直线的法向量

合集下载

两点求法向量

两点求法向量

两点求法向量
在平面直角坐标系中,假设有两个点A(x1,y1)和B(x2,y2),如何求出由这两个点确定的直线的法向量呢?
方法一:
1.计算出向量AB的坐标表示,即AB = (x2 - x1, y2 - y1)。

2.将向量AB逆时针旋转90度,得到向量的一个垂直向量,即法向量N = (- (y2 - y1), x2 - x1)。

3.将法向量N进行单位化,即将其长度归一化为1,得到单位法向量n = N/||N||,其中||N||表示向量N的长度。

方法二:
1.根据两点式求出直线的方程,即斜率为k,截距为b的直线方程为y = kx + b。

2.由于直线的法向量与直线垂直,所以其斜率为-k的直线与原直线垂直。

3.根据两条直线的斜率,可以求出它们构成的直角三角形的两条直角边的长度,即法向量的坐标表示为N = (-k,1)或N = (k,-1)。

4.将法向量N进行单位化,得到单位法向量n = N/||N||。

以上两种方法都可以求出直线的法向量,具体选择哪种方法取决于问题的具体情况和个人喜好。

- 1 -。

直线的方向向量和法向量

直线的方向向量和法向量

量常用 n k , 1 ,当斜率不存在时的法向量常用 n 1,0 。 3、若直线方程是 Ax By C 0 ,则其法向量常用 n A, B ,向量常用 a B, A 。
例 1、 (1)直线 l 的倾斜角是 150 ,则该直线的一个方向向量是
例 3、 直线 l1 : px qy 3 0, l2 : sx ty 3 0, 相交于点 M (3 4) , 求过点 P 1 ( p, q), Q( s, t ) 的直线方程。
直线的方向向量和法向量 点法式方程
直线的方向向量与法向量 1、 与一条直线平行或在直线上的非零向量叫该直线的方向向量,有无数多,当直线斜率存
在时的方向向量常用 a 1, k ,当斜率不存在时的方向向量常用 a 0,1 。
2、 与一条直线垂直的非零向量叫该直线的方向向量,有无数多,当直线斜率存在时的法向

Байду номын сангаас
(2)直线 l 的方向向量是 a (3, 3sin ) ,则该直线的倾斜角的取值范围是 (3)直线 l1 , l2 的方向向量分别是 a (2,1), b (3,1) ,则这两直线的夹角是 (4)直线 l 上两点 P ,斜率= 1 1,2 , P 2 2, a ,其方向 a 1,0 ,则 a

直线的点法式方程:直线过点 P( x0 , y0 ) ,法向量 a=(A,B) ,则直线方程是
A x x0 B y y0 0
例 2、 (1)写出直线 x 2 y 3 0 的一个方向向量和法向量; (2)直线 l 过点 P(3,8) ,且与直线 x 2 y 3 0 平行,求该直线。垂直呢?

直线的方向向量与法向量的求法

直线的方向向量与法向量的求法

精品文档
直线的方向向量与法向量的求法
如图所示,当直线l :Ax By C =0的斜率存在时,直线与坐标轴分
别交于M N 两点,过点N 作直线l 的垂线NP,交横轴于点P,则,向 量m'是直线的方向向量,向量n 是直线的法向量,那么,如何求这两 个向量呢?
又••• k NP 二 B ,•••直线 NP 的方程为 y 二"Bx- C ,
A
A B 易知p 當0,故NP 珂晋,B)罟(诗罟(1厂或号(AB),
—■ 1 —■
所以,直线的法向量 n =(1,)或n 二(A, B) • k
说明:当直线的斜率不存在时,就分别用其后一个公式即可.
例、求下列直线的方向向量与法向量:
(1) 2x -3y 5 = 0 ; (2) 3x 7 = 0 .
解:(1)直线的方向向量为m' = (-3,-2)或m = (1,2),
3 直线的法向量为n 、
所以,直线的方向向量 m = (1,k)或m=(B,-A);
C C
「(1,k)或二 ABg ,
(2,-3)或n = (1^|);
(2)直线的方向向量为m〔(0,-3)或(0,1)或(0,-1),
直线的法向量为二(3,0)或(1,0)或(-1,0).
精品文档
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

直线的法向量与点法式方程

直线的法向量与点法式方程

【教材】中等职业教育规划教材《数学》第二册
【教学目标】
知识目标:1.理解直线的法向量的概念以及法向量与方向向量的关系;
2.根据条件,熟练地求出直线的方程。

能力目标:通过布置课前任务来培养学生的自学能力;通过让学生讨论、讲解来训练学生的语言表达能力和逻辑思维能力;通过让学生解决生活或专业中与数学相关的问题来培养学生的分析问题、解决问题的能力。

情感目标:通过让学生解决一些生活或专业中的问题,让学生感悟数学的实用性;通过小组活动,培养学生的团队精神;通过让学生解决一系列层层深入的问题,培养学生积极探索勇于创新的精神。

【教学重点】理解掌握直线的点法式方程。

【教学难点】法向量与方向向量的关系。

【突破难点的关键】通过多媒体演示、类比举例等手段让抽象的概念具体化。

【教学方法】探究式问题教学法。

此法就是把学习问题与学生的学习活动相结合,教师引导学生发现问题、分析问题、解决问题,从而使学生独立地、创造性地完成学习任务。

【教具】多媒体投影仪,实物投影仪。

例2 求下列过点。

最新直线的方向向量与法向量的求法

最新直线的方向向量与法向量的求法

最新直线的方向向量与法向量的求法
答:最新直线的方向向量和法向量都是几何中重要的概念,在计算机图形学、几何计算和现实世界中都有很广泛的应用。

最新直线的方向向量是有向线段的方向,它描述两点间的方向,而面的法向量是面内任意方向的有向线段的方向,它描述的是面的表面方向。

本文将重点介绍最新直线的方向向量和法向量的求法。

首先,我们介绍最新直线的求法。

最新直线的方向向量可以用两个点的空间坐标来求得。

即我们先用点$ C=(x_0, y_0,z_0) $和 $ D=(x_1,y_1,z_1) $来表示有向线段$CD$,有向线段$CD$的方向向量可以写成:
$$
\vec{ v}=\left(\begin{array}{l}
x_1-x_0 \\
y_1-y_0 \\
z_1-z_0
\end{array}\right)
$$
最新直线的求法就是从给出的任意两点$C$和$D$求出它们所代表的方向向量
$\vec{v}$。

直线的方向向量与法向量的求法

直线的方向向量与法向量的求法

直线的方向向量与法向量的求法
如图所示,当直线0:=++C By Ax l 的斜率存在时,直线与坐标轴分别交于M 、N 两点,过点N 作直线l 的垂线NP ,交横轴于点P,则,向量→m 是直线的方向向量,向量→
n 是直线的法向量,那么,如何求这两个向量呢?
【解析】易知),0(),0,(B C N A C M --,故),(),1(),(A B AB C k A C B C A C MN -==-=→
或, 所以,直线的方向向量),1(k m =→或),(A B m -=→; 又∵A B k NP =
,∴直线NP 的方程为B
C x A B y -=, 易知)0,(2B AC P ,故),()1,1(),1(),(2222B A B
C k B AC A B B AC B C B AC NP 或-===→, 所以,直线的法向量),()1,1(B A n k n =-=→→或. 说明:当直线的斜率不存在时,就分别用其后一个公式即可.
例、求下列直线的方向向量与法向量:
(1)0532=+-y x ; (2)073=+x .
解:(1)直线的方向向量为)2,3(--=→m 或)32,1(=→m , 直线的法向量为)23,1()3,2(-=-=→→n n 或;
(2)直线的方向向量为)1,0(1,0)3,0(--=→)或或(m ,
直线的法向量为)0,1()0,1()0,3(-==→→或或n n .。

直线的法向量和点法式方程

直线的法向量和点法式方程
精品课件
顾知
什么叫方向向量 ?
与一条直线平行的非零向量叫做这条
直线的方向向量 通常用v表示
识y

o
x
精品课件
顾知
l2
B

A
回l1
精品课件
成 概与一条直线 垂平直行 的非零向量叫做
这条直线的法方向向量 通常用n表示
念思考:
1、一条直线的法向量是唯一的吗?
形2、这些法向量的位置关系是怎样的?
3、同一条直线的方向向量v和法向量n的位 置关系是怎样的?
整=理0得
3x+ 4y-11 =0
精品课件
结 反1、理解一个概念——直线的法向量
——与直线垂直的非零向量
思2、掌握一个方程—— 直线的点法式方程
A( x - x0 ) +B( y -
小3、利用直线的y0点)=法0 式方程可以解决
已知直线上一点和直线的法向量求直线方程
精品课件
业布 置 作
P86 练习第4题
⑶ -2(x-3)4(y+5)=0
P0=(-3,5) n=(2,-4)
P0=(3,-5) n=(-2,-4) 或(2,4)
精品课件
A(x-x0)+B(y-y0)=0
用学
(x0,y0)
(A,B)
例1:求过点P(1, 2),且一个法向量为n =
(3,4)
以的直线方程。 解:代入直线的点法式方,得
致 3 (x-1)+ 4(y-2)
精品课件
精品课件
向量a(a1,a2)与向量b(b1,b2)
究 问 垂直的充要条件是 a1b1+a2b2=0
直线l的一个法向量n=(A,B),则直线l

高考数学新教材专题09 直线方向向量和法向量的应用

高考数学新教材专题09   直线方向向量和法向量的应用

专题09直线方向向量和法向量的应用[新教材的新增内容]背景分析:在旧教材中直线方程只涉及了斜率和倾斜角的概念与向量知识缺少联系,而在新教材中引入了直线的方向向量和法向量的概念,让向量与直线联系到一起,为解决直线方程问题提供了向量工具. 1、点方向式方程(1)直线的方向向量:把与直线平行的向量叫着直线的方向向量,记着(,)d u v = (2)点方向式方程:如果直线的方向向量的坐标都不为零,即0u ≠,0v ≠时,直线通过某个点00(,)x y ,把方程00x x y y u v--=叫做直线的点方向式方程. 2、直线的点法向式方程(1)直线的法向量:把与直线垂直的向量叫着直线的法向量,记着(,)n a b =(2)点法向式方程:如果直线通过某个点00(,)x y ,且与向量(,)n a b =垂直的 直线方程00()()0a x x b y y -+-=,叫做直线的点法向式方程. 3.理解方程中各字母及其系数的几何意义by c[新增内容的考查分析]1.直线方向向量的应用(应用主要体现在,会求直线的方向向量,应用直线的方向向量解决直线中的相关问题.)【考法示例1】过,两点的直线的一个方向向量为则()A. B. C. D.1【答案】C【分析】解法一:根据AB坐标求得向量,根据与直线的方向向量共线即可求得结果.解法二:根据直线的方向向量求得直线的斜率,结合两点的斜率公式即可求得结果.【详解】解法一:由直线上的两点,,得,又直线的一个方向向量为,因此,∴,解得,故选:C.解法二:由直线的方向向量为得,直线的斜率为,所以,解得.故选:C.【考法示例2】已知过定点的直线的一个方向向量是,则直线的点方向式方程可以为()A. B.C. D.【答案】B【详解】因为直线的方向向量为且经过点,故直线的点向式方程为.故选:B.【考法示例3】设两条不重合的直线的方向向量分别为,则“存在正实数,使得是“两条直线平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】A 【详解】依题意为两条不重合的直线的方向向量,若存在正实数,使得,则,即可得到这两条直线平行,即充分性成立;若两直线平行,即,则存在实数,使得,不一定为正,当与同向时,当与反向时,,故必要性不成立;故“存在正实数,使得”是“两条直线平行”的的充分不必要条件,故选:2.直线法向量的应用(直线的法向量应用主要在两方面,1.会求直线的方向向量;2.应用直线的法向量解决直线中的相关问题.)【考法示例4】已知直线的方向向量为(1,5),则直线的法向量为( ) A.B.C.D.【答案】C【分析】根据直线的方向向量与法向量的数量积等于零即可求解. 【详解】因为直线的方向向量为,所以直线的法向量可以是或.故选:C.【考法示例5】已知两条直线,,若的一个法向量恰为的一个方向向量,则________.【答案】【分析】根据题意可得,利用两直线垂直的等价条件即可求解.【详解】因为直线的一个法向量恰为的一个方向向量,所以,所以,解得:.[新增内容的针对训练]1. 设()()111222,,,P x y P x y 为直线l 上的两点,则()122121,PP x x y y =--,我们把向量12PP 以及与它平行的向量都称为直线l 的方向向量,把与直线l 的方向向量垂直的向量称为直线l 的法向量.若直线l 经过点(1,4),(3,2)A B -,则直线的一个法向量n 为( ) A. ()1,2n =- B. ()4,2n =- C. ()4,2n = D. ()1,2n =【答案】D 【解析】【分析】先计算出直线l 的方向向量AB ,然后通过数量积逐项判断n 与AB 是否垂直.【详解】因为()4,2AB =-,A .当()1,2n =-,则4480AB n ⋅=+=≠,不满足, B .当()4,2n =-,则164200AB n ⋅=+=≠,不满足,C .当()4,2n =,则164120AB n ⋅=-=≠,不满足,D .当()1,2n =,则440AB n ⋅=-=,满足, 故选:D.2. 下列命题正确的有( ).∴直线的方向向量是唯一的;∴经过点()00,P x y 且与向量(,)d u v =平行的直线l 的点方向式方程为00x x y y u v--=;∴直线10y =的一个方向向量是(1,0). A. 0个 B. 1个 C. 2个 D. 3个【答案】B 【解析】【分析】由于直线的方向向量是不唯一的,可判定∴不正确;由直线的点方向式方程,可判定∴不正确;由直线10y =的斜率为0,可判定∴是正确的. 【详解】对于∴中,由于直线的方向向量是不唯一的,所以∴不正确;对于∴中,只有等0,0u v ≠≠时,经过点()00,P x y 且与向量(,)d u v =平行的直线l的点方向式方程为00x x y y u v--=,所以∴不正确; 对于∴中,直线10y =的斜率为0,所以直线10y =的一个方向向量可以是(1,0),所以∴是正确的. 故选:B.【点睛】本题主要考查了直线的方向向量的概念与辨析,以及直线的点方向式方程的应用,着重考查概念的辨析能力,属于基础题.3. 若过点(3,2)P m 和点(,2)Q m -的直线与方向向量为(5,5)a =-的直线平行,则实数m 的值是( ) A.13 B. 13-C. 2D. 2-【答案】B 【解析】【分析】求出PQ 坐标,由向量共线可得关于m 的方程,进而可求出m 的值. 【详解】由题意得,(3,22)PQ m m =---与(5,5)a =-共线,所以5(3)(5)(22)0m m ----⋅-=,解得13m =-.经检验知,13m =-符合题意,故选:B .【点睛】本题考查了由向量平行求参数,属于基础题.4. 已知直线l 经过点(1,2)P 和点(2,2)Q --,则直线l 的单位方向向量为 A. (3,4)-- B. 34,55⎛⎫-- ⎪⎝⎭C. 34,55⎛⎫±± ⎪⎝⎭D. 34,55⎛⎫± ⎪⎝⎭【答案】D 【解析】【分析】求出直线l 的一个方向向量为(3,4)PQ =--,再求出向量的模,根据单位向量||PQPQ ±即可求解. 【详解】由题意得,直线l 的一个方向向量为(21,22)(3,4)PQ =----=--,则||(5PQ =-=,因此直线l 的单位方向向量为134(3,4),555||PQ PQ ⎛⎫±=±--=± ⎪⎝⎭,故选:D .【点睛】本题考查了直线的方向向量以及单位向量的求法,考查了基本运算,属于基础题.5. 设直线:tan α=+l y x b ,其中,2k k πα≠π+∈Z 且0,≠∈R b b .给出下列结论其中真命题有( ) A. l 的斜率是tan α B. l 的倾斜角是αC. l 的方向向量与向量(sin ,cos )a αα=平行D. l 的法向量与向量(sin ,cos )b αα=-平行. 【答案】AD 【解析】【分析】由直线方程得斜率,由斜率得倾斜角,注意倾斜角的范围判断AB ,由直线的方向向量与法向量定义及向量共线的坐标表示判断CD . 【详解】因为直线:tan α=+l y x b ,其中,2k k πα≠π+∈Z ,所以l 的斜率是tan α;所以A 对;l 的倾斜角θ满足tan tan θα=,但不一定有θα=,所以B 错;l 的方向向量为(1,tan )α,因为1cos sin tan ααα⨯≠,所以C 错; l 的法向量为(tan ,1)α-,因为1sin cos tan ααα-⨯=-,所以D 对;故选:AD.6. 直线l 经过点(2,3)P ,且一个方向向量是(3,1)d =,则直线的点法向式方程是( )A. 3(2)(3)0x y -+-=B. (2)3(3)0x y --+-=C.2331x y --= D.2313x y --=- 【答案】BC【解析】【分析】直接利用直线的点法向式方程求解.【详解】因为直线l 经过点(2,3)P ,且一个方向向量是(3,1)d =, 所以直线的点法向式方程是(2)3(3)0x y --+-=或2331x y --= 故选:BC【点睛】本题主要考查直线的点法向式方程的求法,还考查了运算求解的能力,属于基础题.7. 若一条直线的斜率为k ,则它的一个方向向量是___________,一个法向量是________.【答案】 ∴. (1,)k ∴. (,1)k - 【解析】【分析】根据直线方向向量与直线斜率关系,在直线上任取两点坐标相减得到的向量即为方向向量,再由法向量和方向向量的数量积为0,即可求得法向量. 【详解】因为直线的斜率为k ,所以它的一个方向向量为(1,)k ,设一个法向量为(),x y ,则()(),1,0x y k x ky ⋅=+=,不妨取,1x k y ==-,则它的一个法向量是(),1k -, 故答案为:(1,)k ;(,1)k -.【点睛】本题考查直线方向向量以及法向量,掌握直线斜率和方向向量以及法向量的关系是关键,考查了分析求解能力,属基础题.8. 直线1:2330l x y -+=,那么直线1l 的一个方向向量1d 为_____________;2l 过点(2,1),并且2l 的一个方向向量2d 满足120d d ⋅=,则2l 的点方向式方程是_____________.【答案】 ∴. ()3,2(与该项量共线的非零向量均可) ∴. 2123x y --=- 【解析】【分析】由题意结合直线方向向量的知识可得直线1l 的一个方向向量;求得一个满足要求的向量2d 后,利用直线的点方向式即可得2l 的点方向式方程.【详解】由题意可得直线1:2330l x y -+=的一个方向向量为()3,2, 所以1d 可为()3,2(与该项量共线的非零向量均可); 设向量()2,n d m =,由120d d ⋅=可得320m n +=, 令2m =则3n =-,所以直线2l 的一个方向向量为()2,3-,又直线2l 过点(2,1),所以该直线的点方向式方程为2123x y --=-. 故答案为:()3,2(与该项量共线的非零向量均可);2123x y --=-. 【点睛】本题考查了直线方向向量的求解及直线点方向式方程的应用,考查了运算求解能力,属于基础题.9. 已知平面上直线l 的方向向量43,55e ⎛⎫=- ⎪⎝⎭,点(0,0)O 和(1,2)A -在l 上的射影分别为1O 和1A ,则11O A e λ=,其中λ=________. 【答案】2- 【解析】【分析】由题意结合平面向量的坐标运算、模的坐标运算可得(1,2)OA =-、1e =,进而可得λ即为OA 在e 方向上的投影,再由e OAeλ⋅=即可得解. 【详解】43,55e ⎛⎫=- ⎪⎝⎭,(0,0)O ,(1,2)A -;∴415e ⎛⎫=-= ⎪⎝⎭,(1,2)OA =-, ∴λ即为OA 在e 方向上的投影,∴465521e OA e λ--===-⋅.故答案为:2-.【点睛】本题考查了平面向量的坐标表示、模的坐标表示,考查了平面向量数量积的应用,属于基础题.10. 如图,射线OA ,OB 所在直线的方向向量分别为()11,d k =,()()21,0d k k =->,点P 在AOB ∠内,PM OA ⊥于M ,PN OB ⊥于N .(1)若1k =,31,22P ⎡⎤⎢⎥⎣⎦,求OM 的值; (2)若()2,1P ,OMP 的面积是65,求k 的值; (3)已知k 为常数,M ,N 的中点为T ,且1MON S k=△,当P 变化时,求OT 的取值范围.【答案】(1(2)112或2;(3)1,k ⎡⎫+∞⎪⎢⎣⎭【解析】 【分析】(1)求出||OP ,点P 到直线的距离,利用勾股定理,求||OM 的值; (2)直线OA 的方程为0kx y ,求出(2,1)P 到直线的距离,利用勾股定理求出||OM ,利用OMP 的面积为65,求k 的值; (3)设直线OA 的倾斜角为α,求出||OM ,||ON ,利用1MON S k=△,可得P 变化时,动点T 轨迹方程,求出||OT ,即可求||OT 的取值范围.【详解】(1)31,22P ⎡⎤⎢⎥⎣⎦,||OP ∴=, 若1k =,则()11,1d =,OA ∴的方程为y x =,即0x y -=,则点P 到直线OA2=,||OM ∴== (2)直线OA 的方程为0kx y ,(2,1)P到直线的距离为d =||OM ∴=, OMP ∴的面积为1625=, 112k ∴=或2; (3)设()11,M x kx ,()22,N x kx -,(,)T x y ,1>0x ,20x >,0k >, 设直线OA 的倾斜角为α,则tan k α=,22sin 21kk α=+, 根据题意得()121222x x x k x x y OM x ON x +⎧=⎪⎪-⎪⎪=⎨⎪=⎪⎪=⎪⎩,解得12y x x ky x x k ⎧=+⎪⎪⎨⎪=-⎪⎩, 代入11||||sin 22MONSOM ON kα==, 化简得动点T 轨迹方程为22211k x y x k ⎛⎫-=≥ ⎪⎝⎭.1||OT k∴====, 当且仅当11,,0x T k k ⎛⎫=⎪⎝⎭时,||OT 取得最小值1k.||OT∴的取值范围是1,k⎡⎫+∞⎪⎢⎣⎭.【点睛】本题考查三角形面积,考查轨迹方程,解题的关键是正确利用图形关系,得出三角形面积的表达式.。

直线的法向量和点法式方程课件

直线的法向量和点法式方程课件

(1)向量P0P 的坐标为:
(x-x0 , y-y0 ) ,
P(x, y)
r n
A,
B(2)
P0 P与n=(A,B)的位置关系
是: 垂直 ,
x (3) P0P 与n 垂直的充要条件是:
A(x-x0)+B (y-y0)=0 ,
A(x-x0)+B(y-y0)=0

根据直线 l 的方程,写出直线 l 已知点P0和直线 l 的一个法向量

r
求直线的方程
n A, B
导o P0(x0 , y0)
x
直线的点法式方程

y
l

直线经过点Pr0(x0,y0 ),
r
一个法向量n=(A,B),

n A, B 则直线的点法式方程
式o P0(x0 , y0)
x A(x-x0)+B(y-y0)=0
直线的点法式方程

y



o P0(x0 , y0)

(x0 , y0)
(A,B)
例1:求过点P(1, 2),且一个法向量为n=(3,4)
以 的直线方程。
致 解:代入直线的点法式方程,
得 3 (x-1)+ 4(y-2) =0
用 整理得 3x+ 4y-11 =0
r
练(1)习pr(1-. 求1,过2点),p,nr且一=个(3,法-向4量) 为n的直线方程.
(2) n = (-3,2), P(1,-5),
学 例2:已知点A(3,2)和点B(-1,-4)求线段
AB的垂直平分线方程。

解:中点c的坐标
y
l

9.1.3直线的法向量与点法式方程1

9.1.3直线的法向量与点法式方程1
1、课本85页1、2、3题写在书上
2、4、5、6题写在作业本上
交书面作业
15年级学科数学教学设计()
第 单元共需 课时,本节为第 课时
授课时间
年 月 日
课题
9.1.3直线的法向量与点法式方程
课 型
新授
教学
目标
1.理解直线的法向量的概念以及与方向向量的关系
2.根据条件,熟练地求出直线的方程。
3.培养学生学习兴趣
教学重点难点关键
重点:理解掌握直线的点法式方程。
难点:法向量与方向向量的关系。
1.一条直线的法向量是不是唯一的?
2.同一直线的所有法向量具有什么样位置关系?
根据向量基本定理,得出结论:
如果 是直线的一个法向量,则
也是这条直线的一个法向量。
(二)法向
核对学生人数
让学生回顾所学公式教师展示动画,引导学生分Fra bibliotek问题,引入定义。
学生根据定义作图,教师巡视,然后用多媒体展示不同图像的学生作品,最后结合图像解答问题;
教 学 环 节 及 教 学 内 容
设 计 思 路
如果 ,那么
(三)根据垂直向量的坐标表示,推导直线的点法式方程:

通过①式和图像分析 或 时直线方程的特殊表达式。
【学以致用】
例1 求通过点 ,且一个法向量为
的直线方程。
练习:求通过点B(-4,2),且一个法向量为 的直线方程。
例2 求下列过点 ,且一个法向量为 的直线方程:
关键:通过多媒体演示、类比举例等手段让抽象的概念具体化。
教具资源
多媒体
教学方法
引导新授
教 学 环 节 及 教 学 内 容
设 计 思 路

第二章 2.2.1 第2课时 直线的方向向量与法向量

第二章 2.2.1 第2课时 直线的方向向量与法向量

第2课时 直线的方向向量与法向量学习目标 1.理解直线的方向向量、法向量的概念.2.会求直线的方向向量和法向量.3.理解直线的方向向量、法向量与直线的斜率之间的关系并会简单应用.知识点一 直线的方向向量定义:一般地,如果表示非零向量a 的有向线段所在的直线与直线l 平行或重合,则称向量a 为直线l 的一个方向向量,记作a ∥l .(1)a =(1,0)表示所有倾斜角为0°(即与y 轴垂直)的直线的一个方向向量. b =(0,1)表示所有倾斜角为90°(即与x 轴垂直)的直线的一个方向向量.(2)如果a 为直线l 的一个方向向量,那么对于任意的实数λ≠0,向量λa 都是l 的一个方向向量,而且直线l 的任意两个方向向量一定共线.(3)如果A (x 1,y 1),B (x 2,y 2)是直线l 上两个不同的点,则AB →=(x 2-x 1,y 2-y 1)是直线l 的一个方向向量.(4)如果直线l 的倾斜角为θ,则a =(cos θ,sin θ)为直线l 的一个方向向量. 如果直线l 的斜率为k ,则a =(1,k )为直线l 的一个方向向量. (5)如果a =(u ,v )为直线l 的一个方向向量,则 当u =0时,直线的斜率不存在,倾斜角为90°; 当u ≠0时,直线的斜率存在,且k =tan θ=v u .知识点二 直线的法向量定义:一般地,如果表示非零向量v 的有向线段所在直线与直线l 垂直,则称向量v 为直线l 的一个法向量,记作v ⊥l .(1)一条直线的方向向量与法向量互相垂直.(2)当x 0,y 0不全为0时,若a =(x 0,y 0)为直线l 的方向向量,则v =(y 0,-x 0)为直线l 的法向量;若v =(x 0,y 0)为直线l 的法向量,则a =(y 0,-x 0)为直线l 的方向向量.1.一条直线有无数个方向向量.( √ ) 2.一条直线的所有方向向量都共线.( √ )3.如果a 为直线l 的法向量,则λa (λ≠0)也是直线l 的法向量.( √ )4.直线l 的一个方向向量为a =(2,-1),则v =(2,1)为直线l 的一个法向量.( × )一、直线的方向向量例1 (1)直线l 过点P (1,-3),Q (4,3-3),求直线l 的一个方向向量、斜率和倾斜角. 解 方法一 PQ →=(4,3-3)-(1,-3)=(3,3). ∴PQ →=(3,3)为直线l 的一个方向向量, ∴k =33,∴tan θ=33,θ=30°. 故该直线的斜率为33,倾斜角为30°. 方法二 k PQ =(3-3)-(-3)4-1=33,∴tan θ=33,∴θ=30°. 直线l 的一个方向向量a =(1,k )=⎝⎛⎭⎫1,33. (2)平面内点A (-1,-5),B (2,1),C (4,5),证明:A ,B ,C 三点共线. 解 方法一 k AB =1-(-5)2-(-1)=63=2,k AC =5-(-5)4-(-1)=105=2.∵k AB =k AC ,∴A ,B ,C 三点共线. 方法二 AB →=(2,1)-(-1,-5)=(3,6), AC →=(4,5)-(-1,-5)=(5,10)=53AB →.∴AB →∥AC →,又AB →与AC →有公共点A , ∴A ,B ,C 三点共线.反思感悟 直线的方向向量的求法(1)在直线上任找两点P ,Q ,则PQ →(QP →)为直线l 的一个方向向量. (2)已知直线的斜率为k ,则a =(1,k )为直线的一个方向向量.(3)a =(t ,0)(t ≠0)表示与x 轴平行或重合的直线的方向向量,a =(0,t )(t ≠0)表示与y 轴平行或重合的直线的方向向量.跟踪训练1 (1)直线l 的倾斜角为150°,则该直线的斜率为________,一个方向向量为________. 答案 -33 ⎝⎛⎭⎫1,-33 解析 ∵θ=150°,∴k =tan 150°=-33. ∴a =⎝⎛⎭⎫1,-33为直线的一个方向向量. (2)直线l 过点(-1,-2),(-1,2)且直线l 的方向向量为a =(m ,n ),则mn =________. 答案 0解析 依题意,直线l 垂直于x 轴,∴m =0,n 为任意非零实数,∴mn =0. 二、直线的法向量例2 (1)直线l 过点A (-1,3)和B (3,2),则直线l 的法向量为( ) A .(-1,4) B .(2,5) C .(5,-2) D .(-1,-4)答案 D解析 AB →=(3,2)-(-1,3)=(4,-1)为直线l 的一个方向向量, ∴直线l 的法向量v =(-1,-4).(2)直线l 的法向量为v =(3,-3),则直线l 的斜率为________,倾斜角为________. 答案3330° 解析 v =(3,-3)为直线l 的法向量, 则a =(-3,-3)为直线l 的方向向量. ∴k =-3-3=33,∴tan θ=33,θ=30°. ∴直线l 的斜率为33,倾斜角为30° 反思感悟 直线的法向量的求法若直线的方向向量为a =(x 0,y 0),则直线的法向量v =(y 0,-x 0),即要求直线的法向量,只需先求直线的方向向量即可.跟踪训练2 直线PQ 的斜率为-3,则直线PQ 的法向量所在直线的倾斜角为( ) A .30° B .60° C .120° D .150° 答案 A解析 k PQ =-3,∴PQ 的倾斜角为120°, 又直线PQ 的法向量与直线PQ 垂直, 故PQ 的法向量所在直线的倾斜角为30°. 三、直线的方向向量和法向量的应用 例3 (1)直线l 的方向向量为⎝⎛⎭⎫cos α,32sin 2α⎝⎛⎭⎫α≠π2+k π,k ∈Z ,则直线l 的倾斜角的取值范围是________________. 答案 ⎣⎡⎭⎫0,π3∪⎝⎛⎭⎫2π3,π 解析 ∵α≠π2+k π,k ∈Z ,∴cos α≠0,sin α≠±1.令直线l 的倾斜角为θ, ∴tan θ=32sin 2αcos α=3sin α.∵sin α∈(-1,1), ∴tan α∈(-3,3), ∴又θ∈[0,π), 故θ∈⎣⎡⎭⎫0,π3∪⎝⎛⎭⎫2π3,π. (2)直线l 上两点A (-2,3),B (4,m ),若直线l 的法向量为v =(2,-3),则m =________. 答案 7解析 AB →=(4,m )-(-2,3)=(6,m -3),∴AB →为直线l 的一个方向向量. ∴AB →⊥v ,∴6×2+(-3)·(m -3)=0, ∴m =7.反思感悟 直线的方向向量与法向量的关系一条直线有无数个方向向量和无数个法向量,任意两个方向向量是共线的,任意两个法向量也是共线的,任意一个方向向量和任意一个法向量是相互垂直的.跟踪训练3 已知a >0,b >0,且向量u =(a ,3)和v =(1-b ,2)都是直线l 的法向量.求2a +3b 的最小值.解 ∵u ,v 都是直线l 的法向量,则u ∥v , ∴2a -3(1-b )=0, 即2a +3b =3,∴13(2a +3b )=1,且a >0,b >0. ∴2a +3b =⎝⎛⎭⎫2a +3b ·13(2a +3b ) =13⎝⎛⎭⎫4+9+6b a +6a b =133+2⎝⎛⎭⎫b a +a b ≥133+2×2b a ×a b =253, 当且仅当b a =a b ,即a =b =35时,等号成立.∴当a =b =35时,2a +3b 最小为253.1.直线过点(-3,0),(-2,3),则该直线的一个方向向量为( ) A .(-1,3) B .(1,-3) C .(1,3) D .(5,3)答案 C解析 直线的方向向量为a =(-2,3)-(-3,0)=(1,3). 2.直线AB 的方向向量a =(3,-3),则该直线的倾斜角为( ) A .45° B .60° C .120° D .150°答案 D解析 a =(3,-3)=3⎝⎛⎭⎫1,-33, ∴k =-33, ∴tan θ=-33,又0°≤θ<180°,∴θ=150°. 3.直线l 1与l 2的法向量分别为v 1=(2,-3),v 2=(3,-1),则直线l 1与l 2的斜率k 1,k 2的大小关系为( ) A .k 1>k 2 B .k 1=k 2 C .k 1<k 2 D .不确定答案 C解析 v 1=(2,-3),则l 1的方向向量a 1=(-3,-2), ∴斜率k 1=-2-3=23.v 2=(3,-1),则l 2的方向向量a 2=(-1,-3), ∴斜率k 2=-3-1=3,∴k 2>k 1.4.已知直线的倾斜角为120°,一个方向向量为a =(4,m ),则m 的值为( ) A.433 B .-4 3 C .4 3 D .-34答案 B解析 θ=120°,∴k =tan 120°=- 3. ∴直线的一个方向向量为a 0=(1,-3), ∵a ∥a 0,∴1×m -4×(-3)=0,∴m =-4 3.5.已知向量m =(a ,a 2+1)(a ≠0),直线AB 的一个方向向量为n ,则m 与n 共线,则直线AB 的斜率的取值范围是________________. 答案 (-∞,-2]∪[2,+∞)解析 ∵m ∥n ,∴m =(a ,a 2+1)为直线AB 的一个方向向量, ∴k AB =a 2+1a =a +1a.①当a >0时,a +1a ≥2,当且仅当a =1时取等号,所以a +1a∈[2,+∞).②当a <0时,a +1a =-⎣⎢⎡⎦⎥⎤(-a )+1(-a )≤-2,当且仅当(-a )=1(-a ),即a =-1时取等号, 所以a +1a∈(-∞,-2].综上有k ∈(-∞,-2]∪[2,+∞).1.知识清单: (1)直线的方向向量. (2)直线的法向量.(3)直线的方向向量和法向量的应用. 2.方法归纳:数形结合.3.常见误区:斜率不存在、斜率为0的直线的方向向量,法向量易混淆.1.直线AB 的方向向量为a =(3-1,2),则直线AB 的斜率为( ) A.3+1 B.3-1 C.3-12D.3+12答案 A解析 a =(3-1,2), ∴k =23-1=3+1. 2.过点A (2,3),B (0,-2)的直线的一个法向量为( ) A .(-5,-2) B .(-2,-5) C .(-5,2) D .(5,2)答案 C解析 AB →=(0,-2)-(2,3)=(-2,-5)为直线的一个方向向量, 所以该直线的一个法向量v =(-5,2).3.直线的倾斜角为120°,一个法向量为v =(m ,m +1),则m 的值为( ) A .1- 3 B.3+1 C.3+32D .-3+32答案 D解析 k =tan 120°=-3,∴直线的一个方向向量为a =(1,-3). ∴a ⊥v ,又v =(m ,m +1), ∴m -3(m +1)=0, 解得m =-3+32.4.在平面直角坐标系中,正三角形ABC 的BC 边所在的直线的方向向量为a =(-3,0),则AC 与AB 所在直线的斜率之和为( ) A .-2 3 B .0 C. 3 D .2 3 答案 B解析 a =(-3,0),∴BC 所在直线的斜率为0. 又△ABC 为等边三角形,∴AB 与AC 所在直线的倾斜角一个为60°,另一个为120°, ∴k AB +k AC =tan 60°+tan 120°=0.5.(多选)已知直线l 过点A (4,2),B (-1,2+3),则直线l 的方向向量可以是( ) A .(-5,3) B .(5,-3) C .(3,5) D .(53,-3) 答案 ABD解析 直线l 的一个方向向量为AB →=(-1,2+3)-(4,2)=(-5,3), 所以与AB →共线的向量都能作为直线的方向向量, 故选ABD.6.(多选)下列说法正确的是( )A .若直线垂直于y 轴,则该直线的一个方向向量为(1,0),一个法向量为(0,1)B .若直线的一个方向向量为(a ,a +1),则该直线的斜率为k =a +1aC .若直线的法向量为v =(x 0,y 0),则a =(y 0,-x 0)能作为该直线的一个方向向量D .任何直线一定存在法向量与方向向量,且两向量是相互垂直的 答案 ACD解析 由直线的方向向量、法向量的定义知A ,C ,D 正确, 选项B 中当a =0时,不成立,故选ACD.7.直线l 的一个法向量为u =(3,-3),则直线l 的倾斜角为________. 答案 π3解析 直线l 的法向量为u =(3,-3), 则直线l 的一个方向向量a =(-3,-3), 则斜率k =-3-3= 3.∴tan θ=3,且θ∈[0,π), 故θ=π3.8.直线l 过点A (2,a ),B (3,1),C (b ,-2),则1a +3b =________;若直线l 的一个方向向量为m =(2,-3),则 a +b =________. 答案 1152 解析 AB →=(1,1-a ), BC →=(b -3,-3),∵A ,B ,C 三点共线,∴AB →∥BC →. ∴-3-(1-a )(b -3)=0, 即(a -1)(b -3)-3=0. ∴ab -3a -b =0.∴3a +b =ab ,同除以ab 得3b +1a =1,若m =(2,-3)为直线l 的一个方向向量, 则m ∥AB →,m ∥BC →∴⎩⎪⎨⎪⎧-3-(1-a )×2=0,-6+3(b -3)=0,解得⎩⎪⎨⎪⎧a =52,b =5,∴a +b =152.9.已知坐标平面内两点M (m +3,2m +5),N (2m -1,1). (1)当m 为何值时,直线的倾斜角为锐角;(2)若直线的方向向量为a =(0,-2 020),求m 的值. 解 (1)倾斜角θ为锐角,则k =tan θ>0, 又k =2m +5-1(m +3)-(2m -1)=2m +4-m +4>0,即(m +2)(m -4)<0, 解得-2<m <4.(2)直线的方向向量为a =(0,-2 020), ∴直线的斜率不存在.故M ,N 两点的直线垂直于x 轴. ∴m +3=2m -1,即m =4.10.已知菱形四边形ABCD 中,点A (-1,-2),B (2,1),直线BC 的方向向量为a =(3,6),BD 的法向量为v =(-2,-3),求点C 的坐标. 解 设点C 的坐标为(x 0,y 0),BC →=(x 0-2,y 0-1). ∴BC →∥a ,∴(x 0-2)×6-3(y 0-1)=0, 即2x 0-y 0-3=0.①又AC →=(x 0+1,y 0+2),四边形ABCD 为菱形, ∴AC ⊥BD ,∴AC →为BD 的一个法向量, ∴AC →∥v ,-2(y 0+2)+3(x 0+1)=0,即3x 0-2y 0-1=0.②由①②解得⎩⎪⎨⎪⎧x 0=5,y 0=7.∴点C 的坐标为(5,7).11.已知直线PQ 的斜率为-3,将直线PQ 绕点P 逆时针旋转120°,所得直线的一个方向向量为( )A .(-3,1)B .(3,-1)C .(-1,3)D .(-3,-3)答案 D解析 k PQ =-3,∴PQ 的倾斜角为120°.绕点P 逆时针旋转120°后所得直线的倾斜角为60°,∴k =tan 60°= 3.∴所得直线的一个方向向量为a =(1,3),所以与a 共线的向量都是所得直线的方向向量,故选D.12.将直线l 沿y 轴负方向平移a (a >0)个单位长度,再沿x 轴正方向平移(a +1)个单位长度,得到直线l ′,此时直线l ′与l 重合,若直线l 的方向向量为a =(2,-1),则a 的值为( ) A.12B .1C .2D .4 答案 B解析 设直线l 上一点为A (m ,n ),则平移后的坐标为A ′(m +a +1,n -a ).∵A 与A ′都在直线l 上,∴AA ′——→=(m +a +1,n -a )-(m ,n )=(a +1,-a )为直线l 的一个方向向量.∴AA ′——→∥a ,∴-2a +(a +1)=0,∴a =1.13.直线l 的法向量为v =(1,a 2+1),则直线l 的倾斜角的取值范围为( )A.⎝⎛⎦⎤-π2,3π4B.⎣⎡⎦⎤0,3π4C.⎣⎡⎦⎤3π4,πD.⎣⎡⎭⎫3π4,π答案 D解析 直线l 的法向量为v =(1,a 2+1),∴方向向量a =(a 2+1,-1),k =-1a 2+1=-1a 2+1. 又∵a 2+1≥1,∴0<1a 2+1≤1. ∴k ∈[-1,0),∴tan θ∈[-1,0),且θ∈[0,π),∴θ∈⎣⎡⎭⎫3π4,π.14.已知点A (-3,-1),B (1,a ),C (5,a 2+1),若A ,B ,C 不能构成一个三角形,则a 的值为________.答案 0或2解析 ∵A ,B ,C 不能构成一个三角形,∴A ,B ,C 三点共线.AB →=(4,a +1),AC →=(8,a 2+2),∴AB →∥AC →,4(a 2+2)-8(a +1)=0,即a 2-2a =0,∴a =0或a =2.∴当a =0或a =2时,A ,B ,C 三点共线,不能构成三角形.15.已知实数x ,y 满足y =-2x +8,且2≤x ≤3,若直线l 的方向向量为a =(2x ,-3y ),则直线l 的斜率的取值范围为____________.答案 [-3,-1]解析 直线l 的方向向量为a =(2x ,-3y ),则k =-3y 2x =-32·y x, ∵y x =-2x +8x =-2+8x, 又∵2≤x ≤3,∴83≤8x≤4, ∴23≤y x≤2, ∴-3≤-32·y x≤-1, 即k ∈[-3,-1].16.设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)是函数y =x 3的图像上任意三个不同的点.求证:若A ,B ,C 三点共线,则x 1+x 2+x 3=0.证明 ∵A ,B ,C 三点共线,∴AB →与AC →共线,AB →=(x 2-x 1,y 2-y 1),AC →=(x 3-x 1,y 3-y 1), ∴(x 2-x 1)(y 3-y 1)-(x 3-x 1)(y 2-y 1)=0,即(x 2-x 1)(x 33-x 31)-(x 3-x 1)(x 32-x 31)=0.∴(x 2-x 1)(x 3-x 1)(x 23+x 3x 1+x 21)-(x 3-x 1)(x 2-x 1)(x 22+x 2x 1+x 21)=0,即(x 2-x 1)(x 3-x 1)[(x 23+x 3x 1+x 21)-(x 22+x 2x 1+x 21)]=0,即(x 2-x 1)(x 3-x 1)(x 23+x 3x 1-x 22-x 2x 1)=0.又A ,B ,C 三点不共点,∴x 1≠x 2,x 1≠x 3,x 2≠x 3, ∴x 23+x 3x 1-x 22-x 2x 1=0, 即(x 3-x 2)(x 3+x 2)+x 1(x 3-x 2)=0,即(x 3-x 2)(x 3+x 2+x 1)=0,∵x 2≠x 3,∴x 1+x 2+x 3=0,即证原等式成立.。

点到直线的距离公式向量法向量

点到直线的距离公式向量法向量

点到直线的距离公式向量法向量假设直线的方程为Ax+By+C=0,点P的坐标为(x0,y0),我们的目标是求点P到直线的最短距离。

首先,我们可以将直线的方程进行向量表示。

设直线上的一点Q的坐标为(x1,y1)。

根据直线的方程,我们可以得到向量PQ的表达式为:PQ=(x1-x0)i+(y1-y0)j其中,i和j分别代表x轴和y轴的单位向量。

接下来,我们需要求一个与直线的法向量垂直的向量。

由于直线的法向量为(A,B),我们可以得到任意与直线垂直的向量为:n=B*i-A*j这里用到了向量的乘法规则。

由于直线是唯一定义的,所以法向量也是唯一的。

然后,我们需要求向量PQ在法向量n上的投影长度。

投影的长度即为点P到直线的最短距离。

由于向量PQ与n垂直,所以它们的内积为0。

即:PQ·n=0将向量PQ和n代入上述公式中,我们可以得到:(x1-x0)i+(y1-y0)j·(B*i-A*j)=0展开计算可得:(x1-x0)*B-(y1-y0)*A=0进一步整理可以得到:Ax1+By1=Ax0+By0这个式子表示点(x1,y1)在直线上,刚好与点P在同一直线上。

所以,我们可以将点(x1,y1)代入直线的方程,得到:Ax1+By1+C=0也就是说,点(x1,y1)在直线上,所以点P到直线的最短距离就是直线的方程Ax+By+C=0中点P的坐标(x0,y0)的值。

综上所述,点到直线的距离公式可以通过向量法推导得到:d=,Ax0+By0+C,/√(A^2+B^2)其中,d表示点P到直线的最短距离,A、B和C为直线的方程系数。

通过向量法得到的点到直线的距离公式可以用来计算点P到任意直线的距离,无论直线是水平、垂直还是倾斜的。

这个公式在几何学和计算机图形学中得到广泛应用,可以帮助我们计算点到直线的最短距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量法求空间的距离
学习目标:通过将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值运算,即借助向量法使解题模式化,用机械性操作把问题转化。

一、复习
1、如何用向量法求两条异面直线所成角、直线和平面所成角、二面角?
2、若→

21,n n 分别为一个二面角的两个半平面的法向量,若π3
2
,21>=<→
→n n ,则此二面角的平面角的大小为 二、新课导学
(1)点到平面的距离(如图1):
平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是在向量n 方向射影的
绝对值,即d =|
||
|n n ⋅.
(2)异面直线的距离(如图2):
设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是在向量n 方向射影的绝对值,即d =
|
||
|n n MP ⋅ (3)线到平面的距离(如图3):
平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线
l 间的距离d 就是在向量n 方向射影的绝对值,即d =
|
||
|n n MP ⋅. (4)平面到平面的距离(如图4):
平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β
的距离d 就是MP 在向量n 方向射影的绝对值,即d =|
||
|n n ⋅.
思考:上面几个距离公式的共性?
三、典型例题
例1:如图5,已知正方体1111D C B A ABCD -的棱长为1,求异面直线1AA 与1BD 的距离。

练习:如图5,已知正方体1111D C B A ABCD -的棱长为1,求面对角线C B 1与体对角线1BD 的距离。

例2:设)8,4,5(),7,3,6(),2,1,4(),1,3,2(--D C B A ,求点D 到平面ABC 的距离。

例4:已知二面角βα--l 的平面角为0
120
,βα⊂⊂∈BD AC l B A ,,,,l BD l AC ⊥⊥,,若
1===
BD AC AB ,求CD 的长。

图1
图3
图4
图5
B 1
C 1
D 1
A 1
D
C B
A
课后定时练习
已知直线l 垂直平面α,而平面α的一个法向量为)5,3,2(-=→
a ,则l 的一个方向向量为( ) A )15,9,6(-- B )15,9,6(- C )2,2,2(- D )2,2,2(--
1、正方体1111D C B A ABCD -的棱长为a ,则点1A 到平面11D ABC 的距离为( )
A 2a
B 22a
C 42a
D 3
2a
2、正方体1111D C B A ABCD -中,E 是CD 的中点,F 是1AA 的中点,则异面直线E C 1与BF 所成角的大小为 。

4、如果正方体的对角线长为a ,则它的棱长为 。

5、如图6,已知四边形ABCD ,EADM 和MDCF 都是边长为a 的正方形,点P 、Q 分别是ED 和AC 的中点,求点P 到平面EFB 的距离。

8、如图所示的多面体是由底面为ABCD 的长方体被截面F AEC 1所截而得到的,其中AB=4,BC=2,1,31==BE CC ,求:(1)BF 的长;
(2)点C 到平面F AEC 1的距离。

P
A
B
C D
F
M F
图6
C 1
F
A
D
C B。

相关文档
最新文档