高中物理直线运动常见题型及答题技巧及练习题(含答案).docx

合集下载

高考物理直线运动常见题型及答题技巧及练习题(含答案)

高考物理直线运动常见题型及答题技巧及练习题(含答案)

高考物理直线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试直线运动1.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g取10m/s2)。

求:(1)车在加速过程中木箱运动的加速度的大小(2)木箱做加速运动的时间和位移的大小(3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。

【答案】(1)(2)4s;18m(3)1.8m【解析】试题分析:(1)设木箱的最大加速度为,根据牛顿第二定律解得则木箱与平板车存在相对运动,所以车在加速过程中木箱的加速度为(2)设木箱的加速时间为,加速位移为。

(3)设平板车做匀加速直线运动的时间为,则达共同速度平板车的位移为则要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足考点:牛顿第二定律的综合应用.2.某汽车在高速公路上行驶的速度为108km/h,司机发现前方有障碍物时,立即采取紧急刹车,其制动过程中的加速度大小为5m/s2,假设司机的反应时间为0.50s,汽车制动过程中做匀变速直线运动。

求:(1)汽车制动8s后的速度是多少(2)汽车至少要前行多远才能停下来?【答案】(1)0(2)105m【解析】 【详解】(1)选取初速度方向为正方向,有:v 0=108km/h=30m/s ,由v t =v 0+at 得汽车的制动时间为:003065t v v t s s a ---===,则汽车制动8s 后的速度是0; (2)在反应时间内汽车的位移:x 1=v 0t 0=15m ;汽车的制动距离为:0230069022t v v x t m m ++⨯=== . 则汽车至少要前行15m+90m=105m 才能停下来. 【点睛】解决本题的关键掌握匀变速直线运动的运动学公式和推论,并能灵活运用,注意汽车在反应时间内做匀速直线运动.3.2018年12月8日2时23分,嫦娥四号探测器成功发射,开启了人类登陆月球背面的探月新征程,距离2020年实现载人登月更近一步,若你通过努力学习、刻苦训练有幸成为中国登月第一人,而你为了测定月球表面附近的重力加速度进行了如下实验:在月球表面上空让一个小球由静止开始自由下落,测出下落高度20h m =时,下落的时间正好为5t s =,则:(1)月球表面的重力加速度g 月为多大?(2)小球下落过程中,最初2s 内和最后2s 内的位移之比为多大? 【答案】1.6 m/s 2 1:4 【解析】 【详解】(1)由h =12g 月t 2得:20=12g 月×52 解得:g 月=1.6m /s 2(2)小球下落过程中的5s 内,每1s 内的位移之比为1:3:5:7:9,则最初2s 内和最后2s 内的位移之比为:(1+3):(7+9)=1:4.4.如图所示,质量为M=8kg 的小车停放在光滑水平面上,在小车右端施加一水平恒力F ,当小车向右运动速度达 到时,在小车的右端轻轻放置一质量m=2kg 的小物块,经过t 1=2s 的时间,小物块与小车保持相对静止。

高中物理直线运动答题技巧及练习题(含答案)

高中物理直线运动答题技巧及练习题(含答案)

高中物理直线运动答题技巧及练习题(含答案)一、高中物理精讲专题测试直线运动1.质点从静止开始做匀加速直线运动,经4s后速度达到,然后匀速运动了10s,接着经5s匀减速运动后静止求:(1)质点在加速运动阶段的加速度;(2)质点在第16s末的速度;(3)质点整个运动过程的位移.【答案】(1)5m/s2 (2)12m/s(3)290m【解析】【分析】根据加速度的定义式得加速和减速运动阶段的加速度,根据匀变速运动的速度和位移公式求解。

【详解】(1)设加速阶段的加速度为a1,则:v1=a1t1解得质点在加速运动阶段的加速度:a1==m/s2=5m/s2(2)设减速运动阶段的加速度为a2,由于v2=v1+a2t2,所以,a2==m/s2=-4m/s2当t=16s时,质点已减速运动了:t3=16s-14s=2s质点在第16s末的速度为:;v3=v1+a2t3=(20-24)m/s=12m/s(3)匀加速直线运动的位移:x1=t1=4m=40m匀速直线运动位移:x2=vt2=2010m=200m匀减速直线运动的位移x3=t3´=5m=50m则质点整个运动过程的总位移:x=x1+x2++x3=(40+200+50)m=290m2.某运动员助跑阶段可看成先匀加速后匀速运动.某运动员先以4.5m/s2的加速度跑了5s.接着匀速跑了1s.然后起跳.求:(1)运动员起跳的速度?(2)运动员助跑的距离?【答案】(1)22.5m/s(2)78.75m【解析】(1)由题意知,运动员起跳时的速度就是运动员加速运动的末速度,根据速度时间关系知,运动员加速运动的末速度为:即运动员起跳时的速度为22.5m/s;(2)根据位移时间关系知,运动员加速运动的距离为:运动员匀速跑的距离为:所以运动员助跑的距离为:综上所述本题答案是:(1)运动员将要起跳时的速度为22.5m/s;(2)运动员助跑的距离是78.75m.3.如图甲所示,质量为M=3.0kg的平板小车C静止在光滑的水平面上,在t=0时,两个质量均为1.0kg的小物体A和B同时从左右两端水平冲上小车,1.0s内它们的v-t图象如图乙所示,( g取10m/s2)求:(1)小物体A和B与平板小车之间的动摩擦因数μA、μB(2)判断小车在0~1.0s内所做的运动,并说明理由?(3)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?【答案】(1)0.3;(2)小车静止;(3)7.2m【解析】试题分析:(1)由v-t图可知,在第1 s内,物体A、B的加速度大小相等,均为a =3.0 m/s2.根据牛顿第二定律:f =μmg=ma 可得μA=μB=0.3(2)物体A、B所受摩擦力大小均为F f=ma=3.0 N,方向相反,根据牛顿第三定律,车C受A、B的摩擦力也大小相等,方向相反,合力为零,故小车静止。

高考物理高考物理直线运动常见题型及答题技巧及练习题(含答案)

高考物理高考物理直线运动常见题型及答题技巧及练习题(含答案)

高考物理高考物理直线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试直线运动1.跳伞运动员做低空跳伞表演,当直升机悬停在离地面224m 高时,运动员离开飞机作自由落体运动,运动了5s 后,打开降落伞,展伞后运动员减速下降至地面,若运动员落地速度为5m/s ,取210/g m s =,求运动员匀减速下降过程的加速度大小和时间.【答案】212.5?m/s a =; 3.6t s =【解析】 运动员做自由落体运动的位移为221110512522h gt m m ==⨯⨯= 打开降落伞时的速度为:1105/50/v gt m s m s ==⨯=匀减速下降过程有:22122()v v a H h -=-将v 2=5 m/s 、H =224 m 代入上式,求得:a=12.5m/s 2 减速运动的时间为:12505 3.6?12.5v v t s s a --=== 2.如图所示,在沙堆表面放置一长方形木块A ,其上面再放一个质量为m 的爆竹B ,木块的质量为M .当爆竹爆炸时,因反冲作用使木块陷入沙中深度h ,而木块所受的平均阻力为f 。

若爆竹的火药质量以及空气阻力可忽略不计,重力加速度g 。

求:(1)爆竹爆炸瞬间木块获得的速度;(2)爆竹能上升的最大高度。

【答案】(1()2f Mg h M-2)()2f Mg Mh m g - 【解析】【详解】 (1)对木块,由动能定理得:2102Mgh fh Mv -=-, 解得:()2f Mg h v M-= (2)爆竹爆炸过程系统动量守恒,由动量守恒定律得:0Mv mv -'=爆竹做竖直上抛运动,上升的最大高度:22v H g'= 解得:()2f Mg Mh H m g-=3.A 、B 两列火车,在同一轨道上同向行驶, A 车在前,其速度v A =10m/s ,B 车在后,速度v B =30m/s .因大雾能见度很低,B 车在距A 车△s=75m 时才发现前方有A 车,这时B 车立即刹车,但B 车要经过180m 才能够停止.问:(1)B 车刹车后的加速度是多大?(2)若B 车刹车时A 车仍按原速前进,请判断两车是否相撞?若会相撞,将在B 车刹车后何时?若不会相撞,则两车最近距离是多少?(3)若B 车在刹车的同时发出信号,A 车司机经过△t=4s 收到信号后加速前进,则A 车的加速度至少多大才能避免相撞?【答案】(1)22.5m /s ,方向与运动方向相反.(2)6s 两车相撞(3)20.83/A a m s ≥【解析】试题分析:根据速度位移关系公式列式求解;当速度相同时,求解出各自的位移后结合空间距离分析;或者以前车为参考系分析;两车恰好不相撞的临界条件是两部车相遇时速度相同,根据运动学公式列式后联立求解即可.(1)B 车刹车至停下过程中,00,30/,180t B v v v m s S m ====由202BB v a s -=得222.5/2B B v a m s s =-=- 故B 车刹车时加速度大小为22.5m /s ,方向与运动方向相反.(2)假设始终不相撞,设经时间t 两车速度相等,则有:A B B v v a t =+, 解得:103082.5A B B v v t s a --===- 此时B 车的位移:2211308 2.5816022B B B s v t a t m =+=⨯-⨯⨯= A 车的位移:10880A A s v t m ==⨯=因1(3== 设经过时间t 两车相撞,则有212A B B v t s v t a t +∆=+ 代入数据解得:126,10t s t s ==,故经过6s 两车相撞(3)设A 车的加速度为A a 时两车不相撞两车速度相等时:()A A B B v a t t v a t ''+-∆=+即:10()30 2.5A a t t t ''+-∆=-此时B 车的位移:221,30 1.252B B B B s v t a t s t t =+=-''''即: A 车的位移:21()2A A A s v t a t t ''=+-∆ 要不相撞,两车位移关系要满足B A s s s ≤+∆解得20.83/A a m s4.高速公路上行驶的车辆速度很大,雾天易出现车辆连续相撞的事故。

高中物理直线运动常见题型及答题技巧及练习题(含答案)

高中物理直线运动常见题型及答题技巧及练习题(含答案)

高中物理直线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试直线运动1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。

【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.3.高速公路上行驶的车辆速度很大,雾天易出现车辆连续相撞的事故。

高考物理直线运动解题技巧分析及练习题(含答案)含解析

高考物理直线运动解题技巧分析及练习题(含答案)含解析

高考物理直线运动解题技巧分析及练习题(含答案)含解析一、高中物理精讲专题测试直线运动1.重力加速度是物理学中的一个十分重要的物理量,准确地确定它的量值,无论从理论上、还是科研上、生产上以及军事上都有极其重大的意义。

(1)如图所示是一种较精确测重力加速度g值的方法:将下端装有弹射装置的真空玻璃直管竖直放置,玻璃管足够长,小球竖直向上被弹出,在O点与弹簧分离,然后返回。

在O 点正上方选取一点P,利用仪器精确测得OP间的距离为H,从O点出发至返回O点的时间间隔为T1,小球两次经过P点的时间间隔为T2。

(i)求重力加速度g;(ii)若O点距玻璃管底部的距离为L0,求玻璃管最小长度。

(2)在用单摆测量重力加速度g时,由于操作失误,致使摆球不在同一竖直平面内运动,而是在一个水平面内做圆周运动,如图所示.这时如果测出摆球做这种运动的周期,仍用单摆的周期公式求出重力加速度,问这样求出的重力加速度与重力加速度的实际值相比,哪个大?试定量比较。

(3)精确的实验发现,在地球上不同的地方,g的大小是不同的,下表列出了一些地点的重力加速度。

请用你学过的知识解释,重力加速度为什么随纬度的增加而增大?【答案】(1)22128H gT T =-, 2102212T HL T T +-;(2)求出的重力加速度比实际值大;(3)解析见详解。

【解析】 【详解】(1)(i )小球从O 点上升到最大高度过程中:211122T h g ⎛⎫= ⎪⎝⎭小球从P 点上升的最大高度:222122T h g ⎛⎫= ⎪⎝⎭依据题意:12h h H -= 联立解得:22128Hg T T =-(ii )真空管至少的长度:01L L h =+故2102212T HL L T T =+- (2)以l 表示摆长,θ表示摆线与竖直方向的夹角,m 表示摆球的质量,F 表示摆线对摆球的拉力,T 表示摆球作题图所示运动的周期,小球受力分析如图:则有 F sin θ=mL sin θ(2Tπ)2, F cos θ=mg由以上式子得:T=2πLcosg,而单摆的周期公式为T′=2πLg,即使在单摆实验中,摆角很小,θ<5°,但cosθ<l,这表示对于同样的摆长L,摆球在水平面内作圆周运动的周期T小于单摆运动的周期T′,所以把较小的周期通过求出的重力加速度的数值将大于g的实际值。

高考物理直线运动常见题型及答题技巧及练习题(含答案)

高考物理直线运动常见题型及答题技巧及练习题(含答案)

高考物理直线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试直线运动1.研究表明,一般人的刹车反应时间(即图甲中“反应过程”所用时间)t 0=0.4s ,但饮酒会导致反应时间延长.在某次试验中,志愿者少量饮酒后驾车以v 0=72km/h 的速度在试验场的水平路面上匀速行驶,从发现情况到汽车停止,行驶距离L=39m .减速过程中汽车位移s 与速度v 的关系曲线如图乙所示,此过程可视为匀变速直线运动.取重力加速度的大小g=10m/s 2.求:(1)减速过程汽车加速度的大小及所用时间; (2)饮酒使志愿者的反应时间比一般人增加了多少;(3)减速过程汽车对志愿者作用力的大小与志愿者重力大小的比值. 【答案】(1)28/m s ,2.5s ;(2)0.3s ;(3)0415F mg =【解析】 【分析】 【详解】(1)设减速过程中,汽车加速度的大小为a ,运动时间为t ,由题可知初速度020/v m s =,末速度0t v =,位移2()211f x x =-≤由运动学公式得:202v as =①2.5v t s a==② 由①②式代入数据得28/a m s =③2.5t s =④(2)设志愿者饮酒后反应时间的增加量为t ∆,由运动学公式得0L v t s ='+⑤ 0t t t ∆='-⑥联立⑤⑥式代入数据得0.3t s ∆=⑦(3)设志愿者力所受合外力的大小为F ,汽车对志愿者作用力的大小为0F ,志愿者的质量为m ,由牛顿第二定律得F ma =⑧由平行四边形定则得2220()F F mg =+⑨联立③⑧⑨式,代入数据得0415F mg =⑩2.一个质点正在做匀加速直线运动,用固定在地面上的照相机对该质点进行闪光照相,闪光时间间隔为1s .分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移到了2m ;在第3次、第4次闪光的时间间隔内移动了8m ,由此可以求得( ) A .第1次闪光时质点的速度 B .质点运动的加速度 C .质点运动的初速度D .从第2次闪光到第3次闪光这段时间内质点的位移 【答案】ABD 【解析】 试题分析:根据得;,故B 不符合题意;设第一次曝光时的速度为v ,,得:,故A 不符合题意;由于不知道第一次曝光时物体已运动的时间,故无法知道初速度,故C 符合题意;设第一次到第二次位移为;第三次到第四次闪光为,则有:;则;而第二次闪光到第三次闪光的位移,故D 不符合题意考点:考查了匀变速直线运动规律的综合应用,要注意任意一段匀变速直线运动中,只有知道至少三个量才能求出另外的两个量,即知三求二.3.高速公路上行驶的车辆速度很大,雾天易出现车辆连续相撞的事故。

高考物理直线运动常见题型及答题技巧及练习题(含答案)含解析

高考物理直线运动常见题型及答题技巧及练习题(含答案)含解析

高考物理直线运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试直线运动1.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s 2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s 时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g 取10m/s 2)。

求:(1)车在加速过程中木箱运动的加速度的大小 (2)木箱做加速运动的时间和位移的大小(3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。

【答案】(1)(2)4s ;18m (3)1.8m【解析】试题分析:(1)设木箱的最大加速度为,根据牛顿第二定律 解得则木箱与平板车存在相对运动,所以车在加速过程中木箱的加速度为(2)设木箱的加速时间为,加速位移为。

(3)设平板车做匀加速直线运动的时间为,则达共同速度平板车的位移为则要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足考点:牛顿第二定律的综合应用.2.如图所示,某次滑雪训练,运动员站在水平雪道上第一次利用滑雪杖对雪面的作用获得水平推力84N F =而从静止向前滑行,其作用时间为1 1.0s t =,撤除水平推力F 后经过2 2.0s t =,他第二次利用滑雪杖对雪面的作用获得同样的水平推力,作用距离与第一次相同.已知该运动员连同装备的总质量为60kg m =,在整个运动过程中受到的滑动摩擦力大小恒为f 12N F =,求:(1)第一次利用滑雪杖对雪面作用获得的速度大小及这段时间内的位移大小.(2)该运动员(可视为质点)第二次撤除水平推力后滑行的最大距离.【答案】(1)1.2m/s 0.6m ; (2)5.2m 【解析】 【分析】 【详解】(1)根据牛顿第二定律得1f F F ma -=运动员利用滑雪杖获得的加速度为21 1.2m /s a =第一次利用滑雪杖对雪面作用获得的速度大小111 1.2 1.0m /s 1.2m /s v a t ==⨯=位移211110.6m 2x a t == (2)运动员停止使用滑雪杖后,加速度大小为220.2m /s f F a m==第二次利用滑雪杖获得的速度大小2v ,则2221112v v a x -=第二次撤除水平推力后滑行的最大距离22222v x a =解得2 5.2m x =3.如图甲所示,长为4m 的水平轨道AB 与半径为R=0.6m 的竖直半圆弧轨道BC 在B 处相连接,有一质量为1kg 的滑块(大小不计),从A 处由静止开始受水平向右的力F 作用,F 的大小随位移变化关系如图乙所示,滑块与AB 间动摩擦因数为0.25,与BC 间的动摩擦因数未知,取g =l0m/s 2.求:(1)滑块到达B 处时的速度大小;(2)滑块在水平轨道AB 上运动前2m 过程中所需的时间;(3)若滑块到达B 点时撤去力F ,滑块沿半圆弧轨道内侧上滑,并恰好能达到最高点C ,则滑块在半圆轨道上克服摩擦力所做的功是多少. 【答案】(1)210/m s (2)835s (3)5J 【解析】试题分析: (1)对滑块从A 到B 的过程,由动能定理得F 1x 1-F 3x 3-μmgx =12mv B 2得v B =210m/s . (2)在前2 m 内,由牛顿第二定律得F 1-μmg =ma 且x 1=12at 12 解得t 1=835s . (3)当滑块恰好能到达最高点C 时,有mg =m 2Cv R对滑块从B 到C 的过程,由动能定理得W -mg×2R =12mv C 2-12mv B 2 代入数值得W =-5 J即克服摩擦力做的功为5 J .考点:动能定理;牛顿第二定律4.如图所示,质量为M=8kg 的小车停放在光滑水平面上,在小车右端施加一水平恒力F ,当小车向右运动速度达 到时,在小车的右端轻轻放置一质量m=2kg 的小物块,经过t 1=2s 的时间,小物块与小车保持相对静止。

高考物理直线运动答题技巧及练习题(含答案)及解析

高考物理直线运动答题技巧及练习题(含答案)及解析

高考物理直线运动答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试直线运动1.倾角为θ的斜面与足够长的光滑水平面在D 处平滑连接,斜面上AB 的长度为3L ,BC 、CD 的长度均为3.5L ,BC 部分粗糙,其余部分光滑。

如图,4个“— ”形小滑块工件紧挨在一起排在斜面上,从下往上依次标为1、2、3、4,滑块上长为L 的轻杆与斜面平行并与上一个滑块接触但不粘连,滑块1恰好在A 处。

现将4个滑块一起由静止释放,设滑块经过D 处时无机械能损失,轻杆不会与斜面相碰。

已知每个滑块的质量为m 并可视为质点,滑块与粗糙面间的动摩擦因数为tan θ,重力加速度为g 。

求(1)滑块1刚进入BC 时,滑块1上的轻杆所受到的压力大小; (2)4个滑块全部滑上水平面后,相邻滑块之间的距离。

【答案】(1)3sin 4F mg θ=(2)43d L =【解析】 【详解】(1)以4个滑块为研究对象,设第一个滑块刚进BC 段时,4个滑块的加速度为a ,由牛顿第二定律:4sin cos 4mg mg ma θμθ-⋅=以滑块1为研究对象,设刚进入BC 段时,轻杆受到的压力为F ,由牛顿第二定律:sin cos F mg mg ma θμθ+-⋅=已知tan μθ= 联立可得:3sin 4F mg θ=(2)设4个滑块完全进入粗糙段时,也即第4个滑块刚进入BC 时,滑块的共同速度为v 这个过程, 4个滑块向下移动了6L 的距离,1、2、3滑块在粗糙段向下移动的距离分别为3L 、2L 、L ,由动能定理,有:214sin 6cos 32)4v 2mg L mg L L L m θμθ⋅-⋅⋅++=⋅( 可得:v 3sin gL θ=由于动摩擦因数为tan μθ=,则4个滑块都进入BC 段后,所受合外力为0,各滑块均以速度v 做匀速运动;第1个滑块离开BC 后做匀加速下滑,设到达D 处时速度为v 1,由动能定理:()22111sin 3.5vv 22mg L m m θ⋅=- 可得:1v 4sin gL θ=当第1个滑块到达BC 边缘刚要离开粗糙段时,第2个滑块正以v 的速度匀速向下运动,且运动L 距离后离开粗糙段,依次类推,直到第4个滑块离开粗糙段。

高考物理直线运动解题技巧及练习题(含答案)含解析

高考物理直线运动解题技巧及练习题(含答案)含解析

高考物理直线运动解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试直线运动1.撑杆跳高是奥运会是一个重要的比赛项目.撑杆跳高整个过程可以简化为三个阶段:助跑、上升、下落;而运动员可以简化成质点来处理.某著名运动员,在助跑过程中,从静止开始以加速度2 m/s 2做匀加速直线运动,速度达到10 m/s 时撑杆起跳;达到最高点后,下落过程可以认为是自由落体运动,重心下落高度为6.05 m ;然后落在软垫上软垫到速度为零用时0.8 s .运动员质量m =75 kg ,g 取10 m/s 2.求: (1)运动员起跳前的助跑距离;(2)自由落体运动下落时间,以及运动员与软垫接触时的速度;(3)假设运动员从接触软垫到速度为零做匀减速直线运动,求运动员在这个过程中,软垫受到的压力.【答案】(1)运动员起跳前的助跑距离为25m ;(2)自由落体运动下落时间为1.1S ,以及运动员与软垫接触时的速度为11m/s ;(3)运动员在这个过程中,软垫受到的压力为1.8×103N . 【解析】 【详解】(1)根据速度位移公式得,助跑距离:x=22v a =21022⨯=25m (2)设自由落体时间为t 1,自由落体运动的位移为h :h=212gt 代入数据得:t =1.1s 刚要接触垫的速度v ′,则:v′2=2gh ,得v =11m/s(3)设软垫对人的力为F ,由动量定理得:(mg-F )t =0-mv ′ 代入数据得:F =1.8×103N由牛顿第三定律得对软垫的力为1.8×103N2.为提高通行效率,许多高速公路出入口安装了电子不停车收费系统ETC .甲、乙两辆汽车分别通过ETC 通道和人工收费通道(MTC)驶离高速公路,流程如图所示.假设减速带离收费岛口x =60m ,收费岛总长度d =40m ,两辆汽车同时以相同的速度v 1=72km/h 经过减速带后,一起以相同的加速度做匀减速运动.甲车减速至v 2=36km/h 后,匀速行驶到中心线即可完成缴费,自动栏杆打开放行;乙车刚好到收费岛中心线收费窗口停下,经过t 0=15s 的时间缴费成功,人工栏打开放行.随后两辆汽车匀加速到速度v 1后沿直线匀速行驶,设加速和减速过程中的加速度大小相等,求:(1)此次人工收费通道和ETC 通道打开栏杆放行的时间差t ∆ ; (2)两辆汽车驶离收费站后相距的最远距离x ∆ . 【答案】(1)17s ;(2)400m 【解析】 【分析】 【详解】172v =km/s=20m/s ,018v =km/s=5m/s ,236v =km/s=10m/s ,(1)两车减速运动的加速度大小为22120 2.5402()2(60)22v a d x ===+⨯+m/s 2,甲车减速到2v ,所用时间为101201042.5v v t a --===s , 走过的距离为1112201046022v v x t ++==⨯=m , 甲车从匀速运动到栏杆打开所用时间为12240()606022 210d x x t v +-+-===s 甲车从减速到栏杆打开的总时间为12426t t t =+=+=甲s 乙车减速行驶到收费岛中心线的时间为132082.5v t a ===s 从减速到打开栏杆的总时间为0315823t t t =+=+=乙s 人工收费通道和ETC 通道打开栏杆放行的时间差23617t t t ∆=-=-=乙甲s ;(2)乙车从收费岛中心线开始出发又经38t =s 加速到1 20v =m/s ,与甲车达到共同速度,此时两车相距最远.这个过程乙车行驶的距离与之前乙车减速行驶的距离相等40608022d x x =+=+=乙m, 从收费岛中心线开始,甲车先从010v =m/s 加速至1 20v =m/s ,这个时间为1 4t =s 然后匀速行驶()()113160208174480x x v t t t =++∆-=+⨯+-=甲m 故两车相距的最远距离为48080400x x x ∆=-=-=甲乙m .3.汽车在路上出现故障时,应在车后放置三角警示牌(如图所示),以提醒后面驾车司机,减速安全通过.在夜间,有一货车因故障停车,后面有一小轿车以30m/s 的速度向前驶来,由于夜间视线不好,驾驶员只能看清前方50m 的物体,并且他的反应时间为0.5s ,制动后最大加速度为6m/s 2.求:(1)小轿车从刹车到停止所用小轿车驾驶的最短时间;(2)三角警示牌至少要放在车后多远处,才能有效避免两车相撞.【答案】(1)5s (2)40m 【解析】 【分析】 【详解】(1)从刹车到停止时间为t 2,则 t 2=0v a-=5 s① (2)反应时间内做匀速运动,则 x 1=v 0t 1② x 1=15 m③从刹车到停止的位移为x 2,则x 2=2002v a -④x 2=75 m⑤小轿车从发现物体到停止的全部距离为 x=x 1+x 2=90m ⑥ △x=x ﹣50m=40m ⑦4.伽利略在研究自出落体运动时,猜想自由落体的速度是均匀变化的,他考虑了速度的两种变化:一种是速度随时间均匀变化,另一种是速度随位移均匀变化。

高考物理直线运动答题技巧及练习题(含答案)及解析

高考物理直线运动答题技巧及练习题(含答案)及解析

高考物理直线运动答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试直线运动1.甲、乙两车在某高速公路上沿直线同向而行,它们的v﹣t图象如图所示,若t=0时刻两车相距50m,求:(1)若t=0时,甲车在乙车前方,两车相遇的时间;(2)若t=0时,乙车在甲车前方,两车相距的最短距离。

【答案】(1) 6.9s (2) 40m【解析】(1)由图得,乙的加速度为:相遇时,对甲:x甲=v甲t对乙:由题意有:x乙=x甲+50联立解得:t=2(+1)s≈6.9s(2)分析知,当两车速度相等时距离最短,即为:t′=2s对甲:x甲′=v甲t′=10×2m=20m对乙:两车相距的最短距离为:答:(1)若t=0时,甲车在乙车前方,两车相遇的时间是6.9s;(2)若t=0时,乙车在甲车前方,两车相距的最短距离是40m。

点睛:在追及问题中当两车速度相等时两者之间的距离有最值,解此类题要根据速度之间的关系以及位移之间的关系求解即可。

2.高铁被誉为中国新四大发明之一.因高铁的运行速度快,对制动系统的性能要求较高,高铁列车上安装有多套制动装置——制动风翼、电磁制动系统、空气制动系统、摩擦制动系统等.在一段直线轨道上,某高铁列车正以v0=288km/h的速度匀速行驶,列车长突然接到通知,前方x0=5km处道路出现异常,需要减速停车.列车长接到通知后,经过t l=2.5s 将制动风翼打开,高铁列车获得a1=0.5m/s2的平均制动加速度减速,减速t2=40s后,列车长再将电磁制动系统打开,结果列车在距离异常处500m的地方停下来.(1)求列车长打开电磁制动系统时,列车的速度多大?(2)求制动风翼和电磁制动系统都打开时,列车的平均制动加速度a2是多大?【答案】(1)60m/s(2)1.2m/s2【解析】【分析】(1)根据速度时间关系求解列车长打开电磁制动系统时列车的速度;(2)根据运动公式列式求解打开电磁制动后打开电磁制动后列车行驶的距离,根据速度位移关系求解列车的平均制动加速度.【详解】(1)打开制动风翼时,列车的加速度为a1=0.5m/s2,设经过t2=40s时,列车的速度为v1,则v1=v0-a1t2=60m/s.(2)列车长接到通知后,经过t1=2.5s,列车行驶的距离x1=v0t1=200m打开制动风翼到打开电磁制动系统的过程中,列车行驶的距离x2 =2800m打开电磁制动后,行驶的距离x3= x0- x1- x2=1500m;3.一质点做匀加速直线运动,初速度v0=2 m/s,4 s内位移为20 m,求:(1)质点的加速度大小;(2)质点4 s末的速度大小。

高考物理直线运动常见题型及答题技巧及练习题(含答案)

高考物理直线运动常见题型及答题技巧及练习题(含答案)

高考物理直线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试直线运动1.如图所示,质量M=8kg的小车放在光滑水平面上,在小车左端加一水平推力F=8N,当小车向右运动的速度达到1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2kg 的小物块,物块与小车间的动摩擦因数为0.2,小车足够长.求:(1)小物块刚放上小车时,小物块及小车的加速度各为多大?(2)经多长时间两者达到相同的速度?共同速度是多大?(3)从小物块放上小车开始,经过t=1.5s小物块通过的位移大小为多少?(取g=10m/s2).【答案】(1)2m/s2,0.5m/s2(2)1s,2m/s(3)2.1m【解析】【分析】(1)利用牛顿第二定律求的各自的加速度;(2)根据匀变速直线运动的速度时间公式以及两物体的速度相等列式子求出速度相等时的时间,在将时间代入速度时间的公式求出共同的速度;(3) 根据先求出小物块在达到与小车速度相同时的位移,再求出小物块与小车一体运动时的位移即可.【详解】(1) 根据牛顿第二定律可得小物块的加速度:m/s2小车的加速度:m/s2(2)令两则的速度相等所用时间为t,则有:解得达到共同速度的时间:t=1s共同速度为:m/s(3) 在开始1s内小物块的位移m此时其速度:m/s在接下来的0.5s小物块与小车相对静止,一起做加速运动且加速度:m/s 2这0.5s 内的位移:m则小物块通过的总位移:m【点睛】本题考查牛顿第二定律的应用,解决本题的关键理清小车和物块在整个过程中的运动情况,然后运用运动学公式求解.同时注意在研究过程中正确选择研究对象进行分析求解.2.为提高通行效率,许多高速公路出入口安装了电子不停车收费系统ETC .甲、乙两辆汽车分别通过ETC 通道和人工收费通道(MTC)驶离高速公路,流程如图所示.假设减速带离收费岛口x =60m ,收费岛总长度d =40m ,两辆汽车同时以相同的速度v 1=72km/h 经过减速带后,一起以相同的加速度做匀减速运动.甲车减速至v 2=36km/h 后,匀速行驶到中心线即可完成缴费,自动栏杆打开放行;乙车刚好到收费岛中心线收费窗口停下,经过t 0=15s 的时间缴费成功,人工栏打开放行.随后两辆汽车匀加速到速度v 1后沿直线匀速行驶,设加速和减速过程中的加速度大小相等,求:(1)此次人工收费通道和ETC 通道打开栏杆放行的时间差t ∆ ; (2)两辆汽车驶离收费站后相距的最远距离x ∆ . 【答案】(1)17s ;(2)400m 【解析】 【分析】 【详解】172v =km/s=20m/s ,018v =km/s=5m/s ,236v =km/s=10m/s ,(1)两车减速运动的加速度大小为22120 2.5402()2(60)22v a d x ===+⨯+m/s 2,甲车减速到2v ,所用时间为101201042.5v v t a --===s , 走过的距离为1112201046022v v x t ++==⨯=m ,甲车从匀速运动到栏杆打开所用时间为12240()606022 210d x x t v +-+-===s 甲车从减速到栏杆打开的总时间为12426t t t =+=+=甲s 乙车减速行驶到收费岛中心线的时间为132082.5v t a===s 从减速到打开栏杆的总时间为0315823t t t =+=+=乙s 人工收费通道和ETC 通道打开栏杆放行的时间差23617t t t ∆=-=-=乙甲s ;(2)乙车从收费岛中心线开始出发又经38t =s 加速到1 20v =m/s ,与甲车达到共同速度,此时两车相距最远.这个过程乙车行驶的距离与之前乙车减速行驶的距离相等40608022d x x =+=+=乙m, 从收费岛中心线开始,甲车先从010v =m/s 加速至1 20v =m/s ,这个时间为1 4t =s 然后匀速行驶()()113160208174480x x v t t t =++∆-=+⨯+-=甲m 故两车相距的最远距离为48080400x x x ∆=-=-=甲乙m .3.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s 2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s 时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g 取10m/s 2)。

高中物理直线运动常见题型及答题技巧及练习题(含答案)含解析

高中物理直线运动常见题型及答题技巧及练习题(含答案)含解析

高中物理直线运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试直线运动1.货车A 正在公路上以20 m/s 的速度匀速行驶,因疲劳驾驶,司机注意力不集中,当司机发现正前方有一辆静止的轿车B 时,两车距离仅有75 m .(1)若此时轿车B 立即以2 m/s 2的加速度启动,通过计算判断:如果货车A 司机没有刹车,是否会撞上轿车B ;若不相撞,求两车相距最近的距离;若相撞,求出从货车A 发现轿车B 开始到撞上轿车B 的时间.(2)若货车A 司机发现轿车B 时立即刹车(不计反应时间)做匀减速直线运动,加速度大小为2 m/s 2(两车均视为质点),为了避免碰撞,在货车A 刹车的同时,轿车B 立即做匀加速直线运动(不计反应时间),问:轿车B 加速度至少多大才能避免相撞. 【答案】(1)两车会相撞t 1=5 s ;(2)222m/s 0.67m/s 3B a =≈ 【解析】 【详解】(1)当两车速度相等时,A 、B 两车相距最近或相撞. 设经过的时间为t ,则:v A =v B 对B 车v B =at联立可得:t =10 s A 车的位移为:x A =v A t= 200 mB 车的位移为: x B =212at =100 m 因为x B +x 0=175 m<x A所以两车会相撞,设经过时间t 相撞,有:v A t = x o 十212at 代入数据解得:t 1=5 s ,t 2=15 s(舍去).(2)已知A 车的加速度大小a A =2 m/s 2,初速度v 0=20 m/s ,设B 车的加速度为a B ,B 车运动经过时间t ,两车相遇时,两车速度相等, 则有:v A =v 0-a A t v B = a B t 且v A = v B在时间t 内A 车的位移为: x A =v 0t-212A a tB 车的位移为:x B =212B a t 又x B +x 0= x A 联立可得:222m/s 0.67m/s 3B a =≈2.现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,当两车快要到十字路口时,甲车司机看到绿灯开始闪烁,已知绿灯闪烁3秒后将转为红灯.请问:(1)若甲车在绿灯开始闪烁时刹车,要使车在绿灯闪烁的3秒时间内停下来且刹车距离不得大于18m,则甲车刹车前的行驶速度不能超过多少?(2)若甲、乙车均以v0=15m/s的速度驶向路口,乙车司机看到甲车刹车后也紧急刹车(乙车司机的反应时间△t2=0.4s,反应时间内视为匀速运动).已知甲车、乙车紧急刹车时的加速度大小分别为a1=5m/s2、a2=6m/s2 .若甲车司机看到绿灯开始闪烁时车头距停车线L=30m,要避免闯红灯,他的反应时间△t1不能超过多少?为保证两车在紧急刹车过程中不相撞,甲、乙两车刹车前之间的距离s0至少多大?【答案】(1)(2)【解析】(1)设在满足条件的情况下,甲车的最大行驶速度为v1根据平均速度与位移关系得:所以有:v1=12m/s(2)对甲车有v0△t1+=L代入数据得:△t1=0.5s当甲、乙两车速度相等时,设乙车减速运动的时间为t,即:v0-a2t=v0-a1(t+△t2)解得:t=2s则v=v0-a2t=3m/s此时,甲车的位移为:乙车的位移为:s2=v0△t2+=24m故刹车前甲、乙两车之间的距离至少为:s0=s2-s1=2.4m.点睛:解决追及相遇问题关键在于明确两个物体的相互关系;重点在于分析两物体在相等时间内能否到达相同的空间位置及临界条件的分析;必要时可先画出速度-时间图象进行分析.3.高铁被誉为中国新四大发明之一.因高铁的运行速度快,对制动系统的性能要求较高,高铁列车上安装有多套制动装置——制动风翼、电磁制动系统、空气制动系统、摩擦制动系统等.在一段直线轨道上,某高铁列车正以v0=288km/h的速度匀速行驶,列车长突然接到通知,前方x0=5km处道路出现异常,需要减速停车.列车长接到通知后,经过t l=2.5s 将制动风翼打开,高铁列车获得a1=0.5m/s2的平均制动加速度减速,减速t2=40s后,列车长再将电磁制动系统打开,结果列车在距离异常处500m的地方停下来.(1)求列车长打开电磁制动系统时,列车的速度多大?(2)求制动风翼和电磁制动系统都打开时,列车的平均制动加速度a2是多大?【答案】(1)60m/s(2)1.2m/s2【解析】【分析】(1)根据速度时间关系求解列车长打开电磁制动系统时列车的速度;(2)根据运动公式列式求解打开电磁制动后打开电磁制动后列车行驶的距离,根据速度位移关系求解列车的平均制动加速度. 【详解】(1)打开制动风翼时,列车的加速度为a 1=0.5m/s 2,设经过t 2=40s 时,列车的速度为v 1,则v 1=v 0-a 1t 2=60m/s.(2)列车长接到通知后,经过t 1=2.5s ,列车行驶的距离x 1=v 0t 1=200m 打开制动风翼到打开电磁制动系统的过程中,列车行驶的距离 x 2=2800m打开电磁制动后,行驶的距离x 3= x 0- x 1- x 2=1500m ;4.如图所示,某次滑雪训练,运动员站在水平雪道上第一次利用滑雪杖对雪面的作用获得水平推力84N F =而从静止向前滑行,其作用时间为1 1.0s t =,撤除水平推力F 后经过2 2.0s t =,他第二次利用滑雪杖对雪面的作用获得同样的水平推力,作用距离与第一次相同.已知该运动员连同装备的总质量为60kg m =,在整个运动过程中受到的滑动摩擦力大小恒为f 12N F =,求:(1)第一次利用滑雪杖对雪面作用获得的速度大小及这段时间内的位移大小. (2)该运动员(可视为质点)第二次撤除水平推力后滑行的最大距离.【答案】(1)1.2m/s 0.6m ; (2)5.2m 【解析】 【分析】 【详解】(1)根据牛顿第二定律得1f F F ma -=运动员利用滑雪杖获得的加速度为21 1.2m /s a =第一次利用滑雪杖对雪面作用获得的速度大小111 1.2 1.0m /s 1.2m /s v a t ==⨯=位移211110.6m 2x a t == (2)运动员停止使用滑雪杖后,加速度大小为220.2m /s f F a m==第二次利用滑雪杖获得的速度大小2v ,则2221112v v a x -=第二次撤除水平推力后滑行的最大距离22222v x a =解得2 5.2m x =5.光滑水平桌面上有一个静止的物体,其质量为7kg ,在14N 的水平恒力作用下向右做匀加速直线运动,求:5s 末物体的速度的大小?5s 内通过的位移是多少? 【答案】x=25m 【解析】 【分析】根据牛顿第二定律求出物体的加速度,根据速度时间公式和位移时间公式求出5s 末的速度和5s 内的位移. 【详解】(1)根据牛顿第二定律得,物体的加速度为:2214/2/7F a m s m s m ===; 5s 末的速度为:v=at=2×5m/s=10m/s. (2)5s 内的位移为:x=12at 2= 12×2×52m =25m . 【点睛】本题考查了牛顿第二定律和运动学公式的综合,知道加速度是联系力学和运动学的桥梁.6.一辆长途客车正以v=20m/s 的速度匀速行驶,突然,司机看见车的正前方033x m =处有一只狗,如图(甲)所示,司机立即采取制动措施,若从司机看见狗开始计时(t=0),长途客车的“速度一时间”图象如图(乙)所示。

高考物理直线运动答题技巧及练习题(含答案)含解析

高考物理直线运动答题技巧及练习题(含答案)含解析

高考物理直线运动答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试直线运动1.如图所示,一根有一定电阻的直导体棒质量为、长为L,其两端放在位于水平面内间距也为L的光滑平行导轨上,并与之接触良好;棒左侧两导轨之间连接一可控电阻;导轨置于匀强磁场中,磁场的磁感应强度大小为B,方向垂直于导轨所在平面,时刻,给导体棒一个平行与导轨的初速度,此时可控电阻的阻值为,在棒运动过程中,通过可控电阻的变化使棒中的电流强度保持恒定,不计导轨电阻,导体棒一直在磁场中。

(1)求可控电阻R随时间变化的关系式;(2)若已知棒中电流强度为I,求时间内可控电阻上消耗的平均功率P;(3)若在棒的整个运动过程中将题中的可控电阻改为阻值为的定值电阻,则棒将减速运动位移后停下;而由题干条件,棒将运动位移后停下,求的值。

【答案】(1);(2);(3)【解析】试题分析:(1)因棒中的电流强度保持恒定,故棒做匀减速直线运动,设棒的电阻为,电流为I,其初速度为,加速度大小为,经时间后,棒的速度变为,则有:而,时刻棒中电流为:,经时间后棒中电流为:,由以上各式得:。

(2)因可控电阻R随时间均匀减小,故所求功率为:,由以上各式得:。

(3)将可控电阻改为定值电阻,棒将变减速运动,有:,,而,,由以上各式得,而,由以上各式得,所求。

考点:导体切割磁感线时的感应电动势;电磁感应中的能量转化【名师点睛】解决本题的关键知道分析导体棒受力情况,应用闭合电路欧姆定律和牛顿第二定律求解,注意对于线性变化的物理量求平均的思路,本题中先后用到平均电动势、平均电阻和平均加速度。

2.某人驾驶一辆小型客车以v 0=10m/s 的速度在平直道路上行驶,发现前方s =15m 处有减速带,为了让客车平稳通过减速带,他立刻刹车匀减速前进,到达减速带时速度v =5.0 m/s .已知客车的总质量m =2.0×103 kg.求: (1)客车到达减速带时的动能E k ;(2)客车从开始刹车直至到达减速带过程所用的时间t ; (3)客车减速过程中受到的阻力大小f .【答案】(1)E k =2.5×104J (2)t =2s (3)f =5.0×103N 【解析】 【详解】(1) 客车到达减速带时的功能E k =12mv 2,解得E k =2.5×104 J (2) 客车减速运动的位移02v vs t +=,解得t =2s (3) 设客车减速运动的加速度大小为a ,则v =v 0-at ,f =ma 解得f =5.0×103 N3.如图所示,水平平台ab 长为20 m ,平台b 端与长度未知的特殊材料制成的斜面bc 连接,斜面倾角为30°.在平台b 端放上质量为5 kg 的物块,并给物块施加与水平方向成37°角的50 N 推力后,物块由静止开始运动.己知物块与平台间的动摩擦因数为0.4,重力加速度g =10 m/s 2,sin37°=0.6,求:(1)物块由a 运动到b 所用的时间;(2)若物块从a 端运动到P 点时撤掉推力,则物块刚好能从斜面b 端开始下滑,则aP 间的距离为多少?(物块在b 端无能量损失)(3)若物块与斜面间的动摩擦因数μbc =0.277+0.03L b ,式中L b 为物块在斜面上所处的位置离b 端的距离,在(2)中的情况下,物块沿斜面滑到什么位置时速度最大? 【答案】(1)5s (2)14.3m (3)见解析 【解析】试题分析:(1)根据牛顿运动定律求解加速度,根据位移时间关系知时间;(2)根据位移速度关系列方程求解;(3)物体沿斜面下滑的速度最大时,须加速度为0,根据受力分析列方程,结合物块与斜面间的动摩擦因数μbc=0.277+0.03L b知斜面长度的临界值,从而讨论最大速度.解:(1)受力分析知物体的加速度为a1===1.6m/s2x=a1t2解得a到b的时间为t==5s(2)物体从a到p:=2a1x1物块由P到b:=2a2x2a2=μgx=x1+x2解得ap距离为x1=14.3m(3)物体沿斜面下滑的速度最大时,须加速度为0,即a==0μbc=0.277+0.03L b,联立解得L b=10m因此如斜面长度L>10m,则L b=10m时速度最大;若斜面长度L≤10m,则斜面最低点速度最大.答:(1)物块由a运动到b所用的时间为5s;(2)若物块从a端运动到P点时撤掉推力,则物块刚好能从斜面b端开始下滑,则间aP 的距离为14.3m;(3)斜面长度L>10m,则L b=10m时速度最大;若斜面长度L≤10m,则斜面最低点速度最大.【点评】本题考查的是牛顿第二定律及共点力平衡,但是由于涉及到动摩擦因数变化,增加了难度;故在分析时要注意物体沿斜面下滑的速度最大时,须加速度为0这个条件.4.近年来隧道交通事故成为道路交通事故的热点之一.某日,一轿车A因故障恰停在某隧道内离隧道入口50m的位置.此时另一轿车B正以v0=90km/h的速度匀速向隧道口驶来,轿车B到达隧道口时驾驶员才发现停在前方的轿车A并立即采取制动措施.假设该驾驶员的反应时间t1=0.57s,轿车制动系统响应时间(开始踏下制动踏板到实际制动)t2=0.03s,轿车制动时加速度大小a=7.5m/s2.问:(1)轿车B是否会与停在前方的轿车A相撞?(2)若会相撞,撞前轿车B的速度大小为多少?若不会相撞,停止时轿车B与轿车A的距离是多少?【答案】(1)轿车B会与停在前方的轿车A相撞;(2)10m/s【解析】试题分析:轿车的刹车位移由其反应时间内的匀速运动位移和制动后匀减速运动位移两部分构成,由此可得刹车位移,与初始距离比较可判定是否相撞;依据(1)的结果,由运动可判定相撞前B 的速度.(1)轿车B 在实际制动前做匀速直线运动,设其发生的位移为s 1,由题意可知:s 1=v 0(t 1+t 2)=15 m ,实际制动后,轿车B 做匀减速运动,位移为s 2, 由2022v as =代入数据得:s 2=41.7 m ,轿车A 离隧道口的距离为d =50 m ,因s 1+s 2>d ,故轿车B 会与停在前方的轿车A 相撞(2)设撞前轿车B 的速度为v ,由运动学公式得22002v v ax -=,代入数据解得:v =10m/s .点睛:本题主要考查相遇问题,关键要掌握刹车位移的判定:反应时间内的匀速运动位移;制动后匀减速运动位移.5.如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m=1 kg 的无人机,其动力系统所能提供的最大升力F=16 N ,无人机上升过程中最大速度为6m/s .若无人机从地面以最大升力竖直起飞,打到最大速度所用时间为3s ,假设无人机竖直飞行时所受阻力大小不变.(g 取10 m /s )2.求:(1)无人机以最大升力起飞的加速度;(2)无人机在竖直上升过程中所受阻力F f 的大小;(3)无人机从地面起飞竖直上升至离地面h=30m 的高空所需的最短时间. 【答案】(1)22/m s (2)4f N = (3)6.5s 【解析】(1)根据题意可得26/02/3v m s a m s t s∆-===∆ (2)由牛顿第二定律F f mg ma --= 得4f N =(3)竖直向上加速阶段21112x at =,19x m = 匀速阶段12 3.5h x t s v-== 故12 6.5t t t s =+=6.物体在斜坡顶端以1 m/s 的初速度和0.5 m/s 2的加速度沿斜坡向下作匀加速直线运动,已知斜坡长24米,求:(1) 物体滑到斜坡底端所用的时间. (2) 物体到达斜坡中点速度.【答案】(1)8s (2/s 【解析】 【详解】(1)物体做匀加速直线运动,根据位移时间关系公式,有:2012x v t at +=代入数据得到:14=t +0.25t 2解得:t=8s 或者t =-12s (负值舍去)所以物体滑到斜坡底端所用的时间为8s(2)设到中点的速度为v 1,末位置速度为v t ,有:v t =v 0+at 1=1+0.5×8m/s=5m/s220 2t v v ax -=2210 22x v v a -=联立解得:1v7.杭黄高铁是连接杭州市和黄山市的高速铁路。

高考物理直线运动解题技巧及经典题型及练习题(含答案)含解析

高考物理直线运动解题技巧及经典题型及练习题(含答案)含解析

高考物理直线运动解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试直线运动1.撑杆跳高是奥运会是一个重要的比赛项目.撑杆跳高整个过程可以简化为三个阶段:助跑、上升、下落;而运动员可以简化成质点来处理.某著名运动员,在助跑过程中,从静止开始以加速度2 m/s 2做匀加速直线运动,速度达到10 m/s 时撑杆起跳;达到最高点后,下落过程可以认为是自由落体运动,重心下落高度为6.05 m ;然后落在软垫上软垫到速度为零用时0.8 s .运动员质量m =75 kg ,g 取10 m/s 2.求: (1)运动员起跳前的助跑距离;(2)自由落体运动下落时间,以及运动员与软垫接触时的速度;(3)假设运动员从接触软垫到速度为零做匀减速直线运动,求运动员在这个过程中,软垫受到的压力.【答案】(1)运动员起跳前的助跑距离为25m ;(2)自由落体运动下落时间为1.1S ,以及运动员与软垫接触时的速度为11m/s ;(3)运动员在这个过程中,软垫受到的压力为1.8×103N . 【解析】 【详解】(1)根据速度位移公式得,助跑距离:x=22v a =21022⨯=25m (2)设自由落体时间为t 1,自由落体运动的位移为h :h=212gt 代入数据得:t =1.1s 刚要接触垫的速度v ′,则:v′2=2gh , 得v ′=2gh =210 6.05⨯⨯=11m/s(3)设软垫对人的力为F ,由动量定理得:(mg-F )t =0-mv ′ 代入数据得:F =1.8×103N由牛顿第三定律得对软垫的力为1.8×103N2.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s 2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s 时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g 取10m/s 2)。

高中物理直线运动常见题型及答题技巧及练习题(含答案)含解析

高中物理直线运动常见题型及答题技巧及练习题(含答案)含解析

高中物理直线运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试直线运动1.研究表明,一般人的刹车反应时间(即图甲中“反应过程”所用时间)t 0=0.4s ,但饮酒会导致反应时间延长.在某次试验中,志愿者少量饮酒后驾车以v 0=72km/h 的速度在试验场的水平路面上匀速行驶,从发现情况到汽车停止,行驶距离L=39m .减速过程中汽车位移s 与速度v 的关系曲线如图乙所示,此过程可视为匀变速直线运动.取重力加速度的大小g=10m/s 2.求:(1)减速过程汽车加速度的大小及所用时间;(2)饮酒使志愿者的反应时间比一般人增加了多少;(3)减速过程汽车对志愿者作用力的大小与志愿者重力大小的比值.【答案】(1)28/m s ,2.5s ;(2)0.3s ;(3)0415F mg =【解析】【分析】【详解】(1)设减速过程中,汽车加速度的大小为a ,运动时间为t ,由题可知初速度020/v m s =,末速度0t v =,位移2()211f x x =-≤由运动学公式得:202v as =① 0 2.5v t s a==② 由①②式代入数据得28/a m s =③2.5t s =④(2)设志愿者饮酒后反应时间的增加量为t ∆,由运动学公式得0L v t s ='+⑤0t t t ∆='-⑥联立⑤⑥式代入数据得0.3t s ∆=⑦(3)设志愿者力所受合外力的大小为F ,汽车对志愿者作用力的大小为0F ,志愿者的质量为m ,由牛顿第二定律得F ma =⑧由平行四边形定则得2220()F F mg =+⑨联立③⑧⑨式,代入数据得05F mg =⑩2.A 、B 两列火车,在同一轨道上同向行驶, A 车在前,其速度v A =10m/s ,B 车在后,速度v B =30m/s .因大雾能见度很低,B 车在距A 车△s=75m 时才发现前方有A 车,这时B 车立即刹车,但B 车要经过180m 才能够停止.问:(1)B 车刹车后的加速度是多大?(2)若B 车刹车时A 车仍按原速前进,请判断两车是否相撞?若会相撞,将在B 车刹车后何时?若不会相撞,则两车最近距离是多少?(3)若B 车在刹车的同时发出信号,A 车司机经过△t=4s 收到信号后加速前进,则A 车的加速度至少多大才能避免相撞?【答案】(1)22.5m /s ,方向与运动方向相反.(2)6s 两车相撞(3)20.83/A a m s ≥【解析】试题分析:根据速度位移关系公式列式求解;当速度相同时,求解出各自的位移后结合空间距离分析;或者以前车为参考系分析;两车恰好不相撞的临界条件是两部车相遇时速度相同,根据运动学公式列式后联立求解即可.(1)B 车刹车至停下过程中,00,30/,180t B v v v m s S m ====由202BB v a s -=得222.5/2B B v a m s s =-=- 故B 车刹车时加速度大小为22.5m /s ,方向与运动方向相反.(2)假设始终不相撞,设经时间t 两车速度相等,则有:A B B v v a t =+, 解得:103082.5A B B v v t s a --===- 此时B 车的位移:2211308 2.5816022B B B s v t a t m =+=⨯-⨯⨯= A 车的位移:10880A A s v t m ==⨯=因1(33333=-+= 设经过时间t 两车相撞,则有212A B B v t s v t a t +∆=+ 代入数据解得:126,10t s t s ==,故经过6s 两车相撞(3)设A 车的加速度为A a 时两车不相撞两车速度相等时:()A A B B v a t t v a t ''+-∆=+即:10()30 2.5A a t t t ''+-∆=-此时B 车的位移:221,30 1.252B B B B s v t a t s t t =+=-''''即: A 车的位移:21()2A A A s v t a t t ''=+-∆ 要不相撞,两车位移关系要满足B A s s s ≤+∆解得20.83/A a m s ≥3.某汽车在高速公路上行驶的速度为108km/h ,司机发现前方有障碍物时,立即采取紧急刹车,其制动过程中的加速度大小为5m/s 2,假设司机的反应时间为0.50s ,汽车制动过程中做匀变速直线运动。

高考物理直线运动常见题型及答题技巧及练习题(含答案)

高考物理直线运动常见题型及答题技巧及练习题(含答案)

高考物理直线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试直线运动1.研究表明,一般人的刹车反应时间(即图甲中“反应过程”所用时间)t 0=0.4s ,但饮酒会导致反应时间延长.在某次试验中,志愿者少量饮酒后驾车以v 0=72km/h 的速度在试验场的水平路面上匀速行驶,从发现情况到汽车停止,行驶距离L=39m .减速过程中汽车位移s 与速度v 的关系曲线如图乙所示,此过程可视为匀变速直线运动.取重力加速度的大小g=10m/s 2.求:(1)减速过程汽车加速度的大小及所用时间; (2)饮酒使志愿者的反应时间比一般人增加了多少;(3)减速过程汽车对志愿者作用力的大小与志愿者重力大小的比值. 【答案】(1)28/m s ,2.5s ;(2)0.3s ;(3)0415F mg =【解析】 【分析】 【详解】(1)设减速过程中,汽车加速度的大小为a ,运动时间为t ,由题可知初速度020/v m s =,末速度0t v =,位移2()211f x x =-≤由运动学公式得:202v as =①2.5v t s a==② 由①②式代入数据得28/a m s =③2.5t s =④(2)设志愿者饮酒后反应时间的增加量为t ∆,由运动学公式得0L v t s ='+⑤ 0t t t ∆='-⑥联立⑤⑥式代入数据得0.3t s ∆=⑦(3)设志愿者力所受合外力的大小为F ,汽车对志愿者作用力的大小为0F ,志愿者的质量为m ,由牛顿第二定律得F ma =⑧由平行四边形定则得2220()F F mg =+⑨联立③⑧⑨式,代入数据得0415F mg =⑩2.如图甲所示为2022年北京冬奥会跳台滑雪场馆“雪如意”的效果图.如图乙所示为由助滑区、空中飞行区、着陆缓冲区等组成的依山势而建的赛道示意图.运动员保持蹲踞姿势从A 点由静止出发沿直线向下加速运动,经过距离A 点s =20m 处的P 点时,运动员的速度为v 1=50.4km/h .运动员滑到B 点时快速后蹬,以v 2=90km/h 的速度飞出,经过一段时间的空中飞行,以v 3=126km/h 的速度在C 点着地.已知BC 两点间的高度差h =80m ,运动员的质量m =60kg ,重力加速度g 取9.8m/s 2,计算结果均保留两位有效数字.求(1)A 到P 过程中运动员的平均加速度大小;(2)以B 点为零势能参考点,求到C 点时运动员的机械能;(3)从B 点起跳后到C 点落地前的飞行过程中,运动员克服阻力做的功 【答案】(1) 4.9m/s a = (2)41.010J E =-⨯ (3)42.910J W =⨯ 【解析】 【详解】(1)150.4km/h 14m/s v ==由212v as =解得:21 4.9m/s 2v a s==(2)290km/h 25m/s v ==,3126km/h 35m/s v == 由能量关系:2312E mgh mv =-+410290J 1.010J E =-=-⨯(按g 取10m/s 2算,411250J 1.110J E =-=-⨯)(3)由动能定理:22321122mgh W mv mv -=- 解得:429040J 2.910J W ==⨯(按g 取10m/s 2算,430000J 3.010J W ==⨯3.甲、乙两车在某高速公路上沿直线同向而行,它们的v ﹣t 图象如图所示,若t=0时刻两车相距50m ,求:(1)若t=0时,甲车在乙车前方,两车相遇的时间; (2)若t=0时,乙车在甲车前方,两车相距的最短距离。

高考物理直线运动常见题型及答题技巧及练习题(含答案)

高考物理直线运动常见题型及答题技巧及练习题(含答案)

高考物理直线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试直线运动1.如图所示,一根有一定电阻的直导体棒质量为、长为L,其两端放在位于水平面内间距也为L的光滑平行导轨上,并与之接触良好;棒左侧两导轨之间连接一可控电阻;导轨置于匀强磁场中,磁场的磁感应强度大小为B,方向垂直于导轨所在平面,时刻,给导体棒一个平行与导轨的初速度,此时可控电阻的阻值为,在棒运动过程中,通过可控电阻的变化使棒中的电流强度保持恒定,不计导轨电阻,导体棒一直在磁场中。

(1)求可控电阻R随时间变化的关系式;(2)若已知棒中电流强度为I,求时间内可控电阻上消耗的平均功率P;(3)若在棒的整个运动过程中将题中的可控电阻改为阻值为的定值电阻,则棒将减速运动位移后停下;而由题干条件,棒将运动位移后停下,求的值。

【答案】(1);(2);(3)【解析】试题分析:(1)因棒中的电流强度保持恒定,故棒做匀减速直线运动,设棒的电阻为,电流为I,其初速度为,加速度大小为,经时间后,棒的速度变为,则有:而,时刻棒中电流为:,经时间后棒中电流为:,由以上各式得:。

(2)因可控电阻R随时间均匀减小,故所求功率为:,由以上各式得:。

(3)将可控电阻改为定值电阻,棒将变减速运动,有:,,而,,由以上各式得,而,由以上各式得,所求。

考点:导体切割磁感线时的感应电动势;电磁感应中的能量转化【名师点睛】解决本题的关键知道分析导体棒受力情况,应用闭合电路欧姆定律和牛顿第二定律求解,注意对于线性变化的物理量求平均的思路,本题中先后用到平均电动势、平均电阻和平均加速度。

2.为确保行车安全,高速公路不同路段限速不同,若有一段直行连接弯道的路段,如图所示,直行路段AB限速120km/h,弯道处限速60km/h.(1)一小车以120km/h的速度在直行道行驶,要在弯道B处减速至60km/h,已知该车制动的最大加速度为2.5m/s2,求减速过程需要的最短时间;(2)设驾驶员的操作反应时间与车辆的制动反应时间之和为2s(此时间内车辆匀速运动),驾驶员能辨认限速指示牌的距离为x0=100m,求限速指示牌P离弯道B的最小距离.【答案】(1)3.3s(2)125.6m【解析】【详解】(1)120 120km/h m/s3.6v==,6060km/h m/s3.6v==根据速度公式v=v0-at,加速度大小最大为2.5m/s2解得:t=3.3s;(2)反应期间做匀速直线运动,x1=v0t1=66.6m;匀减速的位移:2202v v ax-=解得:x=159m则x'=159+66.6-100m=125.6m.应该在弯道前125.6m距离处设置限速指示牌.3.如图甲所示为2022年北京冬奥会跳台滑雪场馆“雪如意”的效果图.如图乙所示为由助滑区、空中飞行区、着陆缓冲区等组成的依山势而建的赛道示意图.运动员保持蹲踞姿势从A点由静止出发沿直线向下加速运动,经过距离A点s=20m处的P点时,运动员的速度为v1=50.4km/h.运动员滑到B点时快速后蹬,以v2=90km/h的速度飞出,经过一段时间的空中飞行,以v3=126km/h的速度在C点着地.已知BC两点间的高度差h=80m,运动员的质量m=60kg,重力加速度g取9.8m/s2,计算结果均保留两位有效数字.求(1)A 到P 过程中运动员的平均加速度大小;(2)以B 点为零势能参考点,求到C 点时运动员的机械能;(3)从B 点起跳后到C 点落地前的飞行过程中,运动员克服阻力做的功【答案】(1) 4.9m/s a = (2)41.010J E =-⨯ (3)42.910J W =⨯【解析】【详解】(1)150.4km/h 14m/s v ==由212v as = 解得:21 4.9m/s 2v a s== (2)290km/h 25m/s v ==,3126km/h 35m/s v == 由能量关系:2312E mgh mv =-+ 410290J 1.010J E =-=-⨯(按g 取10m/s 2算,411250J 1.110J E =-=-⨯)(3)由动能定理:22321122mgh W mv mv -=- 解得:429040J 2.910J W ==⨯(按g 取10m/s 2算,430000J 3.010J W ==⨯4.某人驾驶一辆小型客车以v 0=10m/s 的速度在平直道路上行驶,发现前方s =15m 处有减速带,为了让客车平稳通过减速带,他立刻刹车匀减速前进,到达减速带时速度v =5.0 m/s .已知客车的总质量m =2.0×103 kg.求:(1)客车到达减速带时的动能E k ;(2)客车从开始刹车直至到达减速带过程所用的时间t ;(3)客车减速过程中受到的阻力大小f .【答案】(1)E k =2.5×104J (2)t =2s (3)f =5.0×103N【解析】【详解】(1) 客车到达减速带时的功能E k=12mv 2,解得E k =2.5×104 J (2) 客车减速运动的位移02v v s t +=,解得t =2s (3) 设客车减速运动的加速度大小为a ,则v =v 0-at ,f =ma解得f =5.0×103 N5.如图所示,物体A 的质量1kg A m =,静止在光滑水平面上的平板车B ,质量为0.5kg B m =,长为1m L =.某时刻A 以04m/s v =向右的初速度滑上木板B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,忽略物体A 的大小,已知A 与B 之间的动摩擦因素0.2μ=,取重力加速度210m/s g =.求:(1)若5N F =,物体A 在小车上运动时相对小车滑行的最大距离.(2)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件.【答案】(1)0.5m (2)1N≤F≤3N【解析】(1)物体A 滑上木板B 以后,作匀减速运动,有μmg=ma A得a A =μg=2m/s 2木板B 作加速运动,有F+μmg=Ma B ,代入数据解得:a B =14m/s 2两者速度相同时,有v 0-a A t=a B t ,代入数据解得:t=0.25sA 滑行距离:S A =v 0t-12a A t 2=4×0.25−12×2×116=1516m , B 滑行距离:S B =12a B t 2=12×14×116m=716m . 最大距离:△s=S A -S B =1516−716=0.5m (2)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则: 22201122A Bv v v L a a -=+ 又: 011A Bv v v a a -= 代入数据可得:a B =6(m/s 2)由F=m 2a B -μm 1g=1N 若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N .当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落.即有:F=(m+m )a ,μm 1g=m 1a所以:F=3N若F 大于3N ,A 就会相对B 向左滑下.综上:力F 应满足的条件是:1N≤F≤3N点睛:牛顿定律和运动公式结合是解决力学问题的基本方法,这类问题的基础是分析物体的受力情况和运动情况,难点在于分析临界状态,挖掘隐含的临界条件.6.小球从离地面80m 处自由下落, 重力加速度g=10m/s 2。

高中物理直线运动答题技巧及练习题(含答案)含解析

高中物理直线运动答题技巧及练习题(含答案)含解析

高中物理直线运动答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试直线运动1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。

【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.撑杆跳高是奥运会是一个重要的比赛项目.撑杆跳高整个过程可以简化为三个阶段:助跑、上升、下落;而运动员可以简化成质点来处理.某著名运动员,在助跑过程中,从静止开始以加速度2 m/s 2做匀加速直线运动,速度达到10 m/s 时撑杆起跳;达到最高点后,下落过程可以认为是自由落体运动,重心下落高度为6.05 m ;然后落在软垫上软垫到速度为零用时0.8 s .运动员质量m =75 kg ,g 取10 m/s 2.求: (1)运动员起跳前的助跑距离;(2)自由落体运动下落时间,以及运动员与软垫接触时的速度;(3)假设运动员从接触软垫到速度为零做匀减速直线运动,求运动员在这个过程中,软垫受到的压力.【答案】(1)运动员起跳前的助跑距离为25m ;(2)自由落体运动下落时间为1.1S ,以及运动员与软垫接触时的速度为11m/s ;(3)运动员在这个过程中,软垫受到的压力为1.8×103N . 【解析】 【详解】(1)根据速度位移公式得,助跑距离:x=22v a =21022⨯=25m (2)设自由落体时间为t 1,自由落体运动的位移为h :h=212gt 代入数据得:t =1.1s 刚要接触垫的速度v ′,则:v′2=2gh ,得v =11m/s(3)设软垫对人的力为F ,由动量定理得:(mg-F )t =0-mv ′ 代入数据得:F =1.8×103N由牛顿第三定律得对软垫的力为1.8×103N3.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.4.高铁被誉为中国新四大发明之一.因高铁的运行速度快,对制动系统的性能要求较高,高铁列车上安装有多套制动装置——制动风翼、电磁制动系统、空气制动系统、摩擦制动系统等.在一段直线轨道上,某高铁列车正以v0=288km/h的速度匀速行驶,列车长突然接到通知,前方x0=5km处道路出现异常,需要减速停车.列车长接到通知后,经过t l=2.5s 将制动风翼打开,高铁列车获得a1=0.5m/s2的平均制动加速度减速,减速t2=40s后,列车长再将电磁制动系统打开,结果列车在距离异常处500m的地方停下来.(1)求列车长打开电磁制动系统时,列车的速度多大?(2)求制动风翼和电磁制动系统都打开时,列车的平均制动加速度a2是多大?【答案】(1)60m/s(2)1.2m/s2【解析】【分析】(1)根据速度时间关系求解列车长打开电磁制动系统时列车的速度;(2)根据运动公式列式求解打开电磁制动后打开电磁制动后列车行驶的距离,根据速度位移关系求解列车的平均制动加速度.【详解】(1)打开制动风翼时,列车的加速度为a1=0.5m/s2,设经过t2=40s时,列车的速度为v1,则v1=v0-a1t2=60m/s.(2)列车长接到通知后,经过t1=2.5s,列车行驶的距离x1=v0t1=200m打开制动风翼到打开电磁制动系统的过程中,列车行驶的距离x2 =2800m打开电磁制动后,行驶的距离x3= x0- x1- x2=1500m;5.一质点做匀加速直线运动,初速度v0=2 m/s,4 s内位移为20 m,求:(1)质点的加速度大小;(2)质点4 s末的速度大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理直线运动常见题型及答题技巧及练习题( 含答案 )一、高中物理精讲专题测试直线运动1.跳伞运动员做低空跳伞表演,当直升机悬停在离地面224m 高时,运动员离开飞机作自由落体运动,运动了5s 后,打开降落伞,展伞后运动员减速下降至地面,若运动员落地速度为 5m/s ,取g10m / s2,求运动员匀减速下降过程的加速度大小和时间.【答案】 a 12.5?m/s2; t 3.6s【解析】运动员做自由落体运动的位移为h1g t 211052 m 125m22打开降落伞时的速度为:v1gt105m / s50m / s匀减速下降过程有:v12v222a(H h)将 v2=5 m/s 、H=224 m 代入上式,求得:a=12.5m/s 2减速运动的时间为:tv1v2505a s 3.6?s12.52.如图所示,一木箱静止在长平板车上,某时刻平板车以 a = 2. 5m/ s2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g 取10m/s 2)。

求:(1)车在加速过程中木箱运动的加速度的大小(2)木箱做加速运动的时间和位移的大小(3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。

【答案】( 1)(2)4s;18m(3) 1.8m【解析】试题分析:(1)设木箱的最大加速度为,根据牛顿第二定律解得则木箱与平板车存在相对运动,所以车在加速过程中木箱的加速度为(2)设木箱的加速时间为,加速位移为。

(3)设平板车做匀加速直线运动的时间为,则达共同速度平板车的位移为则要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足考点:牛顿第二定律的综合应用.3.A、 B 两列火车,在同一轨道上同向行驶, A 车在前,其速度v A=10m/s, B 车在后,速度 v B=30m/s .因大雾能见度很低, B 车在距 A 车△ s=75m 时才发现前方有 A 车,这时 B 车立即刹车,但 B 车要经过 180m 才能够停止.问:(1) B 车刹车后的加速度是多大?(2)若 B 车刹车时 A 车仍按原速前进,请判断两车是否相撞?若会相撞,将在 B 车刹车后何时?若不会相撞,则两车最近距离是多少?(3)若 B 车在刹车的同时发出信号, A 车司机经过△ t=4s 收到信号后加速前进,则 A 车的加速度至少多大才能避免相撞?【答案】(1)2.5m / s2,方向与运动方向相反.(2)6s 两车相撞( 3)aA0.83m / s2【解析】试题分析:根据速度位移关系公式列式求解;当速度相同时,求解出各自的位移后结合空间距离分析;或者以前车为参考系分析;两车恰好不相撞的临界条件是两部车相遇时速度相同,根据运动学公式列式后联立求解即可.(1) B 车刹车至停下过程中,v t0, v0 v B 30m / s, S 180m由 0 v B22a B s 得 a B v B2 2.5m / s22s故 B 车刹车时加速度大小为 2.5m / s2,方向与运动方向相反.(2)假设始终不相撞,设经时间t 两车速度相等,则有:v A v B a B t ,解得: t v A v B10308sa B 2.5此时 B 车的位移:1212s B v B t2a B t30 82 2.5 8 160m A 车的位移:s A v A t10880m因3( 3 )66133333设经过时间 t两车相撞,则有 v A ts v B t1a B t 22代入数据解得:t16s,t210s,故经过6s两车相撞(3)设 A 车的加速度为a A时两车不相撞两车速度相等时: v A a A (t t ) v B a B t即: 10 a A (tt)30 2.5t此时 B 车的位移: s Bv B t1 a B t2 ,即: s B 30t 1.25t 22A 车的位移: s Av A t1 a A (tt)22要不相撞,两车位移关系要满足s B s As解得 a A 0.83m / s 24. 汽车在路上出现故障时,应在车后放置三角警示牌(如图所示),以提醒后面驾车司 机,减速安全通过.在夜间,有一货车因故障停车,后面有一小轿车以 30m/s 的速度向前驶来,由于夜间视线不好,驾驶员只能看清前方50m 的物体,并且他的反应时间为0.5s ,制动后最大加速度为6m/s 2.求:( 1)小轿车从刹车到停止所用小轿车驾驶的最短时间;( 2)三角警示牌至少要放在车后多远处,才能有效避免两车相撞.【答案】 (1) 5s ( 2)40m【解析】【分析】【详解】(1)从刹车到停止时间为t 2,则2 0 v 0 =5 s ①t =a(2)反应时间内做匀速运动,则 x 1=v 0t 1② x 1=15 m ③从刹车到停止的位移为x 2,则2 0 v 02 x =④2ax 2=75 m ⑤小轿车从发现物体到停止的全部距离为 x=x 1+x 2=90m⑥△x=x ﹣ 50m=40m ⑦5. 伽利略在研究自出落体运动时,猜想自由落体的速度是均匀变化的,他考虑了速度的两种变化:一种是速度随时间均匀变化,另一种是速度随位移均匀变化。

现在我们已经知道自由落体运动是速度随时间均匀变化的运动。

有一种“傻瓜”照相机的曝光时间极短,且固定不变。

为估测“傻瓜”照相机的曝光时间,实验者从某砖墙前的高处使一个石子自由落下,拍摄石子在空中的照片如图所示。

由于石子的运动,它在照片上留下了一条模糊的径迹。

已知石子在 A 点正上方 1.8m 的高度自由下落 . 每块砖的平均厚度为 6.0cm.( 2a. 计算石子到达 A 点的速度大小 v A ;b. 估算这架照相机的曝光时间( 结果保留一位有效数字〕。

不计空.【答案】 6m/s , 0.02s ;【解析】【详解】a 、由自由落体可知,设从O 点静止下落: h OA =1.8mh OA12gt 2 , t2h OAg0.6sv Agt6m / sb 、由图中可知 h AB 距离近似为两块砖厚度 方法一: h AB =12cm=0.12m h OB =h OA +h AB =1.92cmh OA1gt B 22t B =0.62s曝光时间 △t=t B -t A =0.02s方法二、由于曝光时间极短,可看成匀速直线运动hAB0.12 △t= v As 0.02s66. 质点从静止开始做匀加速直线运动,经 4s 后速度达到 ,然后匀速运动了 10s ,接着经 5s 匀减速运动后静止求:( 1 )质点在加速运动阶段的加速度;( 2 )质点在第 16s 末的速度;(3 )质点整个运动过程的位移.【答案】(1) 5m/s 2( 2) 12m/s( 3) 290m【解析】【分析】根据加速度的定义式得加速和减速运动阶段的加速度,根据匀变速运动的速度和位移公式求解。

【详解】(1 )设加速阶段的加速度为a1,则: v1=a 1t 1解得质点在加速运动阶段的加速度:a1 = = m/s 2=5m/s 2(2 )设减速运动阶段的加速度为a2,由于 v21222=2=-4m/s2=v+a t,所以, a =m/s当t=16s 时,质点已减速运动了: t3 =16s-14s=2s质点在第16s 末的速度为:;v3=v 1+a 2 t3 =(20-24)m/s=12m/s (3 )匀加速直线运动的位移:x1 =t 1 =4m=40m匀速直线运动位移:x2 =vt2=2010m=200m匀减速直线运动的位移′x3= t 3 =5m=50m则质点整个运动过程的总位移:x=x 1+x 2+ +x 3=(40+200+50)m=290m7.如图甲所示,质量m=8kg的物体在水平面上向右做直线运动。

过 a 点时给物体作用一个水平向右的恒力 F 并开始计时,在4s 末撤去水平力F.选水平向右为速度的正方向,通过速度传感器测出物体的瞬时速度,所得v﹣ t图象如图乙所示。

(取重力加速度为10m/s 2)求:( 1) 8s 末物体离 a 点的距离( 2)撤去 F 后物体的加速度(3)力 F 的大小和物体与水平面间的动摩擦因数μ。

【答案】 (1) 48m 。

( 2)﹣ 2m/s 2。

( 3) 16N , 0.2。

【解析】【详解】(1) 8s 末物体离 a 点的距离等于梯形的面积大小,为:S=4 88m =48m2(2)撤去 F 后物体的加速度为:v 0 8 2。

a=8=﹣ 2m/st4(3)撤去 F 后,根据牛顿第二定律得: f=ma=8 (×﹣ 2) N=﹣16N ,负号表示加速度方向与速度方向相反。

撤去 F 前物体匀速运动,则有: F=|f|=16N物体与水平面间的动摩擦因数为:f16μ=80 =0.2。

mg【点睛】本题关键先根据运动情况求解加速度,确定受力情况后求解出动摩擦因数;再根据受力情况确定加速度并根据运动学公式得到物体的运动规律。

8. 一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为 4.5m ,如图( a )所示. t=0 时刻开始,小物块与木板一起以共同速度向右运动,直至 t=1s 时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的 v ﹣ t 图线如图( b )所示.木板的质量是小物块质量的15 倍,重力加速度大小g 取 10m/s 2.求(1)木板与地面间的动摩擦因数μ1 及小物块与木板间的动摩擦因数μ2;( 2)木板的最小长度;( 3)木板右端离墙壁的最终距离.【答案】 (1) 0.1 和 0.4.( 2) 6.0m (3) 6.5m【解析】试题分析:(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m / s碰撞后木板速度水平向左,大小也是v 4m / s木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有2g4 0 m / s 2 ,解得 2 0.41木板与墙壁碰撞前,匀减速运动时间t=1s ,位移 x4.5m ,末速度 v=4m/s ,其逆运动则为匀加速直线运动可得xvt 1 at 2 ,带入可得 a 1m / s 22木块和木板整体受力分析,滑动摩擦力提供合外力,即 2 ga ,可得 1 0.1 ( 2)碰撞后,木板向左匀减速,依据牛顿第二定律有1Mm g2mgMa 1 ,可得a 1 4m / s 23对滑块,则有加速度a 2 4m / s 2 ,滑块速度先减小到 0,此时,木板向左的位移为12108x 1 vt 1 2 a 1t 1 3 m , 末速度 v 13 m / s42m滑块向右位移x 22 t 1此后,木块开始向左加速,加速度仍为 a 24m / s 2木块继续减速,加速度仍为a 14m / s 23假设又经历 t 2 二者速度相等,则有 a 2t 2 v 1 a 1t 2 ,解得 t 2 0.5s此过程,木板位移 x 3v 1t 2 1 a 1t 22 7 m 。

相关文档
最新文档