的D.用传统的发酵技术制葡萄酒必需添加酵母菌菌种15.(1分)下列关于PCR的描述中,正确的是()①PCR是一种酶促反应②引物决定了扩增的特异性③扩增DNA利用了热变性的原理④扩增的对象是氨基酸序列.A.①②④B.②③④C.①③④D.①②③16.(1分)下列关于“DNA的粗提取和鉴定”实验的叙述中,正确的是()A.用鸡血作为材料,原因是鸡血红细胞有细胞核,其他动物红细胞没有细胞核B.用不同浓度的NaCl溶液进行DNA粗提取,原因是DNA在其中溶解度不同C.用酒精进行提纯,原因是DNA溶于酒精,蛋白质不溶于酒精D.用二苯胺试剂进行鉴定,原因是DNA溶液中加入二苯胺试剂即呈蓝色17.(1分)下列有关植物组织培养的叙述,正确的是()A.愈伤组织是一团有特定结构和功能的薄壁细胞B.二倍体植株的花粉经脱分化与再分化后得到稳定遗传的植株C.用人工薄膜将胚状体、愈伤组织等分别包装可制成人工种子D.植物耐盐突变体可通过添加适量NaCl的培养基培养筛选而获得18.(1分)下列全为水不溶性的有机溶剂是()A.乙醇、乙醚B.苯、乙酸乙酯C.丙酮、四氯化碳D.酒精、石油醚19.(1分)下列关于PCR与DNA分子在细胞内复制的相关说法正确的是()A.解旋的原理一样B.引物的合成一样C.P H条件的要求一样D.酶的最适温度不一样20.(1分)用蔗糖、奶粉和经蛋白酶水解后的玉米胚芽液,通过乳酸菌发酵可生产新型酸奶,下列相关叙述错误的是()A.蔗糖消耗量与乳酸生成量呈正相关B.酸奶出现明显气泡说明有杂菌污染C.应选择处于对数期的乳酸菌接种D.只有奶粉为乳酸菌发酵提供氮源21.(1分)图甲是果醋发酵装置.发酵初期不通气,溶液中有气泡产生;中期可以闻到酒香;后期接种醋酸菌,适当升高温度并通气,酒香逐渐变成醋香.图乙中能表示整个发酵过程培养液pH变化的曲线是()A.①B.②C.③D.④22.(1分)下列关于果醋的制作,错误的是()A.果醋的制作需要用醋酸菌,醋酸菌是一种好氧型细菌,所以在制作过程中需要O2B.醋酸菌是一种嗜温菌,温度要求较高,一般在33℃左右C.醋酸菌能将果酒变成果醋D.当氧气、糖源充足时,醋酸菌可以将葡萄中的糖先分解为酒精再分解成醋酸23.(1分)关于豆腐乳的制作,不正确的说法是()A.卤汤直接关系到腐乳的色、香、味B.传统工艺生产豆腐乳一般在夏天进行C.现代食品企业是在无菌条件下接种毛霉生产腐乳D.加盐腌制可避免腐乳变质24.(1分)果酒的制作离不开酵母菌,在配制酵母菌的培养基时,常添加一定浓度的葡萄糖液,如果葡萄糖浓度过高,反而会抑制酵母菌的生长,其原因最可能是()A.葡萄糖被合成了淀粉B.酵母菌细胞失水C.改变了培养液的pH D.酵母菌发生了变异25.(1分)下列关于刚果红染色法的说法中,正确的是()A.先培养微生物,再加入刚果红进行颜色反应,不需用氯化钠溶液洗去浮色B.到平板时就加入刚果红,可在培养皿中先加入1mL CR溶液后加入100mL培养基C.纤维素分解菌菌落周围出现刚果红D.到平板时就加入刚果红,长期培养刚果红有可能被其他微生物分解形成透明圈26.(1分)酒厂利用酵母菌酿酒过程中,经检测活菌数量适宜但却不生产酒精,应采取的措施是()A.降低温度B.隔绝空气C.加缓冲液D.加新鲜培养基27.(1分)利用酵母菌发酵生产酒精时,投放的适宜原料和在产生酒精阶段要控制的必要条件分别是()A.玉米粉和有氧B.大豆粉和有氧C.玉米粉和无氧D.大豆粉和无氧28.(1分)下列有关花药离体培养,说法错误的是()A.M S培养基一般不需添加植物激素B.材料消毒时先用酒精浸泡,冲洗、吸干后再用氯化汞或次氯酸钙溶液浸泡,最后用无菌水冲洗C.接种花药后一段时间内不需要光照,但幼小植株形成后需要光照D.若接种的花药长出愈伤组织或释放出胚状体后,要适时转换培养基,以便进一步分化成再生植株29.(1分)培养流感病毒时应选择的培养基是()A.固体培养基B.牛肉膏蛋白冻培养基C.活的鸡胚D.A、B、C都可以30.(1分)可以作为硝化细菌碳源、氮源、能源的物质依次是()A.含碳有机物、氨气、光B.含碳有机物、氨气、氨气C.含碳无机物、氨气、氨气D.含碳无机物、氨气、光31.(2分)PCR技术扩增DNA片断,其原理与细胞内DNA复制类似(如图所示)图中引物为单链DNA片段,它是子链合成延伸的基础.下列说法正确的是()A.从理论上推测,第一轮循环产物中就能得到含引物对的DNA片断B.至少完成两轮循环,才能获得两条脱氧核苷酸链等长的DNA片段C.三个循环后可得到5种长度的DNA片断D.30次循环后,所有的DNA单链上都有引物32.(2分)下列对胡萝卜素提取过程的分析不正确的是()A.在把新鲜的胡萝卜切成米粒大小的颗粒置于烘箱中烘干时,温度越高、干燥时间越长,烘干效果越好B.在萃取过程中,在瓶中安装冷凝回流装置是为了防止加热时有机溶剂挥发C.在浓缩干燥前,必须进行过滤D.将滤液用蒸馏装置进行蒸馏,要收集蒸发出去的液体,蒸发出去的是有机溶液,留下的是胡萝卜素33.(2分)玫瑰精油被称为“液体黄金”,其提取方法()A.只能用水蒸气蒸馏法B.可用蒸馏法和压榨法C.可用蒸馏法和萃取法D.可用压榨法和萃取法34.(2分)下列橘皮精油提取操作中,应该注意的问题是()①橘皮在石灰水中浸泡时间为10小时以上②橘皮要浸透,压榨时才不会滑脱③压榨液的黏稠度要高,从而提高出油率④压榨时加入0.25%的小苏打和5%的硫酸钠.A.①②③B.②③④C.①②④D.①③④35.(2分)下列关于植物芳香油提取技术的叙述中,正确的是()①提取植物芳香油都必须用蒸馏法②水蒸气蒸馏是利用水蒸气将挥发性强的芳香油携带出来③压榨法是通过机械加压,压榨出果皮中的芳香油④萃取是使芳香油溶解在有机溶剂中,蒸发溶剂后就可获得芳香油.A.①②③B.②③④C.①②④D.①③④36.(2分)PCR技术中下列说法错误的有几项()①复性的目的是使原来分开的DNA的两条单链重新连接成双链;②PCR技术是扩增完整的DNA分子;③DNA聚合酶不能从头开始合成DNA,只能从5′端延伸DNA链;④DNA引物在细胞外可在DNA聚合酶的作用下合成.A.有一项B.有二项C.有三项D.有四项37.(2分)需要在火焰旁操作的有()①土壤取样②称取土壤③稀释土壤溶液④涂布平板⑤微生物的培养.A.①②④B.①④⑤C.②③⑤D.②③④38.(2分)下列材料中不能作为DNA粗提取与鉴定的材料是()猪肝、香蕉、鸡血、哺乳动物的红细胞、菜花、豌豆、菠菜、高等植物的木质部导管细胞、高等植物的韧皮部筛管细胞.A.有一项B.有二项C.有三项D.有四项39.(2分)下列与生物技术实践有关的说法,正确的是()A.纤维素被C X和C1水解成葡萄糖B.泡菜的制作中清水与盐的比列与玫瑰精油的提取中清水与玫瑰花瓣比例都为4:1C.M S培养基都需要添加植物激素D.D NA的粗提取实验中需使用NaCl溶液,DNA的鉴定实验中不需使用NaCl溶液40.(2分)下列操作需要水浴加热的是()①DNA的提取②桔皮精油的提取③亚硝酸盐含量的测定④胡萝卜素的鉴定⑤还原性糖的鉴定.A.①②③B.⑤C.①④⑤D.②⑤二、非选择题(共40分)41.(14分)请回答下列有关微生物及其技术的问题.(1)进行酒精发酵的酵母菌与醋酸发酵的醋酸菌在结构上最大的区别是,在代谢方式上的区别是.(2)写出由果酒酿制成果醋过程的反应式:.(3)从自然菌样中筛选较理想的醋酸杆菌进行纯化培养,通常采用(接种方法).(4)在酸性条件下,可用来检测发酵产物中是否有酒精产生.(5)葡萄酒的发酵过程中发酵液酒精度数一般不超过14度,原因是.(6)发酵完成后,该班同学制作的果酒品质非常好,为方便今后的年级使用,可将菌液保存.(7)在腐乳的制作过程中,有多种微生物参与了豆腐的发酵,其中起主要作用的是.微生物产生的蛋白酶能将豆腐中的蛋白质分解成小分子的,脂肪酶将脂肪水解为甘油和脂肪酸,从而使腐乳吃起来更加香甜.(8)腌白菜味道鲜美,但最好是等腌制好后再食用,未腌制成熟的白菜中,亚硝酸盐等物质的含量过高,食用后可能会影响人体健康,用来检测亚硝酸盐含量的方法是,化学试剂是和.42.(11分)如图是月季花药离体培养产生花粉植株的两种途径,请据图回答有关问题:(1)选用的材料合适与否是成功诱导出花粉植株的重要因素,一般来说选用期的花粉可提高成功率.选择花粉时,一般要通过来确定花粉是否处于合适的发育期,这时需要对花粉的细胞核进行染色,对于花粉细胞核不容易着色的植物常用的染色剂是.(2)图中花药经脱分化产生胚状体还是愈伤组织主要取决于培养基中.(3)胚状体与愈伤组织在结构上的主要区别在于愈伤组织的细胞排列疏松无规则,是一种高度的薄壁细胞.胚状体与发育形成的胚有类似的结构,即具有胚芽、胚轴和胚根.(4)无菌技术也是成功诱导出花粉植株的重要因素,请说明下列各项需要消毒,还是需要灭菌.①培养基②培养皿③接种环④花蕾⑤实验操作者的双手⑥三角锥形瓶.(填编号)需要灭菌,(填编号)需要消毒.(5)从消毒后的玫瑰花中分离几个花药,按严格的无菌操作要求接种到培养基上,并将每个花药捣碎,使其中的花粉释放出来.经过适宜培养,得到的试管苗是否可育?为什么?.43.(15分)胡萝卜素是一种常用的食用色素,在保护视力方面具有重要功效.从胡萝卜或产胡萝卜素的微生物菌体中提取胡萝卜素的流程图如图1,请据图回答:(1)筛选产胡萝卜素的酵母菌R时,所用培养基从用途上看属于培养基.在培养酵母菌R时,培养基中的蔗糖和硝酸盐可提供等营养.为了使发酵菌种迅速繁殖,应用培养基.发酵过程中应采用技术来防止外来杂菌的入侵,保证发酵正常进行.(2)如图2甲为提取胡萝卜素的装置示意图,请回答有关问题:在胡萝卜素的提取过程中:石油醚是理想的萃取剂,因为它具有:、、等优点.(3)从胡萝卜中提取胡萝卜素,干燥时应控制好,以防止胡萝卜素分解;萃取时一般不直接用酒精灯加热而用水浴加热,因为.在萃取液浓缩前需要进行.(4)图乙是胡萝卜素鉴定结果示意图.请据图回答:实验组是,对照组是.实验得出的结论是,用纸层析法鉴定提取的胡萝卜素时需用作为对照.B、C上面两个色素点表示的含义是.湖北省武汉市华中师大一附中2017-2018学年高二下学期期中生物试卷参考答案与试题解析一、选择题(第1-30题每题1分,第31-40题每题2分,共50分)1.(1分)某同学在制作腐乳的过程中,发现豆腐腐败变质,下列不属于其原因的是()A.用盐腌制时,加盐量太少B.用来腌制腐乳的玻璃瓶,没有用沸水消毒C.制作卤汤时,料酒加的量较多D.装瓶后,没有将瓶口密封考点:制作腐乳的科学原理及影响腐乳品质的条件.分析:豆腐腐败变质是杂菌繁殖造成的,用来腌制腐乳的玻璃瓶,没有用沸水消毒,装瓶后,没有将瓶口密封,用盐腌制时,加盐量太少或制作卤汤时加料酒量太少都会致使杂菌大量繁殖.相反,如果料酒加入过多,不会致使杂菌大量繁殖.解答:解:A、用盐腌制,能使得豆腐块变硬,同时能抑制杂菌生长,如加盐量太少,豆腐腐败变质;故A错误.B、用来腌制腐乳的玻璃瓶,没有用沸水消毒,杂菌滋生,豆腐块腐败变质;故B错误.C、制作卤汤时,料酒加的量较多,腐乳成熟期延后,但能抑制杂菌生长,不会变质;故C正确.D、密封时,将瓶口通过酒精灯的火焰,再用胶条密封瓶口,能防止杂菌污染;故D错误.故选C.点评:本题考查影响腐乳品质因素的相关知识,意在考查学生理论联系实际,综合运用所学知识解决自然界和社会生活中的一些生物学问题.2.(1分)在一普通锥形瓶中,加入含有酵母菌的葡萄糖溶液,如下面图1,在图2的相关坐标曲线图中,正确的是()A.①②③B.②③④C.①③④D.①②④考点:酒酵母制酒及乙酸菌由酒制醋.分析:适宜温度下,在锥形瓶中加入含有酵母菌的葡萄糖溶液并密封,酵母菌进行无氧呼吸产生酒精,因此酒精浓度会逐渐升高然后达到平衡;酵母菌数量通过无氧呼吸增殖,因此数量先增加,当进一步发酵后,由于营养物质减少、酒精等代谢产物增加,酵母菌出生率小于死亡率,种群数量开始下降;酵母菌活性消耗葡萄糖,因此葡萄糖的剩余量减少;酵母菌无氧呼吸产生了二氧化碳,二氧化碳溶解于水中,使溶液PH降低.解答:解:①适宜温度下,在锥形瓶中加入含有酵母菌的葡萄糖溶液并密封,酵母菌进行无氧呼吸产生酒精,因此酒精浓度会逐渐升高然后达到平衡,①正确;②酵母菌数量通过无氧呼吸增殖,因此数量先增加,当进一步发酵后,由于营养物质减少、酒精等代谢产物增加,酵母菌出生率小于死亡率,种群数量开始下降,②错误;③酵母菌活性消耗葡萄糖,因此葡萄糖的剩余量减少,③正确;④酵母菌无氧呼吸产生了二氧化碳,二氧化碳溶解于水中,使溶液PH降低,④正确.所以,①③④正确.故选:C.点评:本题考查了酵母菌的用呼吸作用,主要考查学生解读曲线的能力,利用所学知识综合解决问题的能力,对于细胞有氧呼吸与无氧呼吸过程的掌握、把握知识点间的内在联系是解题的关键.3.(1分)如图是微生物平板划线示意图.划线的顺序为1、2、3、4、5.下列操作方法正确的是()A.操作前要将接种环放在火焰旁灭菌B.划线操作须在火焰上进行C.在5区域中才有可能得到所需菌落D.在1、2、3、4、5区域中划线前后都要对接种环进行灭菌考点:微生物的分离和培养.分析:阅读题干和题图可知,本题是与平板划线操作有关的题目,先梳理平板划线操作的相关知识,然后结合选项描述分析判断.解答:解:A、进行平板划线操作之前,用将接种环在酒精灯火焰上进行灼烧灭菌;A错误.B、平板划线操作应在火焰旁进行,不能在火焰上进行;B错误.C、由题图可知,5区域是最后一个区域,有可能在5区域获得所需要的菌落,在4区域也有可能得到所需要的菌落;C错误.D、在1、2、3、4区域中划线前都要对接种环进行灼烧灭菌,保证每次划线的菌种来自上一区域的末端,5区域划线前都要对接种环进行灼烧灭菌目的是防止杂菌污染,1区域划线后进行灼烧灭菌是防止污染环境及操作者;D正确.故应选D.点评:本题的知识点是平板划线操作划线前后的灭菌及目的,平板划线法接种的结果预期,主要考查学生对平板划线法的掌握程度.4.(1分)下列是关于“检测土壤中细菌总数”实验操作的叙述,其中错误的是()A.用蒸馏水配制牛肉膏蛋白胨培养基,经高温、高压灭菌后倒平板B.取104、105、106倍的土壤稀释液和无菌水各0.1mL,分别涂布于各组平板上C.将实验组和对照组平板倒置,37℃恒温培养24~48小时D.确定对照组无菌后,选择菌落数在300以上的实验组平板进行计数考点:测定某种微生物的数量;微生物的分离和培养.分析:检测土壤中细菌总数,应该进行计数,根据选项,可以看出采用的计数方法是稀释涂布平板法进行计数.解答:解:A、首先要进行培养基的制备、用蒸馏水配制牛肉膏蛋白胨培养基,经高温、高压灭菌后倒平板,A正确;B、然后进行对土壤稀释液进行涂布于各组平板上,B正确;C、将实验组和对照组平板倒置,37℃恒温培养24~48小时,C正确;D、确定对照组无菌后,选择菌落数在30~300的进行记数,求起平均值,再通过计算得出土壤中细菌总数,D错误.故选:D.点评:本题属于识记内容,理解、识记稀释涂布平板法,就可以做出正确的答案.5.(1分)在以尿素作为唯一氮源的培养基上大部分微生物无法生长;在培养基中加入青霉素可以抑制细菌和放线菌;在培养基中加入10%酚可以抑制细菌和霉菌.利用上述选择培养基依次能从混杂的微生物群体中分离出()A.乳酸菌、金黄色葡萄球菌、放线菌B.分解尿素的细菌、大肠杆菌、放线菌C.分解尿素的细菌、霉菌、放线菌D.固氮细菌、金黄色葡萄球菌、放线菌考点:培养基对微生物的选择作用.分析:1、在尿素作为唯一氮源的培养基上上可以筛选分解尿素的细菌;2、青霉素可以破坏原核生物的细胞壁,在添加青霉素的选择培养基上可以筛选分离真菌;3、加入10%的酚可以抑制细菌和霉菌的生长,这样的选择培养基可以筛选分离放线菌.解答:解:A、乳酸菌属于异养厌氧微生物,不能在缺氮培养基上生存;金黄色葡萄球菌属于细菌,不能在添加青霉素的选择培养基上生存,A错误;B、大肠杆菌属于细菌,不能在添加青霉素的选择培养基上生存,B错误;C、在尿素作为唯一氮源的培养基上上可以筛选分解尿素的细菌,在添加青霉素的选择培养基上可以筛选分离真菌(如霉菌),加入10%的酚可以抑制细菌和霉菌的生长可以筛选分离放线菌,C正确;D、固氮细菌不能利用尿素中的氮源,金黄色葡萄球菌属于细菌,不能在添加青霉素的选择培养基上生存,D错误.故选:C.点评:本题的知识点是培养基对微生物的选择作用,加青霉素、苯酚、不含氮源的培养基都会对微生物的选择作用,主要考查学生对选择培养基的选择作用的理解和应用能力.6.(1分)果酒和果醋制作过程中,发酵条件的控制至关重要,相关措施正确的是()A.葡萄汁要装满发酵瓶,造成无氧环境,有利于发酵B.在葡萄酒发酵过程中,每隔12 h左右打开瓶盖一次,放出CO2C.果酒发酵过程温度控制在30℃,果醋发酵过程温度控制在20℃D.在果醋发酵过程中,要适时通过充气口充气,有利于醋酸菌的代谢考点:酒酵母制酒及乙酸菌由酒制醋.分析:果酒和果醋制作过程中的相关实验操作:(1)材料的选择与处理:选择新鲜的葡萄,榨汁前先将葡萄进行冲洗,除去枝梗.(2)灭菌:①榨汁机要清洗干净,并晾干.②发酵装置要清洗干净,并用70%的酒精消毒.(3)榨汁:将冲洗除枝梗的葡萄放入榨汁机榨取葡萄汁.(4)发酵:①将葡萄汁装人发酵瓶,要留要大约的空间,并封闭充气口.②制葡萄酒的过程中,将温度严格控制在18℃~25℃,时间控制在10~12d左右,可通过出料口对发酵的情况进行.及时的监测.③制葡萄醋的过程中,将温度严格控制在30℃~35℃,时间控制在前7~8d左右,并注意适时通过充气口充气.解答:解:A、将葡萄汁装人发酵瓶,要留要大约的空间,防止发酵液溢出,A错误;B、在葡萄酒发酵过程中,每隔12h左右拧松瓶盖一次,放出CO2,而不能打开瓶盖,否则容易引起杂菌污染,B错误;C、果酒发酵过程温度控制在18~25℃,果醋发酵过程温度控制在30~35℃,C错误;D、参与果醋制作的醋酸菌是嗜氧菌,因此在果醋发酵过程中,要适时通过充气口充气,有利于醋酸菌的代谢,D正确.故选:D.点评:本题考查果酒和果醋的制作,要求考生识记参与果酒和果醋制作的微生物及其代谢类型,掌握果酒和果醋制作的原理及条件,能结合所学的知识准确判断各选项,属于考纲识记和理解层次的考查.7.(1分)培养基下列成分中属于供微生物生长繁殖的营养物质是()①水②无机盐③碳源④氮源⑤琼脂.A.①②③④⑤B.①②③④C.①②④⑤D.①②③考点:微生物的分离和培养.分析:微生物的营养物质主要包括碳源、氮源、水和无机盐等,有的微生物还需要生长因子等特殊的营养物质.固体培养基与液体培养基的区别就是培养基中也没有能够将琼脂.解答:解:培养基中供微生物生长繁殖的营养物质主要是碳源、氮源、水和无机盐等,有的微生物还需要生长因子等特殊的营养物质,即①②③④正确.故选:B.点评:本题主要考查微生物的营养物质的组成,因子强化学生对微生物营养物质的组成的识记、理解与掌握,是一道基础性题目.8.(1分)橘皮精油提取时一般采用压榨法的主要原因是()A.水中蒸馏会产生原料焦糊的问题B.有效成分在蒸馏时会发生部分水解C.柠檬烯化学性质稳定D.压榨法的出油率更高考点:提取芳香油.分析:橘皮精油主要贮藏在橘皮部分,无色透明,具有诱人的橘香味,主要成分是柠檬烯,用水蒸气蒸馏法从橘皮中提取橘皮精油时,橘皮精油的有效成分会发生部分水解,使用水中蒸馏法又会产生原料焦糊的问题,所以一般采用压榨法提取.。