高一数学映射的概念
映射与函数知识点总结
映射与函数知识点总结一、映射与函数的概念1.映射的定义:将一个集合中的每个元素都对应到另一个集合中的一些元素的规律称为映射。
对于给定的两个集合A和B,如果每个元素a∈A都有一个元素b∈B与之对应,那么就称集合A到集合B的映射。
记作f:A→B。
2.函数的定义:函数是一种特殊的映射,它满足每个元素a∈A只能对应一个元素b∈B的规律。
对于给定的两个集合A和B,如果每个元素a∈A都有唯一的元素b∈B与之对应,那么就称集合A到集合B的函数。
记作f:A→B。
3.定义域和值域:函数f的定义域是指所有可能作为函数输入的数的集合,通常用符号D(f)表示;函数f的值域是指函数所有可能的输出的数的集合,通常用符号R(f)表示。
二、映射与函数的性质1.单射:也称为一一对应,指当对于集合A中的不同元素a1和a2,它们在集合B中的对应元素f(a1)和f(a2)也不相同。
换句话说,每个元素a∈A都对应着集合B中唯一的元素。
2.满射:也称为映满函数,指函数的值域与集合B相同,即函数的所有可能的输出都在集合B中。
3.双射:即同时满足单射和满射的函数,也称为一一映射。
4.奇函数和偶函数:如果对于函数f的定义域中的每一个实数x,都有f(-x)=-f(x)成立,则称函数f是奇函数;如果对于函数f的定义域中的每一个实数x,都有f(-x)=f(x)成立,则称函数f是偶函数。
5.反函数:如果函数f的定义域和值域都是实数集,且对于函数f中的每一对实数(x,y),都有y=f(x),则存在一个函数g,使得对于函数g中的每一对实数(y,x),都有x=g(y)。
这样的函数g称为函数f的反函数。
三、映射与函数的应用1.函数关系式:映射与函数可以描述实际问题中的各种关系,如线性函数、二次函数、指数函数、对数函数等。
通过分析函数关系式,我们可以了解函数的性质和特点,从而应用到各种实际问题中。
2.函数的图像:通过绘制函数的图像,可以直观地表达函数的变化规律,了解函数的增减性、奇偶性、周期性等。
函数、映射的概念
函数、映射的概念•1、映射:(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。
(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。
2、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x 的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。
(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x的值相对应的y值叫做函数值,函数值的集合{ f(x)|x ∈A}叫做函数f(x)的值域。
显然值域是集合B的子集。
3、构成函数的三要素:定义域,值域,对应法则。
值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。
4、函数的表示方法:(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法;(2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;(3)图象法:就是用函数图象表示两个变量之间的关系。
注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。
•映射f:A→B的特征:(1)存在性:集合A中任一a在集合B中都有像;(2)惟一性:集合A中的任一a在集合B中的像只有一个;(3)方向性:从A到B的映射与从B到A的映射一般是不一样的;(4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。
高一必修一映射的概念课件(ppt)
(3)X=R,Y={非负实数},f:y=x4.
f:X→Y.非一一映射,是函数
例3. 点(x,y)在映射f下的象是(x-2y,3x+2y), (1) 、求点(5,3)在映射f下的像; (2)、求点(6,2)在映射f下的原象.
解 1、 : 5231,35232,1
点 (2,3)在映 f下射 的像 1,2.1是
不是 (6)
复习 映射的概念
一般地,设A、B是两个非空集合,如果按
某一个确定的对应关系f,对于集合A中的每一 个元素x,在集合B中都有唯一确定的元素y与之 对应,那么就称对应f:A→B为从集合A到集合
B的一个映射(mapping)
我们把A中的元素x称为原像,B中的对应 元素y称为x的像
以下两个映射有什么共同的特点?
B的一个映射(mapping)。
思考:映射与函数有什么区别与联系?
思考:映射与函数有什么区别与联系?
函数 映射
建立在两个非空数集上的特殊对应
扩展
建立在两个任意集合上的特殊对应
(1)函数是特殊的映射,是数集到数集的映射. (2)映射是函数概念的扩展,映射不一定是函数. (3)映射与函数都是特殊的对应
这种“特殊对应”有何特点:
1.可以是“一对一” 2.可以是“多对一” 3.不能“一对多” 4.A中不能有剩余元素 5.B中可以有剩余元素
下面对应是否为函数?
A={高一(1)班同学} ,B={正实数} ,f:让每位同学与 学号数对应.对应如下表所示:
A
张三 李四
每位同学与学 B 号数对应
1
2
…… ……
王五
30
A={中国,日本,韩国 },B={北京,东京,首尔 }, f:相应国家的首都.
高一数学必修1教案:2-3映射的概念 含解析 精品
2.1.4 映射的概念整体设计教材分析映射与前面学习的集合和函数有着密切的关系,事实上,映射是两个集合中的一种特殊的对应关系,即如果按照某种对应法则,对于集合A中的任何一个元素,在集合B中都有唯一的元素与它对应,那么这样的对应(包括对应法则)叫做集合A到集合B的映射.在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,并选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法可以让学生比较直观地认识映射,而后再用抽象的数学符号表示映射.关于映射中象和原象的概念以及映射的分类和一一映射、单射、满射等概念,一般不要涉及,对于函数与映射的关系,只需强调若映射中的两个集合A和B均为非空数集时,这个映射就是函数.三维目标1.了解映射的概念,会借助图象帮助理解映射的概念.2.会根据定义判断映射.3.了解映射是函数概念的一般扩展(将数集扩展到任意元素组成的集合),函数是一类特殊的映射(非空数集到非空数集的映射).4.采用“举例——观察——比较——讨论——总结”的形式,通过实例找共性,给出映射的定义,最后进行小结,教师起到点拨和深化的作用.重点难点教学重点:映射的概念及判断.教学难点:映射的概念.课时安排1课时教学过程导入新课设计思路一(情境导入)1.老师走进教室,只要环顾一下,不点名,就知道今天有没有同学缺课,缺课的同学有多少.大家知道老师是怎么做到的吗?(每个同学都有唯一的座位)2.为了解学生身体健康状况,现对高一年级全体学生的体重进行统计,设高一年级的全体同学组成集合A,正实数集为集合B,让集合A中任一同学与其体重对应,则得到一个从集合A到集合B的对应.(课本引例)用下图来表示这个对应:你还能举出一些类似的例子吗?(由同学们自由发挥)例如:1.中华人民共和国的任何一个公民都有唯一的身份证号码与之对应;2.数轴上的任何一个点都有唯一的实数与之对应;3.坐标平面内的任何一个点都有唯一的有序实数对与之对应;4.平面上任何一个三角形都有唯一的面积与之对应.这些都是从集合A到集合B的对应,这些对应有没有什么共同的特征?设计思路二(事例导入)在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,现在我们重点研究两个集合中元素之间的对应关系,这要先从我们熟悉的对应说起.出示下图(用投影仪打出一些对应关系,共5个):1.这5个图中,它们有什么共同特点?应该能看出,各个图都反映了两个集合的元素之间的一种对应关系,即对于集合A中的任一个元素,按照某种法则在集合B中都有确定的(一个或几个)元素与它对应.2.进一步观察,(1)(2)(4)(5)这4个图中的对应有什么共同特点?设计思路三(复习导入)前面学习的集合的有关知识,包括元素与集合的关系,集合之间的包含关系等,两个集合之间的内在联系是通过两个集合中元素与元素的对应关系揭示的.而刚刚学过的函数y=f(x)实际上是定义域A上的元素x到值域B上的元素y之间的一种对应关系,这里定义域A和值域B都必须是非空数集,如果我们把集合A和集合B扩充为任意非空集合(未必是数集),则这样的对应就未必是函数,那么这个对应又是什么呢?推进新课新知探究对于设计思路一,教师提出问题:这些对应有什么共同的特征?若学生无法归纳,则鼓励他们讨论,只要有人说出“任一”“都有”“唯一”等关键词,都给予热情鼓励.若经讨论仍然没有同学能够说出这些关键词,则可以提示学生从上面例子的句式结构上观察,它们都有同样的句子结构:“……任何一个……都有唯一的……与之对应”.这些例子都是在说明集合A和集合B的元素之间的对应关系,都有一个共同的特征,就是:(板书)集合A中的任何一个元素在集合B中都有唯一的元素与之对应.这样的对应就是我们今天要学习的映射.然后教师和学生一起把刚才的板书修改完善:(板书)定义:设A、B是两个集合,如果按照某种对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作:f:A→B对于设计思路二,紧接上面问题,(1)(2)(4)(5)这4个图中的对应有什么共同特点?(用投影仪将这几个图集中在一起)类似思路一,老师鼓励学生自己得出结论:集合A中的任何一个元素在集合B中都有唯一的元素与之对应.如果有困难,也采用思路一类似的办法,最后同样得到映射的定义.对于设计思路三,函数实际上是定义域A上的元素x到值域B上的元素y之间的一种对应关系,对于集合A中的任何一个元素x,在集合B中都有唯一的元素y和它对应,这里定义域A和值域B都必须是非空数集.如果我们把函数中定义域A和值域B扩充为任意非空集合,则这样的对应就未必是函数,我们把这样的对应称为映射(板书).然后老师和学生一起把映射的定义叙述并修改完善.记忆技巧:(学生思考、讨论、回答,教师整理、强调)①“任意性”:映射中的两个集合A、B可以是数集、点集或由图形等组成的任意集合,这是映射的“任意性”;②“A到B”:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射,例如A到B是求平方,B到A则是开平方,因此映射是“有序的”;③“任一”:对于集合A中的任何一个元素,集合B中都存在元素和它对应,这是映射的“存在性”;④“唯一”:对于集合A中的任何一个元素,集合B中都是唯一的元素和它对应,这是映射的“唯一性”;⑤“在集合B中”:也就是说A中元素的对应元素必在集合B中,这是映射的“封闭性”.(这一点可根据学生的具体学情有选择地教学)映射概念的核心就是“A中之任一对B中之唯一”,这是判断一个对应是不是映射的关键.从形式上看映射有“一对一”和“多对一”,另外,集合A中的元素必须一个不剩,集合B中元素允许剩余,而对应有“一对一”“多对一”“一对多”“多对多”四种情况.三句口诀:1.A中之任一对B中之唯一.2.对一是映射,对多非映射.3.A中一个不剩,B中可以多余.应用示例思路1请同学甲设计一个例题:例题下面给出的四个对应中,能构成映射的有哪些?要求:四个对应两个是映射,两个不是映射.两个映射必须分别是“一对一”和“多对一”,两个不是映射的对应必须分别体现没有符合“A中之任一”和“B中之唯一”.同学乙对同学甲编制的题目是否符合老师的要求作出回答,并分析原因,给出正确答案.思路2教师直接给出题目:(用投影仪打出一些对应关系,共4个)例1下面给出的四个对应中,能构成映射的有哪些?分析:一个对应是不是能够构成映射,就看它能不能满足映射定义的要求,即抓住关键:A中之任一对B中之唯一.既然“A中任一”,则A中不能有多余的元素,应该一个不剩,而B中元素没有这个要求,故B中元素可以允许有多余;既然“B中唯一”,则只能是“一对一”或“多对一”,而不能是“一对多”或“多对多”.解:因为(1)(3)的对应满足映射的定义,而(2)不满足“任意性”,(4)不满足“唯一性”,所以(2)(4)不能构成映射,能构成集合A到B的映射的有:(1)(3).错误解法:本题容易在(1)(2)的判断上出现错误.(1)有两个箭头指向同一元素,易判为“不是映射”,(2)中都是一个箭头在指,所以易判为“是映射”.这时要提醒学生:对于(1),只要A 中的一个元素射出去的箭头只有一个就可以了,至于有多少个箭头指向B 中同一元素就无所谓了;对于(2),A 中不能有多余的元素,应该一个不剩,而B 中元素没有这个要求,可以允许有多余.例2 (用投影仪打出)下列对应,哪些是A 到B 的映射?(1) A={x|x≥0},B={1},对应法则f:x→y=x 0.(2) A={x|0≤x≤2},B={y|0≤y≤1},对应法则f :x→y=31x. (3) A={x|0≤x≤2},B={y|0≤y≤1},对应法则f:x→y=(x -2)2. (4) A={x|0≤x≤4},B={y|0≤y≤2},对应法则f :x→y=81x 2. 解:因为(2)(4)的对应满足映射的定义,所以能构成集合A 到B 的映射;而(1)(3)不满足“任意性”,所以(1)(3)不能构成映射.错误解法分析:判断(1)时,学生容易忽视元素0,判断(2)时,由于C≠B ,也容易发生错误,判断(3)(4)时,由于都是二对一,在求A中所有元素的对应元素组成的集合时容易出现错误,这些都要一一纠正.例3 (用投影仪打出)设集合A={x|0≤x≤1},B={y|0≤y≤1},则下图所示的各图象中,表示从集合A到集合B的映射的是___________.分析:上图的五个图中,显然所有的x ∈A ,①③④⑤中都有y ∈B ,这一点都符合了“A中任一元素都有B中元素与之对应”,只有②中当21<x≤1时对应的,即B中没有元素与之对应,所以②不是映射.④中除了元素0,A中每个元素都有两个元素与之对应,所以④也不是映射.①③⑤中每一个不同的x 都只有唯一的B中的元素y与之对应,符合了映射的定义,所以①③⑤是映射.答案:①③⑤.点评:本题是由图象的形式给出映射,由于学生对映射的图象表示还不是太熟悉,所以往往会看不懂题目表示的意思,导致解题时无从下手.这时老师可结合前面学过的函数的图象来指导学生读题,指出图象上每一个点都可以用坐标来表示,其中横坐标x就是映射中集合A中的元素,纵坐标y就是集合B中的元素,这时映射的定义就可以表示为“以集合A中的数为横坐标的点都在图象上(A中任一元素),其对应的纵坐标都属于集合B(都有B中元素与之对应),且横坐标不同时对应的纵坐标也不同(与x对应的y是唯一的).具体看图时可以看如下三个方面:①横坐标是否都在定义域内,定义域内的数是否都在图象上;②纵坐标是否都在值域内;③与x轴垂直的直线与图象的公共点是否只有一个.例4 已知集合A={1,2,3,m},(m ∈N ),B={4,7,n 4,n 2+3n},(n ∈N ),设x ∈A,y ∈B,“f:x→y=3x+1”是集合A 到集合B 的映射,求m ,n 的值.分析:根据映射的定义,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,而对应法则是“f:x→y=3x+1”,所以1→4,2→7,3→10,m→3m+1.由于对应法则是一次关系式,所以A 中不同元素对应的B 中元素也必须不同,不可能出现“多对一”的情况.而B={4,7,n 4,n 2+3n},所以10和3m+1必然等于n 4和n 2+3n ,这里又有两种情况:10=n 4,3m+1=n 2+3n ,或者10=n 2+3n,3m+1=n 4,继续解出m 、n ,问题就解决了.解:∵3×1+1=4 ,3×2+1=7,3×3+1=10,又∵对应法则是“f:x→y=3x+1”,∴3m+1不可能等于4、7、10,∴由⎪⎩⎪⎨⎧+=+=+⨯=,133,1013324m n n n 又m,n ∈N ,∴方程组无解. 由⎪⎩⎪⎨⎧=+⨯=++=,101333,1324n n m n 又m,n ∈N ,解得⎩⎨⎧==.5,2m n 综上所述m=5,n=2.错误解法:一种错误是没有说明这个映射不可能是多对一.因为在1→4,2→7,3→10的情况下,如果不考虑对应法则,m 完全有可能再和4、7、10中的某一个对应,这样需讨论的情况就太多了.所以应该先考虑对应法则,得到这个映射只能是一对一,这时就仅仅剩下两种情况讨论了.另一种错误是不讨论,这时老师可以画图,用箭头来指出有两种情况.点评:本题中,学生非常容易忽略“多对一”,并且只解第一种情况而忘记解第二种情况.所以不论学生是不是出现错误,都要强调先说明“ 3m+1不可能等于4、7、10”,再对两种可能情况分别求解,解方程组的具体过程可以简略一些.知能训练课本第42页练习1、2、3、4.解答:1.(1)因为对应法则是f :x→2x +1,所以1→3,2→5.(2)因为对应法则是g:x→21-x ,所以3→1,5→2. 两个映射f 和g 是互为逆映射.(见备课资料)2.(1)集合A 中一共有3个元素1,4,9,对应法则是“f :x→x 的平方根”,所以1→±1,4→±2,9→±3,尽管±1,±2,±3都是集合B 中的元素,但这是“二对一”,因而这个对应不符合映射的定义,所以这个对应不是映射.(2)集合A 中存在元素0,由于对应法则是“f :x→x 的倒数”,所以元素0在集合B 中没有元素与之对应,因而这个对应不符合映射的定义,所以这个对应不是映射.(3)是映射.(4)集合A 是平面内周长为5的所有三角形组成的集合,其中任意一个三角形都有唯一的外心,且外心都是这个平面内的点,由于对应法则为f :三角形→三角形的外心,所以A 中任一元素都和B 中唯一元素对应,这就符合了映射的定义,因此这个对应是映射.3.(1)根据题目中的对应法则,m→n ,a→b ,t→u ,h→i ,e→f ,i→j ,c→d ,s→t ,所以明文“mathematics”的密文为“nbuifnbujdt”.(2)同上,i→j ,t→u ,s→t ,f→g ,u→v ,n→o ,y →z ,所以密文“ju jt gvooz”的明文是“it is funny”.课堂小结映射是由集合A ,集合B 和对应法则三部分组成的一个整体,判断一个对应是不是映射应该抓住关键:A 中之任一对B 中之唯一.A 中不能有多余的元素,应该一个不剩,而B 中元素没有这个要求,可以允许有剩余;映射只能是“一对一”或“多对一”,而不能是“一对多”或“多对多”,A 到B 的映射与B 到A 的映射往往不是同一个映射.作业1.若集合A ={0,1,2,3,4,5,6},f :x→y=x 2-4x 是从A 到B 的映射,则集合B 中至少有______________个元素.解答:因为集合A ={0,1,2,3,4,5,6},对应法则为f :x→y=x 2-4x ,所以0、4→0,1、3→-3,2→-4,5→5,6→12,而集合B 必须包含这些元素,因此B 中至少有5个元素.2.已知集合A =B ={(x ,y)|x ∈R ,y ∈R },A 到B 的映射f :(x ,y)→(x+y ,xy).(1)A 中元素(2,-3)对应于B 中哪个元素?(2)B 中元素(2,-3)与A 中哪个元素对应?解答:(1)当x =2,y =-3时,x +y =-1,xy =-6,所以A 中元素(2,-3)对应于B 中元素(-1,-6).(2)当⎩⎨⎧-==+3,2xy y x 时,得⎩⎨⎧=-=3,1y x 或⎩⎨⎧-==,1,3y x 所以B 中元素(2,-3)与A 中元素(-1,3)和(3,-1)对应.3.阅读课本第44页第12题(阅读题),找一些生活中与对应和映射有关的实例.设计感想原教材中映射这部分内容是安排在函数这一章的开始,现在苏教版教材安排在函数概念、图象、表示方法、单调性、奇偶性等内容之后.因为映射的概念如果单单从非数学的日常生活方面来看,并不难以理解,但是上升到严格的数学定义和抽象的数学概念就比较深奥.所以教材这样安排一方面是考虑到多数高中学生的认知特点.为了降低难度,教材先让学生对函数有了初步认识,接触了部分具体的函数,在有了一定的体会后,再学习映射,同时对函数的认识也得到进一步加强.另一方面是为了通过循环反复学习,加深了学生对函数概念的理解,有助于他们对函数概念本质的理解,像函数这样的核心概念需要多次接触、反复体会、螺旋上升,逐步加深理解,才能真正掌握,灵活应用.本课在教学设计时努力体现新课标的要求.在映射概念引入时,先从学生熟悉的对应入手,选择一些具体的生活例子,然后再举一些数学例子,先用图形表示映射,在集合的选择上先选择了能用列举法表示的有限集,对应法则用语言描述,对应形式上分为“一对多”“多对一”“多对一”“一对一”四种情况,让学生认真观察,比较,再引导学生发现其中“一对一”和“多对一”的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.这样的教学方法可以让学生比较直观地认识映射,而后再选择用抽象的数学符号表示映射.在教学方法上本课采用启发、讨论的形式,让学生在实例中去观察、比较,启发学生寻找共性,共同讨论映射的特点,共同举例、计算,最后进行小结,教师要起到点拨和深化的作用.为了使学生更加容易接受抽象的数学概念,也可以多采用一些日常生活的语言,列举一些学生感兴趣的例子.譬如为了让学生对映射可以“一对一”,也可以“多对一”,但不能“一对多”,也不能“多对多”有深刻印象,可以用“射雕”来比喻:可以“一箭一雕”“多箭一雕”但不能“一箭双雕”“一箭多雕”“多箭多雕”;为了让学生对“A 中任一元素在B 中均有唯一的一个元素与之对应,但允许B 中有一些元素没有A 中任何元素与之对应”有深刻印象,仍然可以用“射雕”来比喻:“鞘中的箭必须射完,而且箭箭中雕,但有些雕可以不是瞄准的目标”.习题详解课本第43页习题2.1(3)3.(1)单调增区间(-∞,0],单调减区间[0,+∞),最大值是1,无最小值;(2)单调减区间[-1,1],最大值是2,最小值是-2;(3)单调减区间[0,+∞),最大值是0,无最小值;(4)单调增区间(-∞,+∞),无最大值和最小值.(1) (2)(3) (4)4.因为a2+1-2a=(a-1)2≥0,所以a2+1≥2a,故f(a2+1)≤f(2a).5.(1)当a、b不全为0时,f(x)为偶函数;当a=b=0时,f(x)既是奇函数,又是偶函数;(2)奇函数;(3)f(x)既不是奇函数也不是偶函数.6.因为f(-x)=(-x)2-2|-x|-1=x2-2|x|-1=f(x),所以f(x)是偶函数.图象如图所示.7.证明:(1)设x1<x2≤0,则f(x1)-f(x2)=-2x12+3-(-2x22+3)=2(x1+x2)(x2-x1).因为x1+x2<0且x2-x1>0,所以f(x1)<f(x2),故f(x)在(-∞,0]上是单调增函数;(2)设x1<x2≤0,则f(x1)-f(x2)=-x13+1-(-x23+1)=x23-x13=(x2-x1)(x12+x1x2+x22).因为x1<x2≤0且x1x2≥0,x12>0,x22≥0,x12+x1x2+x22>0.而x2-x1>0,所以f(x1)>f(x2),故f(x)在(-∞,0]上是单调减函数;(3)①设x 1<x 2<0,则f(x 1)-f(x 2)=213x --2+23x =3(21x 11x -)=2121)(3x x x x -. 因为x 1x 2>0,x 1-x 2<0,所以f(x 1)<f(x 2),故f(x)在(-∞,0)上是单调增函数; ②设0<x 3<x 4,则f(x 3)-f(x 4)=4343)(3x x x x -.由0<x 3<x 4,得x 3x 4>0,x 3-x 4<0,所以f(x 3)<f(x 4),故f(x)在(0,+∞)上是单调增函数.综上所述,f(x)在(-∞,0)和(0,+∞)上是单调增函数;(4)①设0<x 1<x 2≤1,则f(x 1)-f(x 2)=x 1+11x -x 2-21x =x 1-x 2+2112x x x x -=(x 1-x 2)·21121x x x x x -. 因为0<x 1<x 2≤1,所以0<x 1x 2<1,x 1x 2-1<0.而x 1-x 2<0,所以f(x 1)>f(x 2),故f(x)在(0,1]上是单调减函数;②设1≤x 3<x 4,则f(x 3)-f(x 4)=(x 3-x 4)·43431x x x x -.因为1≤x 3<x 4,所以x 3x 4>1,x 3x 4-1>0.而x 3-x 4<0,所以f(x 3)<f(x 4),故f(x)在[1,+∞)上是单调增函数.综上所述,f(x)在(0,1]上是单调减函数,在[1,+∞)上是单调增函数.8.因为B ={-1,3,5},f :x→2x -1,要组成A 到B 的映射,只要A 中的任一元素在对应法则f 下的对应元素都在B 中即可.而0→1,2→3,3→5,所以集合A 只要是{0,2,3}的非空子集就可以了.本题答案不唯一,共有7个.9.因为f(x)是偶函数,所以f(-x)=f(x),即x 2-mx+1=x 2+mx+1恒成立,所以m=0.10.因为f(x)是R 上的奇函数,所以f(0)=f(-0)=-f(0),所以f(0)=0.又因为x >0时,f(x)=1,所以x <0时,-x >0,f(-x)=1,f(x)=-f(-x)=-1.综上所述,f(x)=⎪⎩⎪⎨⎧<-=>.0,1,0,0,0,1x x x11.函数的单调增区间是(-∞,+∞),图象如图所示.13.略.。
高一数学映射知识点
高一数学映射知识点数学是一门综合性科学,映射是其中的重要概念之一。
在高一数学学习中,映射是一个需要深入理解和掌握的知识点。
本文将从映射的定义、映射的性质以及映射的应用等方面进行详细介绍。
一、映射的定义映射是一种对应关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。
映射常常用符号“f”表示,表示一个元素或者一组元素通过某种规则对应到另一个集合中。
对于集合A和集合B,如果存在一个映射f,使得对于A中的任意元素a,都有唯一的对应元素b在集合B中,即f(a)=b,那么我们可以说A中的元素通过映射f对应到B中的元素。
二、映射的性质1. 单射:如果映射f中不同的元素在B中有不同的对应元素,即对于任意的a1和a2,如果f(a1)=f(a2),则a1=a2。
这种映射被称为单射或一一映射。
单射保证了映射的唯一性。
2. 满射:如果映射f中的所有元素都有对应的元素存在于B中,即对于任意的b∈B,都存在a∈A,使得f(a)=b。
这种映射被称为满射。
满射保证了映射的完备性。
3. 双射:既是单射又是满射的映射被称为双射。
双射保证了映射的一一对应关系,即A中的每一个元素都有唯一对应的元素在B中,B中的每一个元素也都有唯一对应的元素在A中。
4. 逆映射:如果映射f是一个双射,那么它存在一个逆映射g,使得g(f(a))=a对于任意的a∈A成立,同时f(g(b))=b对于任意的b∈B也成立。
逆映射可以实现映射的互逆。
三、映射的应用映射在数学中的应用非常广泛,尤其在解决实际问题时起到了重要的作用。
以下是映射在几个常见领域的应用示例:1. 函数关系:函数是一种特殊的映射关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。
函数在数学中有着广泛的应用,例如描述物理规律、经济关系以及建立模型等。
2. 图论:映射在图论中有重要作用。
图是由一系列的顶点和边组成的数学模型,而映射则常常用于描述顶点之间的关系,例如在社交网络中描述用户之间的关注关系。
高一数学上册第一章函数及其表示知识点及练习题(含答案)
函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。
(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。
4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。
考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。
大一高数映射知识点总结
大一高数映射知识点总结高等数学是大学阶段理工科学生的一门重要基础课程,其中映射是高等数学中的一个重要概念和知识点。
映射作为数学中的一种关系,研究了一个集合与另一个集合之间的对应关系。
本文将对大一高数中与映射相关的知识点进行总结。
一、映射的基本概念在数学中,映射是指一个集合的元素与另一个集合的元素之间的对应关系。
设A和B是两个非空集合,若对于A中的任意一个元素a,都存在B中唯一的一个元素b与之对应,则称这种对应关系为从集合A到集合B的映射,记作f:A→B。
二、映射的表示方法映射可以用不同的表示方法来表达,常见的表示方法有以下几种:1. 符号表示法:f(a) = b,表示元素a在映射f下的像是b。
2. 图表示法:可以用箭头连接集合A和集合B,箭头表示映射关系,箭头起点对应元素a,箭头终点对应元素b。
3. 列表表示法:可以将映射关系列出来,例如{(a, b), (c, d), (e,f)}。
三、映射的类型根据映射的特点和性质,映射可以分为以下几种类型:1. 一对一映射:映射中的每一个元素都有唯一的对应元素,即对于A中的不同元素a1和a2,映射f下的像f(a1)和f(a2)不相同。
2. 单射映射:映射中的每一个元素都有唯一的对应元素,即对于A中的不同元素a1和a2,若f(a1) = f(a2),则a1 = a2。
3. 满射映射:映射中的每一个元素都有对应元素,即对于B中的任意元素b,都存在A中的元素a与之对应。
4. 一一对应映射:既是一对一映射又是满射映射的映射称为一一对应映射或双射映射。
四、映射的性质映射作为一种关系有其特有的性质,下面介绍几个常见的映射性质:1. 反函数:对于一一对应的映射f:A→B,如果存在映射g:B→A,使得对于A中的任意元素a,都有g(f(a)) = a,且对于B中的任意元素b,都有f(g(b)) = b,那么g就是f的反函数。
2. 复合函数:对于映射f:A→B和映射g:B→C,可以定义映射h:A→C,使得对于A中的任意元素a,有h(a) = g(f(a)),此时h为f和g的复合映射。
大一高数映射知识点归纳
大一高数映射知识点归纳在大一高等数学课程中,映射是一个非常重要且常见的概念。
映射可以理解为一种对应关系,它将一个集合中的元素映射到另一个集合中的元素。
接下来,我将对大一高数中与映射相关的知识点进行归纳总结。
一、映射定义与表示法映射是从一个集合到另一个集合的一个对应关系。
如果集合A 中的每个元素a都对应集合B中的唯一一个元素b,那么我们称A 到B的映射为定义在集合A上的一个映射。
在表示映射时,常用的表示法有:- 将映射写成集合形式,例如:{(x, y) | x∈A, y∈B, y=f(x)}- 使用函数的形式表示映射,例如:f: A → B,其中f表示映射的名称,A为起始集合,B为终止集合。
二、映射的分类1. 单射:如果映射中的每个不同元素a对应的都是不同的元素b,那么称该映射为单射。
也可以说是任意两个不同的元素在映射中的像都不相同。
2. 满射:如果映射中的每个元素b都有对应的元素a,那么称该映射为满射。
也可以说是终止集合B中的每个元素都有源自集合A中的元素与之对应。
3. 双射:如果一个映射既是单射又是满射,那么称该映射为双射。
三、映射的运算1. 复合映射:设有两个映射f: A → B,g: B → C,那么可以通过复合运算得到新的映射h: A → C。
复合映射的运算规则为:h(x) = g(f(x)),即先使用f进行映射,再使用g进行映射。
2. 逆映射:如果一个映射f: A → B是一个双射,那么可以定义其逆映射g: B → A。
逆映射的性质为:g(f(x)) = x,f(g(y)) = y。
四、映射的例子与应用1. 一次函数:一次函数可以表示为f(x) = kx + b的形式,其中k 为不为零的常数,称为斜率,b为常数,称为截距。
一次函数是一种常见的线性映射,常用于描述常量比例关系。
2. 复数平面映射:将复数表示为平面上的点,可以将复数映射到平面上。
3. 矩阵映射:在线性代数中,矩阵可以表示一个线性映射,通过矩阵乘法可以实现向量的变换。
高一数学映射的概念
所以, (1,-2)在 f 作用下的象是(-1,-2)
x y 2 (2)设它的原象是(x , y),则有: x 1 xy 1 解得:
y 1 所以,原象是(1,1)
体验2:已知(x , y)在映射 f 的作用下的象是 (x+y , x-y) (1)求(2,-2)在 f 作用下的象; (2)若在 f 作用下的象是(3,-1),求它的原象.
, 记作 集合 B的映射 m apping
f : A B.
函数是映射, 但映射不一定是函数 .
例1 下图所示的对应中 , 哪些是A到 B的映射?
a 1 b c
A
1 2
B
1 2 2
A
a b c
B
1 3 2 3
A
a b
B
a 4 b c
A
1 2
B
答案:(4)
思考 映射与函数有什么区别 与联系?
f :x y
y为x的体重数
A B
再如, 坐标平面内的所有点组 成的集合为A, 所有 的有序数对组成的集合 为 B x, y | x R, y R.
让每一点与其坐标对应 , 则 A中每一个元素点, 在B中都有惟一元素有序数对 与之对应.
一般地 , 设A, B是两个集合 , 如果按某种对应法则 f , 对于 A中的每一个元素 , 在 B中者有惟一的元 素与之对应 , 那么, 这样的单值对应叫做集 合A到
2 .1 8 映 射 的 概 念
问题情境:
• (1)看电影时,电影票和座位之间存在一一对 应关系吗? • (2)每个人和他的老师可建立一种对应关系, 它是不是一种单值对应? • (3)任意一个三角形,都有惟一确定的面积与 此对应,它是不是一种单值对应? 答案: (1) 是 ; (2) 不是 (它是一对多)
2.3 映射的概念
数学建构:
2.映射的类型.
映射可以是“一对一”或“多对一”的对应,但不能是“一对多”.
即映射应是单值对应,或称单射.
数学应用:
1.请分析下列对应,哪些是A到B的映射? (1)A=R,B={x|x是数轴上的点},f:实数与数轴上的点对应;
(2)A={中国,日本,韩国},B={北京,东京,汉城,华盛顿},
表示从M到N的映射的是(
y x O O y x
)
y x O O y x
(1)
(2)
(3原象
a
b c
1
2 3 4叫做b的象
4
一对一 单值对应 对应 多对一 一对多 两个数集之间的 对应 函数 映射
一一对应
一定是映射,且存在逆映射.
作业:
课本P47练习1,2题,P48第5,6题.
高中数学 必修1
情境问题:
函数的本质是建立在两个非空数集A、B上的单值对应,在我们的 周围,还存在着不是数与数的对应关系,比如: (1)A={P|P是数轴上的点},B=R,f:点的坐标; (2)对于任意的△ABC,B=R,f:三角形的面积.
如何刻画这些对应关系呢?
数学建构:
1.映射的定义. 一般地,设 A,B是两个非空的集合,如果按某种对应法则 f,对 于集合A中的每一个元素 x,在集合B中都有惟一的元素 y 和它对应, 这样的单值对应叫做从集合A 到集合 B的映射,记作:f:A→B. (1)映射是函数概念的推广,函数是一类特殊的映射; (2)映射f:A→B中,集合A、B可以是数集,也可以是点集或其他集合; (3)映射的方向性:映射f:AB与f:BA是不一样的. (4)箭尾集合中元素的任意性(少一个也不行),箭头集合中元素的唯
数学应用:
高中数学知识点:函数、映射的概念
高中数学知识点:函数、映射的概念1、映射:(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。
(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。
2、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。
(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x 的值相对应的y值叫做函数值,函数值的集合{ f(x)|x∈A}叫做函数f (x)的值域。
显然值域是集合B的子集。
3、构成函数的三要素:定义域,值域,对应法则。
值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。
4、函数的表示方法:(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法;(2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;(3)图象法:就是用函数图象表示两个变量之间的关系。
注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。
映射f:A→B的特征:(1)存在性:集合A中任一a在集合B中都有像;(2)惟一性:集合A中的任一a在集合B中的像只有一个;(3)方向性:从A到B的映射与从B到A的映射一般是不一样的;(4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。
高一数学必修教学课件第二章映射
02 一一映射与逆映射
一一映射的定义及性质
一一映射定义
设A和B是两个非空集合,如果存在一个从A到B的映射f,使得B中的每一个元素 都有A中的唯一元素与之对应,则称f为从A到B的一一映射。
一一映射的性质
一一映射具有单射和满射的性质,即每个元素都有唯一的像,且像集B中的每个 元素都有原像。
逆映射的概念及求法
方程的图像可以看作是定义域到值域的一个映射 关系的图形表示,通过映射的性质可以研究方程 的图像的形状和性质。
方程的变换与映射关系
通过映射的变换可以研究方程之间的内在联系和 相互转化。
映射在不等式中的应用
不等式的解集与映射关系
不等式的解集可以看作是定义域到值域的一个映射关系的 集合表示,通过映射的性质可以研究不等式的解集的存在 性和范围。
映射的表示方法
通常用箭头图或表格来表示映射。在箭头图中,箭头表示元 素之间的对应关系;在表格中,第一行列出原像集合的元素 ,第一列列出像集合的元素,表格中的其余部分表示对应关 系。
映射的性质与分类
有向性
映射是有方向的,即A中的元素通 过对应关系f对应到B中的元素。
唯一性
对于A中的任何一个元素,通过对 应关系f在B中有唯一确定的元素 与之对应。
不等式的图像与映射关系
不等式的图像可以看作是定义域到值域的一个映射关系的 图形表示,通过映射的性质可以研究不等式的图像的形状 和性质。
不等式的证明与映射关系
通过映射的性质可以证明一些不等式,例如利用单调性证 明不等式等。
05 映射的拓展与应用前景
拓展映射的概念及应用
拓展映射的定义
在原有映射的基础上,通过引入新的元素或规则,对映射关系进行扩展和深化,以适应更 广泛的应用场景。
高一数学映射的概念
劳汉堡包”、“肯德基炸鸡”都成了非常迷人的回忆,非常老掉牙的故事。如果,我的孙子或曾孙子因看到我在偷吃一个油汤汤的汉堡而骂我“老番婆”,不知道七十多岁的简嫃会不会暗地掉泪? 算了,不要吵醒在地底的伏流。让阿嬷在她的年代里梳髻,我在我的年代里散发,我
们只不过共用一个晨光而已。
? 到现在,还是喜欢看阿嬷梳头,及腰雪发与晨丝相缠。“茶仔油”的味道依然熟悉--她终于探听到“利泽简”有一家杂货店还卖这种油,专程坐火车回去打两瓶。日子不会老,老的是肉体凡躯。二十多年过了,我变了千万个脸孔心性,
?“你要买水果,不要在外头买,贵参参地给人唬不知,去给巷子底那个查甫人买,伊爱饮烧酒,不
时一个面红光光,臭酒现,若是到十二点,日头一下晒,伊就人晕头壳痛,伊就轻彩卖,外头的红肉木瓜一斤三十,伊喊三斤五十。” 持家的学位在此吧!要不然,苦日子怎么捱得过?如果战争、灾荒、病乱的年岁让我碰上了,为着存活,也许还捏得更紧更狠?
? 生命就是要受这么多苦楚,才能扶养上一世、哺育下一代,谁敢说老来得福呢?社会永远是属于年轻人的,所有的衣食、流行、玩乐,
都为年轻的人设计。老者,才是真正的“稀少民族”,单单活在他们旧有的观念、制度、秩序、情法、宗教、语言之中,那是一个不易改变的世界,用长长的一辈子吐丝结出来的茧,而他们除了这个温暖的茧还能去哪里落脚?总有一天,我及我的同代也会到了七十岁,那时,也许“麦当
变式:
若 A={正实数}, B={实数},对应法则f为:x
答案:是
1 x。
例2、已知(x , y)在映射 f 的作用下的象是
(x+y , xy) (1)求(1,-2)在 f 作用下的象; (2)若在 f 作用下的象是(2,1),求它的原象.
的简报中医师名录听者莫不撕小纸片记录……。彷佛太平盛世就应该这样,每件事都跟昨天、前天没什么差别。一位迟到妈妈拉著尚未换穿球衣、头发睡歪一边的儿子小跑步而来,手上还捧著纸碗装蚵仔面线,由於限塑政策推行彻底,一支小汤匙只好含在嘴里,就这么快快快抵达树荫下,
数学上的映射
数学上的映射
映射是数学中的基本概念之一,它描述了一个集合中的元素如何与另一个集合中的元素对应。
在映射中,每一个元素都有唯一的对应元素,且每一个元素在对应关系中只能出现一次。
一般地,我们可以将映射看作是从一个集合到另一个集合的“对应规则”。
如果一个元素a与元素b对应,我们用f(a) = b来表示,其中f表示这个映射的名称。
映射可以是一个数学公式,也可以是一个图形或者一个单词。
在映射中,有两个基本的概念:定义域和值域。
定义域是指映射中所有可能出现的元素的集合,而值域是指映射中实际出现的元素的集合。
如果一个元素在定义域中出现,但在值域中没有出现,那么它就是无效的。
另外,映射还可以分为单射、满射和双射。
在单射中,每一个值都只对应一个元素;在满射中,每一个值都有至少一个元素对应;而在双射中,每一个值都有且仅有一个元素对应。
映射在数学中有着广泛的应用。
例如,它可以用来描述函数、矩阵、图形等等。
在实际生活中,映射也有着很多应用,比如地图上的坐标映射、计算机处理数据时的映射等等。
总之,映射是数学中的基本概念之一,它描述了集合之间的对应关系。
在映射中,每一个元素都有唯一的对应元素,且每一个元素在对应关系中只能出现一次。
映射在数学和现实生活中都有着广泛的应用。
解析映射的定义
解析映射的定义
映射,也称为函数,是从一个集合到另一个集合的规则。
它将集合中的每个元素映射到另一个集合中的唯一元素。
映射可以用数学符号表示为:f:A→B,其中A是起始集合,B是目标集合,f是映射规则。
映射的定义包括以下要素:
1. 起始集合:映射的起始集合是指映射中所有元素的集合,也称为定义域。
2. 目标集合:映射的目标集合是指映射中每个元素对应的唯一元素的集合,也称为值域。
3. 映射规则:映射规则是指将起始集合中的每个元素映射到目标集合中的唯一元素的规则。
映射的定义可以用实际例子来说明。
例如,假设有一个集合
A={1,2,3}和另一个集合B={a,b,c}。
我们可以定义一个映射f:A→B,其中f(1)=a,f(2)=b,f(3)=c。
这个映射规则将集合A中的每个元素映射到集合B中唯一的元素。
映射在数学、计算机科学和物理学等领域中广泛应用。
在数学中,映射是构建函数和证明定理的重要工具。
在计算机科学中,映射被用于算法、数据结构和编程语言中。
在物理学中,映射被用于描述物理系统和预测其行为。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D { 0,1,2 }
1 1 1 3、集合A={1,2,3,-----,10} , B= {1, , , } , 4 9 100
设x∈A, y∈ B , 试写出一个对应法则 f ,使f:A
是 从集合A到集合B的一个映射. f:x
1 y= 2 x
B
4、已知集合A={ a,b,c },集合B={ -1,0,1 } ,映射 f:A B满足f(a)+f(b)=f(c),则 f : A
f :x y
y为x的体重数
A BΒιβλιοθήκη 再如, 坐标平面内的所有点组 成的集合为A, 所有 的有序数对组成的集合 为 B x, y | x R, y R.
让每一点与其坐标对应 , 则 A中每一个元素点, 在B中都有惟一元素有序数对 与之对应.
一般地 , 设A, B是两个集合 , 如果按某种对应法则 f , 对于 A中的每一个元素 , 在 B中者有惟一的元 素与之对应 , 那么, 这样的单值对应叫做集 合A到
体验1:1、下图表示集合A到集合B的映射的是____
A
1
B
A B C d
A
1
2 3 4
B
B C d
2
3 4
(1) (4)
(1)
(2)
A
1
B
A B C d
A
1
B
A B C d
2
3 4
2
3 4
(3)
(4)
2、判断以下对应是否是从A到B的映射?
(1)、设A={矩形},B={实数} ,对应法则f为矩形到它的面 积的对应; (2)、A={实数},B={正实数},对应法则f为:x 答案:(1)是 (2)不是
2 .1 8 映 射 的 概 念
问题情境:
• (1)看电影时,电影票和座位之间存在一一对 应关系吗? • (2)每个人和他的老师可建立一种对应关系, 它是不是一种单值对应? • (3)任意一个三角形,都有惟一确定的面积与 此对应,它是不是一种单值对应? 答案: (1) 是 ; (2) 不是 (它是一对多)
• 3、映射的应用。
;
室内空气检测 室内空气检测
lps71hkm
说她不是我妈妈,我父亲是谁,暮笙是谁这些问题涌进我的脑海,只觉得周围都在旋转,耳朵有许多声音在说话,我想自己现 在在什么地方,我的脸贴着温暖的土地,腹部传来一阵刺痛,我也没心情去管,只是觉得好累,就想这样沉沉的睡去该多好。 我闭上眼睛,过了一会脸感觉毛茸茸的,肚子也不痛了,躺着的地方感觉有点潮湿,好像有什么东西想要穿过我的身体,以为 是自己疯了,可这种感觉越来越强烈,睁开眼睛,看到自己躺在一片草丛里,刚才还是一片焦土现在却长出了这么茂盛的草, 这是幻术吗?我这样想着,草越长越茂盛,逐渐没过了我的膝盖,草的颜色也开始了变化,由绿变蓝变紫再变红,只在短短的 几分钟之内就发生了这么快的变化简直不可思议,现在山神不在我身边,连天珠都不见了,现在我只能靠自己了,我等待着什 么妖怪出现,可是等了半天却没有什么动静,但后来我才发现产生变化的其实是自己,我之前所受的伤不仅全好了,而且皮肤 越来越细腻皮肤表层像是有层薄膜一样,把水滴在手上居然一点都没有沾水,刚才的不适也消失了,整个人都轻飘飘的,这究 竟是怎么回事,想了想,不管怎么样,我都要找到事情的真相,到了这个地步,只能硬着头皮往前走了,我在想妈妈的那句你 是我,也不是我究竟是什么意思,我想知道我究竟是谁,我必须要找到答案。看了看四周,下定决心就要义无反顾,我知道接 下去的路会无比艰险,可是不管怎么样我都要知道答案,我觉得自己已经身处漩涡的中心了,相比也避不开,打定主意开始下 山,一路上都相安无事,我在想:山神不可能容易就这么死掉,他现在应该是在某个地方,直觉告诉我古宅应该是事情的关键。 就这样想着,知道到了山下,这时才想起九尾来,便四处去寻找她,可是找了半天连根狐狸毛都没看见,索性就不找了。我来 到了山神的地道中,不知为何,心中隐隐透着不安,兴许是最近事情发生的太多太快了,自己都变得神经质了,山神说过里面 是全玉石打造,一般妖魔很少能进的了,就算进入,法力也使不上。7忘川|我们来到那条白蛇所在的地方,这条白蛇白中透着 绿,有点像玉石,如果事先不知道是蛇,我会以为这是一条雕刻成蛇形的玉石,而且还是上等的玉石,那条白蛇脖子上戴着天 珠,但白蛇倒下后天珠却不见了,白蛇就是忘川的物象化,它可以物化为很多东西,有时就是一条河,它存在于每一个地方。 我问山神:“那蜈蚣为什么要把你拖到白蛇那里。白蛇居然会在这里出现。”山神想了想说:“我也不知道这是为什么,我总 觉得这件事很不正常。”我笑着说:“这里的哪件事正常过啊。”山神说:“我总有种被设计了的感觉。”我说:“不会吧, 难道是应龙或者九尾?”山神说:“不是,他们的能力不会这么
答案(1) 、 (0,4)
(2) 、 (1,2)
练习:1、从集合A到集合B的对应:
(1)A=R , B=R , f:求绝对值; + (2)A=R, B=R , f:开平方根; (3)A={平面内的点},B={平面内的圆},f:在平面 A 内以A中的点为圆心画圆.其中是映射的个数是____ A、 0 ; B 、1 ; C 、2 ; D 、3 2、集合A和集合B都是实数集R,映射f:A 集合A中的元素x对应到集合B中元素 x3-x+1 下象1的原象所组成 集合是( C ) A { 1 }; B { 0 }; C { 0,-1,1 }; B 是把 ,则映射f
(3) 是 (它是多对一)
我们已经知道, 函数是建立在两个非空 数集之 间的单值对应.其实, 生活中还有很多在两个 集 合之间建立单值对应的 例子.例如, 某班级全体 同学组成的集合为 A, 正实数集为 B , 让每位同 学与其体重数对应 , 则 A 中每一个元素, 在 B 中 都有惟一的元素与之对应, 可用下图表示 .
所以, (1,-2)在 f 作用下的象是(-1,-2)
x y 2 (2)设它的原象是(x , y),则有: x 1 xy 1 解得:
y 1 所以,原象是(1,1)
体验2:已知(x , y)在映射 f 的作用下的象是 (x+y , x-y) (1)求(2,-2)在 f 作用下的象; (2)若在 f 作用下的象是(3,-1),求它的原象.
, 记作 集合 B的映射 m apping
f : A B.
函数是映射, 但映射不一定是函数 .
例1 下图所示的对应中 , 哪些是A到 B的映射?
a 1 b c
A
1 2
B
1 2 2
A
a b c
B
1 3 2 3
A
a b
B
a 4 b c
A
1 2
B
答案:(4)
思考 映射与函数有什么区别 与联系?
B的个数
为______ 7 个.
4 变式:满足f(a) ≤f(b)< f(c) 的映射的个数为_____
5、已知:A={ x,y,z },B={ 2 , 3 },从A到B建立映射 f ,使
3 个. 得f(x)+f(y)+f(z)=7,则满足条件的映射有____
课堂总结:
• 1、映射的概念;
• 2、映射与函数的关系;
1 x 1 x 。
变式:
若 A={正实数}, B={实数},对应法则f为:x
。
答案:是
例2、已知(x , y)在映射 f 的作用下的象是 (x+y , xy) (1)求(1,-2)在 f 作用下的象; (2)若在 f 作用下的象是(2,1),求它的原象. 解(1)因为 1-2= -1 ,-1×2= -2