分析化学第11章--荧光分析法

合集下载

(完整版)大学分析化学知识点总结

(完整版)大学分析化学知识点总结

分析化学第一章绪论【基本内容】本章内容包括分析化学的任务和作用;分析化学的发展;分析化学的方法分类(定性分析、定量分析、结构分析和形态分析;无机分析和有机分析;化学分析和仪器分析;常量、半微量、微量和超微量分析;常量组分、微量组分和痕量组分分析);分析过程和步骤(明确任务、制订计划、取样、试样制备、分析测定、结果计算和表达);分析化学的学习方法。

【基本要求】了解分析化学及其性质和任务、发展趋势以及在各领域尤其是药学中的作用;分析方法的分类及分析过程和步骤。

第二章误差和分析数据处理【基本内容】本章内容包括与误差有关的基本概念:准确度与误差,精密度与偏差,系统误差与偶然误差;误差的传递和提高分析结果准确度的方法;有效数字及其运算法则;基本统计概念:偶然误差的正态分布和t分布,平均值的精密度和置信区间,显著性检验(t检验和F检验),可疑数据的取舍;相关与回归。

【基本要求】掌握准确度与精密度的表示方法及二者之间的关系,误差产生的原因及减免方法,有效数字的表示方法及运算法则;误差传递及其对分析结果的影响。

熟悉偶然误差的正态分布和t分布,置信区间的含义及表示方法,显著性检验的目的和方法,可疑数据的取舍方法,分析数据统计处理的基本步骤。

了解用相关与回归分析处理变量间的关系。

第三章滴定分析法概论【基本内容】本章内容包括滴定分析的基本概念和基本计算;滴定分析的特点,滴定曲线,指示剂,滴定误差和林邦误差计算公式,滴定分析中的化学计量关系,与标准溶液的浓度和滴定度有关的计算,待测物质的质量和质量分数的计算;各种滴定方式及其适用条件;标准溶液和基准物质;水溶液中弱酸(碱)各型体的分布和分布系数;配合物各型体的分布和分布系数;化学平衡的处理方法:质子平衡、质量平衡和电荷平衡。

【基本要求】掌握滴定反应必须具备的条件;选择指示剂的一般原则;标准溶液及其浓度表示方法;滴定分析法中的有关计算,包括标准溶液浓度的计算、物质的量浓度和滴定度的换算、试样或基准物质称取量的计算、待测物质质量和质量分数的计算;水溶液中弱酸(碱)和配合物各型体的分布和分布系数的含义及分布系数的计算;质子平衡的含义及其平衡式的表达。

大学分析化学—名词解释

大学分析化学—名词解释

大学分析化学—名词解释误差和分析数据处理:准确度:分析结果与真实值接近的程度,其大小可用误差表示。

精密度:平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。

系统误差:是由某种确定的原因所引起的误差,一般有固定的方向(正负)和大小,重复测定时重复出现。

包括方法误差、仪器或试剂误差及操作误差三种。

偶然误差:是由某些偶然因素所引起的误差,其大小和正负均不固定。

空白试验:在不加入试样的情况下,按与测定试样相同的条件和步骤进行的分析试验,称为空白试验。

有效数字:是指在分析工作中实际上能测量到的数字。

通常包括全部准确值和最末一位欠准值(有±1个单位的误差)。

t分布:指少量测量数据平均值的概率误差分布。

可采用t分布对有限测量数据进行统计处理。

置信水平与显著性水平:指在某一t值时,测定值x落在μ±tS范围内的概率,称为置信水平(也称置信度或置信概率),用P表示;测定值x落在μ±tS范围之外的概率(1-P),称为显著性水平,用α表示。

置信区间与置信限:系指在一定的置信水平时,以测定结果x为中心,包括总体平均值μ在内的可信范围,即μ=x±uσ,式中uσ为置信限。

分为双侧置信区间与单侧置信区间。

显著性检验:用于判断某一分析方法或操作过程中是否存在较大的系统误差和偶然误差的检验。

包括t检验和F检验。

滴定分析法概论:滴定度:是每毫升标准溶液相当于被测物质的质量(g或mg),以符号T T/B表示,其下标中T、B分别表示标准溶液中的溶质、被测物质的化学式。

T T/B=m B/V T,单位为g/ml或mg/ml 分布系数:是溶液中某型体的平衡浓度在溶质总浓度中所占的分数,又称为分布分数以δi 表示。

化学计量点:滴定剂的量与被测物质的量正好符合化学反应式所表示的计量关系的一点。

滴定终点:滴定终止(指示剂改变颜色)的一点。

滴定误差:滴定终点与化学计量点不完全一致所造成的相对误差。

可用林邦误差公式计算。

荧光分析法课件

荧光分析法课件
注意:激发光谱与其吸收光谱极为相似,但激发光 谱曲线是荧光强度与波长的关系曲线,吸收曲线则 是吸光度与波长的关系曲线,两者性质是不同的。
荧光光谱(fluorecence spectrum):固定激发 光波长为最大激发波长,而让荧光物质发射的 荧光通过发射单色器分光扫描并检测不同波长 下的荧光强度,以发射波长为横坐标,荧光强 度为纵坐标作图,得到物质的荧光光谱。
荧光分析法
荧光:物质分子接受光子能量被激发后,从第 一激发单重态的最低振动能级返回基态时发射 出的光。 荧光分析法:根据物质的荧光谱线位置及其强 度进行物质鉴定和含量测定的方法。 优点:灵敏度高;选择性好;试样量少;方法 简单。
缺点:应用范围小。
第一节 荧光分析法的基本原理
一、分子荧光 (一)分子荧光的产生 1.分子的电子能级与激发过程
磷光发射:激发分子由第一激发三重态的最低振动 能级跃迁到基态各振动能级时所产生的光子辐射称 为磷光;磷光辐射能要比荧光辐射能量低,磷光波 长大于荧光波长;磷光发射时间为10-4-10s。
内转换
振动弛豫 内转换
S2
系间跨越
S1








S0
l1
l2
l 2
外转换
l3
T1 T2
发 射 磷 振动弛豫 光
水 乙醇 环己烷 CCl4 CHCl3
激发光(nm)
248 313 365 405 436
271 350 416 469 511 267 344 409 459 500 267 344 408 458 499 — 320 375 418 450 — 346 410 461 502
第二节 荧光定量分析方法

荧光分析法精品PPT课件

荧光分析法精品PPT课件
内部能量转换
当两个电子激发态之间的能量相差较小以至其振动能级有重叠 时,受激分子由高电子能级转移至低电子能级的过程。
荧光和磷光产生示意图
关于荧光
荧光的产生需经历两个过程:
吸收 发射
第一激发单重态的最低振动能级
振动驰豫 内部能量转换
例题
1. 所谓荧光,即某些物质经入射光照射后, 吸收了入射光的能量,从而辐射出比入射 光: A 波长长的光线 B 波长短的光线 C 能量大的光线 D 频率高的光线
(二)长共轭结构
λex 205nm 286nm
356nm
λem 278nm 321nm
404nm
φf
0.11
0.29
0.36
结论:π电子共轭程度越大,荧光强度(荧 光效率)越大,荧光波长长移
(三)分子的刚性和共平面性
联苯φf 0.2
C H2
芴φf 1.0
OH O
N
NM g 1 /2
(三)分子的刚性和共平面性
1. 一般情况下,随着温度的升高,溶液中荧光物 质的荧光效率和荧光强度将降低。 2. 原因: 温度升高时,分子运动速度加快,分子 间碰撞几率增加, 使无辐射跃迁增加, 从而降低 了荧光效率
3 酸度对荧光的影响
苯胺在下列哪种条件下荧光强度最强?
A pH=1
B pH=3
C pH=13
D pH=8
当荧光物质本身是弱酸或弱碱时,溶液的酸 度对荧光强度有较大影响,主要是因为在不同 酸度中分子和离子间的平衡的改变。
硫酸奎宁的激发光谱和荧光光谱
荧光光谱的特征
1、荧光光谱的形状与激发波长无关 产生原因: 荧光发射是从特定的激发态返回基态 荧光光谱的强度与激发波长有关

分析化学 第十一章 荧光分析法

分析化学 第十一章 荧光分析法

h
29
㈡环境因素
荧光分子所处的溶液环境对其荧光发射有直接的 影响。适当的选取实验条件有利于提高荧光分析的 灵敏度和选择性。 ⑴溶剂效应 ①溶剂的极性:
溶剂的极性增大,π→π*跃迁的能量减小,红 移。 ②溶剂的粘度
溶剂的粘度降低,分子间碰撞机会增加,无辐 射跃迁几率增加,荧光减弱。
h
30
⑵温度的影响
激发态分子与溶剂和其它溶质分子间的相 互作用及能量转换等过程称为外部能量转换。
外转换过程是荧光或磷光的竞争过程,因该
过程发光强度减弱或消失,该现象称为“猝灭” 或
“熄灭”。
h
10
⑸体系间跨越 系间跃迁是不同多重态之间的一种无辐射跃迁
该过程是激发态电子改变其自旋态,是分子的多 重性发生变化的结果。
当两种能态的振动能级重叠时,这种跃迁的几 率增大。
的吸收(或激发)光谱的波长长。荧光发射这种波长 位移的现象称为Stokes位移。
原因:处于激发态的分子一方面由于振动弛豫 等损失了部分能量,另一方面溶剂分子的弛豫作用 使其能量进一步损失,因而产生了发射光谱波长的 位移。
Stokes位移表明在荧光激发和发射之间所产生 的能量损失。(见P220图11-3)
①对于含有酸性或碱性基团的荧光物质而言, 溶液的pH将对这类物质的荧光强度产生较大的 影响。 如:在pH7~12的溶液中,苯胺以分子形式存 在,产生蓝色荧光;
当pH<3、 pH>13时,苯胺以阳离子、 阴离子形式存在,均无荧光。 ②溶液的pH也影响金属配合物的荧光性质。
h
32
⑷荧光猝灭
荧光猝灭:荧光分子与溶剂或其它溶质分子之间相互 作用,使荧光强度减弱的作用。
F0/eF0eKf
则K= 1/τf,将其带入 Ft F0eKt

《荧光分析法》课件

《荧光分析法》课件

通过改进技术手段,实现多组分的同步检 测,提高检测效率。
微型化与便携化
智能化与自动化
随着技术的进步,荧光分析仪器将更加微 型化和便携化,方便现场快速检测。
结合人工智能和自动化技术,实现荧光分 析的智能化和自动化,减少人为误差和操 作复杂度。
THANKS FOR WATCHING
感谢您的观看
成和含量。
荧光分析法的应用领域
环境监测
荧光分析法可以用于检测水体 、土壤和空气中的污染物,如
重金属、有机物和农药等。
生物医学研究
荧光分析法可以用于检测生物 体内的标记物、蛋白质、核酸 和细胞等,有助于生物医学研 究和诊断。
食品安全检测
荧光分析法可以用于检测食品 中的添加剂、农药残留和有害 物质等,保障食品安全。
高特异性
荧光分析法可以针对特定的化学物质 或生物分子,提供高度特异性的检测, 降低误报率。
可视化结果
荧光分析法的结果可以通过肉眼直接 观察或使用荧光显微镜进行观察,方 便快捷。
应用广泛
荧光分析法可以应用于多种领域,如 生物医学、环境监测、食品安全等。
荧光分析法的缺点
01
02
03
04
样品处理复杂
荧光分析法通常需要对待测样 品进行预处理,如提取、纯化
荧光寿命的测量
通过测量荧光物质在激发光停止后荧光强度随时间的变化,可以了解荧光物质从 激发态回到基态的速率常数和荧光寿命。
时间分辨荧光光谱的测量
通过测量不同时间点的荧光光谱,可以了解荧光物质在激发态的动态过程和能量 转移过程。
荧光量子产率的实验技术
荧光量子产率的测量
通过测量荧光物质在特定波长激发下的荧光发射光子数和激发光子数,可以计算出荧光量子产率,了 解荧光物质的光致发光效率。

[化学]荧光分析法

[化学]荧光分析法

3
第十一章 荧光分析法
第一节 荧光分析法的基本原理
第二节 第三节 荧光定量分析法 荧光分光光度计和其他荧光分析技术
4
第十一章 荧光分析法
第一节 荧光分析法的基本原理
第一节 荧光分析法的基本原理 一、分子荧光 (一) 荧光的产生 1. 分子的能级与跃迁
物质分子体系中存在着电子能级、振动能级和转动能级 室温时,多数分子处在电子基态最低振动能级(S0),当 受到一定辐射能的作用时,就会发生能级之间的跃迁。 基态(S0)→激发态(S1*、S2*、激发态振动能级):吸收特 定频率的辐射;量子化;跃迁一次到位;(吸收) 激发态→基态:多种途径和方式(见能级图);速度最快、 激发态寿命最短的途径占优势; (发射)
─(CH=CH)2─
φf =ห้องสมุดไป่ตู้.28 φf =0.68
21
─(CH=CH)3─
第十一章 荧光分析法 第一节 荧光分析法的基本原理
二、荧光与分子结构 (二)有机化合物分子结构与荧光的关系 1. 共轭效应 * → 跃
lex lem f
苯 205nm 278nm 0.11
萘 286nm 321nm 0.29
发射荧光的光子数 φf 吸收激发光的光字数
一般物质的f在0~1之间 荧光量子产率与物质吸收的能量以何种形式释 放有关,若能量都以无辐射跃迁形式释放,外转换 过程速度快,则不出现荧光发射。
20
第十一章 荧光分析法 第一节 荧光分析法的基本原理
二、荧光与分子结构 (二)有机化合物分子结构与荧光的关系 1. 共轭效应 * → 跃迁 芳香族化合物、五元杂环上取代苯基 共轭程度越大,荧光效率越大,波长长移
21第十一章荧光分析法第一节荧光分析法的基本原理二荧光与分子结构二荧光与分子结构二有机化合物分子结构与荧光的关系二有机化合物分子结构与荧光的关系跃迁芳香族化合物五元杂环上取代苯基共轭程度越大荧光效率越大波长长移chch028chch06822第十一章荧光分析法第一节荧光分析法的基本原理二荧光与分子结构二荧光与分子结构二有机化合物分子结构与荧光的关系二有机化合物分子结构与荧光的关系ex205nm286nm356nmem278nm321nm404nm011029036维生素aex327nmlem510nm23第十一章荧光分析法第一节荧光分析法的基本原理二有机化合物分子结构与荧光的关系二有机化合物分子结构与荧光的关系酚酞无荧光荧光黄1024第十一章荧光分析法第一节荧光分析法的基本原理二有机化合物分子结构与荧光的关系二有机化合物分子结构与荧光的关系8羟基喹啉弱荧光红色荧光34苯并芘强荧光物质25第十一章荧光分析法第一节荧光分析法的基本原理二有机化合物分子结构与荧光的关系二有机化合物分子结构与荧光的关系取代基的作用给电子基增强荧光

分析化学课件-荧光分析法基本原理

分析化学课件-荧光分析法基本原理

仪器的校正
灵敏度 以能被检出的最低信号来表示
波长
在选定条件下用稳定荧光物质校正 用汞灯标准谱线校正
激发光谱和荧光光谱
双光束仪器时,误差可抵消
二、其他荧光分析技术简介
1.激光荧光分析 2.时间分辨荧光 3.同步荧光分析 4.胶束增敏荧光
谢谢
溶剂
水 乙醇 环己烷 CCl4 CHCl3
激 发 光(nm) 248 313 365 405 436 271 350 416 469 511 267 344 409 459 500 267 344 408 458 499 —— 320 375 418 450 —— 346 410 461 502
第二节 荧光定量分析方法
荧光分析法基本原理
一、分子荧光
(一)分子荧光的产生 1.分子的电子能级与激发过程
hc =
E
S0
S1*
T1*
电子能级的多重性 M=2s+1
振动驰豫
内转换 体系间跨越
磷光
吸收
荧光
外转换
(二)激发光谱与发射光谱
excitation spectrum
横坐标ex,纵坐标 发射光强度
fluorescence spectrum
一、荧光强度与物质浓度的关系
F=K’(I0-I) I=I010-ECL
F= K’I0(1-10-ECL) = K’I0(1-e-2.3ECL) 若c很小,Ecl ≤0.05 则
F=2.3K’I0Ecl=Kc
F=2.3K’I0ECL=KC
ECl≤0.05 F C ECl >0.05 F 与C不成正比
荧光分析法的灵敏度高于紫外-可见分光光度法

荧光法
F

分析化学课件 PPT讲义 荧光分析法

分析化学课件 PPT讲义 荧光分析法
药物分析教研室
药物分析教研室
§1 荧光分析法的基本原理
§1.3 影响荧光强度的外部因素
▪ 温度 ▪ 溶剂 ▪ pH值 ▪ 荧光熄灭剂 ▪ 散射光
药物分析教研室
§1 荧光分析法的基本原理
§1.3 影响荧光强度的外部因素
硫酸奎宁在不同激发波长下的荧光(a)与拉曼光谱(b)
荧光光谱
激发 320nm
激发350nm
荧光448nm
§2.1 荧光强度与物质浓度的关系
荧光分析法与UV-vis定量测定时仪器校正的区别
UV-vis
0
100%
T=0,A=∞
T=100%,A=0
关闭光闸,光不透 空白溶液,光全透
过,全吸收
过,不吸收
荧光分析法
F=0 空白溶液,不发射
荧光
F=100% 对照品溶液Cmax
F=50%(Cmid)
药物分析教研室
的荧光强度降低到最大荧光强度的1/e所需的时间。用f表示。
• 荧光效率(fluorescence efficiemcy):又称荧光量子产率
(fluorescence quantum yield)是指激发态分子发射荧光的光子数 与基态分子吸收激发光的光子数之比。f
• 荧光寿命和荧光效率是荧光物质的重要参数!
分析化学 Analytical Chemistry
药物分析教研室
药物分析教研室
概述
• 发光(phosphorescence):物质受到一定波长的光照射后, 外层电子跃迁后返回基态时,以光辐射的形式释放能量,这 种现象称为发光。(荧光、磷光)
• 荧光(fluorescence):物质分子接受光子能量被激发后,从 激发态的最低振动能级返回基万言书时发射出的光。

荧光分析法ppt课件

荧光分析法ppt课件
37
28
续前
给电子基团
3、pH影响 对酸碱化合物,溶液pH的影响较大,需要严格控制;
4、荧光熄灭的影响 荧光物质与溶剂分子或其它溶质分子相互作用引起荧光强度降低或熄灭的现象。 引起荧光熄灭的物质为荧光熄灭剂 常见的熄灭剂有:卤素离子、重金属离子、氧分子以及硝基化 合物、重氮化合物、羰基化合物。
29
续前
返3回5
小结: 掌握
• 基本概念:荧光、振动弛豫、内部能量转换、外部能量转换、体系间跨越及磷光; 激发光谱与荧光光谱
• 基本理论:溶液荧光光谱的特征;物质发射荧光的条件;荧光定量分析的依据、 条件及方法
• 熟悉:影响荧光强度的因素(分子结构和外界条件)
了解
• 荧光分析仪器
36
练习:
P297,思考题 3、5,8
13
续前 影响体系间跨越几率增大的因素:
➢含重原子的分子(如碘、溴等),体系间跨越最为常见。 原因:高原子序数的原子中,电子的自旋与轨道运 动之间的相互作用较大,有利于电子自旋反 转的发生。
➢在溶液中存在氧分子等,这些顺磁性物质也能增加体 系间跨越的发生几率。
返回14
续前 4、荧光(fluorescence)
30
硫酸奎宁在不同激发波长下的荧光(a)与散射光谱(b)
激发320nm
激发350nm
荧光448nm
荧光光谱
瑞利光320nm
散射光谱
拉曼光360nm
瑞利光350nm 拉曼光400nm
返3回1
11.3 荧光定量分析
1、荧光测定方向:激发光源垂直方向,避免透射光干扰。
受激后,可在各个方向发射荧光, 在透过光的方向不易测定F。
5、散射光的干扰 散射光:当一束平行光照射在液体样品上,大部分光线透过溶液,

分析化学教材(系列一)Word版

分析化学教材(系列一)Word版

分析化学教材(系列一)目 录第一章 绪论第二章 误差和分析数据处理 第三章 滴定分析法概论 第四章 酸碱滴定法 第五章 配位滴定法 第六章 氧化还原滴定法 第七章 沉淀滴定法和重量分析法 第八章 电位法和永停滴定法 第九章 光谱分析法概论 第十章 紫外可见分光光度法 第十一章 荧光分析法 第十二章 红外吸收光谱法 第十三章 原子吸收分光光度法第十四章核磁共振波谱法第十五章 质谱法 第十六章 色谱分析法概论 第十七章 气相色谱法 第十八章 高效液相色谱法 第十九章 平面色谱法 第二十章 毛细管电泳法 第二十一章 色谱联用分析法 附录一 元素的相对原子质量(2005) 附录二 常用化合物的相对分子质量 附录三 中华人民共和国法定计量单位 附录四 国际制(SI )单位与cgs 单位换算及常用物理化学常数附录五常用酸、碱在水中的离解常数(25℃)附录六配位滴定有关常数附录七常用电极电位附录八难溶化合物的溶度积常数(25℃,I=0)附录九标准缓冲溶液的pH(0—95℃)附录十主要基团的红外特征吸收峰附录十一质子化学位移表附录十二质谱中常见的中性碎片与碎片离子附录十三气相色谱法用表参考文献英文索引中文索引目录第三版前言第二版前言第一版前言第1章绪论第2章误差和分析数据处理第3章重量分析法第4章滴定分析法概论第5章酸碱滴定法第6章络合滴定法第7章沉淀滴定法第8章氧化还原滴定法第9章取样与样品预处理方法附录附录Ⅰ中华人民共和国法定计量单位附录Ⅱ分析化学中常用的物理化学常数及物理量附录Ⅲ国际相对原子质量表附录Ⅳ常用相对分子质量表附录Ⅴ酸、碱在水中的离解常数附录Ⅵ常用标准缓冲溶液的pH(0~60℃)附录Ⅶ络合滴定有关常数附录Ⅷ标准电极电位及条件电位表附录Ⅸ难溶化合物的溶度积(Ksp) 符号表第1章概论1.1 定量分析概述1.1.1 分析化学的任务和作用1.1.2 定量分析过程1.1.3 定量分析方法1.2 滴定分析法概述1.2.1 滴定分析法对反应的要求和滴定方式1.2.2 基准物质和标准溶液1.2.3 滴定分析中的体积测量1.2.4 滴定分析的计算思考题习题第2章误差与分析数据处理2.1 有关误差的一些基本概念2.1.1 误差的表征——准确度与精密度2.1.2 误差的表示——误差与偏差2.1.3 误差的分类——系统误差与随机误差2.2 随机误差的分布2.2.1 频率分布2.2.2 正态分布2.2.3 随机误差的区间概率2.3 有限数据的统计处理2.3.1 数据的集中趋势和分散程度的表示——对μ和σ2.3.2 总体均值的置信区间——对μ的区别间估计2.3.3 显著性检验2.3.4 异常值的检验2.4 测定方法的选择与测定准确度的提高2.5 有效数字思考题习题第3章酸碱平衡与酸碱滴定法3.1 酸碱反应3.1.2 酸碱反应的平衡常数3.1.3 活度与浓度,平衡常数的几种形式3.2 酸度对弱酸(碱)形态分布的影响3.2.1 一元弱酸溶液中各种形态的分布3.2.2 多元酸溶液中各种形态的分布3.2.3 浓度对数图3.3 酸碱溶液的H+浓度计算3.3.1 水溶液中酸碱平衡处理的方法3.3.2 一元弱酸(碱)溶液pH的计算3.3.3 两性物质溶液pH的计算3.3.4 多元弱酸溶液pH的计算3.3.5 一元弱酸及其共轭碱(HA+A)混合溶液pH的计算3.3.6 强酸(碱)溶液pH的计算3.3.7 混合酸和混合碱溶液pH的计算3.4 酸碱缓冲溶液3.4.1 缓冲容量和缓冲范围3.4.2 缓冲溶液的选择3.4.3 标准缓冲溶液3.5 酸碱指示剂3.5.1 酸碱指示剂的作用原理3.5.2 影响指示剂变色间隔的因素3.5.3 混合指示剂3.6 酸碱滴定曲线和指示剂的选择3.6.1 强碱滴定强酸或强酸滴定强碱3.6.2 一元弱酸(碱)的滴定3.6.3 滴定一元弱(弱碱)及其与强酸(强碱)混合物的总结3.6.4 多元酸和多元碱的滴定3.7 终点误差3.7.1 代数法计算终点误差图及其应用3.7.2 终点误差公式和终点误差图及其应用3.8 酸碱滴定法的应用3.8.1 酸碱标准溶液的配制与标定……第4章络合滴定法第5章氧化还原滴定法第6章沉淀重量与沉淀滴定法第7章分光光度法第8章分析化学中常用的分离方法第9章其他常用仪器分析方法附录目录编写说明第1章绪论第1节分析化学的任务与作用第2节分析化学方法的分类第3节试样分析的基本程序第4节分析化学的发展与趋势第2章误差和分析数据的处理第1节误差第2节测量值的准确度和精密度第3节有效数字及其运算法则第4节分析数据的统计处理与分析结果的表示方法第5节相关与回归思考与练习第3章重量分析法第1节挥发法第2节萃取法第3节沉淀法思考与练习第4章滴定分析法概论第1节滴定反应类型与滴定方式第2节基准物质与标准溶液第3节滴定分析的计算思考与练习第5章酸碱滴定法第1节水溶液中的酸碱平衡第2节基本原理第3节滴定终点误差第4节应用与示例第5节非水滴定法思考与练习第6章沉淀滴定法第1节基本原理第2节应用与示例思考与练习第7章配位滴定法第1节配位平衡第2节基本原理第3节滴定条件的选择第4节应用与示例思考与练习第8章氧化还原滴定法第9章电位法和永停滴定法参考资料附录目录符号缩写或简称第一篇概述第1章分析化学的目的及其对社会的重要性1.1 分析化学的目的:对社会的基本重要性1.2 分析化学的目的:作为问题解决者的分析化学家1.3 非常规实验实应用分析化学的目的参考文献第2章分析过程2.1 概述2.2 全分析过程2.3 工作特性2.4 分析化学中的误差参考文献第3章质量保证和质量控制3.1 分析化学的质量和目标3.2 分析方法3.3 如何保证准确度3.4 质是保证和质是控制受规章限制的方面3.5 结论参考文献第二篇化学分析第4章化学分析的基本原理第5章色谱法第6章动力学与催化第7章化学分析的方法及其应用第三篇物理分析第8章元素分析第9章化合物和分子特效分析第10章微束流和表面分析第11章结构分析第四篇基于计算机的分析化学(COBAC)第12章化学计理学第13章计算机软硬件及分析仪器接口第五篇全分析系统第14章联用技术第15章微分析系统第16章过程分析化学VI. 附录汉英索引英汉索引目录总序出版说明第二版前言第一版前言符号表绪论0.1 分析化学的任务与作用0.2 分析方法的分类0.3 发展中的分析化学1 分析质量保证1.1 分析化学中关于误差的一些基本概念 1.2 有效数字及其运算规则1.3 分析数据的统计处理1.4 提高分析结果准确度的方法小结习题分析化学前沿领域简介——化学计量学2 化学分析法2.1 滴定分析概述2.2 滴定分析的基本理论2.3 确定滴定终点的方法2.4 滴定条件选择2.5 滴定分析的应用2.6 重理分析法小结习题化学大师Liebig3 分离分析方法3.1 分析试样的制备和分解3.2 沉淀分离法3.3 溶齐萃取分离法3.4 离子交换分离法3.5 挥发和蒸馏分离法3.6 气相色谱法3.7 高效液相色谱法3.8 色谱分离技术发展简介3.9 膜分离法3.10 激光分离法3.11 复杂试样分析实例3.12 分离技术的发展趋势小结习题科学家及其思维方法简介——色谱学家马丁4 原子光谱分析法4.1 原子吸收分光光度法4.2 原子发射光谱分析法小结习题著名化学家本生对分析化学的贡献5 分子光谱分析法5.1 紫外-可见分光光度法5.2 红外光谱法5.3 分子发光分析法小结习题光分析化学前沿简介——光化学传感器6 核磁共振谱法6.1 基本原理6.2 核磁共振谱仪6.3 化学位移6.4 自旋偶合与自旋裂分6.5 核磁共振谱图解析6.6 13C核磁共振谱小结习题生物分子的革命性分析方法7 质谱法7.1 基本原理7.2 质谱仪7.3 离子的主要类型7.4 有机化合物质谱7.5 质谱图解析7.6 飞行时间质谱简介7.7 UV、IR、NMR和MS四谱综合解析小结习题科学展望——2000年诺贝尔化学奖简介8 电化学分析法8.1 电位分析法8.2 极谱法和伏安法8.3 库仑分析法8.4 电分析化学新进展小结习题2003年诺贝尔化学奖得主阿格雷和麦金农参考文献附录后记目录第1篇分析化学基础第1章分析化学导言1.1 分析化学的定义、任务和作用1.2 分析化学的特点和分类1.3 分析化学的发展趋势1.4 学习分析化学课程的方法思考题第2章试样的采集、制备与分解2.1 试样的采集2.2 固体物料试样的制备2.3 试样的分解思考题第3章定量分析中的误差及数据处理3.1 误差的基本概念3.2 误差的传递3.3 有效数字的表示与运算规则3.4 随机误差的正态分布3.5 少量数据的统计处理3.6 数据的评价——显著性检验、异常值的取舍3.7 回归分析3.8 提高分析结果准确度的方法思考题习题第2篇化学分析法第4章化学分析法概述4.1 化学分析法概述4.2 滴定分析法概述4.3 标准溶液与基准物4.4 化学分析法的计算思考题习题第5章酸碱滴定法第6章配位滴定法第7章氧化还原滴定法第8章沉淀滴定法第9章重量分析法第3篇仪器分析法第10章仪器分析法概述第11章紫外可见吸收光谱法第12章原子吸收光谱法第13章电位分析法第14章气相色谱法第4篇复杂物质分析第15章定量分析中的分离及富集方法第16章复杂物质分析示例附录参考文献目录第1章绪论第1节分析化学的任务和作用第2节分析化学的分类一、化学分析与仪器分析二、定性分析、定量分析和结构分析三、无机分析和有机分析四、常量分析、半微量分析和微量分析五、例行分析和仲裁分析第3节试样分析的基本程序一、取样二、分析试液的制备三、分析测定四、分析结果的计算与评价第4节分析化学的发展与趋势第2章误差和分析数据的处理第1节概述第2节定量分析误差一、系统误差和偶然误差二、绝对误差和相对误差三、准确度与精密度四、提高分析准确度的方法第3节有效数字及其运算法则一、有效数字二、有效数字的运算法则三、有效数字的运算法则在分析化学中的应用第4节分析数据的统计处理与分析结果的表示方法一、偶然误差的正态分布二、实验数据的统计处理三、可疑值的取舍四、分析数据处理与报告第3章重量分析法第1节概述第2节挥发法一、定义二、操作过程三、应用第3节萃取法一、定义及分类二、操作过程三、应用第4节沉淀法一、沉淀重量法二、沉淀的溶解度及影响因素三、沉淀的纯度及其影响因素四、沉淀的类型与沉淀条件五、沉淀法中的计算第5节应用一、药物含量测定二、药物纯度检查第4章滴定分析法概论第1节概述第2节滴定方式一、直接滴定法二、反滴定法三、置换滴定法四、间接滴定法第3节基准物质和标准溶液一、基准物质二、标准溶液三、标准溶液浓度的表示第4节滴定分析中的计算一、计算依据二、计算示例第5章酸碱滴定法第1节概述第2节水溶液中的酸碱平衡一、酸碱质子理论二、溶液中酸碱组分的分布三、酸碱溶液中H+浓度的计算第3节酸碱指示剂一、酸碱指示剂的变色原理二、酸碱指示剂的理论变色点和变色范围三、影响指示剂变色范围的因素四、混合指示剂第4节酸碱滴定法的基本原理……第6章沉淀滴定法第7章配位滴定法第8章氧化还原滴定法第9章电位分析法第10章紫外-可见分光光度法第11章荧光分析法第12章红外分光光度法第13章原子吸收分光光度法第14章经典液相色谱法第15章气相色谱法第16章高效液相色谱法第17章其他分析方法实验部分参考文献附录《分析化学》教学基本要求目录第一章绪论第一节分析化学的任务和作用第二节分析方法的分类一、定性分析、定量分析和结构分析二、无机分析和有机分析三、常量、半微量、微量、超微量分析四、化学分析和仪器分析五、例行分析、仲裁分析和快速分析第三节分析化学的发展趋势一、分析理论与其他学科相互渗透二、分析技术的发展趋势本章小结思考题与习题第二章定量分析误差和分析数据的处理第一节定量分析误差的种类和来源一、系统误差二、随机误差第二节准确度与精密度一、准确度与误差二、精密度与偏差三、准确度与精密度的关系第三节随机误差的正态分布一、频率分布二、正态分布三、随机误差的区间概率第四节有限测定数据的统计处理一、置信度与μ的置信区间二、可疑测定值的取舍三、显著性检验第五节提高分析结果准确度的方法一、选择适当的分析方法二、减小测量的相对误差三、检验和消除系统误差四、减小随机误差第六节有效数字及其运算规则一、有效数字的意义和位数二、数字修约规则三、有效数字的运算规则本章小结思考题与习题第三章滴定分析法概论第一节滴定分析法的分类及滴定方式一、滴定分析法的分类二、滴定分析法对化学反应的要求三、滴定方式第二节滴定分析的标准溶液一、标准溶液浓度的表示方法二、化学试剂的规格与基准物质三、标准溶液的配制第三节滴定分析的有关计算一、滴定分析计算的理论依据二、滴定分析计算示例本章小结思考题与习题第四章酸碱滴定法第一节酸碱反应及其平衡常数一、酸碱反应及其实质二、酸碱反应的平衡常数以及共轭酸碱对Ka与Kb的关系第二节酸碱溶液中各型体的分布系数与分布曲线一、一元弱酸(碱)溶液中各型体的分布系数与分布曲线二、多元酸(碱)溶液中各型体的分布系数与分布曲线第三节酸碱溶液pH的计算一、质子等衡式(质子条件式)二、酸碱溶液pH的计算第四节酸碱指示剂一、酸碱指示剂的作用原理二、影响酸碱指示剂变色范围的因素三、混合酸碱指示剂第五节酸碱滴定原理及指示剂选择一、强碱与强酸的滴定二、强碱(酸)滴定一元弱酸(碱)三、多元酸(碱)的滴定四、酸碱滴定中CO2的影响第六节酸碱滴定法的应用一、酸(碱)标准溶液的配制及标定二、酸碱滴定法应用实例本章小结思考题与习题第五章配位滴定法第一节概述第二节 EDTA及其配合物一、乙二胺四乙酸(EDTA)的结构与性质二、EDTA在水溶液中各存在型体的分布系数三、EDTA与金属离子形成螯合物的特点第三节 EDTA与金属离子的配位平衡一、配合物的稳定常数二、溶液中各级配合物浓度的计算第四节影响配位平衡的主要因素一、酸效应及酸效应系数二、配位效应及配位效应系数三、配合物的条件稳定常数第五节配位滴定原理一、配位滴定曲线二、影响配位滴定突跃范围的主要因素三、准确滴定金属离子的判据四、配位滴定中适宜pH范围第六节金属指示剂一、金属指示剂的作用原理二、金属指示剂应具备的条件三、金属指示剂的选择四、金属指示剂的封闭、僵化和氧化变质现象五、常用的金属指示剂第七节提高配位滴定选择性的方法一、控制溶液酸度二、利用掩蔽和解蔽作用三、采用其他配位剂四、分离干扰离子第八节配位滴定法的应用一、EDTA标准溶液的配制、标定二、各种配位滴定方式三、配位滴定法应用实例本章小结思考题与习题第六章氧化还原滴定法第一节氧化还原反应的特点一、标准电极电势和条件电极电势二、氧化还原反应进行的方向三、氧化还原反应进行的程度四、氧化还原反应速率第二节氧化还原滴定原理一、氧化还原滴定曲线二、化学计量点时溶液电势的计算三、影响氧化还原滴定突跃范围的因素第三节氧化还原滴定的指示剂一、自身指示剂二、特殊指示剂三、氧化还原指示剂第四节常见氧化还原滴定法及其应用一、高锰酸钾法二、重铬酸钾法三、碘量法本章小结思考题与习题第七章沉淀滴定法第一节沉淀滴定法基本原理第二节银量法一、莫尔法二、佛尔哈德法三、法扬司法第三节沉淀滴定法的应用一、标准溶液的配制与标定二、应用示例本章小结思考题与习题第八章分析化学中的常用分离方法第一节沉淀分离法一、无机沉淀剂分离二、有机沉淀剂分离三、共沉淀分离第二节液?液萃取分离法一、萃取分离法的基本原理二、萃取体系的分类和萃取条件的选择三、萃取分离技术四、溶剂萃取在分析化学中的应用第三节离子交换分离法一、离子交换剂的种类和性质二、离子交换树脂的亲和力三、离子交换分离操作技术四、离子交换分离法的应用第四节常规色谱法一、柱色谱法二、纸色谱法三、薄层色谱法本章小结思考题与习题第九章电势分析法第一节电势分析法基本原理一、直接电势法二、电势滴定法三、电池电动势的测量第二节参比电极和指示电极一、参比电极二、指示电极第三节直接电势法及应用一、溶液pH值的测定二、离子活度(浓度)的测定三、直接电势法的应用第四节电势滴定法一、电势滴定法的原理二、电势滴定终点的确定三、电势滴定法的应用本章小结思考题与习题第十章吸光光度分析法第一节吸光光度法的基础知识一、光的基本性质二、光的互补作用与溶液的颜色三、光的吸收曲线第二节光的吸收定律一、朗伯?比耳定律二、朗伯?比耳定律的推导三、吸光度与透光度四、吸光系数、摩尔吸光系数及桑德尔灵敏度第三节显色反应及影响因素一、吸光光度法对显色反应的要求二、影响显色反应的主要因素三、显色剂第四节吸光光度分析法及仪器一、吸光光度分析的类型二、吸光光度分析的定量分析方法三、分光光度计的构造四、分光光度计的类型第五节吸光光度法测量误差及测量条件的选择一、吸光光度法的测量误差二、测量条件的选择第六节吸光光度法的应用一、示差吸光光度法二、多组分的分析三、配合物组成的测定本章小结思考题与习题第十一章原子吸收分光光度法第一节基本原理一、共振发射线与吸收线二、基态原子与激发态原子的关系三、原子吸收线的宽度四、原子吸收的测量五、灵敏度和检出限第二节原子吸收分光光度计一、光源二、原子化器三、分光系统四、检测系统五、读数装置六、原子吸收分光光度计的类型第三节仪器测量条件的选择一、分析线的选择二、灯电流的选择三、原子化条件的选择四、燃烧器高度的选择五、进样量六、单色器狭缝宽度与光谱通带的选择第四节定量分析方法一、标准工作曲线法二、标准加入法第五节干扰及消除方法一、光谱干扰二、化学干扰、物理干扰及电离干扰第六节原子吸收分光光度法的应用一、测定生物样品中的化学元素二、有机物分析本章小结思考题与习题第十二章气相色谱分析法第一节色谱法概述一、色谱法原理介绍二、色谱法的分类第二节气相色谱法的特点及基本原理一、气相色谱法的特点二、气相色谱法的基本原理第三节气相色谱的实验技术一、色谱系统二、实验技术要点三、程序升温和衍生物制备第四节气相色谱法的应用一、定性分析二、定量分析三、气相色谱分析误差产生的原因第五节气相色谱法的新进展一、顶空气相色谱二、气相色谱?质谱联用技术三、气相色谱?红外光谱联用技术本章小结思考题与习题第十三章高效液相色谱法第一节高效液相色谱法的技术参数一、速率理论二、柱外效应三、分离度四、系统适应性实验第二节高效液相色谱法的色谱系统一、高压泵二、梯度洗脱装置三、进样器四、色谱柱五、检测器六、数据处理系统和结果处理第三节高效液相色谱法的分离方式一、吸附色谱法二、分配色谱法三、离子色谱法四、尺寸排阻色谱法五、亲和色谱法第四节样品预处理与色谱柱的保护一、样品预处理二、色谱柱的保护第五节液相色谱分析技术的新进展一、液相色谱?质谱联用技术概述二、超临界流体色谱法概述三、高效毛细管液相色谱法概述本章小结思考题与习题第十四章现代仪器分析简介第一节光分析法导论一、电磁波的辐射能特性二、光分析法的分类第二节原子发射光谱法一、基本原理二、原子发射光谱仪三、应用第三节原子荧光光谱法一、基本原理二、原子荧光光谱仪三、应用第四节分子荧光和磷光分析法一、荧光和磷光的产生二、荧光和磷光强度的影响因素三、荧光/磷光分析仪器四、荧光/磷光分析法应用第五节红外分光光度法一、分子的红外吸收二、红外光谱解析程序第六节核磁共振波谱法一、基本原理二、1HNMR谱的解析三、13CNMR谱的特点与解析第七节流动注射分析本章小结思考题与习题第十五章样品分析的一般过程第一节试样采集和制备一、试样的采集二、试样的制备第二节试样的分解与处理一、无机试样的分解处理二、有机试样的分解处理三、试样分解处理方法的选择四、干扰组分的处理第三节测定方法的选择一、测定的具体要求二、被测组分的性质三、被测组分的含量四、共存组分的影响五、实验室条件第四节分析结果的计算和数据评价一、分析结果的计算及表示方法二、分析结果的报告与评价本章小结思考题与习题附录附录一相对原子质量表(2001年国际原子量)附录二化合物的相对分子质量表附录三弱酸在水中的离解常数(25℃)附录四弱碱在水中的离解常数(25℃)附录五常用浓酸浓碱的密度和浓度附录六几种常用缓冲溶液的配制附录七常用标准缓冲溶液不同温度下的pH值附录八金属离子与EDTA配合物的lgKf(25℃)附录九标准电极电势表(25℃)附录十部分氧化还原电对的条件电极电势(25℃)附录十一难溶化合物的溶度积常数(25℃)参考文献目录绪论0.1 分析化学的任务和作用0.2 分析方法的分类0.2.1 无机分析和有机分析0.2.2 化学分析和仪器分析0.2.3 常量分析、半微量分析和微量分析。

分析化学(第二版)主要计算公式汇总

分析化学(第二版)主要计算公式汇总

1.55ppm (3)Si=取代基对化学位移的计算 δC=C-H=5.28+Z同+Z顺+Z反 (4)苯环芳香烃化学位移的计算 δφ-H=7.27(5)自旋系统(一级与二级图谱)的判别式 △υ/J>10(或6) 为一级图谱 △υ/J<10(或6) 为二级图谱
第15章 质谱法 主要计算公式 (1)质谱方程式 m/z= 或R= (2)质谱仪的分辨率 R=M/△M (3)亚稳离子峰质量与母离子和子离子的关系: Mm*=
(备择假设,alternative hypothesis,) 双侧检验,检验水准:α=0.05 2.计算检验统计量
,v=n-1=35-1=34 3.查相应界值表,确定P值,下结论 查附表1,t0.05 / 2.34 = 2.032,t < t0.05 / 2.34,P >0.05,按 α=0.05水准,不拒绝H0,两者的差别无统计学意义 (6)F检验法是英国统计学家Fisher提出的,主要通过比较两组数据 的方差 S^2,以确定他们的精密度是否有显著性差异。至于两组数
第六章 氧化还原滴定法 (1)氧化还原电对的电极电位——Nernst方程式 (2)以浓度替代活度,且考虑到副反应的影响,则电对在25C时的条 件电位 (3)氧化还原反应的条件平衡常数K’(25C时) (4)氧化还原滴定化学计量点时的电位值φsp (5)氧化还原滴定突跃范围计算式 φ2‘+0.59*3/n2(V)—φ1‘+0.59*3/n1(V) (6)氧化还原指示剂变色的电位范围 φ‘±0.059/n(V)
其中
[HA]=c[H+]/([H+]+Ka)
·若[A-]>20[OH-](即cKa>20Kw),可以忽略因水解离产生的

分析化学荧光分析法11

分析化学荧光分析法11
15
2
,λ 1),产生不同吸收带,但均回到第一激发单重态的最 ,产生不同吸收带,但均回到第一激发单重态的最 第一激发单重态
‘ 2
低振动能级再跃迁回到基态,产生波长一定的荧光(如 低振动能级再跃迁回到基态,产生波长一定的荧光 如λ
)
16
镜像规则的解释
S0 →S2
S0 →S1
17
三、荧光的产生与分子结构的关系 1.荧光寿命和荧光效率
3

当基态电子激发到某高能级时, 将有两种激发态: 当基态电子激发到某高能级时, 将有两种激发态 自旋相反多重性为1 称为激发单重态, 自旋相反多重性为1,称为激发单重态,用S表示 激发单重态 表示 自旋平行多重性为M=2×1+1=3,称为激发三重态 称为激发三重态 自旋平行多重性为 称为 state) (triplet state)用T表示
10
二、荧光激发光谱与发射光谱 1.荧光检测的基本原理 1.荧光检测的基本原理
11
2.荧光的激发光谱和发射光谱
激发光谱( 激发光谱(excitation spectrum):固定测量波长, ) 固定测量波长, 将激发光的光源分光, 将激发光的光源分光,测定不同波长的激发光照射 下所发射的荧光强度的变化, 下所发射的荧光强度的变化,以IF —λ激发作图,便 λ 作图, 可得到荧光物质的激发光谱。 可得到荧光物质的激发光谱。 发射光谱或荧光光谱(fluorescence spectrum):固 发射光谱或荧光光谱( ) 定激发光波长和强度, 定激发光波长和强度, 让物质发射的荧光通过单色 分光,以测定不同波长的荧光强度, 分光,以测定不同波长的荧光强度, 以IF—λ荧光作图, λ 作图, 便可得到荧光物质的荧光光谱。 便可得到荧光物质的荧光光谱。

分析化学第十一章荧光分析法

分析化学第十一章荧光分析法
excitation spectrum
横坐标ex,纵坐标 发射光强度
fluorescence spectrum
横坐标em,纵坐标 发射光强度
溶液荧光光
谱的特征

Stokes shift 荧光光谱的形状与激发波长无关 荧光光谱与激发光谱的镜像关系
第十一章
荧光分析法
仪器分析
二、荧光与分子结构
第十一章
荧光分析法
仪器分析
三、影响荧光强度的外部因素

温度

溶剂
极性溶剂 溶剂粘度
pH值 荧光熄灭 散射光
荧光熄灭剂 荧光自熄灭
瑞利散射 拉曼上式
第十一章
荧光分析法
仪器分析
选择适当的激发波长可消除拉曼光的干扰
激 发 光(nm) 313 365 405 350 416 469 344 409 459 344 408 458 320 375 418 346 410 461
荧光寿命(f)和荧光效率 (f)
Ft = F0 e
f=
-t /f
F0 ln Ft
发射荧光的光子数 吸收激发光的光子数
一般物质 f 0~1之间
第十一章
荧光分析法
仪器分析 刚性和共平面性 取代基
第十一章
荧光分析法
仪器分析
荧光试剂
荧光胺 Dansyl-Cl 邻苯二甲醛(OPA) 测定无机离子的荧光试剂
溶剂 水 乙醇 环己烷 CCl4 CHCl3
248 271 267 267 —— ——
436 511 500 499 450 502
第十一章
荧光分析法
仪器分析
第二节
荧光定量分析方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章 荧光分析法
概述 基本原理 定量分析方法 荧光分析技术及应用
11.1 概述
1.光致发光:物质受到光照射时,除 吸收某种波长的光之外还会发射出比 原来所吸收光的波长更长的光,这种 现象称为光致发光。
2.荧光(fluorescence):物质分子接受 光子能量被激发后,从激发态的最低 振动能级返回基态时发射出的光。
低一些。 2.荧光的产生 1)激发过程: 基态分子 hv 激发单重态(s1*,s2*)
激发三重态
2)激发态能量传递途径
传递途径
辐射跃迁
无辐射跃迁
荧光 磷光 系间跨越内转换 外转换 振动弛豫
1.无辐射跃迁
a.振动驰豫(vibrational relexation):
处于激发态各振动能级的分子通过 与溶剂分子的碰撞而将部分振动能 量传递给溶剂分子,其电子则返回 到同一电子激发态的最低振动能级 的过程。
2)电子能态的多重性:
M=2S+1
S:总自旋量子数。S=s1+s2 对于 S=1/2 +(-1/2)=0
M=2S+1=1
对应基线单重态;
对于激发态
s1=1/2,s2=1/2,
S=1/2+1/2=1, M=2×1+1=3 三重态
• 单重态与三重态的区别 1)电子自旋方向不同; 2)激发三重态的能量稍
8-羟基喹啉
8-羟基喹啉镁
弱荧光
强荧光
刚性和共面性增加,可以发射荧光或增 强荧光。
c.位阻效应
NaO3S
N(CH3)2
NaO3S
N(CH3)2
1-二甲氨基萘-7-磺酸钠 f=0.75
1-二甲氨基萘-8-磺酸钠 f =0.03
位阻效应使分子共面性下降,荧光减弱。
d.顺反异构体
H C=C H
HH C=C
b.拉曼光(Raman scattering light):光子和物 质分子发生非弹性碰撞,光子运动方向 发生改变,也发生能量交换,光子把部 分能量转移给物质分子或从物质分子获 得部分能量,发射出比入射光稍长或稍 短的光,称拉曼光。
拉曼光对荧光测定干扰较大。 消除拉曼光的方法: 选择适当的激发波长。
8
3.激发单色器
5.样品池
9
6.表面吸光物质 8.发射单色光
10.检测器
11.放大器
11
10
12.指示器
13.记录器
图 荧光分光光度计结构示意图
光源:氙灯,高压汞灯 单色器:滤光片,光栅 检测器:光电倍增管
荧光分析新技术
• 时间分辨荧光分析 在激发和检测之间延缓一段时间,使
具有不同荧光寿命的物质达到分别 检测的目的。 光源:脉冲激光 应用:免疫分析
由朗伯-比耳定律:
• I=I0×10-εcl • Ia = I0(1-10 - l c ) • F = I0(1-10- l c ) = I0(1-e-2.3 l c )
当 l c <0.05时,
F=2.3K′I0ECl=KC ——荧光定量的依 据。
二、定量分析方法
1.校正曲线法
以荧光强度为纵坐标,对照品溶液的 浓度为横坐标绘制校正曲线,在同 样条件下测定试样溶液的荧光强度, 由校正曲线求出试样中荧光物质的 含量。
3.荧光分析法(fluorometry):根据物质 的荧光谱线位置及其强度进行物质鉴定 和含量测定的方法。
荧光分析法的优点: 灵敏度高;选择性好; 检测限达10-10g/mL,最低可达10-12g/mL。
11.2 荧光分析法的基本原理
一、分子荧光 (一)分子荧光的产生 1.分子的电子能级与激发过程 1)分子的电子能级 △E= △Ee +△Ev+ △Er
5.散射光(scattering light):
定义:当一束平行单色光照射在液体 样品时,大部分光线透光溶液,小 部分由于光子和物质分子相碰撞, 使光子的运动方向发生改变而向不 同角度散射,称散射光。
包括瑞利光和拉曼光。
a.瑞利光(Reyleigh scattering light):光子和 物质分子发生弹性碰撞,不发生能量交 换,仅仅是光子运动方向发生改变,波 长与入射光波长相同。
2
b.内部能量转换(internal conversion):
简称内转换,当两个电子激发态之
间的能量相差较小以致其振动能级
有重叠时,受激分子常由高电子能
级以无辐射方式转移至低电子能级
的过程。如S2*
S1*
c.外部能量转换(external conversion)
简称外转换,溶液中的激发态分子 与溶剂分子或与其他溶质分子之间相 互碰撞而失去能量,并以热能的形式 释放能量的过程。
瑞利光 拉曼光
瑞利光 拉曼光
结论:无论选择320nm或350nm为 激发光,荧光峰总是在448nm. 而空白溶剂分别在320nm及 350nm激发光照射下测定,测得
的实际上是散射光而非荧光。
表 在不同波长激发光下主要溶剂的拉曼光波长
λex
水 乙醇 环己烷 四氯化碳
248 313 365 405 436
F-F0 100
80
60
· ------------------------------
40
·
·
20
· ·
Cx 0.2 0.4 0.6 0.8 1.0 1.2 C(µg/ml)
荧光法测定硫酸奎宁标准曲线
2.比例法
当校正曲线通过原点,可取已知量的 对照品配制一对照品溶液(Cs),使其 浓度在线性范围内,测定荧光强度 (Fs),在同样条件下测定试样溶液的 荧光强度(FX),按比例关系计算荧 光物质的含量。
如:S1*:V4,V3,V2,V1 V0
S2* 3
V4 V3 V2
V1 c
V0
S1*
b
V4
V3
V2
V1
V0f
E
aa
d
e
4
V4 V3
T * V2
V1 1
V0
g
S0
5
λ1
λ2
λ3
λ4
图 荧光和磷光产生示意图
1
a. 吸收 b. 振动驰豫 c. 内转换 d. 荧光 e. 外转换 f. 体系间跨越 g. 磷光
FS F0 CS FX F0 CX
CX
FX FS
F0 F0
CS
11.4 荧光分光光度计
1.荧光分光光度计的主要部件 由激发光源、激发单色器(置于样
品池前)、发射单色器(置于样品 池后)、样品池、检测系统组成。
岛津RF-5301PC型荧光分光光度计
5
1 12 13
2
3
4
76
1.光源
2.4.7.9.狭缝
• 同步荧光分析
在荧光物质的激发光谱和荧光光谱中 选择一适宜的波长差值△λ,同时扫 描荧光发射波长和激发波长,得到 同步荧光光谱。
Fsp(λem,ex) = KcFexFem
• 胶束增敏荧光分析
胶束溶液:一定浓度的表面活性剂溶液。
胶束溶液特点:具有一个极性的亲水基 和一个非极性的疏水基,在极性溶剂 中,几十个表面活性剂分子聚合成团, 将非极性的疏水基尾部靠在一起,形 成亲水基向外、疏水基向内的胶束。
外转换常发生在第一激发单重态或激 发三重态的最低振动能级向基态转换 的过程中。
d.体系间跨越(intersystem crossing):
处于激发态的电子发生自旋反转而使
分子的多重性发生变化的过程。
如:S1*
T1*
2.辐射跃迁
a.荧光发射:处于任一激发单重态的 分子,通过内转换及振动驰豫,可回 到第一激发单重态的最低振动能级, 然后再以辐射形式发射光量子而返回 至基态的任一振动能级,这时发射的 光量子称为荧光。
对π电子共轭体系作用小,对荧光 作用不明显。
三、影响荧光强度的外部因素
1.温度 T ,f ,F
2.溶剂 溶剂极性增强, λem 长移,F 溶剂粘度 ,F
3.酸度
如:苯胺
NH3+ OH-
NH2 OH-
NH-
H+
H+
pH<2 无荧光
pH=7~12 蓝色荧光
pH>13 无荧光
4.荧光熄灭剂
1)荧光熄灭(荧光焠灭):荧光物质 分子与溶剂分子或其他溶质分子相 互作用引起荧光强度降低的现象。
271 350 416 469 511 267 344 409 459 500 267 344 408 458 499 — 320 375 418 450
选择激发光波长时,应使溶剂不干扰 测定。
11.3 定量分析方法
一、荧光强度与物质浓度的关系 • 荧光强度F正比于吸收的光量子Ia和荧
光量子效率 : F = Ia Ia= I0 - I F∝(I0 - I)
λ 荧光 > λ激发光 2)荧光光谱的形状与激发光波长无关。 3)荧光光谱与激发光谱成镜像关系。
荧光激发光谱
荧光发射光谱
200 250 300 350 400 450 500 nm
蒽的激发光谱和荧光光谱
二、分子结构与荧光的关系
(一)荧光寿命和荧光效率
1.荧光寿命(fluoresce lift time)当除去 激发光源后,分子的荧光强度降低 到最大荧光强度的1/e所需的时间, 常用τf表示。 荧光物质从激发态到基态的变化用 指数衰减定律表示:
• 利用荧光分子寿命的差别,可以 进行荧光物质混合物的分析。
2.荧光效率(fluorescence efficiency) 又称荧光量子产率(fluorescence
quantum yield),指激发态分子发射荧 光的光子数与基态分子吸收激发光 的光子数之比,常用i 表示。
相关文档
最新文档