半导体基础知识培训课件
半导体器件基础课件(PPT-73页)精选全文完整版
有限,因此由它们形成的电流很小。
电子 技 术
注意:
1、空间电荷区中没有载流子。
2、空间电荷区中内电场阻碍P 区中的空穴、N 区中的电子(
都是多子)向对方运动(扩散 运动)。
所以扩散和漂移这一对相反的运动最终达到平衡, 相当于两个区之间没有电荷运动,空间电荷区的厚 度固定不变。
电子 技 术
二、PN 结的单向导电性
电子 技 术
1. 1 半导体二极管的结构和类型
构成:实质上就是一个PN结
PN 结 + 引线 + 管壳 =
二极管(Diode)
+
PN
-
符号:P
N
阳极
阴极
分类:
按材料分 按结构分
硅二极管 锗二极管 点接触型 面接触型 平面型
电子 技 术
正极 引线
N 型锗片 负极 引线
外壳
触丝
点接触型
正极 负极 引线 引线
电子 技 术
半导体中存在两种载流子:自由电子和空穴。 自由电子在共价键以外的运动。 空穴在共价键以内的运动。
结论:
1. 本征半导体中电子空穴成对出现,且数量少。 2. 半导体中有电子和空穴两种载流子参与导电。 3. 本征半导体导电能力弱,并与温度有关。
电子 技 术
2、杂质半导体
+4
一、N 型半导体
电子 技 术
三、课程特点和学习方法
本课程是研究模拟电路(Analog Circuit)及其 应用的课程。模拟电路是产生和处理模拟信号的电路。 数字电路(Digital Circuit)的知识学习由数字电子技 术课程完成。
本课程有着下列与其他课程不同的特点和分析方 法。
电子 技 术
半导体基础知识PPT培训课件
目录
• 半导体简介 • 半导体材料 • 半导体器件 • 半导体制造工艺 • 半导体技术发展趋势 • 案例分析
半导体简介
01
半导体的定义
总结词
半导体的定义
详细描述
半导体是指在常温下导电性能介于导体与绝缘体之间的材料,常见的半导体材 料有硅、锗等。
半导体的特性
总结词
化合物半导体具有宽的禁带宽度和高 的电子迁移率等特点,使得化合物半 导体在光电子器件和高速电子器件等 领域具有广泛的应用。
掺杂半导体
掺杂半导体是在纯净的半导体中掺入其他元素,改变其导电 性能的半导体。
掺杂半导体的导电性能可以通过掺入不同类型和浓度的杂质 来调控,从而实现电子和空穴的平衡,是制造晶体管、集成 电路等电子器件的重要材料。
掺杂的目的是形成PN结、调控载流 子浓度等,从而影响器件的电学性能。
掺杂和退火的均匀性和控制精度对器 件性能至关重要,直接影响最终产品 的质量和可靠性。
半导体技术发展趋势
05
新型半导体材料
硅基半导体材料
宽禁带半导体材料
作为传统的半导体材料,硅基半导体 在集成电路、微电子等领域应用广泛。 随着技术的不断发展,硅基半导体的 性能也在不断提升。
半导体制造工艺
04
晶圆制备
晶圆制备是半导体制造的第一步,其目的是获得具有特定晶体结构和纯度的单晶硅 片。
制备过程包括多晶硅的提纯、熔炼、长晶、切磨、抛光等步骤,最终得到可用于后 续工艺的晶圆。
晶圆的质量和表面光洁度对后续工艺的成败至关重要,因此制备过程中需严格控制 工艺参数和材料质量。
薄膜沉积
输入 标题
详细描述
集成电路的制作过程涉及微电子技术,通过一系列的 工艺步骤,将晶体管、电阻、电容等电子元件集成在 一块硅片上,形成复杂的电路。
半导体基本知识(PPT课件)
例开关电路如图所示.输入信号U1是幅值为5V频率为 1KHZ的脉冲电压信号.已知 β=125,三极管饱和时 UBE=0.7V,UCES=0.25V.试分析电路的工作状态和输出电压 的波形
三极管的三种接法
• 共射极电路: • 共基极电路: • 共集极电路(射极跟随器)
MOS场效应管
• 压控电流源器件 • 分类:
• 难点:
– 1、载流子运动规律与器件外部特性的关系。 只须了解,不必深究
半导体基本知识
• 半导体:
– 定义:导电性能介于导体和绝缘之间的物质 – 材料:常见硅、锗 – 硅、锗晶体的每个原子均是靠共价键紧密
结合在一起。
本征半导体
• 本征半导体:纯净的半导体。0K时,价电子
不能挣脱共价键而参与导电,因此不导电。随 T上升晶体中少数的价电子获得能量。挣脱共 价键束缚,成为自由电子,原来共价键处留下 空位称为空穴。空穴与自由电子统称载流子。 • 自由电子:负电荷 • 空穴:正电荷 • 不导电– 增强源自、耗尽型 – PMOS管、NMOS管
• 特性曲线
– 转移特性曲线 – 输出特性曲线
MOS场效应管的主要参数
• 直流参数:
– 开启电压 UTN,UTP – 输入电阻 rgs
• 交流参数:
– 跨导gm – 导通电阻Rds – 极间电容
例NMOS管构成反相器如图示,其主要参数为UTN=2.0V, gM=1.3MA/V,rDS(ON)=875,电源电压UC=12V。输入脉 冲电压源辐值为5V,频率为1KHZ。试分析电路的工作状 态及输出电压UO的波形。
限幅电路如图示:假设输入UI为一周期性矩形 脉冲,低电压UIL=-5V,高电压UIH=5V。
• 当输入UI为-5V时,二极管D截止, • 视为“开路”,输出UO=0V。 • 当输入UI为+5V时,二极管D导通, • 由于其等效电阻RD相对于负载电 • 阻R的值小得多,故UI基本落在R上, • 即UO=UI=+5V。
20-半导体基础知识PPT模板
电工电子技术
半导体之所以被作为制造电子器件的主要材料在于它 具有热敏性、光敏性和掺杂性。
热敏性:是指半导体的导电能力随着温度的升高而迅 速增加的特性。利用这种特性可制成各种热敏元件,如热 敏电阻等。
光敏性:是指半导体的导电能力随光照的变化有显著 改变的特性。利用这种特性可制成光电二极管、光电.1 半导体的基本特性
根据导电性能的不同,自然界的物质大体可分为导体、 绝缘体和半导体三大类。其中,容易导电、电阻率小于 10-4Ω·cm的物质称为导体,如铜、铝、银等金属材料;很难 导电、电阻率大于104Ω·cm的物质称为绝缘体,如塑料、橡 胶、陶瓷等材料;导电能力介于导体和绝缘体之间的物质 称为半导体,如硅、锗、硒及大多数金属氧化物和硫化物 等。
(2)反向偏置
给PN结加反向偏置电压,即N区接电源正极,P区接电源 负极,称PN结反向偏置,如下图所示。
由于外加电场与内电场的 方向一致,因而加强了内电场, 促进了少子的漂移运动,阻碍 了多子的扩散运动,使空间电 荷区变宽。此时,主要由少子 的漂移运动形成的漂移电流将 超过扩散电流,方向由N区指向 P区,称为反向电流。由于常温 下少子的数量很少,所以反向 电流很小。此时,PN结处于截 止状态。
(2)P型半导体
在本征半导体硅(或锗)中掺入微量三价元素硼,由 于硼原子只有3个价电子,它与周围硅原子组成共价键时, 因缺少一个价电子而形成一个空穴,相邻的价电子很容易 填补这个空穴,形成新的空穴。这种半导体导电主要靠空 穴,所以称为空穴型半导体或P型半导体,如下图所示。P 型半导体中,空穴是多子,自由电子是少子。
2.PN结的单向导电性
(1)正向偏置
给PN结外加正向偏置电压,即P区接电源正极,N区接电 源负极,称PN结为正向偏置,如下图所示。
半导体的基本知识77509 PPT资料共92页
的扩散受抑制。少子漂
移加强,但少子数量有
限,只能形成较小的反
向电流。
+
N
内电场
外电场
R
E
(1-24)
2.1.3 半导体二极管
一、基本结构
PN 结加上管壳和引线,就成为半导体二极管。
点接触型
触丝线
PN结
引线 外壳线
基片
二极管的电路符号: PFra bibliotek面接触型
N
(1-25)
二、伏安特性
I
死区电压 硅管 0.6V,锗管0.2V。
在本征半导体中掺入某些微量的杂质,就会 使半导体的导电性能发生显著变化。其原因是掺 杂半导体的某种载流子浓度大大增加。
N 型半导体:自由电子浓度大大增加的杂质半导体, 也称为(电子半导体)。
P 型半导体:空穴浓度大大增加的杂质半导体,也 称为(空穴半导体)。
(1-12)
一、N 型半导体
在硅或锗晶体中掺入少量的五价元素磷 (或锑),晶体点阵中的某些半导体原子被 杂质取代,磷原子的最外层有五个价电子, 其中四个与相邻的半导体原子形成共价键, 必定多出一个电子,这个电子几乎不受束缚, 很容易被激发而成为自由电子,这样磷原子 就成了不能移动的带正电的离子。每个磷原 子给出一个电子,称为施主原子。
(1-10)
本征半导体中电流由两部分组成: 1. 自由电子移动产生的电流。 2. 空穴移动产生的电流。
本征半导体的导电能力取决于载流子的浓度。
温度越高,载流子的浓度越高。因此本征半 导体的导电能力越强,温度是影响半导体性 能的一个重要的外部因素,这是半导体的一 大特点。
(1-11)
1.1.3 杂质半导体
i
iL
半导体基础知识9课件
1985年,1兆位ULSI的集成度达到200万个元件,器件条 宽仅为1微米;1992年,16兆位的芯片集成度达到了3200万个 元件,条宽减到0.5微米半,导而体基后础知的识6(9)4课兆件 位芯片,其条宽仅为0.3 微米。
集成电路分类 集成电路制造技术的发展日新月异,其中最 具有代表性的集成电路芯片主要包括以下几类,它 们构成了现代数字系统的基石。
1.3 本课程的特点和学习方法
1. 本课程的主要特点
a. 内容比较庞杂。 b. 技术术语多。 c. 基本概念多。 d. 电路种类多。 e. 课程的难点都集中在前几章,初学者都会有
“入门难”的感觉。
半导体基础知识(9)课件
2. 本课程的学习方法 (1) 注重物理概念 (2) 采用工程观点 实际工程问题的特点 a. 电子器件的特性具有分散性 b. 元器件的实际参数值与标称值有一定的偏差 c. 实际参数值受环境温度等因素的影响而偏离设计值 d. 难以进行精确计算
德福雷斯特在弗菜明二极管上加栅极,制成第一只三极管 1912年 阿诺德和兰米尔研制出高真空电子管 1917年 坎贝尔研制成滤波器 1922年 弗里斯研制成第一台超外差无线电收音机 1934年 劳伦斯研制成回旋加速器 1940年 帕全森和洛弗尔研制成电子模拟计算机 1947年 肖克莱、巴丁和布拉顿发明晶体管;香农奠定信息论 的基础
(5)特大规模集成电路
半导体基础知识(9)课件
集成电路各阶段集成度
时期
规模
50年代末 小规模集成电路(SSI)
集成度 (元件数)
100
60年代 中规模集成电路(MSI)
1000
70年代 大规模集成电路(LSI)
>1000
70年代末 超大规模集成电路(VLSI) 10000
半导体基础知识PPT
03
半导体器件
二极管
工作原理
二极管是由一个PN结组成的电子器件, 具有单向导电性。在正向偏置时,电流可 以流通;而在反向偏置时,电流被阻止。
应用
类型
常见的二极管类型有硅二极管和锗二 极管,它们在电气性能上略有差异。
二极管在电子线路中广泛应用,如整 流、检波、开关等。
三极管
1 2
工作原理
三极管是由两个PN结组成的电子器件,具有电 流放大作用。通过调整基极电流,可以控制集电 极和发射极之间的电流。
感谢观看
半导体的导电机制主要是由其 内部的电子和空穴的运动决定 的。
半导体的特性
半导体材料的导电能力受温度、光照、电场等因素影响,具有热敏、光敏、掺杂等 特点。
半导体的电阻率可在很大范围内变化,通过改变温度、光照、电场等条件,可以控 制其电阻率的变化。
半导体的载流子类型和浓度决定了其导电性能,可以通过掺杂等方式改变载流子类 型和浓度。
物理沉积
通过物理过程如真空蒸发、溅 射等,将所需材料沉积在晶圆
表面形成薄膜。
化学气相沉积
利用化学反应在晶圆表面生成 所需材料的薄膜。
外延生长
在单晶基底上通过控制温度、 气体流量等参数,使薄膜按照 单晶的晶体结构生长。
离子注入
将离子化的材料注入到晶圆内 部的特定区域,形成具有一定
特性的薄膜。
掺杂与刻蚀
功耗具有重要意义。
集成电路设计
01
02
03
人工智能辅助设计
利用人工智能技术进行集 成电路自动化设计,提高 设计效率和准确性。
异构集成技术
将不同工艺类型的芯片集 成在一个封装内,实现高 性能、低功耗的系统级芯 片。
定制化设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外延基础知识
一、基本概念
能级:电子是不连续的,其值主要由主量子数N决定,每一确定能量值称为一个能级。
能带:大量孤立原子结合成晶体后,周期场中电子能量状态出现新特点:孤立原子原来一个能级将分裂成大量密集的能级,构成一相应的能带。
(晶体中电子能量状态可用能带描述)
导带:对未填满电子的能带,能带中电子在外场作用下,将参与导电,形成宏观电流,这样的能带称为导带。
价带:由价电子能级分裂形成的能带,称为价带。
(价带可能是满带,也可能是电子未填满的能带)
直接带隙:导带底和价带顶位于K空间同一位置。
间接带隙:导带底和价带顶位于K空间不同位置。
同质结:组成PN结的P型区和N型区是同种材料。
(如红黄光中的:GaAs上生长GaAs,蓝绿光中:U(undope)-GaN上生长N(dope)- GaN)
异质结:两种晶体结构相同,晶格常数相近,但带隙宽度不同的半导体材料生长在一起形成的结,称为异质结。
(如蓝绿光中:GaN上生长Al GaN)
超晶格(superlatic):由两种或两种以上组分不同或导电类型各异的超薄层(相邻势阱内电子波函数发生交迭)的材料,交替生长形成的人工周期性结构,称为超晶格材料。
量子阱(QW):通常把势垒较厚,以致于相邻电子波函数不发生交迭的周期性结构,称为量子阱(它是超晶格的一种)。
二、半导体
1.分类:元素半导体:Si 、Ge
化合物半导体:GaAs、InP、GaN(Ⅲ-Ⅴ)、ZnSe(Ⅱ-Ⅵ)、SiC
2.化合物半导体优点:
a.调节材料组分易形成直接带隙材料,有高的光电转换效率。
(光电器件一般选用直接带隙材料)
b.高电子迁移率。
c.可制成异质结,进行能带裁减,易形成新器件。
3.半导体杂质和缺陷
杂质:替位式杂质(有效掺杂)
间隙式杂质
缺陷:点缺陷:如空位、间隙原子
线缺陷:如位错
面缺陷:(即立方密积结构里夹杂着少量六角密积)如层错
4.外延技术
LPE:液相外延,生长速率快,产量大,但晶体生长难以精确控制。
(普亮LED常用此生长方法)
MOCVD(也称MOVPE):Metal Organic Chemical Vapour Deposition金属有机汽相淀积,精确控制晶体生长,重复性好,产量大,适合工业化大生产。
HVPE:氢化物汽相外延,是近几年在MOCVD基础上发展起来的,适应于Ⅲ-Ⅴ氮化物半导体薄膜和超晶格外延生长的一种新技术。
生长速率快,但晶格质量较差。
MBE:分子束外延,可精确控制晶体生长,生长出的晶体异常光滑,晶格质量非常好,但生长速率慢,难以用于工业化大生产。
三、MOCVD设备
1.发展史:国际上起源于80年代初,我国在80年代中(85年)。
国际上发展特点:专业化分工,我国发展特点:小而全,小作坊式。
技术条件:a.MO源:难合成,操作困难。
b.设备控制精度:流量及压力控制
c.反应室设计:Vecco:高速旋转
Aixtron:气浮式旋转
Tomax Swan :CCS系统(结合前两种设备特点)
Nichia:双流式
2.MOCVD组成
常用MO源:TMGa(三甲基镓,液态)
TMAl(三甲基铝,液态)
TMIn(三甲基铟,固态,现已有液态)
TEGa(三乙基镓,液态)
Cp2Mg(二茂基镁,固态,现已有液态)
载气为纯度很高(99.999999%)的氢气和氮气
特气:高纯度(99.9999%)的AsH3(砷烷,液态)PH3(磷烷,液态)Si2H6(乙硅烷,气态)(前三种为红黄光生产使用)NH3(氨气,液态)SiH4(硅烷,气态)(后两种为蓝绿光生产使用)
气控单元:主要由MFC(流量计)、PC(压力计)和一些管道组成,用于气体的控制和输送。
控制单元:根据PC机输入的生长程序,对工艺进行控制。
反应室:a.按压力分可分为常压反应室(如Nichia公司的设备)和低压反应室(如Veeco和Aixtron公司的设备)。
两者区别:气体流速。
低压反应室优点:气体切换快,停滞层薄,预反应小,界面转换快。
B.按形状分:水平式(Aixtron)、立式(Vecco和Tomax Swan)、桶式(常用于Si外延)和双流式(Nichia)。
衬底:红黄光生长用GaAs(砷化镓),蓝绿光生长用Al2O3(蓝宝石)(最通用)、SiC(Cree)和GaAs(砷化镓)、Si(硅)(后两种仍处于实验室阶段)等。
尾气处理器:主要用于生长后的废气处理,使其达到无污染排放。
红黄光生长产生尾气用化学尾气处理器处理,蓝绿光生长产生的尾气用湿法尾气处理器处理。
四、LED的MOCVD外延生长
1.基本反应:
红黄光:TMGa+AsH3 GaAs+CH4
TMGa+PH3 GaP+CH4
蓝绿光:TMGa+ NH3 GaN+CH4
反应特点:a.远离化学平衡:Ⅴ/Ⅲ>>1
b.晶体生长速率主要由Ⅲ族元素决定
2.外延层结构及生长过程
(1)红黄光LED
a.首先对衬底进行高温处理,以清洁其表面。
b.生长一层GaAs buffer(缓冲层),其晶格质量较衬底好,可除衬底影响,但不能消除位错。
c.生长一套DBR(分布布拉格反射器)。
它是利用GaAs和AlAs反射率不同,可达到增反射效果,
提高反射率。
每层厚度:d=λ/4n(d:厚度,λ:波长,n:材料折射率),这一层相当于镜子的作用,减少衬底的吸收。
d.生长一层N型(Al0.95Ga0.05)0.5In0.5P,为active layer(有源区)提供辐射复合电子。
e.Actrive layer(有源层),其成分是(Al x Ga1-x)0.5In0.5P /(Al y Ga1-y)0.5In0.5P,是主要的发光层,光强和波
长主要由此层决定。
它通过调节MQW(多量子阱)中的Al(铝)的组分,达到调节波长的作用,通过优化此层的参数(如:阱的个数,材料组分,量子阱周期厚度),可明显提高发光效率。
f.生长一层P型(Al0.95Ga0.05)0.5In0.5P,此层因Al组分很高,对载流子起到限制的作用,可明显提高发
光效率。
g.生长一层P型GaP层,此层为电流扩展层,扩展层越厚,电流扩展得越好,亮度越高。
(但有一个
成本问题)
(2)蓝绿光LED
a.首先对衬底进行高温处理,以清洁其表面。
b.因Al2O3与GaN失配非常大(达到13.6%),因此必须在低温下生长一层buffer(缓冲层)约20~30nm,
若此层生长有问题,将极大影响上层晶格质量。
c.生长一层约4μm厚的N型GaN,此层主要为active layer(有源层),提供辐射复合电子。
h.生长一套active layer(MQW),其成分是In X Ga1-X N/GaN,是主要的发光层,光强和波长主要由此层决
定。
它通过调节MQW(多量子阱)中的In(铟)的组分,达到调节波长的作用,通过优化此层的参数(如:阱的个数,材料组分,量子阱周期厚度及掺杂浓度),可明显提高发光效率,其晶格质量对ESD有很大的影响。
i.生长一层P型Al X Ga1-X N层,因此层Al组分较高,对载流子起到限制的作用,可明显提高发光效率。
d.生长一层P型GaN,为active layer(有源区)提供辐射复合电子。
红黄光和蓝绿光外延生长完后均须退火,以活化P层,红黄光是在反应室内退火,而蓝绿光是在退火炉内退火(也有公司在反应室内退火)。
外延生长以提高内量子效率为主,芯片及封装工艺提高的是外量子效率。
ηin=产生光子数/注入电子空穴对ηin:内量子效率
ηex=取出光子数/注入电子空穴对ηex:外量子效率
3.测试
外延工艺测试主要有:显微镜观察,PL(光致发光),X-ray,E-CV(电化学)和EL(电致发光)。
4.发展方向
GaAs:提高外量子效率,如:加厚P-GaP,采用表面粗化技术(粗化P型层),采用bonding 技术(bonding 金属)。
GaN:提高内量子效率,如:采用ELOG(横向外延过生长)技术,减少外延缺陷,提高晶格质量,优化MQW(多量子阱)的生长质量,达到提高光强目的,改变器件结构,提高光强和光电性能(如:在P层采用AlGaN/GaN superlatic结构);提高外量子效率,如:采用表面粗化技术(粗化P型层或粗化N 型层或粗化衬底表面),采用ITO技术;增大芯片面积,加大注入电流(即flip-chip)。