PCB布局、布线基本细
PCB如何布线布局的方法
PCB如何布线布局的方法PCB布线布局是电路设计的重要环节之一,它涉及到各个电子元件之间的互连,以及信号传输、电源供应和地线的设计。
良好的布线布局能够提高电路性能,降低电磁干扰,增加可靠性。
下面将介绍一些常用的PCB布线布局方法。
1.层间布线:PCB通常具有多层布线,因此在布局时需要考虑层间布线的方式。
首先,应将信号线和电源线、地线分离在不同的层上,以减小互相干扰的可能性。
其次,层间布线时应尽量使用直线来连接元件,以降低损耗和干扰。
2.最短路径布局:在布线布局中,应尽量将信号线的长度缩短到最小,以减小传输时间和避免信号衰减。
因此,在选定元件位置时,应考虑信号线的走向和长度,使得信号线尽量短而直。
3.阻抗匹配布局:在高速电路设计中,为了保证信号的完整性,信号线的阻抗匹配非常重要。
布局时应尽量避免信号线之间的阻抗变化,宜采用相同宽度和层间距、相同走线方式的布线。
4.绕排突出布局:与传统的矩形布线布局相比,绕排突出布局可以更好地集中功率传输器件,减小电磁干扰,提高电路性能。
这种布局方法通常适用于功率放大器、开关电源等需要大电流传输的电路。
5.模拟与数字分离布局:在混合信号电路中,模拟信号和数字信号往往需要分开处理,以避免相互干扰。
布线布局时,应尽可能将模拟信号线和数字信号线分开,同时采取屏蔽措施,减少干扰。
6.参考地布局:参考地布局是指将整个电路的地线连接在一起,形成一个参考地。
这种布局方法可以降低电路中的回流电流,减少电流环路带来的电磁干扰。
参考地布局的原则是将地线尽可能地贴近信号线并平行排列,以减小回流电流路径的长度。
7.高频信号布局:在高频电路设计中,布线布局尤为重要。
尽量减小高频信号线的长度,减小信号线间的耦合和阻抗变化。
此外,高频信号线还需要采取差分布局或屏蔽布局,以减小干扰。
8.电源供应布局:电源供应布局是指电源线的布线方法。
应尽量减小电源线的长度,避免与信号线和地线交叉,以减小电源噪声的影响。
PCB布板布线规则
PCB布板布线规则1.宽度与间距要求:根据电流、信号传输等需求,确定导线的宽度和间距。
宽度过小会导致电流过载,宽度过大则会浪费空间。
而间距过小会导致干扰和电容耦合,间距过大则会浪费空间。
2.信号与电源分离:将信号和电源线路分离布线,避免信号间的干扰以及对信号产生的电磁辐射干扰。
3.地线布线:合理布置地线,确保回流电流的畅通,减小接地回路的电阻,提高电路抗干扰性能。
4.电源线协调:合理布置电源线,降低电源线的阻抗,减小电源线对信号的干扰程度。
5.信号线长度匹配:在设计中,对于相同类型的信号,尽量使其长度相等,以减小因信号到达时间不同而引起的传输延迟和干扰。
6.差分信号布线:对于差分信号传输的线路,在布线时要注意使两个信号线的长度相等,并且平行放置,以保证差模信号的均衡和抗干扰性能。
7.组件布局:根据电路的功能需求和信号距离等因素,合理布局电路上的各个元件,减小信号传输路径的长度,降低信号损耗和干扰。
8.信号层协调:在多层PCB布板中,要合理划分信号层和电源层的位置,避免信号与电源之间的串扰和干扰。
9.绕线路径合理布置:绕线时要避免直角弯道,尽量采用45度角或圆弧的方式,以减少信号的反射和串扰。
10.引脚分离:对于输入输出端口,要尽量将其分离布局,减少接口之间的干扰和串扰。
11.保持电网的连续性:在布线过程中要确保电网的连续性,避免因分割而导致电流回流困难,影响电路的性能和稳定性。
12.良好的散热设计:在布线时要充分考虑散热问题,合理布置散热元件和散热通道,确保电路的稳定工作。
总之,PCB布板布线规则是为了保证电路可靠性、抗干扰性和性能的关键要求,在布线过程中要综合考虑信号传输特性、电路功能需求以及制造工艺等因素,合理布局和布线,确保电路的性能和可靠性。
PCB板布局布线基本规则
PCB板布局布线基本规则PCB(Printed Circuit Board)板布局布线是电路设计中的关键步骤之一,正确合理的布局布线可以保证电路的性能与稳定性。
下面将介绍一些PCB板布局布线的基本规则。
1.分离高频与低频信号:将高频与低频信号进行分离布局,以减少干扰。
高频信号线与低频信号线应尽可能平行布线,减少交叉。
2.分离模拟与数字信号:模拟与数字信号互相干扰的可能性较大,应将二者分离布局。
同时,在两者的接口处应预留地线屏蔽来降低非线性失真。
3.分层布局:将电路分布在不同的层次上,以减少干扰。
一般将模拟信号和数字信号分布在不同的层次上,并通过地平面、电源平面等层次进行电磁屏蔽。
4.自上而下布局:从信号源开始,自上而下分布。
这样可以减少信号线的长度,降低信号线的阻抗。
在布局时应尽量控制信号线的长度,避免过长导致信号衰减。
5.电源布局:电源是整个电路的基础,应尽可能靠近电源输入端布局,减少电源线路长度,降低电源线的阻抗。
同时,电源线应与信号线分离布线,避免互相干扰。
6.地线布局:地线在板布局中同样非常重要。
应尽量缩短地线的长度,减低地线的阻抗,并合理布局地线的走向,避免地线回团。
7.路径最佳化:布局时应保证信号路径的最短化,减少信号线的长度,降低信号传输时的延迟和衰减。
8.信号线与分量之间的距离:信号线与分量之间的距离尽可能短,可以减少耦合与串扰。
9.三角规则:同一面板上尽量遵循三角形规则,将相关信号线布局成三角形状,以减少互相干扰。
10.差分线布局:对于高速信号线,采用差分传输可以减少噪声和串扰。
差分信号线应尽可能平行布线,并保持等长。
11.布线层次顺序:布线时应按照信号的重要程度进行布线,先布线主干信号,再布线次要信号。
12.符号规范:在布线过程中应遵循相应的电气规范,使用适当的符号表示不同的信号。
总的来说,PCB板布局布线中的基本规则都是为了减少干扰、降低阻抗、缩短信号路径,保证电路的性能稳定性。
PCB布局、布线基本规则
PCB布局、布线基本规则(PCB)又被称为印刷电路板(Printed Circuit Board),它可以实现(电子元器件)间的线路连接和功能实现,也是(电源电路)设计中重要的组成部分。
今天就将以本文来介绍PCB板布局布线的基本规则。
元件布局基本规则按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时(数字电路)和(模拟)电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装(元器件);卧装电阻、电感(插件)、电解(电容)等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;元器件的外侧距板边的距离为5mm;贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;(电源)插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要(信号)线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
元件基本布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;(cpu)入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB布局布线要点
PCB布局布线要点1.尽量减少线路长度:线路长度过长会导致信号延迟和互相干扰。
在布局时,应尽量将相关信号线放在一起,尽量减少线路的长度。
2.分隔高频和低频信号:高频信号和低频信号在传输特性和干扰问题上有很大差异。
在布线时,应尽量将高频信号和低频信号分开布局,以避免互相干扰。
3.避免信号线和电源线相交:信号线和电源线的交叉会导致互相干扰,产生噪声。
在布线时,应尽量避免信号线和电源线相交。
4.保持信号线的对称布局:对称布局可以使信号线的长度保持一致,从而减少互相干扰。
在布局时,应尽量保持信号线的对称布局。
5.地线的布局:地线是整个电路的共用参考点,它承载着回流电流和抑制噪声的功能。
在布线时,应尽量保持地线的宽度一致,减小回流电流的路径阻抗。
6.电源线的布局:电源线应尽量靠近地线布局,以减小回流电流路径的阻抗。
同时,电源线应避免与信号线相交,以减少互相干扰。
7.信号线与地线的配对布局:在高速传输中,差分信号线的布局对信号的传输质量有很大影响。
应尽量将差分信号线与地线配对布局,以减小信号之间的干扰。
8.规避信号线和边缘的平行布局:信号线和边缘平行布局会导致辐射噪声和电磁干扰。
在布线时,应尽量规避信号线和边缘的平行布局。
9.PCB层次布局:PCB可以分为多个逻辑层次,在布局时应尽量将相关的电路模块放在同一层次上,以减少信号线的跨层穿越。
10.确保足够的间距和间隙:在布线时,应确保信号线之间和信号线与其他元件之间有足够的间距和间隙,以避免互相干扰和产生串扰。
11.使用规范的信号线宽度和间距:信号线宽度和间距的设置直接影响信号传输的质量和速度。
在布线时,应使用规范的信号线宽度和间距,以满足设计要求。
12.使用较好的布线工具和规则检查:在布线过程中,可以使用专业的布线工具和规则检查功能,以提高布线效率和准确性。
总之,PCB布局布线的核心目标是尽量减小信号传输的延迟和干扰,以保证系统的性能和可靠性。
通过合理的布局和布线,可以提高产品的性能和降低故障率。
pcb布线的要求和规则
pcb布线的要求和规则PCB布线可是电路板设计里超重要的一环呢,就像给城市规划道路一样,有好多有趣的要求和规则哦。
一、电气规则。
1. 线宽。
线宽可不是随便定的呀。
如果是电源线或者地线呢,一般要宽一些。
为啥呢?因为它们要承载比较大的电流呀。
就像大水管才能供应大楼里很多人的用水一样,宽的线才能让大电流顺利通过,不容易发热。
要是线太细了,电流一大,它就会像小细胳膊拎重物一样,累得发热,搞不好还会把自己给烧坏呢。
而对于信号线,电流小一些,线宽就可以相对窄一点,但也不能太窄啦,不然信号传输可能会不稳定哦。
2. 间距。
线与线之间的间距也很有讲究。
不同电压的线之间得保持一定的距离,就像不同性格的人相处得保持点空间一样。
如果间距太小,电压高的线可能就会对电压低的线产生干扰,就像一个大嗓门的人在小空间里会吵到旁边安静的人一样。
而且间距太小还容易引起短路,这可就麻烦大了,就像两条本不该相交的路突然撞在一起,那交通就乱套啦。
3. 过孔。
过孔在PCB上就像一个个小隧道。
过孔的大小和数量也得合适。
过孔太小的话,可能会影响信号的传输质量,就像小隧道里塞个大卡车,肯定走得不顺溜。
而过孔太多呢,会占用不少空间,而且也可能对电路板的性能有一些小影响,就像城市里到处挖小坑,虽然每个坑不大,但是多了也会影响市容和交通呢。
二、布线走向。
1. 直角与钝角。
布线的时候,最好不要有直角,能钝角就钝角。
直角就像一个很尖锐的转弯,信号在这儿走就会很不舒服,就像汽车在直角弯处很容易磕磕碰碰一样。
钝角就柔和多了,信号走起来也顺畅,这样信号传输的质量就会比较好。
2. 平行布线。
平行布线的时候要特别小心。
如果是不同类型的信号线平行走得太长了,就容易互相干扰。
这就好比两个人并肩走得太久,胳膊腿总会不小心碰到对方。
所以平行布线的时候,要么拉开距离,要么中间加个隔离带,像给它们之间加个小栅栏一样。
三、布局相关。
1. 元件布局与布线。
元件的布局对布线影响很大哦。
重点解析pcb布线心得(流程详解、元件布局布线与EMC)
重点解析pcb布线心得(流程详解、元件布局布线与EMC)pcb布线技巧,轻松搞定布线、布局,主要包括:一、元件布局基本规则;二、元件布线规则;为增加系统的抗电磁干扰能力采取措施;3、降低噪声与电磁干扰的一些经验等.一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集*则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB布局布线基本原则
PCB布局、布线基本原则亚洲电子研发中心 AIDONG 提供一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻: 51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容: 51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB板布局原则布线技巧
PCB板布局原则布线技巧1.PCB板布局原则:-分区布局:将电路板分成不同的区域,将功能相似的电路组件放在同一区域内,有利于信号的传输和维护。
比如,将稳压电路、放大电路、数字电路等放在不同的区域内。
-尽量减少线路长度:线路长度越长,电阻和电感越大,会引入更多的信号损耗和噪声,影响电路的性能。
因此,尽量把线路缩短,减少线路长度。
-避免线路交叉:线路交叉会引入互相干扰的可能性,产生串扰和相互耦合。
因此,尽量避免线路的交叉,使布局更加清晰。
-电源和地线布局:电源和地线是电路中非常重要的信号传输线路,应该尽量压缩在一起,减小回路面积,从而降低电磁干扰的发生。
-高频和低频电路分离:将高频电路和低频电路分开布局,避免高频电路对低频电路的干扰。
2.PCB板布线技巧:-网格布线:将布线分成网格形式,每个网格中只允许一条线路通过,可以提高布线的整齐度和美观度。
-使用规则层:在PCB设计软件中,可以使用规则层进行布线规划,指定线路的宽度、间距等参数,保证布线的一致性和可靠性。
-使用层次布线:将线路分成不同的层次进行布线,可以减少线路的交叉,降低噪声的产生。
-注意差分信号的布线:对于差分信号线路,保持两条线路的长度和布线路径尽量相同,可以减小差分信号之间的差别,提高信号完整性。
-避免直角和锐角:直角和锐角容易引起信号反射和串扰,应尽量避免使用直角和锐角的线路走向,采用圆滑的线路路径。
总结:PCB板布局和布线是PCB设计中不可忽视的环节,合理的布局和布线可以提高电路的性能和可靠性。
通过遵循一些原则,如分区布局、减少线路长度、避免线路交叉等,并结合一些布线技巧,如网格布线、使用规则层、使用层次布线等,可以实现高质量的布局和布线。
PCB布局布线基本原则
PCB布局布线基本原则一、元件布局差不多规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采纳就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(关于M2.5)、4mm(关于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方幸免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
专门应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,显现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能显现回环走线。
pcb布局布线技巧经验大汇总
PCB电路板布局、布线基本原则一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm (对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻: 51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容: 51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线PCB板布线技巧在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。
PCB板布局布线基本规则
PCB板布局布线基本规则PCB(Printed Circuit Board,印刷电路板)布局布线是电子产品设计中非常重要的一步,它决定了电路板的性能和可靠性。
下面将介绍一些PCB板布局布线的基本规则。
1.尽量规划好电路板的整体布局。
合理的整体布局可以降低电磁干扰和噪声,提高信号的可靠性。
布局过程中,需要考虑各个电路模块的电源分布、信号线的走向和电路板边缘的保留空间等因素。
2.尽量减少信号线的长度。
信号线过长会引起信号衰减、时钟偏差和串扰等问题。
因此,应尽量减少长距离信号线的使用,并将不同功能模块的信号线放在靠近彼此的位置,以缩短线路长度。
3.引脚布局要合理。
电路板上的引脚布局应遵循一定的规则,如相同功能的引脚应该靠近彼此,避免交叉连接;高频信号线和低频信号线应分开布局,以防止互相干扰;输入和输出信号一般不要使用同一个引脚。
4.电源和地线的布局要合理。
电源和地线是电路工作的基础,其布局质量直接影响整体性能。
应尽量减少电源和地线的长度,避免共享电源或地线的引脚。
此外,电源和地线的宽度也要足够,以满足电流的要求。
5.差分线路应尽量成对布线。
差分信号线路通常由两根线组成,它们相互平行,保持相同的长度和间距。
这种布线方式可以减小干扰并提高抗干扰能力。
6.避免使用尖锐的角度和过窄的宽度。
锐角和过窄的线路会增加信号的传输损耗,并增加线路的阻抗。
在布局和布线过程中,应尽量避免生成锐角,选择合适的宽度。
7.需要进行地线屏蔽的信号要有相应的地线屏蔽层。
一些对干扰非常敏感的信号线,如高频信号线和时钟信号线,需要有地线屏蔽层进行保护,防止外界干扰。
8.PCB板的散热设计。
在布局布线过程中,需要考虑板上发热器件的散热问题。
可以尽量将发热器件靠近PCB板的边缘,以方便散热或使用附加的散热设计。
9.电路板边缘的保留空间。
为了使电路板在安装时能够与其他组件或设备连接,需要在板的边缘预留一定的空间。
这个空间通常被称为边际空间,用于放置连接器、插座等。
PCB板布局原则布线技巧
PCB板布局原则布线技巧一、布局原则:1.功能分区:将电路按照其功能划分为若干区域,不同功能的电路相互隔离,减少相互干扰。
2.信号流向:在布局过程中应保持信号流向规则和简洁,避免交叉干扰。
3.重要元件位置:将较重要的元件、信号线和电源线放置在核心区域,以提高系统的可靠性和抗干扰能力。
4.散热考虑:将产热较大的元件、散热器等布局在较为开阔的地方,利于散热,避免过热导致不正常工作。
5.地线布局:地线的布局和连通应该注意短、宽、粗、低阻、尽可能铺满PCB板的底层,减少环路面积,避免回流信号干扰。
二、布线技巧:1.差分信号布线:对于高速传输的差分信号(如USB、HDMI等),应采用相对的布线方式,尽量保持两条信号线的长度、路径和靠近程度等因素相等。
2.信号线长度控制:对于高速信号线,要控制传输时间差,避免信号的串扰,可以采用长度相等的原则,对多个信号线进行匹配。
3.距离和屏蔽:信号线之间应保持一定的距离,减少串扰。
对于敏感信号线,可以采用屏蔽,如使用屏蔽线或者地层或电源面直接作为屏蔽。
4.平面分布布线:将电路面分布在PCB板的一面,减少控制层(可减少电磁干扰),易于维护。
对于比较大的PCB板,可以将电路分布在多层结构中,减小板子尺寸。
5.电源线和地线:电源线和地线尽量粗而宽,以降低线路阻抗和电压降。
同时,尽量减少电源线和地线与其它信号线的交叉和共面长度,减小可能的电磁干扰。
6.设备端口布局:对于外部设备接口,宜以一边和一角为原则,将各种本机接口尽量分布在同一区域,以保持可维护性和布局的简洁性。
7.组件布局:对于IC和器件的布局,可以按照电路的工作顺序、重要程度和电路结构等因素综合考虑,优先放置重要元件,如主控芯片、存储器等。
三、布局规则:1.尽量缩短信号线的长度,减少信号传输的延迟和串扰。
2.尽量减小信号线的面积,减少对周围信号的干扰。
3.尽量采用四方对称布线,减少线路不平衡引起的干扰。
4.尽量降低线路阻抗,提高信号的传输质量。
PCB设计布局及布线规则
PCB设计布局规则1. 根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性。
按工艺设计规范的要求进行尺寸标注。
2. 根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域。
根据某些元件的特殊要求,设置禁止布线区。
3. 综合考虑PCB性能和加工的效率选择加工流程。
加工工艺的优选顺序为:元件面单面贴装--元件面贴、插混装(元件面插装焊接面贴装一次波峰成型)--双面贴装--元件面贴插混装、焊接面贴装。
4.布局操作的基本原则A. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.B. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.C. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.D. 相同结构电路部分,尽可能采用“对称式”标准布局;E. 按照均匀分布、重心平衡、版面美观的标准优化布局;F. 器件布局栅格的设置,一般IC器件布局时,栅格应为50--100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil。
G. 如有特殊布局要求,应双方沟通后确定。
5. 同类型插装元器件在X或Y方向上应朝一个方向放置。
同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
6. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
7. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
8. 需用波峰焊工艺生产的单板,其紧固件安装孔和定位孔都应为非金属化孔。
当安装孔需要接地时, 应采用分布接地小孔的方式与地平面连接。
9. 焊接面的贴装元件采用波峰焊接生产工艺时,阻、容件轴向要与波峰焊传送方向垂直,阻排及SOP(PIN间距大于等于1.27mm)元器件轴向与传送方向平行;PIN间距小于1.27mm(50mil)的IC、SOJ、PLCC、QFP等有源元件避免用波峰焊焊接。
PCB布局布线基本规则
PCB布局布线基本规则1.尽量减少电路板的层数。
每增加一层电路板的层数会增加制造成本和设计复杂度,同时也会增加信号传输的延迟。
因此,尽量保持电路简单,减少层数。
2.分离高频和低频信号。
高频信号容易受到干扰,因此应当尽量与低频信号分离。
可以采用不同的层或区域来布置高频和低频信号的元件,或者使用地平面分离高频和低频信号。
3.分割地平面和电源平面。
电路板上应该有专门的地平面和电源平面,以提供良好的电源和地引线。
这样可以减少信号线和引线的长度,降低电磁干扰。
4.保持信号线和供电线的最小间隔。
信号线和供电线之间的间隔越小,电磁干扰就越小。
因此,在布局时要尽量将信号线和供电线保持一定的距离,避免相互干扰。
5.将相互影响的元件放在一起。
相互影响的元件包括开关、驱动器、传感器等。
将它们放在相邻的位置可以减少互相作用产生的干扰。
6.避免产生环形信号线。
环形信号线会产生反射和干扰,影响信号传输稳定性。
因此,布线时应尽量避免产生环形信号线。
7.避免交叉布线。
交叉布线会产生互相干扰,影响信号传输质量。
因此,布线时应尽量避免信号线交叉。
如果无法避免,可以采用信号线层间的穿越或使用防干扰技术。
8.尽量使用直线布线。
直线布线可以减小信号的传输延迟和损耗。
此外,直线布线还可以提高电子产品的散热性能,提高整体性能。
9.保持信号线、供电线和地线的长度一致。
信号线、供电线和地线的长度一致可以减少信号的传输延迟和损耗,提高信号质量。
10.避免布线在电源和地线附近。
电源和地线附近会有较高的电磁干扰和噪声。
因此,布线时应尽量避免信号线在电源和地线附近。
以上是PCB布局布线的一些基本规则,通过遵循这些规则可以提高电路的可靠性和稳定性,减少噪声和电磁干扰,提高电子产品的整体品质。
当然,不同的电路和产品可能有更具体的规格和要求,设计者还需要根据具体情况进行布局和布线。
PCB布局布线的一些规则
PCB布局布线的一些规则一、布局元器件布局的10条规则:1. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.2. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.3. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
4. 相同结构电路部分,尽可能采用“对称式”标准布局;5. 按照均匀分布、重心平衡、版面美观的标准优化布局;6. 同类型插装元器件在X或Y方向上应朝一个方向放置。
同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
7. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
8. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。
9、去偶电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。
10、元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。
二、布线(1)布线优先次序键信号线优先:摸拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线密度优先原则:从单板上连接关系最复杂的器件着手布线。
从单板上连线最密集的区域开始布线注意点:a、尽量为时钟信号、高频信号、敏感信号等关键信号提供专门的布线层,并保证其最小的回路面积。
必要时应采取手工优先布线、屏蔽和加大安全间距等方法。
保证信号质量。
b、电源层和地层之间的EMC环境较差,应避免布置对干扰敏感的信号。
c、有阻抗控制要求的网络应尽量按线长线宽要求布线。
(2)四种具体走线方式1 、时钟的布线:时钟线是对EMC 影响最大的因素之一。
在时钟线上应少打过孔,尽量避免和其它信号线并行走线,且应远离一般信号线,避免对信号线的干扰。
PCB板布局布线的基本规则详解
PCB板布局布线的基本规则详解
PCB又被称为印刷电路板(PrintedCircuitBoard),它可以实现电子元器件间的线路连接和功能实现,也是电源电路设计中重要的组成部分。
今天就将以本文来介绍PCB板布局布线的基本规则。
一、元件布局基本规则1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;
2.定位孔、标准孔等非安装孔周围 1.27mm内不得贴装元、器件,螺钉等安装孔周围
3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;
3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;
4.元器件的外侧距板边的距离为5mm;
5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;
6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;
7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;
8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;
9.其它元器件的布置:
所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;
10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);。
PCB电路板布局布线基本原则
PCB电路板布局布线基本原则1.电源分配:电源的布局是电路布局的首要考虑因素。
电源线应该尽量短,粗,走直线,避免与其他信号线相交,以减少干扰和电源噪声。
2.信号与地平面的分离:为了防止信号间的串扰和杂散电磁辐射,应尽量隔离模拟信号和数字信号以及高频信号和低频信号。
同时,需要设置大面积的地平面,以提供良好的地连接,降低噪声。
3.分区规划:将电路板划分为不同的模块或功能区,根据信号层次、噪声敏感度和功率特性来确定布局,各个区域之间应平衡布局,避免相互干扰。
4.元件布局:元件之间的布局应考虑信号的流向、施加特性和相互关系。
一般来说,从输入到输出的信号流向应是逐渐增强的。
另外,重要的元件和模块应放在离输入和输出较近的位置,以便于调试和维护。
5.确定关键信号线:在布局和布线中,关键信号线,如时钟信号、高速差分信号等,需要特别关注。
这些信号线需要尽量走最短的路径,减少路径中的阻抗变化和反射,同时需要与其他信号线保持最小的距离,以减少串扰。
6.信号层次:不同的信号层次应通过合理的布局和布线来满足设计要求。
高频信号需要使用内层铜箔进行引导,而尽量与数字信号、低频信号和电源线分开。
对于高频信号,尽量使用短而宽的线路,并使用适当的层间连接技术来减小阻抗。
7.传导和辐射:在布局和布线中需要考虑到传导和辐射两个方面的干扰。
传导干扰可以通过合理的布局和接地设计来减少,而辐射干扰则需要通过电路板的屏蔽和接地设计来避免。
8.压降和散热:在布线中需要注意电流路径的压降问题,尽量使用宽而短的线路来减小电阻和电压降。
同时,需要合理设计散热结构,确保电路板的温度在可接受范围内。
综上所述,PCB电路板布局和布线的基本原则主要包括电源分配、信号与地平面的分离、分区规划、元件布局、关键信号线的处理、信号层次设计、传导和辐射的控制、压降和散热的考虑等。
这些原则可以帮助设计师设计出性能优良、可靠稳定的PCB电路板。
PCB布板布线规则
细述PCB板布局布线基本规则的线路连接和功能实现,也是电源电路设计中重要的组成部分。
今天就将以本文来介绍PCB 板布局布线的基本规则。
一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB布线基本原则
PCB 布局、布线基本原则一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC 元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mi l(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB 板边≤1mm 的区域内,以及安装孔周围1mm 内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu 入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W 电阻: 51*55mil(0805 表贴);直插时焊盘62mil,孔径42mil;无极电容: 51*55mil(0805 表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB布局、布线基本原则一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、规范孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
如何提高抗干扰能力和电磁兼容性在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性?1、下面的一些系统要特别注意抗电磁干扰:(1) 微控制器时钟频率特别高,总线周期特别快的系统。
(2) 系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。
(3) 含微弱模拟信号电路以及高精度A/D变换电路的系统。
2、为增加系统的抗电磁干扰能力采取如下措施:(1) 选用频率低的微控制器:选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。
同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。
虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。
(2) 减小信号传输中的畸变微控制器主要采用高速CMOS技术制造。
信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。
当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。
信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。
可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。
微控制器构成的系统中常用逻辑电话元件的Tr(规范延迟时间)为3到18ns之间。
在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延迟时间大致在4~20ns之间。
也就是说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。
而且过孔数目也应尽量少,最好不多于2个。
当信号的上升时间快于信号延迟时间,就要按照快电子学处理。
此时要考虑传输线的阻抗匹配,对于一块印刷线路板上的集成块之间的信号传输,要避免出现Td>Trd的情况,印刷线路板越大系统的速度就越不能太快。
用以下结论归纳印刷线路板设计的一个规则:信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。
(3) 减小信号线间的交*干扰:A点一个上升时间为Tr的阶跃信号通过引线AB传向B端。
信号在AB线上的延迟时间是Td。
在D点,由于A点信号的向前传输,到达B点后的信号反射和AB线的延迟,Td时间以后会感应出一个宽度为Tr的页脉冲信号。
在C点,由于AB上信号的传输与反射,会感应出一个宽度为信号在AB线上的延迟时间的两倍,即2Td的正脉冲信号。
这就是信号间的交*干扰。
干扰信号的强度与C点信号的di/at有关,与线间距离有关。
当两信号线不是很长时,AB上看到的实际是两个脉冲的迭加。
CMOS工艺制造的微控制由输入阻抗高,噪声高,噪声容限也很高,数字电路是迭加100~200mv噪声并不影响其工作。
若图中AB线是一模拟信号,这种干扰就变为不能容忍。
如印刷线路板为四层板,其中有一层是大面积的地,或双面板,信号线的反面是大面积的地时,这种信号间的交*干扰就会变小。
原因是,大面积的地减小了信号线的特性阻抗,信号在D端的反射大为减小。
特性阻抗与信号线到地间的介质的介电常数的平方成反比,与介质厚度的自然对数成正比。
若AB线为一模拟信号,要避免数字电路信号线CD对AB的干扰,AB线下方要有大面积的地,AB线到CD线的距离要大于AB线与地距离的2~3倍。
可用局部屏蔽地,在有引结的一面引线左右两侧布以地线。
(4) 减小来自电源的噪声电源在向系统提供能源的同时,也将其噪声加到所供电的电源上。
电路中微控制器的复位线,中断线,以及其它一些控制线最容易受外界噪声的干扰。
电网上的强干扰通过电源进入电路,即使电池供电的系统,电池本身也有高频噪声。
模拟电路中的模拟信号更经受不住来自电源的干扰。
(5) 注意印刷线板与元器件的高频特性在高频情况下,印刷线路板上的引线,过孔,电阻、电容、接插件的分布电感与电容等不可忽略。
电容的分布电感不可忽略,电感的分布电容不可忽略。
电阻产生对高频信号的反射,引线的分布电容会起作用,当长度大于噪声频率相应波长的1/20时,就产生天线效应,噪声通过引线向外发射。
印刷线路板的过孔大约引起0.6pf的电容。
一个集成电路本身的封装材料引入2~6pf电容。
一个线路板上的接插件,有520nH的分布电感。
一个双列直扦的24引脚集成电路扦座,引入4~18nH的分布电感。
这些小的分布参数对于这行较低频率下的微控制器系统中是可以忽略不计的;而对于高速系统必须予以特别注意。
(6) 元件布置要合理分区元件在印刷线路板上排列的位置要充分考虑抗电磁干扰问题,原则之一是各部件之间的引线要尽量短。
在布局上,要把模拟信号部分,高速数字电路部分,噪声源部分(如继电器,大电流开关等)这三部分合理地分开,使相互间的信号耦合为最小。
G 处理好接地线印刷电路板上,电源线和地线最重要。
克服电磁干扰,最主要的手段就是接地。
对于双面板,地线布置特别讲究,通过采用单点接地法,电源和地是从电源的两端接到印刷线路板上来的,电源一个接点,地一个接点。
印刷线路板上,要有多个返回地线,这些都会聚到回电源的那个接点上,就是所谓单点接地。
所谓模拟地、数字地、大功率器件地开分,是指布线分开,而最后都汇集到这个接地点上来。
与印刷线路板以外的信号相连时,通常采用屏蔽电缆。
对于高频和数字信号,屏蔽电缆两端都接地。
低频模拟信号用的屏蔽电缆,一端接地为好。
对噪声和干扰非常敏感的电路或高频噪声特别严重的电路应该用金属罩屏蔽起来。
(7) 用好去耦电容。
好的高频去耦电容可以去除高到1GHZ的高频成份。
陶瓷片电容或多层陶瓷电容的高频特性较好。
设计印刷线路板时,每个集成电路的电源,地之间都要加一个去耦电容。
去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和吸收该集成电路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声。
数字电路中典型的去耦电容为0.1uf的去耦电容有5nH分布电感,它的并行共振频率大约在7MHz左右,也就是说对于10MHz以下的噪声有较好的去耦作用,对40MHz以上的噪声几乎不起作用。
1uf,10uf电容,并行共振频率在20MHz以上,去除高频率噪声的效果要好一些。
在电源进入印刷板的地方和一个1uf或10uf的去高频电容往往是有利的,即使是用电池供电的系统也需要这种电容。
每10片左右的集成电路要加一片充放电电容,或称为蓄放电容,电容大小可选10uf。
最好不用电解电容,电解电容是两层溥膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用胆电容或聚碳酸酝电容。
去耦电容值的选取并不严格,可按C=1/f计算;即10MHz取0.1uf,对微控制器构成的系统,取0.1~0.01uf之间都可以。
3、降低噪声与电磁干扰的一些经验。
(1) 能用低速芯片就不用高速的,高速芯片用在关键地方。
(2) 可用串一个电阻的办法,降低控制电路上下沿跳变速率。
(3) 尽量为继电器等提供某种形式的阻尼。
(4) 使用满足系统要求的最低频率时钟。
(5) 时钟产生器尽量*近到用该时钟的器件。
石英晶体振荡器外壳要接地。
(6) 用地线将时钟区圈起来,时钟线尽量短。
(7) I/O驱动电路尽量*近印刷板边,让其尽快离开印刷板。
对进入印制板的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射。
(8) MCD无用端要接高,或接地,或定义成输出端,集成电路上该接电源地的端都要接,不要悬空。
(9) 闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端。
(10) 印制板尽量使用45折线而不用90折线布线以减小高频信号对外的发射与耦合。
(11) 印制板按频率和电流开关特性分区,噪声元件与非噪声元件要距离再远一些。
(12) 单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗,经济是能承受的话用多层板以减小电源,地的容生电感。
(13) 时钟、总线、片选信号要远离I/O线和接插件。
(14) 模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟。
(15) 对A/D类器件,数字部分与模拟部分宁可统一下也不要交*。
(16) 时钟线垂直于I/O线比平行I/O线干扰小,时钟元件引脚远离I/O电缆。
(17) 元件引脚尽量短,去耦电容引脚尽量短。
(18) 关键的线要尽量粗,并在两边加上保护地。