第5章 混凝土简支梁桥的计算
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以上六种实用计算方法所具有的共同 特点是:从分析荷载在桥上的横向分 布出发,求得各主梁的荷载横向分布 影响线,再通过横向最不利加载来计 算荷载横向分布系数m。
三、刚性横梁法(偏心受压法)
1. 基本假定
①横梁是刚性的 ②忽略主梁抗扭刚度
将多梁式桥梁简化为由纵梁及横梁组成的梁格,计算各 主梁在外荷载作用下分到的荷载
(二)悬臂板 悬臂板在荷载作用下除了直接受载的板条
外,相邻板条也发生挠曲变形而承受部分弯矩 荷载作用在板边时(弹性板理论)
mxmin -0.465P
取a=2l0 通过与上述单向板的类似分析可知,悬臂板的有
效工作宽度接近于两倍悬臂长度,也就是说,荷 载可接近按45°角向悬臂板支承分布。
规范规定
a = a1+2b’=a2+2H+2b’
4、履带车不计有效工作宽度
四、桥面板内力计算 1、多跨连续单向板的内力
1)弯矩计算模式假定
①若主梁的抗扭刚度很大,板的行为就接近 于固端梁。
②若主梁的抗扭刚度极小,板与梁肋的连接 就接近于自由转动的铰接,板的受力就类似 多跨连续梁体系
若实际上,行车道板和主梁梁肋的连接情况 既不是固接,也不是铰接,而应是考虑为弹 性固接
横向分布系数——杠杆原理法
挂车 汽车 人群
二、横向分布计算原理
1. 整体桥梁 结构必须采用影 响面加载计算最 不利荷载
2. 为简化计 算,采用近似影 响面来加载
近似影响 面纵横方向分别 相似
12 21
11
1 2
12 22
11
2 2
3.加载过程
相当于1#梁分配到的荷 载 横向分布系数
4.近似方法总结——内力横向分布转化为 荷载横向分布
需要解决的问题: mxmax的计算 荷载中心出的最大弯矩值,可以按弹性薄板理 论分析求解。
影响mxmax的因素:
1)支承条件:双向板、单向板、悬臂板
2)荷载长度:单个车轮、多个车轮作用
3)荷载到支承边的距离
通过对不同支承条件、不同荷载性质以及不同 荷载位置情况下,随承压面大小变化的板有效 工作宽度与跨径的比值a/l的分析,可知两边固 结的板的有效工作宽度要比简支的板小 30%~40%左右,全跨满布的条形荷载的有效分 布宽度也比局部分布荷载的小些。另外,荷载 愈靠近支承边时,其有效工作宽度也愈小。
设板的有效工作宽度为a 假设
可得
有效工作宽度假设保证了两点:
1)总体荷载与外荷载相同 2)局部最大弯矩与实际分布相同
通过有效工作宽度假设将空间曲线分布弯矩转化为 矩形弯矩分布
对板来讲:以宽度为a的板来承受车轮荷载产生的 总弯矩,既可满足弯矩最大值的要求,计算也方 便。
对荷载而言:荷载只在a范围内有效,且均匀分布。 一旦确定了a的值就可以确定作用在axb1范围内 的荷载集度p了。
3. 各主梁位移与内力的关系
1)与竖向位移的关系根据材料力学,作用于简支
梁跨中的荷载(即梁所分担的荷载)与挠度的关系为
2)与转角的关系
48E l3
常数
Ii ——桥梁横截面内各主梁的惯性矩。
根据反力与挠度成 正比的关系,有
( tan )
4. 内外力平衡
1)竖向位移时的平衡
R
' i
I
i
' i
III. 偏心力矩为e 的单位荷载P=1对各 主梁的总作用
2. 变形的分解
1)纯竖向位移
由于中心荷载作用下,刚性中横梁整体向下平 移则各主梁的跨中挠度相等,即:
2)纯转动
在偏心力矩M=P·e 作用下,桥的横截面产生绕 中心点O的转角,因此各主梁的跨中挠度为
ai ——各片主梁梁轴到截面形心的距离。
活载
恒载
2)悬臂板
活载
恒载
对于悬臂板,计算梁肋处最大弯 矩时,应将汽车车轮靠板的边缘 布置,此时
或 侧)
b1=b2+h(无人行道一侧) b1=b2+2h(有人行道一
第三节 主梁内力横向分布计算
(其实质是“内力”横向分布)
桥梁结构一般由多片主梁组成,并通过一定的横向 联结连成一个整体。当一片主梁受到荷载作用后, 除了这片主梁承担一部分荷载外,还通过主梁间 的横向联结把另一部分荷载传到其他各片主梁上 去,因此对每个荷载而言,梁是空间受力结构, 对其求解需要建立空间的内力影响面来进行分析。
荷载横向分布等代内力横向分布的荷载条件 半波正弦荷载可满足上述条件
荷载横向分布影响线:P=1在梁上横向移 动时,某主梁所相应分配到的不同的荷 载作用力。
对荷载横向分布影响线进行最不利 加载Pi,可求得某主梁可行的最大荷载 力
荷载横向分布系数:将Pi除以车辆轴重。
7.常用计算方法
梁格法 板系法 梁系法 具体而言 杠杆法 视横向结构在主梁上断开 偏压法 横向刚度大 窄桥 铰接板法 铰接梁或板桥 传递剪力 刚接板法 刚接梁或板桥 传递剪力和弯距 GM法 比拟正交异性板法
二、车轮荷载的分布
公路汽车车轮压力通过桥面铺状层扩散到钢筋混凝土路桥面板,由 于板的计算跨径相对于轮压分布宽度不是很大,故在计算中将轮 压作为分布荷载来处理。
轮压一般作为分布荷载处理,以力求精确 车轮与桥面的接触面看作是矩形面积
车轮着地面积:a2×b2
桥面板荷载压力面:a1×b1 荷载在铺装层内按45°扩散。
8、考虑主梁抗扭刚度的修正刚性横梁法
a3 θ
竖向反力与扭矩的关系
转动时的扭矩平衡
四、铰(刚)接板(梁)法
▪主梁之间连接采用 砼铰式键连接
1. 基本假定
将多梁式桥梁简化
为数根并列而相互间横向
铰接的狭长板(梁)
各主梁接缝间传递
剪力、弯矩、源自文库平压力、
水平剪力 用半波正弦荷载
P s in
x l
作用在某一板上,计算各板(梁)
板条上移动计算 各板块相同时,根据位移互等定理,荷载作用在
某一板条时的内力与该板条的横向分布影响线相同
位移互等定理 板条相同
横向分布系数 在横向分布影响线上加栽
列表计算、刚度参数计算 为计算方便,对于 不同梁数、不同几何尺寸的铰
接板桥的计算结果可以列为表格,供设计时查用
引入刚度参数
半波正弦荷载引起的变形
2、两端嵌固单向板
1)荷载位于板的中央地带 单个荷载作用
多个荷载作用 各有效分布宽度发生重叠 时,应按相邻靠近的荷载一起计算其共有的 有效分布宽度。
2)荷载位于支承边处
3)荷载靠近支承边处
ax = a’+2x
当荷载由 支承处向 跨中移动 时,相应 的有效分 布宽度是 近似按45° 线过度的。
间的力分配关系,即可求出横向分布影响线。
2. 铰接板法
假定各主梁接缝间仅传递剪力g,求得传递剪力后, 即可计算各板分配到的荷载
传递剪力根据板缝间的变形协调计算
关键在于求出 剪力
扭转位移与主梁挠度之比
▪悬臂板挠度与主梁挠度之比 β f w
变位系数计算
▪悬臂板挠度与主梁挠度之比
横向分布影响线 各板块不相同时,必须将半波正弦荷载在不同的
桥梁较窄时(B/L<0.5)横梁基本不变形。
偏心压力法计算荷载横向分布适用于桥上具有可 靠的横向联接,桥的宽跨比小于或接近0.5的情况 (一般称为窄桥),用于计算跨中截面荷载横向分 布系数mc。
偏心压力法的分析过程
将偏心力P分解为通过扭转中心的P及M=Pe I.中心荷载P=l的作用
II. 偏心力矩的作用
2)转动时的平衡
R
'' i
Ii
ai
tan
ai Ii
5.反力分布图与横向分布影响线
各主梁刚度相等
偏心力矩为e 的单位荷载P=1对各主梁的总作用
为
Rie
Ii
n
eai Ii
n
Ii
ai 2 Ii
i 1
i 1
当P=1位于i号梁轴上时 e=ai 对k号主梁的总作
用为:
ki Rki
Ik
n
aiak Ii
土结构课程解决
变形计算
简支梁桥的计算构件
上部结构——主梁、横梁、桥面板 支座 下部结构——桥墩、桥台
主梁 主要承重结构 设计内力 施工内力
桥面板 (行车道板) 直接承受车辆集中荷载 同时是主梁的
受压翼缘 影响到行车质量(变形)和主梁受 力(横向分布) 横梁 弹性地基梁
计算过程
开始 拟定尺寸 内力计算 截面配筋验算
实际受力状态:弹性支承连续梁
先计算同跨简支板跨中弯矩,再修正。 简化计算公式:
当t/h<1/4时 :
跨中弯矩 Mc = +0.5M0 支点弯矩 Ms = -0.7M0
当t/h1/4时 :
跨中弯矩 Mc = +0.7M0 支点弯矩 Ms = -0.7M0 M0——按简支梁计算的跨中弯矩
2)考虑有效工作宽度后的跨中弯矩 1m宽简支板
第五章 混凝土简支梁桥的计算
第一节 概述
确定了方案的构造型式跨径(布置)及构 造尺寸,就需要对所确定的结构进行强度, 刚度和稳定性计算。
桥梁设计计算的过程就是把结构调整和修 改的更加经济,合理的过程
桥梁工程计算的内容
内力计算——桥梁工程、基础工程课解决 截面计算——混凝土结构原理、预应力混凝
沿纵向:a1=a2 +2H 沿横向:b1=b2+2H 桥面板的轮压局部分布荷载: p P轮
a1b1
三、有效工作宽度
板有效工作宽度(荷载有效分布宽度): 除轮压局部分布荷载直接作用板带外, 其邻近板也参与共同分担荷载。
1、计算原理
外荷载产生的分布弯矩——mx 外荷载产生的总弯矩—— 分布弯矩的最大值——mxmax
•比拟正交异性板挠曲微分方程
比拟正交异性板的挠曲微分方程 正交异性板的挠曲微分方程
比拟原理
任何纵横梁格系结构比拟成的异性板,可以 完全仿照真正的材料异性板来求解,只是方 程中的刚度常数不同
活载弯矩
恒载弯矩
3)考虑有效工作宽度后的支点剪力 车轮布置在支承附近
2、悬臂板的内力 1)计算模式假定
铰接悬臂板——车轮作用在铰缝上 悬臂板——车轮作用在悬臂端
2)铰接悬臂板最不利荷载位置是把车轮荷
载对中布置在铰接处,这时铰内的剪力为零, 铰接悬臂板可简化为悬臂板,两相邻悬臂板个 承受半个车轮荷载
注意
①当横截面沿桥纵轴线对称时,只需取一半主梁 (包括位于桥纵轴线上的主梁)作为分析对象;
②荷载沿横向的布置(车轮至路缘石的距离,各车 横向间距等)应满足有关规定(见第三章);
③各类荷载沿横向的布置及取舍按最不利原则进 行,即所求出的值应为最大值;
④对双车道或多车道桥梁,汽车加载时应以轴重 (而不是轮重)为单位,即一辆汽车横向的两个轮重 应同时加载或同时不加载。
各纵向影响线比例关系
轴重与轮重的关系
轴重
5.影响面加载精确方法
各纵向影响线在不同位 置的比例关系
轴重与轮重的关系
轴重
6.近似方法的近似程度
近似的原因——纵向各截面取相同的横向分配 比例关系
近似程度
对于弯矩计算一般取跨中的横向分配比例关系 跨中车轮占加载总和的75%以上 活载只占总荷载的30%左右
否
是否通过 是
计算结束
第二节 行车道板计算
一、行车道板的类型 行车道板的作用——直接承受车轮荷载、
把荷载传递给主梁
有横隔梁时 与横梁,主梁整体相连传递荷载 无横隔梁时 各梁之间结合整体,传递荷载的作
用主要由其来承担
常规梁桥的行车道板在构造上与主梁和横隔梁联 结在一起,形成复杂的梁格体系,按其支情况 可分为:
组成的梁桥,比拟简化为一块矩形的平 板; 求解板在半波正弦荷载下的挠度 利用挠度比与内力比、荷载比相同的关 系计算横向分布影响线
2、比拟原理
弹性板的挠曲面微分方程
内外力平衡
应力应变关系
应变位移关系
均质弹性板的挠曲微分方程
正交异性板
应力应变关系
应变位移关系
正交异性板的挠曲微分方程
n
Ii
ai 2 Ii
i 1
i 1
反力分布图
–选定荷载位置,分别计算各主梁的反力
横向分布影响线
–选定主梁,分别计算荷载作用在不同位置时的反力
6. 横向分布系数 令P=1依次变化e,则可求出第i根主梁荷载 横向分布影响线纵标η。 在横向分布影响线上用规范规定的车轮
横向间距按最不利位置加载
7. 本方法的精度 边梁偏大,中梁偏小
(一)单边支承 (二)两边支承 (三)三边支承 (四)四边支承
受力分类
–单向板 长边/短边≥2 荷载绝大部分沿短跨方 向传递可视为单由短跨承载的单向板;
–双向板 力
长边/短边<2 需要考虑两个方向受
–铰接板 相邻翼缘板在端部做成铰接接缝的情况
–悬臂板 翼板端边自由(即三边支承板),可 作为沿短跨一端嵌固,而另一端自由的悬臂板
3. 铰接梁法
假定各 主梁除刚体位 移外,还存在 截面本身的变 形
与铰接板法的区别: 变位系数中增加桥面板变形项
4. 刚接梁法
假定各 主梁间除传递 剪力外,还传 递弯矩
与铰接板、梁的区别 未知数增加一倍,力法方程数增加一倍
五、比拟正交异性板法
1、计算原理 将由主梁、连续的桥面板和多横隔梁所