2019河海大学理学院《高等数学》8-9a补充:空间解析几何.ppt
合集下载
2019河海大学理学院《高等数学》10-6gauss公式.ppt
P Q R 0 ( ) dv v n dS x y z
P Q R 1 ( )dv x y z V
P Q R 1 0 ) ( , , ) v n dS 由积分中值定理( x y z V P Q R 1 0 两边取极限, lim v n dS M M x y z V
---------- Gauss公式
高等数学(下)
由两类曲面积分之间的关系知
P Q R ( x y z )dv ( P cos Q cos R cos )dS .
Gauss公式的实质 表达了空间闭区域上的三重积分与 其边界曲面上的曲面积分之间的关系.
称为向量场 A( x , y , z ) 穿过曲面Σ 的流量.
高等数学(下)
Pdydz Qdzdx Rdxdy
P Q R 当 ( )dv 0时,表示Ω内有流体流出,称为“源” x y z
由Gauss公式: P Q R ( )dv Pdydz Qdzdx Rdxdy x y z
解答:
曲面应是分片光滑的闭曲面.
高等数学(下)
1
h
D xy
o
y
ቤተ መጻሕፍቲ ባይዱ
2( x y z )dv
x
h4 2 zdz dxdy 0 2 x y z
2 2 2
h
高等数学(下)
(也可)
2 dxdy
Dxy
h x y
2 2
zdz,
Dxy
( h x y ) dxdy
2 2 2
2 2 2
高等数学向量代数与空间解析几何总结 ppt课件
( p与q同号 )
3、空间曲线
[1] 空间曲线的一般方程
F(x, y,z) 0 G(x, y,z) 0
[2] 空间曲线的参数方程
x x(t)
y
y(t)
z z ( t )
如图空间曲线 一般方程为
z 1 x2 y2
(x
1)2 2
y2
(1)2 2
x
1 cos 2
t 1 2
参数方程为
右 手 系 .
向量积的坐标表达式
ab(aybzazby)i (azbxaxbz)j
(axbyaybx)k
i j k ab ax ay az
bx by bz
a // b
ax ay az bx by bz
请归纳向量的数量积和向量积
在几何中的用途
(①求1)向数量量的积模(1 :)a a |a |2.
f (x, y2 z2 ) 0
(2) 曲线L绕 y 轴旋转所成的旋转曲 方面 程为
f ( x2 z2, y) 0
(1)球面 (2)圆锥面 (3)旋转双曲面
x2y2z21 x2y2z2
x2 y2 z2 a2 a2 c2 1
[2] 柱面
定义:平行于定直线并沿定曲线C移动的直线 L所形成的曲面称之.
a { a x ,a y ,a z} b { b x ,b y ,b z}
a b { a x b x , a y b y , a z b z }
( a x b x ) i ( a y b y ) j ( a z b z ) k a b { a x b x , a y b y , a z b z }
[4] 两直线的夹角
直线 L1 : 直线 L2 :
高等数学第八章空间解析几何
任一点, 那么向量 M 0M 与L的方向向量 平s行.
所以,
两向量的 对应坐标成比例, 由于
M0M
(xx 0,yy 0,zz 0),
s(m,n,p),
从而有
此方程组就是直线 L 的方程,叫做直线的对称式方程或 点向式方程.
第六页,共30页。
z
s
M
M0
O
y
x
第七页,共30页。
直线的对称式方程:
设直线L上一点M0(x0 , y0 , x0)和它的一方向向量
第二页,共30页。
二、空间直线的对称式方程与参数方程 空间直线的方向向量:如果一个非零向量平行于
一条已知直线,这个向量就叫做这条直线的方向向量. z
s
O
y
x
第三页,共30页。
二、空间直线的对称式方程与参数方程
空间直线的方向向量:如果一个非零向量平行于
一条已知直线,这个向量就叫做这条直线的方向向量.
x2t,y3t,z42t,
代入平面方程中,得
2(2t)(3t)(42t)60.
2x y z 6 0
解上列方程,得t1.
将 t 1 代 入 直 线 的 参 数 方 程 , 得 所 求 交 点的坐标为
x1,y2,z2.
第二十一页,共30页。
例6 求过点P(2,1,3)且与直线
垂直相交的直线的方程.
二、如何将直线的一般方程化为对称式方程? 三、两直线的位置关系 四、直线与平面的位置关系
五、关于平面束方程的概念
第二十九页,共30页。
谢 谢!
第三十页,共30页。
即
(1l)x(1l)y(1l)z(1l)0,
其中l为待定的常数.这平面与平面xyz0垂直的条件是
《高数空间解析几何》课件
《高数空间解析几何》 PPT课件
在本次课程中,我们将深入探讨高等数学中的空间解析几何知识,并通过精 美的PPT课件来呈现内容,帮助大家更好地学习与理解。
空间直角坐标系与向量
直角坐标系特点
定义直角坐标系、特点及应用 场景。
向量的概念与表示
介绍空间向量的概念、表示方 法以及向量的几何意义。
向量的加减与数量积
平面方程与性质
讨论空间平面的方程表达式和具体特性。
平面之间的位置关系
讲解空间中平面之间的相交、平行和垂直关系。
空间曲线与曲面
1
曲线的参数方程与极坐标方程
介绍空间曲线的参数方程和极坐标方程的表示方法。
2ห้องสมุดไป่ตู้
曲面的参数方程与二次曲面方程
讨论空间曲面的参数方程和二次曲面方程的特点和应用。
3
曲线与曲面的位置关系
结束语
通过本次课程的学习,相信大家已经对高数空间解析几何有了更深入的理解。 感谢大家的参与与支持!希望你们可以将所学知识应用到更广阔的领域中。
讲解向量的加减法和数量积的 性质与计算方法。
向量的线性相关与线性无关
介绍向量的线性相关与线性无关的概念以及相关的 定理。
向量的基底与坐标
讲解空间向量的基底与坐标系的概念及相关计算方 法。
空间直线与平面
直线方程与性质
解释空间直线的方程表达式和相关性质。
直线之间的位置关系
介绍空间中直线之间的相交、平行和垂直关系。
讲解空间曲线与曲面之间的相交、相切和位置关系。
三维几何应用
球面坐标与柱面坐标
探讨球面坐标系和柱面坐标系的定义和转换。
直线与平面的最小距离
介绍计算空间中直线与平面之间最小距离的公式和 应用。
在本次课程中,我们将深入探讨高等数学中的空间解析几何知识,并通过精 美的PPT课件来呈现内容,帮助大家更好地学习与理解。
空间直角坐标系与向量
直角坐标系特点
定义直角坐标系、特点及应用 场景。
向量的概念与表示
介绍空间向量的概念、表示方 法以及向量的几何意义。
向量的加减与数量积
平面方程与性质
讨论空间平面的方程表达式和具体特性。
平面之间的位置关系
讲解空间中平面之间的相交、平行和垂直关系。
空间曲线与曲面
1
曲线的参数方程与极坐标方程
介绍空间曲线的参数方程和极坐标方程的表示方法。
2ห้องสมุดไป่ตู้
曲面的参数方程与二次曲面方程
讨论空间曲面的参数方程和二次曲面方程的特点和应用。
3
曲线与曲面的位置关系
结束语
通过本次课程的学习,相信大家已经对高数空间解析几何有了更深入的理解。 感谢大家的参与与支持!希望你们可以将所学知识应用到更广阔的领域中。
讲解向量的加减法和数量积的 性质与计算方法。
向量的线性相关与线性无关
介绍向量的线性相关与线性无关的概念以及相关的 定理。
向量的基底与坐标
讲解空间向量的基底与坐标系的概念及相关计算方 法。
空间直线与平面
直线方程与性质
解释空间直线的方程表达式和相关性质。
直线之间的位置关系
介绍空间中直线之间的相交、平行和垂直关系。
讲解空间曲线与曲面之间的相交、相切和位置关系。
三维几何应用
球面坐标与柱面坐标
探讨球面坐标系和柱面坐标系的定义和转换。
直线与平面的最小距离
介绍计算空间中直线与平面之间最小距离的公式和 应用。
大学高数空间解析几何
培养逻辑思维
学习空间解析几何有助于培养人的逻辑思维和抽象 思维能力,提高解决问题的能力。
空间解析几何的历史与发展
早期发展
空间解析几何起源于17世纪,随着笛卡尔坐标系的建立和 解析几何方法的完善,开始形成独立的数学分支。
近代发展
随着计算机科学和数学的不断发展,空间解析几何在理论 和应用方面都取得了重要进展,如微分几何、线性代数和 微分方程等与空间解析几何的交叉融合。
详细描述
如果两个平面的法向量 $mathbf{a}$ 和 $mathbf{b}$ 是共线的,即存在一个非零实数 $lambda$ 使得 $mathbf{a} = lambda mathbf{b}$,那么这两个平面就是平行的。如果两个平面的法向量不共线,那么 这两个平面就是相交的。
04
空间几何的应用
空间几何在计算机图形学中的应用
01
02
03
三维建模
空间几何用于创建三维模 型,包括曲面建模、实体 建模和参数化建模等。
光照计算
空间几何用于计算物体表 面的光照效果,以实现逼 真的渲染效果。
动画制作
空间几何用于动画制作中 的骨骼绑定、运动轨迹规 划和角色动画等,以创建 动态的视觉效果。
05
空间几何的习题与解答
平面与平面的交线
总结词求平面与平面Fra bibliotek交线,需要消元法或参数方程法。
详细描述
平面与平面的交线可以通过消元法或参数方程法来求解。消元法是通过联立两个平面的方程组,然后消元得到一 个一元一次方程,这个一元一次方程就是两平面的交线。参数方程法则是设定一个参数,将两个平面的方程都表 示成参数的函数,然后令参数相等,解出交线的参数方程。
未来展望
随着科技的不断进步和应用领域的拓展,空间解析几何将 继续发挥重要作用,并有望在人工智能、机器学习等领域 取得新的突破和应用。
学习空间解析几何有助于培养人的逻辑思维和抽象 思维能力,提高解决问题的能力。
空间解析几何的历史与发展
早期发展
空间解析几何起源于17世纪,随着笛卡尔坐标系的建立和 解析几何方法的完善,开始形成独立的数学分支。
近代发展
随着计算机科学和数学的不断发展,空间解析几何在理论 和应用方面都取得了重要进展,如微分几何、线性代数和 微分方程等与空间解析几何的交叉融合。
详细描述
如果两个平面的法向量 $mathbf{a}$ 和 $mathbf{b}$ 是共线的,即存在一个非零实数 $lambda$ 使得 $mathbf{a} = lambda mathbf{b}$,那么这两个平面就是平行的。如果两个平面的法向量不共线,那么 这两个平面就是相交的。
04
空间几何的应用
空间几何在计算机图形学中的应用
01
02
03
三维建模
空间几何用于创建三维模 型,包括曲面建模、实体 建模和参数化建模等。
光照计算
空间几何用于计算物体表 面的光照效果,以实现逼 真的渲染效果。
动画制作
空间几何用于动画制作中 的骨骼绑定、运动轨迹规 划和角色动画等,以创建 动态的视觉效果。
05
空间几何的习题与解答
平面与平面的交线
总结词求平面与平面Fra bibliotek交线,需要消元法或参数方程法。
详细描述
平面与平面的交线可以通过消元法或参数方程法来求解。消元法是通过联立两个平面的方程组,然后消元得到一 个一元一次方程,这个一元一次方程就是两平面的交线。参数方程法则是设定一个参数,将两个平面的方程都表 示成参数的函数,然后令参数相等,解出交线的参数方程。
未来展望
随着科技的不断进步和应用领域的拓展,空间解析几何将 继续发挥重要作用,并有望在人工智能、机器学习等领域 取得新的突破和应用。
高等数学-第八章空间解析几何pptPPT课件
O Axi, O Byj,OC zk
r x i y j zk (x,y,z)
k iO
j r
M B
y
A
此式称为向量 r 的坐标分解式 ,
x
N
xi,y j,zk 称为 r 沿向 三个坐标轴量 方向的分向量.
高等数学(下册)
四、利用坐标作向量的线性运算
设 a (a x,a y,a z)b , (b x,b y,b z),为实数,则
过空间一定点 O ,
由三条互相垂直的数轴按右手规则
组成一个空间直角坐标系.
• 坐标原点 • 坐标轴 • 坐标面 • 卦限(八个)
Ⅲ
Ⅳ
Ⅶ
x
x轴(横轴)
Ⅷ
zz 轴(竖轴) yoz面
oxoy面
Ⅴ
Ⅱ
Ⅰ
y
y轴(纵轴)
Ⅵ
高等数学(下册)
在直角坐标系下
点 M 1 1有序数组
称有序数组为点M的坐标,记为 M
(x, y, z) 1 1向径 r (x, y, z)
一、向量的概念
高等数学(下册)
向量: 既有大小, 又有方向的量称为向量
表示法:
有向线段
uuuuuur r M1M 2, a ,
(又称矢量).
M2
M1
向量的模 :
向量的大小,
uuuuuur r 记作M1M2 , a ,
向径 (矢径):
起点为原点的向量.
自由向量: 单位向量:
与起点无关的向量. 模为 1 的向量,
零向量: 模为 0 的向量,
高等数学(下册)
若向量 a 与 b大小相等, 方向相同,
则称 a 与 b 相等,
记作 a=b ;
大学课件-《高等数学》-第九章向量代数与空间解析几何
b
3a
2
5
(1
3)a
1
5 2
1 5
5
b
2a
5
b.
2
例4 试用向量方法证明:对角线互相平分的 四边形必是平行四边形.
证 AM MC BM MD
D b
A
a
M
C B
AD AM MD MC BM BC
思考题二解答
D b
A
a
C
M
B
BC
AD
AM
MD
1
(a
b ).
2
DC
AB
AM
MB
1 2
(a
b ).
思考题三
设 m
i
j
,n
2 j
k
,求以向量
m , n为边的平行四边形的对角线的长度.
思考题三解答
n
对角线的长为 | m n |, | m n |,
(2)分配律:( )a a a
(a
b)
a
b
两个向量的平行关系
定理
设向量
a
0,那末向量
b
平行于
a
的充
分必要条件是:存在唯一的实数
,使
b
a.
证 充分性显然;
当
b
必要性
设 b‖
a
《高数空间解析几何》PPT课件
类似地, 方程 f( y , z)= 0在空间表示以 yoz 坐标面上的 曲线为准线,平行于 x 轴的直线为母线的柱面. 方程 f( x , z)= 0在空间表示以 xoz 坐标面上的曲线为准线, 平行于 y 轴的直线为母线的柱面.
8
椭圆柱面:
z
x2 a2
y2 b2
1
xoy 坐标面上的椭圆为准线、
3
P26例 5
xoz 坐标面上的双曲线
x2 a2
z2 c2
1分别绕 x、z 轴旋
转一周,求所得旋转曲面方程
x2 y2y2 z2
绕 x 轴转所得曲面称为旋转双叶双曲面,
z
曲面方程为
x2 y2 z2 a2 c2 c2 1
o
x
绕 z 轴转所得曲面称为旋转单叶双曲面,
z
曲面方程为
x2 y2 z2 a2 a2 c2 1
曲面讨论的两个基本问题: (1)已知曲面的形状,建立这曲面的方程; (2)已知方程 F(x, y, z) =0,研究这方程的图形;
二、旋转曲面 一条平面曲线 C 绕其平面上 一条直线 L 旋转所形成的曲面,称为旋转曲面 . 定直线 L 称为旋转轴.
1
建立 y oz 面上曲线 C : f ( y , z ) = 0绕 z 轴旋转所成
例
求曲线
:
x2
x
2
y2 y2
z2 8y
64
,
在 xoy, y0z 坐标面上的投影曲线的方程.
解 关于xo y 坐标面的投影
柱面方程 x 2 y 2 8 y
因而曲线 在 xo y 坐标
面上的投影曲线是圆.
1
y 0
y2 z2
b2
c2
8
椭圆柱面:
z
x2 a2
y2 b2
1
xoy 坐标面上的椭圆为准线、
3
P26例 5
xoz 坐标面上的双曲线
x2 a2
z2 c2
1分别绕 x、z 轴旋
转一周,求所得旋转曲面方程
x2 y2y2 z2
绕 x 轴转所得曲面称为旋转双叶双曲面,
z
曲面方程为
x2 y2 z2 a2 c2 c2 1
o
x
绕 z 轴转所得曲面称为旋转单叶双曲面,
z
曲面方程为
x2 y2 z2 a2 a2 c2 1
曲面讨论的两个基本问题: (1)已知曲面的形状,建立这曲面的方程; (2)已知方程 F(x, y, z) =0,研究这方程的图形;
二、旋转曲面 一条平面曲线 C 绕其平面上 一条直线 L 旋转所形成的曲面,称为旋转曲面 . 定直线 L 称为旋转轴.
1
建立 y oz 面上曲线 C : f ( y , z ) = 0绕 z 轴旋转所成
例
求曲线
:
x2
x
2
y2 y2
z2 8y
64
,
在 xoy, y0z 坐标面上的投影曲线的方程.
解 关于xo y 坐标面的投影
柱面方程 x 2 y 2 8 y
因而曲线 在 xo y 坐标
面上的投影曲线是圆.
1
y 0
y2 z2
b2
c2
高数A第八章 空间解析几何和向量PPT课件
3.向量的线性运算
加法:平行四边形法则 数乘:大小与方向
4. 空间两向量的夹角的概念:
向 量 aa 与 0向 , 量 bb 的 0,夹 角
b
a
(a ,b )(b,a)
(0)
二、向量坐标及坐标线性运算
设a是以 M1( x1 , y1 , z1 )为起点、 M2 ( x2 , y2 , z2 )
1.球心在点 M0 ( x0 , y0 , z0 )、半径为R的球面方程:
x x 0 2 y y 0 2 z z 0 2 R 2
2. 旋转曲面:
如图 设M(x,y,z),
(1) zz1
(2)点M 到z轴的距离
dx2y2 |y1| x
z
d M 1(0,y1,z1)
M f(y,z)0
(5)
a//
b
ax
ay
az
bx by bz
例2
求与a
3i
2
j
4k ,b
i
j
2k 都垂
直的单位向量.
解
i
jki
j
c ab ax ay az 3 2
bx by bz 1 1
|c |1 2 0 5 2 55 ,
c0 c
|c|
2
j
5
15k.
k
4 1j0 5k, 2
第八章 空间解析几何与向量代数
一、向量及其线性运算
1. 空间的点 1 1有序数组(x,y,z)
2. 空间两点间的距离
设 M1( x1 , y1 , z1 )、M2 ( x2 , y2 , z2 )为空间两点,则
M 1 M 2 x 2 x 1 2 y 2 y 1 2 z 2 z 1 2 .
高数第八章空间解析几何复习ppt
且与平面 x 4 y 8z
xz40
12 0 夹成 角的平面方程.
提示: 过直线 L 的平面束方程
π n1 4 n
其法向量为 n1 (1 , 5, 1 ).
已知平面的法向量为 n (1, 4, 8)
π
选择 使 cos
n n1
4 n n1
3
4
从而得所求平面方程 x 20 y 7z 12 0.
的平面束 方程
1( A1x B1 y C1z D1) 2 ( A2 x B2 y C2 z D2 ) 0
1 , 2 不全为 0
目录 上页 下页 返回 结束
(2)点 M 0 (x0 , y0 , z0 ) 到平面 :A x+B y+C z+D = 0
的距离为
M0
d
n
M1
目录 上页 下页 返回 结束
例7. 求过点
且与两直线
都相交的直线 L.
提示: 思路: 先求交点 M1 , M 2 ;
再写直线方程.
的方程化为参数方程
L1
L2
M0 M2
M1 L
设 L 与它们的交点分别为
M1(t1 , 2t1 ,t1 1), M 2 (t2 ,3t2 4, 2t2 1) .
垂直:
A1A2 B1B2 C1C2 0
平行: n1 n2 0
A1 B1 C1 A2 B2 C2
夹角公式: cos n1 n2
n1 n2
目录 上页 下页 返回 结束
线与线的关系
直线
x L1:
x1 m1
y
y1 n1
z
z1 p1
,
s1 (m1, n1, p1)
直线
大学数学专业空间解析几何向量代数PPT课件
它 们 的 和 是 零 矢 量.
C
证 必 要 性 设 三 矢 量a,b,c可 以
构 成 三 角 形ABC, 即 有AB a, BC A
B
b,CA c, 那 么AB+BC+CA=AA 0,即a b c 0
充 分 性 设a b c 0, 作AB a, BC b, 那 么AC
a b, 所 以AC c 0, 从 而c是 AC的反矢 量,因此c=
叫 做 矢 量a1 , a2 ,, an的 线 性 组 合.
定理1.4.4 在n 2时,矢量a1, a2 ,, an线性相关的 充 要 条 件 是 其 中 有 一 个矢 量 是 其 余 矢 量 的 线 性组 合.
第34页/共137页
定理1.4.6 两矢量共线的充要条件是它们线性相关.
定 义1.4.2 对 于n(n 1)个 矢 量a1, a2 ,, an, 如 果 存
r xe1 ye2 ze3 ,
(1.4 3)
并 且 其 中 系 数x, y, z被e1 , e2 , e3 , r唯 一 确 定.
这时e1, e2 , e3叫做空间矢量的基底.
第38页/共137页
定 理1.4.3 如 果 矢 量e1 , e2 , e3不 共 面 , 那 么 空 间
任 意 矢 量r可 以 由 矢 量e1 , e2 , e3线 性 表 示 , 或 说 空 间 任 意 矢 量r可 以 分 解 成 矢 量e1 , e2 , e3的 线 性 组 合 , 即
A
Q M
B
P
CB
由条件可知: BC = 2BP, AC = 2AQ.
S
Q
T
P
C
设AS = AP, B2T = BQ,
2
3
高等数学第一节、向量及其线性运算
o
a
A
记作(a, b) 或 (b, a),即(a, b) .
如果向量 a 与 b 中有一个是零向量 ,规定它们的
夹角可以在 0 与 π 之间任意取值 .
8、向量平行
如果(a, b) 0或,就称向量a 与b 平行,记作a// b .
a
c
b
零向量与任何向量都平行.
9、向量垂直
如果
( a,
b)
,就称向量a
因为向量 a 与 a 平行,所以常用向量与数的乘
积来说明两个向量的平 行关系.
定理 1 设向量 a 0,那么向量b 平行于 a 的充分
必要条件是: 存在唯一的实数,使得 b a .
6、数轴与向量
数轴可由一个点、一个方向及单位长度确定,故
给定一个点及一个单位向量即可确定一条数轴.
6、零向量: 模等于零的向量叫做零 向量,记作 0 或 0 .
零向量的起点与终点重合,它的方向可以看做是任意的.
7、向量的夹角 设有两个非零向量 a, b, 任取空间一点 O,
作 OA a, OB b,
规定不超过 π 的 AOB
B
b
(设 AOB, 0 π)
称为向量a 与 b的夹角,
A
D
二、向量的线性运算
1. 向量的加法
三角形法则
ab
C
A
a
b
B
或平行四边形法则
b
A
D
ab
a
B
C
b (ab)c
a (b c)
c bc
运算规律 :
ab b
交换律 结合律
a b b a (a b) c
a
(b
c)
高等数学《空间解析几何(第1章)》课件
个或三个以上平行于同一平面的一组向量叫做___ 共__面__向__量___; 7、两向量_模__相__等__且__方__向,相我同们称这两个向量相等; 8、两个模相等、__方__向__相__反____的向量互为逆向量; 9、把空间中一切单位向量归结到共同的始点,则终点
构成__半__径__为__1_的__球_; 面
|
a
|
|
a
|
a
0
a 0
a与a 反向,
|
a
||
|
|
a
|
a
2a
1
a
2
数与向量的乘积符合下列运算规律:
(1)结合律:
(
a)
(
a)
(
)a
(2)分配律: ( )a a a
(a
b)
a
b
思考
1.向量 a ,b 平行(共线)条件是什么?
2.与向量 a 0共线的单位向量________.
e3 O e2
e1
一个空间标架,决定一个空间坐标系
z
e3
O
e2
e1 x
当{O; e1, e2 , e3 }确定后, e1, e2 , e3依次确定以O为原点 的三数轴:x轴(横轴),y轴(纵轴), y z轴(竖轴),统称坐标轴. 它们构成空间坐标系o xyz.
也用{O; e1, e2 , e3 }表示. 把e1, e2 , e3称为坐标向量.
e3
F
的中点为P1 , 其余各组对边
中点分别为P2 , P3 .
A
P1
e2
C
只需证明P1, P2 , P3三点
重合即可.
E
e1 B
取 AB e1, AC e2 , AD e3 , 先求 AP1用e1, e2 ,e3表示的关系式.
构成__半__径__为__1_的__球_; 面
|
a
|
|
a
|
a
0
a 0
a与a 反向,
|
a
||
|
|
a
|
a
2a
1
a
2
数与向量的乘积符合下列运算规律:
(1)结合律:
(
a)
(
a)
(
)a
(2)分配律: ( )a a a
(a
b)
a
b
思考
1.向量 a ,b 平行(共线)条件是什么?
2.与向量 a 0共线的单位向量________.
e3 O e2
e1
一个空间标架,决定一个空间坐标系
z
e3
O
e2
e1 x
当{O; e1, e2 , e3 }确定后, e1, e2 , e3依次确定以O为原点 的三数轴:x轴(横轴),y轴(纵轴), y z轴(竖轴),统称坐标轴. 它们构成空间坐标系o xyz.
也用{O; e1, e2 , e3 }表示. 把e1, e2 , e3称为坐标向量.
e3
F
的中点为P1 , 其余各组对边
中点分别为P2 , P3 .
A
P1
e2
C
只需证明P1, P2 , P3三点
重合即可.
E
e1 B
取 AB e1, AC e2 , AD e3 , 先求 AP1用e1, e2 ,e3表示的关系式.
高等数学第八章空间解析几何教学精品PPT课件
高等数学(下册)
§8.4 空间曲线及其方程
一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影
高等数学(下册)
一、空间曲线的一般方程
空间曲线C可看作两曲面S1与S2的交线.
若S1:F(x,y),z0;
z
S2:G(x,y),z0,
S1
则 M ( x ,y ,z ) C M S 1 且 M S 2
x
0
同理,xo面z 上的投影曲线,
y o z 面上
的投影曲线
T(x, z) 0
y
0
高等数学(下册)
如图:投影曲线的研究过程.
空间曲线
投影柱面
投影曲线
高等数学(下册)
x2 y2 z2 1
例4
求曲线
z
1 2
在坐标面上的投影.
解 (1)消去变量z后得
x2 y2 3, 4
在 xoy面上的投影为
解 截线方程为
y2 z2 x x2y z 0
如图,
高等数学(下册)
( 1) 消 去 z得 投 影x25y24xyx0,
z0
( 2) 消 去 y得 投 影x25z22xz4x0,
y0
( 3) 消 去 x得 投 影y2
z2
2yz0 .
x0
高等数学(下册)
补充: 空间立体或曲面在坐标面上的投影.
t
oM
xaco ts
yasi nt
zvt
x A M y 螺旋线的参数方程
高等数学(下册)
螺旋线的参数方程还可以写为
x a cos
y
a
sin
z b
(t, bv)
螺旋线的重要性质:
§8.4 空间曲线及其方程
一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影
高等数学(下册)
一、空间曲线的一般方程
空间曲线C可看作两曲面S1与S2的交线.
若S1:F(x,y),z0;
z
S2:G(x,y),z0,
S1
则 M ( x ,y ,z ) C M S 1 且 M S 2
x
0
同理,xo面z 上的投影曲线,
y o z 面上
的投影曲线
T(x, z) 0
y
0
高等数学(下册)
如图:投影曲线的研究过程.
空间曲线
投影柱面
投影曲线
高等数学(下册)
x2 y2 z2 1
例4
求曲线
z
1 2
在坐标面上的投影.
解 (1)消去变量z后得
x2 y2 3, 4
在 xoy面上的投影为
解 截线方程为
y2 z2 x x2y z 0
如图,
高等数学(下册)
( 1) 消 去 z得 投 影x25y24xyx0,
z0
( 2) 消 去 y得 投 影x25z22xz4x0,
y0
( 3) 消 去 x得 投 影y2
z2
2yz0 .
x0
高等数学(下册)
补充: 空间立体或曲面在坐标面上的投影.
t
oM
xaco ts
yasi nt
zvt
x A M y 螺旋线的参数方程
高等数学(下册)
螺旋线的参数方程还可以写为
x a cos
y
a
sin
z b
(t, bv)
螺旋线的重要性质:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据题意有 | MA || MB |,
x 12 y 22 z 32
x 2 y 1 z 4 ,
2 2 2
化简得所求方程 2 x 6 y 2 z 7 0.
高等数学(下)
2 2 z ( x 1 ) ( y 2 ) 1的图形是怎样的? 例2 方程
解
根据题意有 z 1
用平面z c 去截图形得圆:
z
( x 1)2 ( y 2)2 1 c (c 1)
当平面z c 上下移动时, 得到一系列圆
c
o
x
y
圆心在(1,2, c ),半径为 1 c
半径随c 的增大而增大. 图形上不封顶,下封底.
高等数学(下)
3、空间曲面方程
高 等 数 学 (下)
高等数学(下)
上册附录 向量代数与空间解析几何
高等数学(下)
河海大学理学院
补充:空间解析几何(部分)
第七节 空间曲面与空间曲线
1、空间平面方程
[1] 点法式方程
A( x x0 ) B( y y0 ) C ( z z0 ) 0
[2] 一般方程
Ax By Cz D 0
[1]一般形式 F ( x , y , z ) 0 ;
z f ( x, y) x (u , v ) [3]参数方程形式 y (u , v ) (不必掌握) z (u , v )
[2]显函数形式
高等数学(下)
4、空间曲线 [1] 空间曲线的一般方程
t
高等数学(下)
o
x A
M
x a cos t y a sin t z vt
y
M
螺旋线的参数方程
螺旋线的参数方程还可以写为
x a cos y a sin v z b ( t , b )
螺旋线的重要性质:
即 : 0 0 ,
z
F ( x, y ) 0 : z0
F ( x, y ) 0 ,求柱面方程。
高等数学(下)
z
只含
x, y
而缺
平行于
z
F ( y, z ) 0 表示母线平行于 x 轴,准线是 : 的柱面; x0 只含 x, z 而缺 y 的方程F ( x, z ) 0 表示母线 F ( x, z ) 0 平行于 y 轴,准线是 : 的柱面。 y0
缺变量的三元方程是柱面,它平行于没写出的坐标轴。
高等数学(下)
类似地,只含 y , z 而缺
F ( x, y ) 0 轴,准线是 : z0
z 的方程 F ( x, y) 0
表示母线
的柱面;
x 的方程 F ( y, z ) 0
例5 指出下列柱面的准线及母线平行于什么 坐标轴,并作草图及柱面的名称: 2 2 (1) x y 2 x ;
高等数学(下)
例 3 如果空间一点 M 在圆柱面 x 2 y 2 a 2 上以 角速度 绕 z 轴旋转,同时又以线速度 v 沿平行于 z 轴的正方向上升(其中 、 v 都是常数),那么点 M 构成的图形叫做螺旋线.试建立其参数方程.
解
z
取时间t为参数, 动点从A点出 发,经过t时间,运动到M点 M 在 xoy 面的投影 M ( x , y ,0)
[3] 截距式方程
高等数学(下)
x y z 1 a bБайду номын сангаасc
2、空间直线方程
[1] 一般方程
A1 x B1 y C1 z D1 0 L: A2 x B2 y C2 z D2 0
[2] 对称式方程
x x 0 y y0 z z 0 m n p
上升的高度与转过的角度成正比.
z : b 0 b 0 b ,
2,
上升的高度 h 2b 螺距
高等数学(下)
例4 将下列曲线化为参数式
(1) x y z 1 2 2 2 x y 1 z 1 1 (2) 解 (1) (2)得 : 2 y 2 z 2 0 y 1 z
F ( x, y, z ) 0 G ( x , y , z ) 0
[2] 空间曲线的参数方程
x x( t ) y y( t ) z z(t )
高等数学(下)
二.
例3
空间曲线的参数方程
螺旋线
x a cost y a sin t z vt
1.已知空间图形,建立和研究它的代数方程. 利用代数的优点:精准,易推导。 2.已知代数方程,想象出它的几何图形. 利用几何的优点:直观。
高等数学(下)
例 1 已知 A(1,2,3), B( 2,1,4),求线段 AB 的 垂直平分面的方程.
解
设 M ( x , y , z ) 是所求平面上任一点,
2 2 2
上式代入(1)得 : x 1 z z 1 1 2 2 x 2z 2z 0 x 2 cost x 2z 2z 2 1 1 解2 y sin t 2 2 解1 y 1 z 1 1 z z z sin t
2 2 2
高等数学(下)
三、柱面
定义 平行于定直线并沿定曲线C移动的直线 L 所形成的曲面称为柱面. 这条定曲线C 叫 柱面的准线, 动直线 L 叫柱 面的母线. 观察柱面的形 成过程:
播放
高等数学(下)
特殊情况:柱面的母线平行于某坐标轴,而 准线在与母线垂直的坐标平面上的柱面。 设柱面的母线平行于 轴,准线 是 xoy 平面上的一曲线
高等数学(下)
[3] 直线的参数方程
x x0 mt y y0 nt z z pt 0
[4] 直线的两点式方程
( t为参数)
x x1 y y1 z z1 x2 x1 y2 y1 z2 z1
高等数学(下)
一、解析几何的基本问题: