2018-2019学年河南省豫南九校联考高一上学期期末考试数学试题
河南省中原名校(即豫南九校)2017-2018学年高一上学期期末联考数学试题 Word版含解析
豫南九校2017-2018学年上期期末联考高一数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则集合中元素的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】集合B中元素有(1,1),(1,2),(2,1),(2,2),共4个.故选D.2. 已知:直线与直线平行,则的值为()A. 1B. -1C. 0D. -1或1【答案】A【解析】由于直线l1:ax+y-1=0与直线l2:x+ay+=0平行所以,即-1或1,经检验成立.故选A.3. 函数,则()A. B. 4 C. D. 8【答案】D【解析】∵,∴.故选D4. 设是两个不同的平面,是直线且,,若使成立,则需增加条件()A. 是直线且,B. 是异面直线,C. 是相交直线且,D. 是平行直线且,【答案】C【解析】要使成立,需要其中一个面的两条相交直线与另一个面平行,是相交直线且,,,,由直线和平面平行的判定定理可得.故选C.5. 已知函数在区间上是单调增函数,则实数的取值范围为()A. B. C. D.【答案】B【解析】函数f(x)=x2-2ax-3的图象开口向上,对称轴为直线x=a,画出草图如图所示.由图象可知,函数在[a,+∞)上是单调增函数,因此要使函数f(x)在区间[1,2]上是单调增函数,,只需a≤1,从而a∈(-∞,1].故选B.6. 已知矩形,,,沿矩形的对角线将平面折起,若四点都在同一球面上,则该球面的面积为()A. B. C. D.【答案】C【解析】矩形ABCD,AB=6,BC=8,矩形的对角线AC=10为该球的直径,所以该球面的面积为. 故选C.7. 设是定义在实数集上的函数,且,若当时,,则有()A. B.C. D.【答案】B【解析】由f(2-x)=f(x)可知函数f(x)的图象关于x=1对称,所以,,又当x≥1时,f(x)=ln x单调递增,所以,故选B.8. 已知是定义在上的偶函数,那么的最大值是()A. 0B.C.D. 1【答案】C【解析】∵f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故选C.9. 某四面体的三视图如图,则该四面体的体积是()A. 1B.C.D. 2【答案】B【解析】在正方体ABCDA1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1BCB1,如图所示,该四面体的体积为. 故选B.点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.10. 已知实数满足方程,则的最小值和最大值分别为()A. -9,1B. -10,1C. -9,2D. -10,2【答案】A【解析】即为y-2x可看作是直线y=2x+b在y轴上的截距,.....................故选A.11. 已知函数,若对一切,都成立,则实数的取值范围为()A. B. C. D.【答案】C【解析】由题意得,对一切,f(x)>0都成立,即,而,则实数a的取值范围为.故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值) .12. 已知为圆的两条互相垂直的弦,且垂足为,则四边形面积的最大值为()A. 10B. 13C. 15D. 20【答案】B【解析】如图,作OP⊥AC于P,OQ⊥BD于Q,则|OP|2+|OQ|2=|OM|2=5,∴|AC|2+|BD|2=4(9-|OP|2)+4(9-|OQ|2)=52.则|AC|·|BD|=,当时,|AC|·|BD|有最大值26,此时S四边形ABCD=|AC|·|BD|=×26=13,∴四边形ABCD面积的最大值为13.故选B.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 函数的单调递增区间为__________.【答案】(-∞,-1)【解析】试题分析:因为,所以当时,而,所以函数的单调递增区间为.考点:复合函数单调性14. 已知集合,,则集合中子集个数是__________【答案】4【解析】由题意知中的元素为圆与直线交点,因为圆心(1,-2)到直线2x+y-5=0的距离,所以直线与圆相交.集合有两个元素.故集合中子集个数为4.故答案为:4.15. 如图,已知圆柱的轴截面是矩形,,是圆柱下底面弧的中点,是圆柱上底面弧的中点,那么异面直线与所成角的正切值为__________.【答案】【解析】取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是矩形, AA1=2AB所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2.故答案为:2.点睛:求两条异面直线所成角的关键是作为这两条异面直线所成角,作两条异面直线所成角的方法是:将其中一条一条直线平移与另一条相交相交或是将两条异面直线同时平移到某个位置使他们相交,然后再同一平面内求相交直线所成角,值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置.16. 已知函数,则函数的零点个数为__________.【答案】3【解析】由,得,作出y=f(x),的图象,由图象可知共有3个交点,故函数的零点个数为3.故答案为:3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知全集,集合,集合.(1)当时,求,;(2)若,求实数的取值范围.【答案】(1)A∪B={x|-2<x<3},;(2)(-∞,-2].【解析】试题分析:(1)求解集合A,B根据集合交并补的定义求解即可;(2)由A∩B=A,得A⊆B,从而得,解不等式求解即可.试题解析:(1)由题得集合A={x|0<<1}={x|1<<3}当m=-1时,B={x|-2<x<2},则A∪B={x|-2<x<3}.(2)由A∩B=A,得A⊆B..解得m≤-2,即实数m的取值范围为(-∞,-2].18. 已知直线及点.(1)证明直线过某定点,并求该定点的坐标;(2)当点到直线的距离最大时,求直线的方程.【答案】(1)证明见解析,定点坐标为;(2)15x+24y+2=0.【解析】试题分析:(1)直线l的方程可化为 a(2x+y+1)+b(-x+y-1)=0,由,即可解得定点;(2)由(1)知直线l恒过定点A,当直线l垂直于直线PA时,点P到直线l的距离最大,利用点斜式求直线方程即可.试题解析:(1)证明:直线l的方程可化为 a(2x+y+1)+b(-x+y-1)=0,由,得,所以直线l恒过定点.(2)由(1)知直线l恒过定点A,当直线l垂直于直线PA时,点P到直线l的距离最大.又直线PA的斜率,所以直线l的斜率k l=-.故直线l的方程为,即15x+24y+2=0.19. 设是定义在上的奇函数,当时,.(1)求的解析式;(2)解不等式.【答案】(1);(2)(-∞,-2)∪(0,2).【解析】试题分析:(1)奇函数有f(0)=0,再由x<0时,f(x)=-f(-x)即可求解;(2)由(1)分段求解不等式,最后取并集即可.试题解析:(1)因为f(x)是定义在上的奇函数,所以当x=0时,f(x)=0,当x<0时,f(x)=-f(-x),-x>0,又因为当x>0时,f(x)=,.所以当x<0时,f(x)=-f(-x)=-=..综上所述:此函数的解析式.(2)f(x)<-,当x=0时,f(x)<-不成立;当x>0时,即<-,所以<-,所以>,所以3x-1<8,解得x<2,当x<0时,即<-,所以>-,所以3-x>32,所以x<-2,综上所述解集是(-∞,-2)∪(0,2).20. 已知圆经过点,和直线相切.(1)求圆的方程;(2)若直线经过点,并且被圆截得的弦长为2,求直线的方程.【答案】(1)(x-1)2+(y+2)2=2;(2)x=2或3x-4y-6=0.【解析】试题分析:(1)先求线段AB的垂直平分线方程为,设圆心的坐标为C(a,-a-1),由圆心到点的距离和到切线的距离相等求解即可;(2)由题知圆心C到直线l的距离,进而讨论直线斜率存在不存在两种情况求解即可.试题解析:(1)由题知,线段AB的中点M(1,-2),,线段AB的垂直平分线方程为,即,设圆心的坐标为C(a,-a-1),则,化简,得a2-2a+1=0,解得a=1.∴C(1,-2),半径r=|AC|==.∴圆C的方程为(x-1)2+(y+2)2=2.(解二:可设原方程用待定系数法求解)(2)由题知圆心C到直线l的距离,①当直线l的斜率不存在时,直线l的方程为x=2,此时直线l被圆C截得的弦长为2,满足条件.②当直线l的斜率存在时,设直线l的方程为,由题意得,解得k=,∴直线l的方程为y=(x-2).综上所述,直线l的方程为x=2或3x-4y-6=0.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小.21. 如图,四面体中,平面,,,,.(1)求四面体的四个面的面积中,最大的面积是多少?(2)证明:在线段上存在点,使得,并求的值.【答案】(1);(2)证明见解析.【解析】试题分析:(1)易得,,,均为直角三角形,且的面积最大,进而求解即可;(2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM,可证得AC⊥平面MBN,从而使得AC⊥BM,利用相似和平行求解即可.试题解析:(1)由题设AB=1,AC=2,BC=,可得,所以,由PA⊥平面ABC,BC、AB⊂平面ABC,所以,,所以,又由于PA∩AB=A,故BC⊥平面PAB,PB⊂平面PAB,所以,所以,,,均为直角三角形,且的面积最大,.(2)证明:在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA 交PC于点M,连接BM.由PA⊥平面ABC知PA⊥AC,所以MN⊥AC.由于BN∩MN=N,故AC⊥平面MBN.又BM⊂平面MBN,所以AC⊥BM.因为与相似,,从而NC=AC-AN=.由MN∥PA,得==.22. 已知函数,.(1)当时,求函数的值域;(2)如果对任意的,不等式恒成立,求实数的取值范围;(3)是否存在实数,使得函数的最大值为0,若存在,求出的值,若不存在,说明理由.【答案】(1)[0,2];(2)(-∞,);(3)答案见解析.【解析】试题分析:(1)由h(x)=-2(log3x-1)2+2,根据log3x∈[0,2],即可得值域;(3)由,假设最大值为0,因为,则有,求解即可.试题解析:(1)h(x)=(4-2log3x)·log3x=-2(log3x-1)2+2,因为x∈[1,9],所以log3x∈[0,2],故函数h(x)的值域为[0,2].(2)由,得(3-4log3x)(3-log3x)>k,令t=log3x,因为x∈[1,9],所以t=log3x∈[0,2],所以(3-4t)(3-t)>k对一切t∈[0,2]恒成立,令,其对称轴为,所以当时,的最小值为,综上,实数k的取值范围为(-∞,)..(3)假设存在实数,使得函数的最大值为0,由.因为,则有,解得,所以不存在实数,使得函数的最大值为0.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值) .。
高一数学上学期期末考试试题含解析
【分析】
先由奇函数的性质,得到 ,求出 ;再由二次函数的单调性,以及奇函数的性质,得到函数 在区间 上单调递减,进而可求出结果。
【详解】因为函数 是奇函数,
所以 ,即 ,解得: ;
因此
根据二次函数的性质,可得,当 时,函数 在区间 上单调递减,在区间 上单调递增;
又因为 ,所以由奇函数的性质可得:函数 在区间 上单调递减;
,即至少遇到4个红灯的概率为0。33。
(3)设事件 为遇到6个及6个以上红灯,则至多遇到5个红灯为事件 .
则 。
【点睛】本题主要考查互斥事件的概率计算,以及概率的性质的应用,熟记概率计算公式,以及概率的性质即可,属于常考题型。
19。一商场对5年来春节期间服装类商品的优惠金额 (单位:万元)与销售额 (单位:万元)之间的关系进行分析研究并做了记录,得到如下表格.
【分析】
根据奇偶性的概念,判断函数 的奇偶性,再结合函数单调性,即可解所求不等式。
【详解】因为 的定义域为 ,
由 可得,函数 是奇函数;
根据幂函数单调性可得, 单调递增;所以函数 是增函数;
所以不等式 可化为 ,
因此 ,解得: 。
故选:D
【点睛】本题主要考查由函数单调性与奇偶性解不等式,熟记函数奇偶性的概念,会根据函数解析式判定单调性即可,属于常考题型.
【解析】
【分析】
(1)根据换元法,令 ,即可结合已知条件求出结果;
(2)根据指数函数单调性,即可得出单调区间.
【详解】(1)令 ,即 ,
代入 ,可得 ,
所以
(2)因为 ,根据指数函数单调性,可得:
函数 的单调增区间是 ,单调减区间是 。
【点睛】本题主要考查求函数解析式,以及求指数型函数的单调区间,灵活运用换元法求解析式,熟记指数函数的单调性即可,属于常考题型.
【全国校级联考word】河南省豫南九校2016-2017学年高一下学期期中联考数学试题
绝密★启用前【全国校级联考word 】河南省豫南九校2016-2017学年高一下学期期中联考数学试题试卷副标题考试范围:xxx ;考试时间:66分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、甲、乙两名同学八次数学测试成绩如茎叶图所示,则甲同学成绩的众数与乙同学成绩的中位数依次为( )A .85,86B .85,85,C .86,85D .86,862、函数(是常数,)的部分图像如图所示,则下列结论:①将的图像向左平移个单位,所得到的函数是偶函数:②;③最小正周期为;④;⑤.其中正确的结论有()A .个B .个C .个D .个3、已知函数满足,函数,若函数与的图像共有个交点,记作,则的值为()A .B .C .D .4、函数(为常数),若在上有最小值为,则在上有()A .最大值B .最大值C .最大值D .最大值5、如图,已知三菱锥的底面是等腰直角三角形,且,侧面底面,.则这个三菱锥的三视图中标注的尺寸分别是()A .B .C .D .6、已知集合,在区间上任取一实数,则的概率为()A .B .C .D .7、阅读如图所示的程序框图,输入的值为()A .B .C .D .8、已知是不同的直线,是不重合的平面,给出下面四个命题: ①若,则 ②若,则③若是两条异面直线,若,则④如果,那么上面命题中,正确的序号为()A .①②B .①③C .③④D .②③④9、下列函数中,周期为,且以直线为对称轴的是()A .B .C . D.10、某数学兴趣小组有名男生和名女生,从中任选出名同学参加数学竞赛,那么对立的两个事件为()A .恰有名女生与恰有名女生B .至少有名男生与全是男生C .至少有名男生与至少有名女生D .至少有名女生与全是男生11、某公司为对本公司的名员工的身体状况进行调查,先将员工随机编号为,采用系统抽样的方法(等间距地抽取,每段抽取一个个体)将抽取的一个样本.已知抽取的员工中最小的两个编号为,那么抽取的员工中,最大的编号应该是() A .B .C .D .12、若角的终边上有一点,则的值是()A .B .C .D .第II 卷(非选择题)二、填空题(题型注释)13、已知圆的半径为2,圆心在轴的正半轴上,若圆与直线相切,则圆的标准方程是__________.14、设函数的图象与直线及轴所围成图形的面积称为函数在上的面积,已知函数在上的面积为 ,则函数在上的面积为__________.15、从中任取两个不同的数字,分别记为,则为整数的概率是__________.16、如图所示程序执行后输出的结果是__________.三、解答题(题型注释)17、某地为弘扬中国传统文化举办“传统文化常识问答活动”,随机对该市岁的人群抽取一个容量为的样本,并将样本数据分成五组:,再将其按从左到右的顺序分别编号为第组,第组,…,第组,绘制了样本的频率分布直方图,并对回答问题情况进行统计后,结果如下表所示.组组组 组 组⑴分别求出,的值;⑵从组回答正确的人中用分层抽样的方法抽取人,则第组每组应各抽取多少人?⑶在⑵的前提下,决定在所抽取的人中随机抽取人颁发幸运奖,求所抽取的人中第组至少有人获得幸运奖的概率.18、已知函数.⑴从区间内任取一个实数,设事件表示“函数在区间上有两个不同的零点”,求事件发生的概率;⑵若联系掷两次一颗均匀的骰子(骰子六个面上标注的点数分别为)得到的点数分别为和,记事件表示“在上恒成立”,求事件发生的概率.19、已知函数的图象关于直线对称,且图象上相邻最高点的距离为.⑴求的解析式;⑵将的图象向右平移个单位,得到的图象若关于的方程在上有唯一解,求实数的取值范围.20、已知学生的数学成绩与物理成绩具有线性相关关系,某班名学生的数学和物理成绩如表:⑴求物理成绩对数学成绩的线性回归方程;⑵当某位学生的数学成绩为分时,预测他的物理成绩.参考公式:用最小二乘法求线性回归方程的系数公式:参考数据:,21、已知函数.⑴求函数的最小正周期和单调递增区间; ⑵解不等式.22、⑴已知,若为第二象限角,且,求的值;⑵已知,求的值.参考答案1、B2、C3、D4、A5、D6、C7、B8、C9、B10、D11、C12、A13、14、15、16、17、(1),(2)第2,3,4组每组应各依次抽取人,人,1人(3)18、(1)(2)19、(1)(2)20、(1)(2).21、(1)(2)22、(1)(2)2【解析】1、试题分析:甲同学的成绩分别为,众数为85,乙同学成绩分别为,中位数是85.故选B.考点:茎叶图,众数,中位数.2、解答:由图可知f(x)的最小值为−2,∴A=2..故③正确;∵.令k=0得:故①不正确;,故②错误;令,∴f(x)的对称轴方程为.∴f(x)的图象关于直线对称,∵,∵,故④正确;令,解得,∴f(x)的对称中心为.∴f(x)关于对称,∵点(x,y)关于对称的点为,∴,故⑤正确.综上,有3个结论正确.本题选择C选项.点睛:函数y=A sin(ωx+φ)(A>0,ω>0)的性质(1)奇偶性:φ=kπ时,函数y=A sin(ωx+φ)为奇函数;φ=kπ+(k∈Z)时,函数y=A sin(ωx+φ)为偶函数.(2)周期性:y=A sin(ωx+φ)存在周期性,其最小正周期为.(3)单调性:根据y=sin t和t=ωx+φ(ω>0)的单调性来研究,由-+2kπ≤ωx+φ≤+2kπ(k∈Z)得单调增区间;由+2kπ≤ωx+φ≤+2kπ(k∈Z)得单调减区间.(4)对称性:利用y=sin x的对称中心为(kπ,0)(k∈Z)求解,令ωx+φ=kπ(k∈Z),求得x、ω.利用y=sin x的对称轴为x=kπ+(k∈Z)求解,令ωx+φ=kπ+(k∈Z)得其对称轴.3、解:函数f(x)(x∈R)满足f(-x)=8-f(4+x),可得:f(-x)+f(4+x)=8,即函数f(x)关于点(2,4)对称,函数可知图象关于(2,4)对称;∴函数f(x)与g(x)的图象共有168个交点即在(2,4)两边各有84个交点.而每个对称点都有:x1+x2=4,y1+y2=8,∵有168个交点,即有84组.故得:(x1+y1)+(x2+y2)+…+(x168+y168)=(4+8)×84=1008.本题选择D选项.点睛:若函数y=f(x+b)+a是奇函数,则函数y=f(x)关于点(b,a)中心对称,利用两函数的对称中心相同可求得的值4、解:由题意可知:是奇函数,且:,由题意可知:在上有最小值为,则函数在上有最大值,故函数在上有最大值.本题选择A选项.5、解:∵三棱锥P−ABC的底面是等腰直角三角形,且∠ACB=90∘,侧面PAB⊥底面ABC,AB=PA=PB=4;∴x是等边△PAB边AB上的高,,y是边AB的一半,,z是等腰直角△ABC斜边AB上的中线,;∴x,y,z分别是,2,2.本题选择D选项.6、解答:∵A=(−1,2),B= (−1,1),所以A∩B={x|−1<x<1},所以在区间(−3,3)上任取一实数x,则“x∈A∩B”的概率为.本题选择C选项.7、解:第1次循环;第2次循环;第3次循环;第4次循环;循环的规律是n增加“1”,s增加角为等差数列公差为的正弦函数值,循环11次结束,所以 .本题选择B选项.点睛:本题考查循环结构需要注意以下三点:一是利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;二是注意输入框、处理框、判断框的功能,不可混用;三是赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.8、解:对于①,若α∥β,m⊂α,n⊂β,则m∥n或异面,故错;对于②,若m,n⊂α,m∥β,n∥β且m、n相交,则α∥β,故错;对于③,若m,n是两条异面直线,若m∥α,n∥α,在平面α内一定存在两条平行m、n的相交直线,由面面平行的判定可知α∥β,故正确;对于④,如果m⊥α,m垂直平面α内及与α平行的直线,故m⊥n,故正确;本题选择C选项.9、解:逐一考查所给的选项:选项A中,,不合题意,选项B中,,当时:,直线为函数的对称轴,符合题意;选项C中,,当时:,直线不是函数的对称轴,不合题意;选项D中,正切型函数没有对称轴,不合题意.本题选择B选项.10、解:由对立事件的定义结合题意可知:“从中任选出名同学参加数学竞赛”对立的两个事件为:“至少有名女生与全是男生”.本题选择D选项.11、解答:∵抽取的学生中最小的两个编号为为5,21,∴样本数据组距为21−5=16,样本容量n=10,∴编号对应的数列的通项公式为a n=5+16(n−1),则当n=10时,5+16×9=149,即抽取的最大编号是149.本题选择C选项.12、解:由题意可知: .本题选择A选项.13、解:直线与圆相切,设圆心坐标为(a,0),则圆方程为:(x−a)2+y2=4,∵圆心与切点连线必垂直于切线,根据点与直线距离公式,得,解得a=2或,(因圆心在正半轴,不符合舍去),∴a=2,∴圆C的方程为:(x−2)2+y2=4.整理为一般方程为:.点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.14、解:令,则问题等价于求解在区间上的面积,由题中所给的结论可知:,函数的周期为,结合正弦函数的性质可知:,将函数的图象向上平移两个单位得到函数的图象,增加的面积为:,综上可得:函数在上的面积为 .15、解:满足题意的a,b实数对可以是:共四种,由古典概型公式可得: .16、解:该程序是一个当型循环结构.第一步:s=0+5=5,n=5﹣1=4,满足条件S<15;第二步:s=5+4=9,n=4﹣1=3,满足条件S<15;第三步:s=9+3=12,n=3﹣1=2,满足条件S<15;第四步:s=12+2=14,n=2﹣1=1,满足条件S<15;第五步:s=14+1=15,n=1﹣1=0,不满足条件S<15;结束循环,输出n=0.17、试题分析:(1)先根据频率分步直方图求出,再求出第二组和第四组的人数,再根据比例求出(2)分层抽样,即按照比例抽取,所以先求第2,3,4组回答正确的人的比为,再进行抽取。
2019-2020学年河南省豫南九校上学期第三次联考高一数学试题(解析版)
2019-2020学年河南省豫南九校上学期第三次联考高一数学试题一、单选题1.下列命题正确的是( )A .经过三点确定一个平面B .经过一条直线和一个点确定一个平面C .两两相交且不共点的三条直线确定一个平面D .四边形确定一个平面【答案】C【解析】根据确定一个平面的公理及推论即可选出.【详解】A 选项,根据平面基本性质知,不共线的三点确定一个平面,故错误;B 选项,根据平面基本性质公理一的推论,直线和直线外一点确定一个平面,故错误;C 选项,根据公理一可知,不共线的三点确定一个平面,而两两相交且不共点的三条直线,在三个不共线的交点确定的唯一平面内,所以两两相交且不共点的三条直线确定一个平面,正确;选项D,空间四边形不能确定一个平面,故错误;综上知选C.【点睛】本题主要考查了平面的基本性质公理一及其推论,属于中档题.2.下列哪个函数的定义域与函数()15x f x ⎛⎫= ⎪⎝⎭的值域相同( )A .2y x x =+B .ln 2y x x =-C .1y x =D .1y x x=+ 【答案】B 【解析】求出函数()15xf x ⎛⎫= ⎪⎝⎭的值域,再求出各选项中的定义域,比较即可得出选项.【详解】 函数()15xf x ⎛⎫= ⎪⎝⎭的值域为()0,∞+,对于A ,函数2y x x =+的定义域为R ;对于B ,函数ln 2y x x =-的定义域为()0,∞+;对于C ,函数1y x=的定义域为()(),00,-∞⋃+∞; 对于D ,函数1y x x=+的定义域为()(),00,-∞⋃+∞; 故选:B【点睛】 本题考查了指数函数的值域、对数函数的定义域,属于基础题.3.已知集合,则( )A .B .C .D . 【答案】C 【解析】由,,则,故选C.4.已知圆锥的侧面积展开图是一个半圆,则其母线与底面半径之比为( )A .1B C D .2 【答案】D【解析】圆锥的侧面展开图为扇形,根据扇形的弧长即为圆锥的底面圆的周长可得母线与底面圆半径间的关系.【详解】设圆锥的母线长为l ,底面圆的半径为r ,由已知可得2r l ππ=,所以2l r =, 所以2l r=, 即圆锥的母线与底面半径之比为2.故选D .【点睛】解答本题时要注意空间图形和平面图形间的转化以及转化过程中的等量关系,解题的关键是根据扇形的弧长等于圆锥底面圆的周长得到等量关系,属于基础题.5.已知函数()2f x x x a =++在区间()0,1上有零点,则实数a 的取值范围是( ) A .1,4⎛⎤-∞ ⎥⎝⎦ B .1,4⎛⎫-∞ ⎪⎝⎭ C .()2,0- D .[]2,0-【答案】C【解析】函数f (x )=x 2+x +a 的图象的对称轴方程为12x =-,故函数在区间(0,1)上单调递增,再根据函数f (x )在(0,1)上有零点,可得()()00120f a f a ⎧=<⎪⎨=+>⎪⎩,解得−2<a <0. 本题选择C 选项.点睛:解决二次函数的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.6.函数1()(0,1)x f x a a a -=>≠的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =B .|2|y x =-C .21x y =-D .2log (2)y x = 【答案】A【解析】函数()f x 过定点为()1,1,代入选项验证可知A 选项不过A 点,故选A. 7.正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与CD 所成的角为( )A .6πB .4πC .3πD .2π 【答案】B 【解析】取BD 中点O ,连结,EO FO ,则//,//OF CD OE AB ,且2a OF OE ==,从而EFO ∠是异面直线EF 与CD 所成的角,由此能求出异面直线EF 与CD 所成的角.【详解】取BD 中点O ,连结,EO FO ,设正四面体的棱长为a ,则//,//OF CD OE AB ,且2a OF OE ==,EFO ∴∠是异面直线EF 与CD 所成的角,取CD 中点G ,连结,BG AG则,AG CD BG CD ⊥⊥,,BG AG G CD ⋂=∴⊥平面ABG ,AB ⊂平面ABG ,CD AB ∴⊥,OF OE ∴⊥,4EFO π∴∠=,∴异面直线EF 与CD 所成的角为4π,故选B . 【点睛】 本题主要考查异面直线所成的角,属于中档题.求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.8.已知函数()212log 3y x ax a =-+在[)2,+∞上为减函数,则实数a 的取值范围是( )A .4a ≤B .4a ≥C .4a <-或4a ≥D .44a -<≤【答案】D【解析】由题意使230x ax a -+>在[)2,+∞恒成立,且由复函函数的单调性 使()23x x a g ax -+=在[)2,+∞上为增函数即可求解.【详解】令()23x x a g ax -+=,则()230x a a g x x =-+>在[)2,+∞恒成立, 且()23x x a g ax -+=在[)2,+∞上为增函数, 所以22a ≤且()240g a =+>, 所以44a -<≤.故选:D.【点睛】本题主要考查对数型复合函数的单调性,注意解题时需使式子在单调区间内有意义. 9.某几何体的三视图如图所示,该几何体表面上的点与点在正视图与侧视图上的对应点分别为,,则在该几何体表面上,从点到点的路径中,最短路径的长度为()A.B.C.D.【答案】C【解析】画出几何体的图形,然后PQ的路径有正面和右面以及正面和上面两种路径,分别计算出结果,得出答案.【详解】由题,几何体如图所示(1)前面和右面组成一面此时PQ=(2)前面和上面再一个平面此时PQ=故选C【点睛】 本题考查了几何体的三视图以及相关的计算,解题的关键是PQ 的路径有两种情况,属于较易题.10.已知函数f (x )=|ln x |-1,g (x )=-x 2+2x +3,用min{m ,n }表示m ,n 中的最小值.设函数h (x )=min{f (x ),g (x )},则函数h (x )的零点个数为( )A .1B .2C .3D .4 【答案】C【解析】画图可知四个零点分别为-1和3,1e和e ,但注意到f (x )的定义域为x >0,故选C.11.已知()g x 为偶函数,()h x 为奇函数,且满足()()2xg x h x -=.若存在[]1,1x ∈-,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为( )A .35B .35-C .1D .-1【答案】A【解析】由题意得出()g x 、()h x 的解析式,不等式恒成立,采用分离参数法,可得2141x m ≤-+转化为求函数的最值,求出函数2141x y =-+的最大值即可.【详解】()g x为偶函数,()h x为奇函数,且()()2xg x h x-=①()()()()2xg x h x g x h x-∴---=+=②①②两式联立可得()222x xg x-+=,()222x xh x--=.由()()0m g x h x⋅+≤得224121224141x x xx x x xm----≤==-+++,∵2141xy=-+在[]1,1x∈-为增函数,∴max231415x⎛⎫-=⎪+⎝⎭,故选:A.【点睛】本题主要考查函数奇偶性的应用、考查了不等式存在有解问题以及函数的单调性求最值,注意分离参数法的应用,此题属于中档题.12.无论x,y,z同为三条不同的直线还是同为三个不同的平面,给出下列说法:①若//x y,//x z,则//y z;②若x y⊥,x z⊥,则y z⊥;③若x y⊥,//y z,则x z⊥;④若x与y无公共点,y与z无公共点,则x与z无公共点;⑤若x,y,z两两相交,则交点可以有一个,三个或无数个.其中说法正确的序号为()A.①③B.①③⑤C.①③④⑤D.①④⑤【答案】B【解析】由平行的传递性可判断①;由直线与直线的位置关系以及平面与平面的位置关系可判断②③④⑤.【详解】由平行于同一直线的两直线平行,平行于同一平面的两平面平行,可得①正确;由垂直于同一直线的两直线平行、相交或异面;垂直于同一平面的两平面相交或平行,可得②错误;由垂直于两平行直线中的一条,也垂直于另一条;垂直于两平行平面中的一个,也垂直于另一个,可得③正确;若一条直线与另两条直线无公共点,可得另两条直线可以相交;若一个平面与另两个平面无公共点,可得另两个平面无公共点;可得④错误;若三条直线两两相交,则交点可以有一个或三个,若三个平面两两相交,则交点有无数个,故⑤正确;故选:B【点睛】本题主要考查了平行的传递性、直线与直线的位置关系以及平面与平面的位置关系,属于基础题.二、填空题13.设函数()()x x f x e ae a R -=+∈,若()f x 为奇函数,则a =______.【答案】-1【解析】利用函数为奇函数,由奇函数的定义即可求解.【详解】若函数()x xf x e ae -=+为奇函数,则()()f x f x -=-, 即()x x x x ae ae e e --+=-+,即()()10x x e a e -++=对任意的x 恒成立,则10a +=,得1a =-.故答案为:-1【点睛】本题主要考查函数奇偶性的应用,需掌握奇偶性的定义,属于基础题.14.一个正四棱锥的侧棱长与底面边长相等,体积为3,则它的侧面积为______.【答案】【解析】设正四棱锥的侧棱长与底面边长相等为2a ,由四棱锥的体积可求出边长,从而求出侧面积.【详解】设正四棱锥的侧棱长与底面边长相等为2a ,则24ABCD S a =,h ===,则313V =⨯=1a =,则14222BC PF a S ⎛⎫=⨯⨯⨯=⨯ ⎪⎝⎭侧2==故答案为:【点睛】本题主要考查棱锥的体积公式,需熟记公式,属于基础题.15.已知函数()f x 在定义域[]2,3a -上是偶函数,在[]0,3上单调递减,并且()22225a f m f m m ⎛⎫-->-+- ⎪⎝⎭,则m 的取值范围是______.【答案】112m ≤<. 【解析】根据函数定义域的对称性求出a ,再利用函数的单调性及偶函数得到不等式,求解即可.【详解】因为函数()f x 在定义域[]2,3a -上是偶函数,所以230a -+=,解得5a =,所以可得()()22122f m f m m -->-+-又()f x 在[]0,3上单调递减,所以()f x 在[]3,0-上单调递增,因为210m --<,2222(1)10m m m -+-=---<所以由()()22122f m f m m -->-+-可得,22221223103220m m m m m m ⎧-->-+-⎪-≤--≤⎨⎪-≤-+-≤⎩解得112m ≤<. 故m的取值范围是112m <. 【点睛】本题主要考查了偶函数的定义域,偶函数的单调性,不等式的解法,属于难题. 16.正四面体ABCD 的棱长为4,E 为棱BC 的中点,过E 作其外接球的截面,则截面面积的最小值为_______________【答案】4π【解析】试题分析:将四面体ABCD 补为正方体,如下图所示,则正方体的外接球就是正四面体的外接球.设球心为O ,面积最小的截面就是与OE 垂直的截面.由图可知,这个截面就是底面正方形的外接圆,其面积为:.224ππ⨯=.【考点】空间几何体.三、解答题17.如图所示,在正方体1111ABCD A B C D -中,E 、F 分别是AB 和1AA 的中点.求证:CE ,1D F ,DA 交于一点.【答案】证明见解析【解析】根据两个面的公共点一定在两个面的公共线上,只需证出CE 与1D F 交点在AD 上即可.证明:如图所示,连接1CD 、EF 、1A B , 因为E 、F 分别是AB 和1AA 的中点,所以1//EF A B 且112EF A B =. 即:1//EF CD ,且112EF CD =,所以四边形1CD FE 是梯形,所以CE 与1D F 必相交,设交点为P ,则P CE ∈,且1P D F ∈,又CE ⊂平面ABCD , 且1D F ⊂平面11A ADD ,所以P ∈平面ABCD , 且P ∈平面11A ADD , 又平面ABCD平面11A ADD AD =,所以P AD ∈,所以CE 、1D F 、DA 三线交于一点. 【点睛】本题主要考查线共点,考查了学生的逻辑推理能力,属于基础题. 18.已知函数f (x )=21x ax bx +++是定义在R 上的奇函数; (1)求a 、b 的值,判断并证明函数y =f (x )在区间(1,+∞)上的单调性(2)已知k <0且不等式f (t 2-2t +3)+f (k -1)<0对任意的t ∈R 恒成立,求实数k 的取值范围.【答案】(1)见解析(2)(-1,0)【解析】(1)根据奇函数的定义即可求出a 、b 的值,再根据增减性定义证明函数单调性即可(2)根据奇函数的性质及函数的增减性原不等式可转化为t 2-2t +3>1-k 对任意的t ∈R 恒成立,只需求出t 2-2t +3的最小值即可.(1)∵函数f (x )=21x ax bx +++是奇函数 ∴由定义f (-x )=21x a x bx -+-+=-21x ax bx +++,∴a =b =0, ∴f (x )=21xx +, y =f (x )在区间(1,+∞)上的单调递减. 证明如下:∵f (x )=21xx +,∴2221()(1)x f x x -++'=,∵x >1,∴()0f x '<,∴y =f (x )在区间(1,+∞)上的单调递减.(2)由f (t 2-2t +3)+f (k -1)<0及f (x )为奇函数得:f (t 2-2t +3)<f (1-k ) 因为t 2-2t +3≥2,1-k >1,且y =f (x )在区间(1,+∞)上的单调递减, 所以t 2-2t +3>1-k 任意的t ∈R 恒成立,因为t 2-2t +3的最小值为2,所以2>1-k ,∴k >-1∵k <0,∴-1<k <0.∴实数k 的取值范围是(-1,0). 【点睛】本题主要考查了函数奇偶性的定义,函数的单调性的判断与证明,不等式恒成立,属于中档题.19.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收益P 、种黄瓜的年收益Q 与投入a(单位:万元)满足P =80+1a 4Q =+120.设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元). (1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大? 【答案】(1);(2)甲大棚128万元,乙大棚72万元时,总收益最大, 且最大收益为282万元.【解析】试题分析:(1)当甲大棚投入50万元,则乙大棚投入150万元,此时直接计算1(50)80150120277.54f =+⨯+=即可;(2)列出总收益的函数式得1()2504f x x =-+,令,换元将函数转换为关于t 的二次函数,由二次函数知识可求其最大值及相应的x 值.试题解析: (1)∵甲大棚投入50万元,则乙大棚投入150万元,∴1(50)80150120277.54f =+⨯+= (2),依题得,即,故.令,则,当时,即时,,∴甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大收益为282万元. 【考点】1.函数建模;2.二次函数. 20.已知幂函数()()3*pf x xp N -=∈的图象关于y 轴对称,且在()0,∞+上为增函数.(1)求不等式()()22132p p x x +<-的解集.(2)设()()log a g x f x ax ⎡⎤=-⎣⎦()0,1a a >≠,是否存在实数a ,使()g x 在区间[]2,3上的最大值为2,若存在,求出a 的值,若不存在,请说明理由.【答案】(1) 21,3⎡⎫-⎪⎢⎣⎭ (2) a =【解析】试题分析:(1)由题意偶函数和在()0,+∞上为增函数,解得1p =,得到()()1122132x x +<-,结合定义域和单调性,解得答案;(2)由()g x 在[]2,3上有意义得,所以02a <<且1a ≠,所以()2h x x ax =-在[]2,3上为增函数,分12a <<和01a <<两类讨论,解得答案。
【市级联考】河南省洛阳市2018-2019学年高一上学期期末考试数学试题-
绝密★启用前 【市级联考】河南省洛阳市2018-2019学年高一上学期期末考试数学试题 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.已知集合 , ,则 ( ) A . B . C . D . 2.下列直线中过第一、二、四象限的是( ) A . B . C . D . 3.若 , , ,则下列大小关系正确的是( ) A . B . C . D . 4.若圆锥的横截面(过圆锥轴的一个截面)是一个边长为 的等边三角形,则该圆锥的侧面积为( ) A . B . C . D . 5.已知直线 : 和直线 : ,下列说明正确的是( ) A .若 ,则 B .若 ,则 C .若 ,则 D .若 ,则………线…………○…………线…………○…一个正方形,则该几何体的体积为( ) A .B .C .D .7.给出以下命题(其中 , , 是空间中不同的直线, , , 是空间中不同的平面):①若 , ,则 ;②若 , ,则 ;③若 , ,则 ;④若 , , , ,则 .其中正确的个数为( )A .0个B .1个C .2个D .3个8.与直线 关于 轴对称的直线的方程为( )A .B .C .D .9.已知 ( 且 ), ,若实数 满足 ,则实数 的取值范围是( )A .B .C .D .10.同时与圆 和圆 都相切的直线共有( )A .1条B .2条C .3条D .4条11.若函数( 且 )的值域是 ,则实数 的取值范围是( )A .B .C .D .12.如图,在正方体 中,点 是线段 上的动点,则下列说法错误..的是( )…线…………○………线…………○…… A .无论点 在 上怎么移动,异面直线 与 所成角都不可能是 B .无论点 在 上怎么移动,都有C .当点 移动至 中点时,才有 与 与相交于一点,记为点 ,且D .当点 移动至 中点时,直线 与平面 所成角最大且为…○…………装※※请※※不※※要…○…………装第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 13.在空间直角坐标系中,点 到点 的距离为______. 14.两条平行直线 与 间的距离是_____. 15.在四棱锥 中, 平面 ,底面 是矩形,且 , , ,则该四棱锥外接球的表面积为_____.16.已知函数,若方程 有 个实数根,则 的取值范围是___.三、解答题17.已知函数 ,且 , .(1)求 , 的值;(2)若 ,求 的值域.18.求过点 且与圆 相切的直线方程.19.如图,边长为 的正方形 中,点 , 分别是边 , 上的点,且 .现将 , 分别沿 , 折起,使 , 两点重合于点 .(1)求证:平面 平面 ;(2)求 到平面 的距离.20.已知函数 是偶函数.(1)求 的值;(2)若关于 的方程 在上有解,求 的取值范围.21.四棱锥 中,正方形 所在平面与正三角形 所在平面互相垂直,点 是 的中点,点 是 的中点.…线…………○………线…………○…… (1)求证: 平面 ; (2)求二面角 的正切值22.已知圆 的圆心在 轴上,点 是圆 的上任一点,且当点 的坐标为 时, 到直线 距离最大. (1)求直线 被圆 截得的弦长; (2)已知 ,经过原点,且斜率为 的直线 与圆 交于 , 两点. (Ⅰ)求证: 为定值; (Ⅱ)若 ,求直线 的方程.参考答案1.B【解析】【分析】分别求出集合、,然后取交集即可。
函数-1
函数(1)1.(2019·开封模拟)函数y =1x -的定义域为( c )A .(1,+∞)B .[1,+∞)C .(1,2)∪(2,+∞)D .(1,2)∪[3,+∞)2.下列各组函数中,表示同一函数的是( c ) A .f (x )=x ,g (x )=(x )2B .f (x )=x 2,g (x )=(x +1)2 C .f (x )=x 2,g (x )=|x |D .f (x )=0,g (x )=x -1+1-x 3.(2019·豫南九校联考)已知函数f (x )=则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=( c )A .3B .4C .-3D .384.已知f (x )是一次函数,且f (f (x ))=x +2,则f (x )=( a ) A .x +1 B .2x -1 C .-x +1D .x +1或-x -15.(2018·大连模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a的值等于( a )A .-3B .-1C .1D .36.已知f (2x +3)=x +5,且f (t )=6,则t =( a ) A .5 B .4C .2D .-17.若对任意实数x ,恒有2f (x )-f (-x )=3x +1,则f (1)=( a ) A .2B .0C .1D .-1f (x )=x +1,所以f (1)=1+1=2,故选A.]8.已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )=__ lg 2x -1(x >1).]______. 9.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是__-1<a <3.]______.10.已知函数f (x )的定义域为[-1,1],则f (log 2x )的定义域为⎣⎢⎡⎦⎥⎤12,2________.11.(2019·郑州模拟)已知函数y =f (2x -1)的定义域是[0,1],则函数f x +log 2x +的定义域是( d )A .[1,2]B .(-1,1]C.⎣⎢⎡⎦⎥⎤-12,0 D .(-1,0)12.设函数f (x )=⎩⎪⎨⎪⎧2x +n ,x <1,log 2x ,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫34=2,则实数n 为( d ) A .-54 B .-13C.14D.5213.已知函数f (x )的定义域为(-∞,+∞),如果f (x +2 019)=⎩⎨⎧2sin x ,x ≥0,-x ,x <0,那么f 2 019+π4·f (-7 981)=____4____.14.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=_-x x +2_______.15.(2019·湖北八校联考)设函数f (x )=2xx -2在区间[3,4]上的最大值和最小值分别为M ,m ,则m 2M =( d )A.23 B.38C.32D.8316.函数f (x )=ln(4+3x -x 2)的单调递减区间是( d ) A.⎝ ⎛⎦⎥⎤-∞,32 B.⎣⎢⎡⎭⎪⎫32,+∞ C.⎝ ⎛⎦⎥⎤-1,32 D.⎣⎢⎡⎭⎪⎫32,417.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( b ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>018.(2019·三门峡模拟)设函数f (x )=⎩⎪⎨⎪⎧2x,x <2,x 2,x ≥2,若f (a +1)≥f (2a -1),则实数a 的取值范围是(b )A .(-∞,1] B .(-∞,2] C .[2,6] D .[2,+∞)19.(2019·上饶模拟)函数f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上的最大值是__32______.所以f (x )m ax =2-12=32.]20.(2019·长春模拟)已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是_(-∞,1] _______.21.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为_-3<a <-1或a >3,_______.22.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数. 最小值1;x =-5时,最大值37.(-∞,-5]∪[5,+∞). 23.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.24.(2019·唐山模拟)函数y =2-xx +1,x ∈(m ,n ]的最小值为0,则m 的取值范围是( d )A .(1,2)B .(-1,2)C .[1,2)D .[-1,2)25.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =___-6_____.26.设函数f (x )=⎩⎪⎨⎪⎧1,x >1,0,x =1,-1,x <1,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是___[0,2)_____.。
河南省豫南九校2022-2023学年高三上学期第二次联考文科数学试题
豫南九校2022-2023学年上期第二次联考高三数学(文)试题(考试时间:120分钟试卷满分:150分)注意事项:1.答题前,考生务必将自己的娃名、准考证号.考场号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时.将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}22610A x x =∈<+≤N ,{}04B x x =<<,则A B ⋂=()A .{}1,2,3B .{}0,2,3C .{}1,2D .{}2,32.已知i 为虚数单位,则43i1i -=+()A .17i 22+B .17i22-C .53i 22+D .53i 22-3.已知“24x x >”是“2x m <”的充分不必要条件,则实数m 的取值范围为()A .()2,2-B .[]2,2-C .()(),22,⋃-∞-+∞D .(][),22,-∞-⋃+∞4.已知圆O 的半径为2,AB 为圆O 的直径,点C 在圆O 上,若6cos 4BOC ∠=,则OA OC ⋅= ()A .BC .D 5.已知函数()1xf x ax x =++,若()02f '=,则()2f =()A .83B .2C .53D .36.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b ==,且12CA CB ⋅=- ,则c =()A .2B .C D7.已知sin18m ︒=,则cos 2424︒+︒=()A .242m-B .224m-C .4D .4-8.已知{}n a 为等差数列,公差为黄金分割比512(约等于0.618),前n 项和为n S ,则()2106842a a S S -+-=()A 1-B 1+C .16D .49.2022年8月26日,河南平顶山抽干湖水成功抓捕了两只鳄雀鳝,这一话题迅速冲上热搜榜.与此同吋,关于外来物种泛滥的有害性受到了热议.为了研究某池塘里某种植物生长面积S (单位:m 2)与时间t (单位:月)之间的关系,通过观察建立了函数模型()tS t ka =(t ∈Z ,0k >,0a >且1a ≠).已知第一个月该植物的生长面积为1m 2,第3个月该植物的生长面积为4m 2,则该植物的生长面积达到100m 2,至少要经过()A .6个月B .8个月C .9个月D .11个月10.已知()e xf x x =,过1,02P ⎛⎫⎪⎝⎭作曲线()y f x =的切线,切点在第一象限,则切线的斜率为()A .3e2B .23e C .2e D11.已知函数()()sin 034f x A x πωω⎛⎫=+<< ⎪⎝⎭的最小正周期为T ,若4T f ⎛⎫= ⎪⎝⎭()f x 的图象向左平移2π个单位长度,得到奇函数()g x 的图象,则2f π⎛⎫-= ⎪⎝⎭()A .2-B .2C .D 12.已知数列{}n a 的通项公式为()2(1)n n a n n =--,前n 项和为n S ,则满足212023n S +≤-的最小正整数n 的值为()A .28B .30C .31D .32二、填空题(本大题共4小题,每小题5分,共20分)13.已知点()1,2A ,()2,3B -,则与AB垂直的单位向量的坐标为______.14.已知等差数列{}n a 的前n 项和为n S ,若945S =,且8996a a +=,则123a a +=______.15.已知函数()2sin f x x =的导函数为()f x ',()()()g x f x f x =+',则函数()g x 图象的对称中心为______.16.已知函数()231sin 3e 12xf x x π⎛⎫⎛⎫=-+-⎪ ⎪+⎝⎭⎝⎭,则()f x 在[],ππ-上的最大值与最小值之和为______.三、解答题,本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知复数z 的共轭复数为z ,()()2i 3i zm m -=+∈R (其中i 为虚数单位).(1)若6z z +=,求z ;(2)若3z z ⋅<,求m 的取值范围.18.(本小题满分12分)已知命题p :()21,02,0x a x f x xx x x ⎧++>⎪=⎨⎪+≤⎩的最小值为1-,命题q :x ∀∈R ,2420x x a -+≥恒成立.(1)若p ⌝为真,求实数a 的取值范围;(2)若()p q ∧⌝为真,求实数a 的取值范围.19.(本小题满分12分)已知在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c,且sin cos a B A =.(1)若2c b =,求证:ABC △为直角三角形;(2)若ABC △的面积为6a =,求ABC △的周长.20.(本小题满分12分)已知向量()cos ,sin a x x =,()cos ,cos sin b x x x =- ,向量b 在a 上的投影记为()f x .(1)若()a ab ⊥-,求()f x 的值;(2)若()2f x =,求b .21.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n s a =-.(1)求{}n a 的通项公式;(2)若()()1122n n n n a b a a ++=+⋅+,求数列{}n b 的前n 项和n T ;(3)若()10nn c n a =-,数列{}n c 的前n 项和为n A ,求n A 的最大值.22.(本小题满分12分)已知函数()()2ln exf x x k k =+∈R .(1)若1x =是()f x 的一个极值点,求()f x 的极值;(2)设()ln e x x h x =的极大值为()0h x ,且()f x 有零点,求证:02e x kx ≥-.豫南九校2022-2023学年上期第二次联考高三数学(文)参考答案123456789101112CBDAADBCBCAD1.【答案】C【解析】由题意,得{}{}220,1,2A x x =∈-<≤=N ,又{}04B x x =<<,故{}1,2A B ⋂=.故选C .2.【答案】B【解析】()()()()43i 1i 43i 17i 17i 1i 1i 1i 222----===-++-.故选B .3.【答案】D【解析】由24x x >,得04x <<,由题意,得24m≥,即(][),22,m ∈-∞-⋃+∞.故选D .4.【答案】A【解析】由cos 4BOC ∠=,得cos 4AOC ∠=-,故6224OA OC ⎛⎫⋅=⨯⨯-= ⎪ ⎪⎝⎭.故选A .5.【答案】A 【解析】由()1x f x ax x =++,得()()211f x a x +'=+,故()012f a ='+=,故1a =,故()1x f x x x =++,故()282233f =+=.故选A .6.【答案】D【解析】由12CA CB ⋅=- ,得1cos 2ab C =-.又22a b ==,故1cos 4C =-,由余弦定理,得22212cos 4122164c a bab C ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,故c =D .7.【答案】B 【解析】()1cos 24242cos 24sin 242cos 60242cos3622⎛⎫︒+︒=⨯︒+︒=︒-︒=︒ ⎪ ⎪⎝⎭()()222212sin 1821224m m =⨯-︒=⨯-=-.故选B .8.【答案】C 【解析】设{}n a 的公差为d ,则d 是方程210x x +-=的一个解,则21d d +=,故()()()2221068424161616a a S S d d d d -+-=+=+=.故选C .9.【答案】B【解析】由题意,得()()31134S ka S ka ⎧==⎪⎨==⎪⎩,解得122k a ⎧=⎪⎨⎪=⎩,故()11222t t S t -=⨯=.令()12100t S t -=>,结合t ∈Z ,解得8t ≥,即该植物的生长面积达到100m 2时,至少要经过8个月.故选B .10.【答案】C 【解析】由()e x f x x =,得()()1e x f x x +'=,设切点坐标为()000,e x x x ,则切线方程为()()00000e 1e x x y x x x x -=+-,把点1,02P ⎛⎫ ⎪⎝⎭代入并整理,得()000112x x x ⎛⎫-=+- ⎪⎝⎭,解得01x =或012x =-(舍去),故切线斜率为()12e f '=.故选C .11.【答案】A 【解析】∵2T πω=,∴3sin 44T f A π⎛⎫==⎪⎝⎭2A =,∴()2sin 24g x x ππω⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦,∵()g x 为奇函数,∴()00g =,即()24k k ωπππ+=∈Z ,∴()122k k ω=-∈Z .又03ω<<,∴32ω=,∴()32sin 24f x x π⎛⎫=+ ⎪⎝⎭,∴2sin 222f ππ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭.故选A .12.【答案】D 【解析】由题意,得()()()()222222212143221n S n n +⎡⎤=-+-++---⎣⎦ ()()22112345221n n n ⎡⎤+--+-+-+⋅⋅⋅+-+⎣⎦()()()()()()()221124334221212(21)21n n n n n n n ⎡⎤⎡⎤⎡⎤=-⨯++-⨯++⋅⋅⋅+---+-+--+⎣⎦⎣⎦⎣⎦()()()()2222121234221121122n n n n n n n n n +=++++⋅⋅⋅+-+++=+++=-+,由212023n S +≤-,得()222023n n -+≤-,即220232n n +≥,结合*n ∈N ,解得32n ≥,故n 的最小值为32.故选D .13.【答案】10310,1010⎛⎫ ⎪ ⎪⎝⎭或10310,1010⎛⎫-- ⎪ ⎪⎝⎭【解析】由题意,得()3,1AB =- .设与AB 垂直的向量为(),a x y =,由0AB a ⋅= ,得30x y -+=,即3y x =,当a的坐标是()1,3时,可得与AB 垂直的单位向量为a a ± ,即10310,1010⎛⎫ ⎪ ⎪⎝⎭或10310,1010⎛⎫-- ⎪ ⎪⎝⎭.故答案为:10310,1010⎛⎫ ⎪ ⎪⎝⎭或10310,1010⎛⎫-- ⎪ ⎪⎝⎭.14.【答案】182【解析】因为945S =,所以()19599452a a a +==,解得55a =.又8951296a a a a +=+=,所以1291a =,所以123122182a a a +==.故答案为:182.15.【答案】(),04k k ππ⎛⎫-+∈ ⎪⎝⎭Z【解析】由()2sin f x x =,得()2cos f x x =',故()2sin 2cos 4g x x x x π⎛⎫=+=+ ⎪⎝⎭,令()4x k k ππ+=∈Z ,得()4x k k ππ=-+∈Z .故答案为:(),04k k ππ⎛⎫-+∈ ⎪⎝⎭Z .16.【答案】-6【解析】由题意,得()2321sin 31cos 3e 12e 1xx f x x x π⎛⎫⎛⎫⎛⎫=-+-=---⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,把()f x 的图象向上平移3个单位长度,可得函数()21cos e 1x g x x ⎛⎫=-- ⎪+⎝⎭的图象.当[],x ππ∈-时,()()()221cos 1cos e 1e 1x x g x x x g x -⎛⎫⎫-=---=-=- ⎪⎪++⎝⎭⎝⎭,即()g x 为奇函数,在[],ππ-上的最大值与最小值之和为0,故()f x 在[],ππ-上的最大值与最小值之和为6-.故答案为:6-.17.【解析】由()2i 3i z m -=+,得()()()()3i 2i 3i 236i 2i 2i 2i 55m m m m z +++-+===+--+.(2分)∴236i 55m m z -+=-.(3分)(1)由6z z +=,得23265m -⨯=,解得9m =,∴33i z =+,故z ==.(6分)(2)由3z z ⋅<,得22236355m m -+⎛⎫⎛⎫+< ⎪ ⎪⎝⎭⎝⎭,(8分)即26m<,解得m <<∴m 的取值范围是(.(10分)18.(1)对于命题p ,当0x >时,()12f x x a a x=++≥+,当且仅当1x =时取等号,故当0x >时,()f x 的最小值为2a +.(2分)当0x ≤时,()()22211f x x x x =+=+-,当1x =-时,()f x 的最小值为1-.(4分)由()f x 的最小值为1-,得21a +≥-,即3a ≥-.即若命题p 为真,则3a ≥-.(5分)故若命题p ⌝为真,则3a <-,即实数a 的取值范围是(),3-∞-.(6分)(2)对于命题q ,由x ∀∈R ,2420xx a -+≥,得Δ1680a =-≤,解得2a ≥.即若命题q 为真,则2a ≥.(9分)故若q ⌝为真,则2a <.由()p q ∧⌝为真,得32a -≤<,即实数a 的取值范围为[)3,2-.(12分)19.【解析】由sin cos a B A =及正弦定理,得sin sin cos A B B A =,又sin 0B >,故tan A =()0,A π∈,故3A π=.(3分)(1)因为2c b =,所以结合余弦定理,得22222222cos 423a b c bc A b b b b =+-=+-=,所以22224ab bc +==,所以ABC △是以C 为直角的直角三角形.(6分)(2)由ABC △的面积为1sin 2bc A =8bc =,(8分)由6a =,结合余弦定理,得()()222222cos 32436a b c bc A b c bc b c =+-=+-=+-=,所以b c +=(11分)故ABC △的周长为6.(12分)20.【解析】(1)由题意,得()a b f x a b a⋅==⋅,由()a ab ⊥-,得()0a a b ⋅-=,(2分)即20a a b -⋅= ,21a b a ⋅== ,∴()1f x =.(4分)(2)由(1),得()()2215cos sin cos sin sin 2cos 2sin 222f x a b x x x x x x x ϕ=⋅=+-=+=+ (其中25sin 5ϕ=,5cos 5ϕ=).(6分)令()()55sin 222f x x ϕ=+=,得()sin 21x ϕ+=,∴()222x k k πϕπ+=+∈Z ,(8分)∴()222x k k ππϕ=+-∈Z ,(8分)∴sin 2sin 2cos 25x k ππϕϕ⎛⎫=+-== ⎪⎝⎭,cos 2cos 2sin 25x k ππϕϕ⎛⎫=+-== ⎪⎝⎭.(10分)∴b ===.(12分)21.【解析】(1)由22n n S a =-,得1122S a =,得12a =,当2n ≥时,()()111222222n n n n n n n a S S a a a a ---=-=---=-,即12n n a a -=,(2分)∴{}n a 是首项为2,公比为2的等比数列,∴{}n a 的通项公式为2n n a =.(4分)(2)由(1),得()()111211222222222n n n n n n b +++⎛⎫==- ⎪+++⋅+⎝⎭,(5分)∴11111111124661010182222n n n T +⎛⎫=⨯-+-+-+⋅⋅⋅+-⎪++⎝⎭111112422221n n+⎛⎫=⨯-=- ⎪++⎝⎭.(7分)(3)∵()()10102n nn c n a n =-=-⋅,∴当9n ≤时,0n c >;当10n =时,0n c =;当11n ≥时,0n c <.∴当9n =或10时,n A 取得最大值,且910A A =.(9分)239992827212A =⨯+⨯+⨯++⨯ .①∴234109292827212A =⨯+⨯+⨯+⋅⋅⋅+⨯.②②-①,得()923910941218222218202612A ⨯-=-+++⋅⋅⋅++=-=-,∴n A 的最大值为2026.(12分)22.【解析】(1)解法一:由()2ln e x f x x k =+,得()()2e 0xf x k x x=+>',由1x =是()f x 的一个极值点,得()10f '=,即2e 0k +=,即2ek =-.(2分)此时,()12ln 2ex f x x -=-,()()1121e 22e x x x f x x x---=-=',设()()11e 0x g x x x -=->,则()()11e 0x g x x -'=-+<,即()g x 在()0,+∞上单调递减.(3分)又()10g=,所以当()0,1x ∈时,()0g x >,即()0f x '>,当()1,x ∈+∞时,()0g x <,即()0f x '<.所以()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以()f x 有极大值()12f =-,无极小值.(5分)解法二:由()2ln e x f x x k =+,得()()2e 0xf x k x x=+>',由1x =是()f x 的一个极值点,得()10f '=,即2e 0k +=,即2ek =-.(2分)此时,()12ln 2e x f x x -=-,()122e x f x x-=-',显然()f x '是减函数,又()10f '=,当()0,1x ∈时,()0f x '>,当()1,x ∈+∞时,()0f x '<.所以()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以()f x 有极大值()12f =-,无极小值.(5分)(2)由()ln e x x h x =,得()()1ln 1ln 0e ex x xx x x h x x x --==>'.(6分)设()1ln x x x ϕ=-,则()ln 1x x ϕ'=--.令()0x ϕ'=,得1ex =.当10e x <<时,()0x ϕ'>,当1e x >时,()0x ϕ'<,故()x ϕ在10,e ⎛⎫ ⎪⎝⎭上单调递增,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,故()x ϕ的极大值为1110e e ϕ⎛⎫=+>⎪⎝⎭.(8分)当10ex <<时,()0x ϕ>.又()110ϕ=>,()212ln 20ϕ=-<,故()x ϕ存在唯一的零点0x ,且()01,2x ∈.由()0001ln 0x x x ϕ=-=,得001ln x x =.(10分)当()00,x x ∈时,()0x ϕ>,即()0h >,当()0,x x ∈+∞时,()0x ϕ<,即()0h x '<,即()hx 在()00,x 上单调递增,在()0,x +∞上单调递减.故()hx 的极大值为()00000ln 1e e x x x h x x ==,(11分)令()0f x =,得2ln e 0x x k +=,即1ln 2e x xk -=.由()f x 有零点,得00112e x k x -≤,即02e x kx ≥-.(12分)。
2018-2019学年第二学期期末考试高一年级数学试卷(含答案)
2018-2019学年第二学期期末考试高一年级数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如表所示:电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为()A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,82.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.10403. 在中,,,则等于()A. 3B.C. 1D. 24.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣25.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥997. 已知直线平面,直线平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则8.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.19.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::( +1),试用以上给出的公式求得△ABC的面积为()A. B. C. D.10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1511.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A.B.C.D.12.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增D.在[﹣,]单调递减二、填空题(共4小题,每小题5分,满分20分)13.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(x)的解析式为.14.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA﹣acosB=0,则A+C= .15. 已知直线的倾斜角为,则直线的斜率为__________.16.已知正实数x,y满足x+2y﹣xy=0,则x+2y的最小值为8y的取值范围是.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.某同学用“五点法”画函数f (x )=Asin (ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f (x )的解析式;(2)将y=f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x )的图象.若y=g (x )图象的一个对称中心为(,0),求θ的最小值.18. 在中,内角所对的边分别为,且.(1)求;(2)若,且的面积为,求的值.19.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围.20.已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.21.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.22.(12分)(2016秋•德化县校级期末)已知f(x)=sin2(2x﹣)﹣2t•sin(2x﹣)+t2﹣6t+1(x∈[,])其最小值为g(t).(1)求g(t)的表达式;(2)当﹣≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.参考答案:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.D3.D4.A5.C6.B7. B8.C9.A10.B11.C12.C二、填空题(共4小题,每小题5分,满分20分)13..14.120°. 15. 16. 8;(1,+∞).三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.18. (1) ;(2). 19.(﹣4,0].20.(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z..21.1) P==.(2)a=0.00422.(1)∵x∈[,],∴sin(2x﹣)∈[﹣,1],∴f(x)=[sin(2x﹣﹣t]2﹣6t+1,当t<﹣时,则当sinx=﹣时,f(x)min=;当﹣≤t≤1时,当sinx=t时,f(x)min=﹣6t+1;当t>1时,当sinx=1时,f(x)min=t2﹣8t+2;∴g(t)=(2)k≤﹣8或k≥﹣5.。
河南省豫南九校高三第一次联考理科数学试题含解析
河南省豫南九校高三下学期第一次联考试题理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】D【解析】,故.2. 复数 (为虚数单位),则()A. 2B.C. 1D.【答案】C【解析】3. 的值为()A. B. C. D.【答案】B【解析】,故选:B4. 抛物线的焦点坐标为()A. B. C. D.【答案】B【解析】化为标准方程得,故焦点坐标为.5. 将函数的图像上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,则所得函数图像的解析式为()A. B. C. D.【答案】B【解析】函数经伸长变换得,再作平移变换得,故选:B.6. 某空间几何体的三视图如图所示,均为腰长为1的等腰直角三角形,则该几何体的表面积为()A. B. C. D.【答案】A【解析】由三视图可知,该几何体在正方体内如下图所示,其表面积为7. 《九章算术》中的“两鼠穿墙”问题为“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”可用如图所示的程序框图解决此类问题.现执行该程序框图,输入的的的值为33,则输出的的值为()A. 4B. 5C. 6D. 7【答案】C【解析】,开始执行程序框图,,再执行一行,退出循环,输出,故选C.8. 已知直三棱拄中,,则异面直线与所成角的余弦值为()A. B. C. D.【答案】C【解析】如图所示,设分别为和的中点,则夹角为和夹角或其补角(因异面直线所成角为,可知,;作中点Q,则为直角三角形;∵,中,由余弦定理得,∴,∴;在中,;在中,由余弦定理得又异面直线所成角的范围是,∴与所成角的余弦值为故选C.点睛:求两条异面直线所成角的关键是作为这两条异面直线所成角,作两条异面直线所成角的方法是:将其中一条一条直线平移与另一条相交相交或是将两条异面直线同时平移到某个位置使他们相交,然后再同一平面内求相交直线所成角,值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置.9. 已知两定点和,动点在直线上移动,椭圆以为焦点且经过点,则椭圆的离心率的最大值为()A. B. C. D.【答案】A【解析】试题分析:关于直线的对称点为,连接交直线于点,则椭圆的长轴长的最小值为,所以椭圆的离心率的最大值为,故选A.考点:1、椭圆的离心率;2、点关于直线的对称.10. 已知的三个内角的对边分别为,若,且,则的面积的最大值为()A. B. C. D.【答案】B.....................11. 在的展开式中,项的系数等于264,则等于()A. B. C. D.【答案】A【解析】,必须,,的系数为,解得,所以.【点睛】本题主要考查多项式的展开式,考查定积分计算.由于本题多项式的次方的式子中,有一个,这个数的指数很大,采用二项式定理展开,写出通项的后可知它的指数一定是,才能使得存在的项,由此可求得,进而求得的值,最后求得定积分.12. 已知实数满足,则()A. B. C. D.【答案】C【解析】将原式作如下变形得:.由此可构造函数:.不妨设,可得,由知,时,,时,,所以(当且仅当时取“”).即解得,故.【点睛】本题主要考查构造函数并利用导数证明求解不等式.首先观察已知所给的不等式,左边是一个整式的形式,右边是两个对数的和,将两个对数的真数相加,发现和左边有点类似,故将不等式左边变为右边的形式,从而构造函数利用导数来解决本题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知实数满足则的最大值为__________.【答案】1【解析】画出可行域如下图所示,由图可知,当时,取得最大值为.14. 已知向量满足,则向量在方向上的投影为__________.【答案】【解析】由,得,故在方向上的投影为.15. 已知直线过圆的圆心,则的最小值为__________.【答案】【解析】圆心为,则代入直线得,即.不妨设,则.16. 下列结论:①若,则“”成立的一个充分不必要条件是“,且”;②存在,使得;③若在上连续且,则在上恒正;④在锐角中,若,则必有;⑤平面上的动点到定点的距离比到轴的距离大1的点的轨迹方程为.其中正确结论的序号为_________.(填写所有正确的结论序号)【答案】①②【解析】①由于,所以,当且仅当时取等号.故是的充分不必要条件.②,不等式成立,故正确.③可以小于零,但是必须有大于零的部分,且的曲线围成的面积比的曲线围成的面积大,所以不正确.④由,所以,所以.⑤按定义可得轨迹方程,但还有这一部分.综上,选①②.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设正项等比数列,,且的等差中项为.(1)求数列的通项公式;(2)若,数列的前项和为,数列满足,为数列的前项和,若恒成立,求的取值范围.【答案】(1)(2)【解析】【试题分析】(1)利用基本元的思想将已知转化为的形式列方程组解出,由此得到通项公式.(2)化简,是个等差数列,求得其前项和为,利用裂项求和法可求得的值,代入不等式,利用分离常数法可求得.【试题解析】(1)设等比数列的公比为,由题意,得解得所以(2)由(1)得,∴,∴若恒成立,则恒成立,则,所以.18. 四棱锥中,底面为矩形,.侧面底面.(1)证明:;(2)设与平面所成的角为,求二面角的余弦值.【答案】(1)见解析(2)【解析】【试题分析】(1)设中点为,连接,由已知,所以,根据面面垂直的性质定理,有平面,以为原点,为轴,为轴,建立空间直角坐标系,计算可得证.(2)设,利用直线和平面所成角为,计算,再利用平面和平面的法向量计算二面角的余弦值.【试题解析】解:(1)证法一:设中点为,连接,由已知,所以,而平面平面,交线为故平面以为原点,为轴,为轴,如图建立空间直角坐标系,并设,则所以,所以.证法二:设中点为,连接,由已知,所以,而平面平面,交线为故平面,从而①在矩形中,连接,设与交于,则由知,所以所以,故②由①②知平面所以.(2)由,平面平面,交线为,可得平面,所以平面平面,交线为过作,垂足为,则平面与平面所成的角即为角所以从而三角形为等边三角形,(也可以用向量法求出,设,则,可求得平面的一个法向量为,而,由可解得)设平面的一个法向量为,则,,可取设平面的一个法向量为,则,,可取于是,故二面角的余弦值为.19. 某地区某农产品近几年的产量统计如下表:(1)根据表中数据,建立关于的线性回归方程;(2)若近几年该农产品每千克的价格(单位:元)与年产量满足的函数关系式为,且每年该农产品都能售完.①根据(1)中所建立的回归方程预测该地区年该农产品的产量;②当为何值时,销售额最大?附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.【答案】(1)(2)①7. 56②【解析】【试题分析】(1)将数据代入回归直线方程计算公式,可求得回归直线方程.(2)①将代入(1)所求得方程,可求得对应的预测值. ②求得销售额的表达式为,利用二次函数对称轴可求得其最大值.【试题解析】解:(1)由题,,,,所以,又,得,所以关于的线性回归方程为.(2)①由(1)知,当时,,即该农产品的产量为7. 56万吨.②当年产量为时,销售额(万元),当时,函数取得最大值,又因,计算得当,即时,即销售额最大.20. 已知点,圆,点是圆上一动点,的垂直平分线与线段交于点.(1)求点的轨迹方程;(2)设点的轨迹为曲线,过点且斜率不为0的直线与交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.【答案】(1)(2)【解析】【试题分析】(1)由于,所以的轨迹为椭圆,利用椭圆的概念可求得椭圆方程.(2)当直线的斜率存在时,设出直线方程和点的坐标,联立直线方程和椭圆方程,写出韦达定理,求得直线的方程,求得其纵截距为,即过.验证当斜率不存在是也过.求出三角形面积的表达式并利用基本不等式求得最大值.【试题解析】解:(1)由已知得:,所以又,所以点的轨迹是以为焦点,长轴长等于4的椭圆,所以点轨迹方程是.(2)当存在时,设直线,,则,联立直线与椭圆得,得,∴,∴,所以直线,所以令,得,,所以直线过定点,(当不存在时仍适合)所以的面积,当且仅当时,等号成立.所以面积的最大值是.【点睛】本小题主要考查动点轨迹方程的求法,考查直线和圆锥曲线的位置关系,考查与圆锥曲线有关的三角形面积的最值.由于给定点,而圆心恰好是,由此考虑动点是否满足椭圆或者双曲线的的定义,结合垂直平分线的性质可知动点的轨迹为椭圆.21. 设函数.(1)当时,恒成立,求的范围;(2)若在处的切线为,求的值.并证明当)时,.【答案】(1)(2)见解析【解析】【试题分析】(1)当时,由于,故函数单调递增,最小值为.(2)利用切点和斜率为建立方程组,解方程组求得的值.利用导数证得先证,进一步利用导数证,从而证明原不等式成立.【试题解析】解:由,当时,得.当时,,且当时,,此时.所以,即在上单调递増,所以,由恒成立,得,所以.(2)由得,且.由题意得,所以.又在切线上.所以.所以.所以.先证,即,令,则,所以在是增函数.所以,即.①再证,即,令,则,时,,时,,时,.所以在上是减函数,在上是增函数,所以.即,所以.②由①②得,即在上成立.【点睛】本小题主要考查利用导数解决不等式恒成立问题,考查利用导数证明不等式.第一问由于题目给出,并且导函数没有含有,故可直接有导数得到函数的单调区间,由此得到函数的最小值,令函数的最小值大于或等于零,即可求得的取值范围,从而解决了不等式恒成立问题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求圆的直角坐标方程;(2)若是直线与圆面的公共点,求的取值范围.【答案】(1)(2)【解析】【试题分析】(1)将圆的极坐标方程展开后两边乘以转化为直角坐标方程.(2)将直线的参数方程代入圆的直角坐标方程,利用参数的几何意义求得的取值范围.【试题解析】解:(1)∵圆的极坐标方程为,∴,又∵,,∴,∴圆的普通方程为(2)设,故圆的方程,∴圆的圆心是,半径是2,将代入得,又∵直线过,圆的半径是2,∴,∴,即的取值范围是.23. 选修4-5:不等式选讲已知均为实数.(1)求证:;(2)若,求的最小值.【答案】(1)见解析(2)见解析【解析】【试题分析】(1)利用分组分解法将原不等式变形为从而得证.(2)因为,所以.【试题解析】证明:(1)法一:,所以.法二:,所以.(2)证明:因为 (由柯西不等式得)所以,当且仅当即时,有最小值.。
专题04函数的定义域值域的求法
专题04 函数的定义域、值域的求法【热点聚焦与扩展】函数的定义域作为函数的要素之一,是研究函数的基础,也是高考的热点.函数的值域也是高考中的一个重要考点,并且值域问题通常会渗透在各类题目之中,成为解题过程的一部分.所以在掌握定义域求法的基础上,掌握一些求值域的基本方法,当需要求函数的取值范围时便可抓住解析式的特点,寻找对应的方法从容解决.(一)函数的定义域1.求函数定义域的主要依据是:①分式的分母不能为零;②偶次方根的被开方式其值非负;③对数式中真数大于零,底数大于零且不等于1.2.①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域; ②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域. 3.对于分段函数知道自变量求函数值或者知道函数值求自变量的问题,应依据已知条件准确找出利用哪一段求解.4.与定义域有关的几类问题第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义; 第三类是不给出函数的解析式,而由()f x 的定义域确定函数)]([x g f 的定义域或由)]([x g f 的定义域确定函数()f x 的定义域.第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决. (二)函数的值域1.利用函数的单调性:若)(x f 是],[b a 上的单调增(减)函数,则)(a f ,)(b f 分别是)(x f 在区间],[b a 上取得最小(大)值,最大(小)值.2.利用配方法:形如2(0)y ax bx c a =++≠型,用此种方法,注意自变量x 的范围. 3.利用三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-.4.利用“分离常数”法:形如y=ax bcx d++ 或2ax bx e y cx d ++=+ (c a ,至少有一个不为零)的函数,求其值域可用此法. 一般地,① ax by cx d+=+:换元→分离常数→反比例函数模型② 2ax bx cy dx e++=+:换元→分离常数→a y x x =±模型③ 2dx ey ax bx c+=++:同时除以分子:21y ax bx c dx e=+++→②的模型 ④ 22ax bx cy dx ex f++=++:分离常数→③的模型共同点:让分式的分子变为常数5.利用换元法: 在高中阶段,与指对数,三角函数相关的常见的复合函数分为两种: ① ()()(),log ,sin f x a y ay f x y f x ===⎡⎤⎡⎤⎣⎦⎣⎦:此类问题通常以指对,三角作为主要结构,在求值域时可先确定()f x 的范围,再求出函数的范围.② ()()(),log ,sin xa y f a y f x y f x ===:此类函数的解析式会充斥的大量括号里的项,所以可利用换元将解析式转为()y f t =的形式,然后求值域即可.③形如y ax b =+,可用此法求其值域. 6.利用基本不等式法:7.导数法:利用导数与函数的连续性求图复杂函数的极值和最值,然后求出值域8.分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值域范围是否符合相应段的自变量的取值范围.数形结合法也可很方便的计算值域. 9.由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部 分剔除.10.数形结合法:即作出函数的图象,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)()f x 的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该()f x 函数的图象,从而利用图象求得函数的值域.(2)函数的解析式具备一定的几何含义,需作图并与解析几何中的相关知识进行联系,数形结合求得值域,如:分式→直线的斜率;被开方数为平方和的根式→两点间距离公式.(三)常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归.(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域. (2)二次函数(2y ax bx c =++),给定区间.二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解.(关键点:①抛物线开口方向,②顶点是否在区间内). (3)反比例函数:1y x=(1)图像关于原点中心对称(2)当,0x y →+∞→ ,当,0x y →-∞→. (4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a >注:因为此类函数的值域与a 相关,求a 的值时要先保证x 的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a =② 极值点:x x ==③ 极值点坐标:(,-④ 定义域:()(),00,-∞+∞⑤ 自然定义域下的值域:(),2,a ⎡-∞-+∞⎣(5)函数:()0ay x a x=-> 注意与对勾函数进行对比① 解析式特点:x 的系数为1;0a >② 函数的零点:x =③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞【经典例题】例1【2017山东理】设函数A ,函数y=ln(1-x)的定义域为B ,则A B ⋂=( )(A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1)例2【2018( )D.例3【2018届河南省中原名校(即豫南九校)高三第六次质量考评】已知函数()()2231,3{2,3x a x a x f x a x --++≤=>(0a >且1a ≠),若()fx 有最小值,则实数a 的取值范围是( )A. 50,6⎛⎤ ⎥⎝⎦B. 51,4⎛⎫ ⎪⎝⎭C. 550,1,64⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦D. ()50,1,4⎡⎫⋃+∞⎪⎢⎣⎭例4【2018届广东省深圳市南山区高三上学期期末】若满足条件:上的值域为的取值范围是( )A. (﹣∞,ln2﹣1)B. (﹣∞,ln2﹣1]C. (1﹣ln2,+∞)D. [1﹣ln2,+∞)例5.已知函数22y x x =+在闭区间[],a b 上的值域为[]1,3-,则满足题意的有序实数对(),a b 在坐标平面内所对应点组成图形为( )A. B.C. D.例6.(1)函数()1f x =的值域为( )A. []3,1-B. [)1,-+∞C. ⎡⎣D. 1⎡⎤-⎣⎦(2)函数()f x =)A. (),1-∞B. (],1-∞C. (]0,1D. []0,1(3)函数()f x =的值域为________例7:(1)函数2224723x x y x x +-=++的值域为( )A. 9,22⎡⎤-⎢⎥⎣⎦B. 7,03⎛⎫- ⎪⎝⎭C. 7,03⎡⎫-⎪⎢⎣⎭D. 9,22⎡⎫-⎪⎢⎣⎭(2)函数sin 1cos 2x y x -=+的值域为_________例8.设且,函数在的最大值是14,求的值.例9【2018届山西省太原市实验中学高三上学期9月月考】已知函数()1(1)1x xa f x a a -=>+ (1)判断函数()f x 的奇偶性. (2)求()f x 的值域.例10【2018届安徽省宿州市汴北三校联考高三上学期期中】已知()2ax bf x x+=是定义在][(),31,b b -∞-⋃-+∞上的奇函数.(1)若()23f =,求,a b 的值;(2)若1-是函数()f x 的一个零点,求函数()f x 在区间[]2,4的值域.【精选精练】1.【2018届二轮同步(高考题)】下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A. y =xB. y =lg xC. y =2xD. y2.【2019届高考一轮】已知集合则A∩(∁R B)=( )A. [-3,5]B. (-3,1)C. (-3,1]D. (-3,+∞)3.【2018届安徽合肥八高三上学期期中】函数()ln 3x f x +=( )A. (-3,0)B. (-3,0]C. (-∞,-3)∪(0,+∞)D. (-∞,-3)∪(-3,0)4.【2018届东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高三第一次模拟】已知集合( ) B.5.已知函数()2xy f =的定义域是[]1,1-,则函数()2log y f x =的定义域是( )A. ()0,+∞B. ()0,1C.[]1,2 D. ⎤⎦6.【2018届江西省南昌市高三第一轮】已知函数()1y f x =+的定义域是[]0,3,则()xy f e =的定义域是( )A. []0,2ln2B. []1,2ln2C. (],ln3-∞D. (],ln2-∞7.下列四个函数:①y=3-x ;②y=2x -1(x>0);③y=x 2+2x -10;④y=()0{ 1(0)x x x x≤>,其中定义域与值域相同的函数的个数为( )A. 1B. 2C. 3D. 48.【2018届江西省高三监测】函数()f x 的定义域为D ,若满足:①()f x 在D 内是单调函数;②存在[],a b D ⊆使得()f x 在[],a b 上的值域为,22a b⎡⎤⎢⎥⎣⎦,则称函数()f x 为“成功函数”.若函数()()2xmtmf x log +=(其中0m >,且1m ≠)是“成功函数”,则实数t的取值范围为( )A. ()0,+∞B. 1,8⎛⎤-∞ ⎥⎝⎦C. 11,84⎡⎫⎪⎢⎣⎭D. 10,8⎛⎤ ⎥⎝⎦9.【2018届北京西城31中高三上期中】若__________.10.【2018届南京市、盐城市高三一模】设函数1xx y e a e=+-的值域为A ,若[)0,A ⊆+∞,则实数a 的取值范围是________.11.【2018届北京市西城区高三期末】已知函数()2,2,{ 1, 3.x x x c f x c x x+-≤≤=<≤ 若0c =,则()f x 的值域是____;若()f x 的值域是1,24⎡⎤-⎢⎥⎣⎦,则实数c 的取值范围是____. 12.已知函数()f x 的定义域为A ,若其值域也为A ,则称区间A 为()f x 的保值区间,若()ln f x x m x =+-的保值区间是[)e,+∞,则m 的值为__________.。
2019-2020学年河南省豫南九校高一上学期第一次联考数学试题(解析版)
(2)进行对数式的运算即可.
【详解】
解:(1)原式 ;
(2)原式
.
【点睛】
考查分数指数幂和对数的运算,熟记运算法则即可,属于基础题型.
18.已知集合 ,集合 或 .
(1)求 ;
(2)若 ,且 ,求实数 的取值范围.
【答案】(1) ;(2)
【解析】(1)先化简集合 ,再根据交集的概念,即可求出结果;
【答案】C
【解析】∵函数y=f(x)定义域是[−2,3],
∴由−2⩽2x−1⩽3,
解得− ⩽x⩽2,
即函数的定义域为 ,
本题选择C选项.
8.已知 是定义在 上的偶函数,对任意 都有 ,且 ,则 的值为()
A. B. C. D.
【答案】C
【解析】根据 的奇偶性,与 ,得到 ;再由 确定函数 的周期,从而可求出结果.
∴函数 的定义域为R,关于原点对称.
∵ ,
∴函数 为奇函数.
(3)函数 在定义域上为增函数.证明如下:
设 ,且 ,
则 ,
∵y=2x在 上是增函数,且 ,
∴ ,
∴ ,
∴ ,
∴函数 在定义域内是增函数.
(3)∵ ,
∴ .
∵函数 是奇函数,
∴ .
又函数 在定义域内是增函数,
∴ 对任意 1恒成立,
∴ 对任意t 1恒成立.
【详解】
因为对任意对 当 时,满足 ,
所以当 时, 单调递减;
又 为偶函数,所以 关于直线 对称,
因此, 时, 单调递增;
因为不等式 可化为 ,
又 ,
所以只需 ,解得 .
故选A
【点睛】
本题主要考查由函数单调性解不等式,熟记函数单调性与奇偶性即可,属于常考题型.
解析几何中的定值与定点问题-玩转压轴题(解析版)
专题5.4 解析几何中的定值与定点问题一.方法综述解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下;(1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性;一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。
(2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。
二.解题策略类型一定值问题【例1】(2020•青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为()A.B.C.2p D.【答案】D【解析】抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x﹣),所以,整理得,设点A(x1,y1),B(x2,y2),所以,所以,同理设经过焦点直线CD的方程为y=﹣(x﹣),所以,整理得,所以:|CD|=p+(p+2k2p),所以,则则+=.故选:D.【点评】求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.【举一反三】1.(2020•华阴市模拟)已知F是抛物线y2=4x的焦点,过点F的直线与抛物线交于不同的两点A,D,与圆(x﹣1)2+y2=1交于不同的两点B,C(如图),则|AB|•|CD|的值是()A.2B.2C.1D.【答案】C【解析】设A(x1,y1),D(x2,y2),抛物线方程为y2=4x的焦点为F(1,0),准线方程为x=﹣1,圆(x﹣1)2+y2=1的圆心为F(1,0),圆心与焦点重合,半径为1,又由直线过抛物线的焦点F,则|AB|=x1+1﹣1=x1,|CD|=x2+1﹣1=x2,即有|AB|•|CD|=x1x2,设直线方程为x=my+1,代入抛物线方程y2=4x,可得y2﹣4my﹣4=0,则y1y2=﹣4,x1x2==1,故选:C.2.(2020温州高三月考)如图,P为椭圆上的一动点,过点P作椭圆的两条切线P A,PB,斜率分别为k1,k2.若k1•k2为定值,则λ=()A.B.C.D.【答案】C【解析】取P(a,0),设切线方程为:y=k(x﹣a),代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2a3k2x+a4k2﹣a2b2λ=0,令△=4a6k4﹣4(b2+a2k2)(a4k2﹣a2b2λ)=0,化为:(a2﹣a2λ)k2=b2λ,∴k1•k2=,取P(0,b),设切线方程为:y=kx+b,代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2kba2x+a2b2(1﹣λ)=0,令△=4k2b2a4﹣4(b2+a2k2)a2b2(1﹣λ)=0,化为:λa2k2=b2(1﹣λ),∴k1•k2=,又k1•k2为定值,∴=,解得λ=.故选:C.3.(2020•公安县高三模拟)已知椭圆的离心率为,三角形ABC的三个顶点都在椭圆上,设它的三条边AB、BC、AC的中点分别为D、E、F,且三条边所在直线的斜率分别为k1,k2,k3(k1k2k3≠0).若直线OD、OE、OF的斜率之和为﹣1(O为坐标原点),则=.【答案】2【解析】∵椭圆的离心率为,∴,则,得.又三角形ABC的三个顶点都在椭圆上,三条边AB、BC、AC的中点分别为D、E、F,三条边所在直线的斜率分别为k1、k2,k3,且k1、k2,k3均不为0.O为坐标原点,直线OD、OE、OF的斜率之和为﹣1,设A(x1,y1),B(x2,y2),C(x3,y3),则,,两式作差得,,则,即,同理可得,.∴==﹣2×(﹣1)=2.类型二定点问题【例2】(2020•渝中区高三模拟)已知抛物线C:x2=4y的焦点为F,A是抛物线C上异于坐标原点的任意一点,过点A的直线l交y轴的正半轴于点B,且A,B同在一个以F为圆心的圆上,另有直线l′∥l,且l′与抛物线C相切于点D,则直线AD经过的定点的坐标是()A.(0,1)B.(0,2)C.(1,0)D.(2,0)【答案】A【解析】设A(m,m2),B(0,n),∵抛物线C:x2=4y的焦点为F(0,1)又A,B同在一个以F为圆心的圆上,∴|BF|=|AF|∴n﹣1==m2+1∴n=m2+2∴直线l的斜率k==﹣∵直线l′∥l,∴直线l′的斜率为k,设点D(a,a2),∵y=x2,∴y′=x,∴k=a,∴a=﹣,∴a=﹣∴直线AD的斜率为===,∴直线AD的方程为y﹣m2=(x﹣m),整理可得y=x+1,故直线AD经过的定点的坐标是(0,1),故选:A.【点评】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 【举一反三】1.(2020·全国高考模拟(理))已知抛物线28x y =,过点(),4P b 作该抛物线的切线PA ,PB ,切点为A ,B ,若直线AB 恒过定点,则该定点为( )A .()4,0B .()3,2C .()0,4-D .()4,1【答案】C【解析】设A B ,的坐标为()11x y ,,()22x y ,28x y =,4x y '=, PA PB ,的方程为()1114x y y x x -=-,()2224xy y x x -=- 由22118x y =,22228x y =,可得114x y x y =-,224x y x y =-切线PA PB ,都过点()4P b ,1144x b y ∴=⨯-,2244xb y =⨯-, 故可知过A ,B 两点的直线方程为44bx y =-, 当0x =时,4y =∴直线AB 恒过定点()04-,,故选C2.(2020·重庆高考模拟(理))已知圆22:1C x y +=,点P 为直线142x y+=上一动点,过点P 向圆C 引两条切线,,,PA PB A B 为切点,则直线AB 经过定点.( )A .11,24⎛⎫⎪⎝⎭ B .11,42⎛⎫⎪⎝⎭ C.⎫⎪⎪⎝⎭D.⎛ ⎝⎭ 【答案】B【解析】设()42,,,P m m PA PB -是圆C 的切线,,,CA PA CB PB AB ∴⊥⊥∴是圆C 与以PC 为直径的两圆的公共弦,可得以PC 为直径的圆的方程为()()22222224m m x m y m ⎛⎫⎡⎤--+-=-+ ⎪⎣⎦⎝⎭, ① 又221x y += , ②①-②得():221AB m x my -+=, 可得11,42⎛⎫⎪⎝⎭满足上式,即AB 过定点11,42⎛⎫⎪⎝⎭,故选B. 3.(2020大理一模)已知椭圆221164x y +=的左顶点为A ,过A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,满足122k k ⋅=-,则直线MN 经过的定点为___________. 【答案】28,09T ⎛⎫-⎪⎝⎭【解析】 由()2221211141616414=+4M x y k x k y k x ⎧+=-⎪⇒=⎨+⎪⎩, 同理222122214164641416N k k x k k --==++. 121814M k y k =+,1211616Nk y k -=+, 取11k =,由对称性可知,直线MN 经过x 轴上的定点28,09T ⎛⎫-⎪⎝⎭.【归纳总结】在平面直角坐标系xOy 中,过椭圆()222210x y a b a b+=>>上一定点A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,当12k k ⋅为非零常数时,直线MN 经过定点.三.强化训练1.(2020·黑龙江高三模拟)直线l 与抛物线x y C 2:2=交于B A ,两点,O 为坐标原点,若直线OB OA ,的斜率1k ,2k 满足3221=k k ,则l 的横截距( ) A .为定值3- B .为定值3 C .为定值1- D .不是定值 【答案】A【解析】设直线l 的方程为y kx b =+,由题意得22y kx b y x=+⎧⎨=⎩,则得()222220k x kb x b +-+=; 设A ,B 两点的坐标为()11,A x y ,()22,B x y ,则得12222kb x x k-+=,2122b x x k =; 又因为3221=k k ,即121223y y x x =,所以()2222222121222221222222222223k x x kb x x b kb k b k k b k b k k b k k k k x x b b b b +++--+-=++=+=== ,则得3b k =,直线l 的方程为()33y kx b kx k k x =+=+=+; 当0y =时,3x =-,所以直线l 的横截距为定值3-.故选A.2.(2020·辽宁省朝阳市第二高级中学高二期中(文))如果直线7ax by +=(0a >,0b >) 和函数()1log m f x x =+(0m >,1m ≠)的图象恒过同一个定点,且该定点始终落在圆22(1)(1)25x b y a +-++-=的内部或圆上,那么ba的取值范围是( )A .3443⎡⎤⋅⎢⎥⎣⎦B .30,4⎛⎤ ⎥⎝⎦C .4,3⎡⎫+∞⎪⎢⎣⎭D .340,,43⎛⎤⎡⎫⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】A【解析】根据指数函数的性质,可得函数()1log ,(0,1)m f x x m m >≠=+,恒过定点(1,1). 将点(1,1)代入7ax by +=,可得7a b +=.由于(1,1)始终落在所给圆的内部或圆上,所以2225a b +.又由227,25,a b a b +=⎧⎨+=⎩解得34a b =⎧⎨=⎩或43a b =⎧⎨=⎩,所以点(,)a b 在以(3,4)和(4,3)为端点的线段上运动, 当取点(3,4)时,43b a =,取点(4,3)时,34b a,所以b a 的取值范围是34,43⎡⎤⎢⎥⎣⎦.3.(2020·全国高三模拟)过x 轴上的点(),0P a 的直线与抛物线28y x =交于,A B 两点,若2211||||AP BP +为定值,则实数a 的值为( )A.1B.2 C .3 D .4 【答案】D【解析】设直线AB 的方程为x my a =+,代入28y x =,得2880y my a --=, 设()()1122,,,A x y B x y ,则12128,8y y m y y a +=⋅=-.()()()2222222111111AP x a y my y m y =-+=+=+,同理,()22221BP m y =+,∴()21212222222221212211111111y y y y m y y m y y AP BP+-⎛⎫+=+= ⋅⎪++⎝⎭ ()()22222264284164114m a m am a a m -⨯-+=+⋅=+,∵2211||||AP BP +为定值, 是与m 无关的常数,∴4a =.故选D .4.(2020•越城区高三期末)已知A 、B 是抛物线y 2=4x 上异于原点O 的两点,则“•=0”是“直线AB 恒过定点(4,0)”的( ) A .充分非必要条件 B .充要条件C .必要非充分条件D .非充分非必要条件【答案】B【解析】根据题意,A 、B 是抛物线y 2=4x 上异于原点O 的两点,设A (x 1,y 1),B (x 2,y 2), 若“•=0”,则设直线AB 方程为x =my +b ,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣4b =0,则y 1+y 2=4m ,y 1y 2=﹣4b , 若•=0,则•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=b 2﹣4b =0,解可得:b =4或b =0,又由b ≠0,则b =4,则直线AB 的方程为x =my +4,即my =x ﹣4,则直线AB 恒过定点(4,0), “•=0”是“直线AB 恒过定点(4,0)”的充分条件;反之:若直线AB 恒过定点(4,0),设直线AB 的方程为x =my +4,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣16=0,则有y 1y 2=﹣16, 此时•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=0,故“•=0”是“直线AB 恒过定点(4,0)”的必要条件;综合可得:“•=0”是“直线AB 恒过定点(4,0)”的充要条件;故选:B .5.(2020·湖北高考模拟)设12(,0),(,0)F c F c -是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则||OQ 的长为( ) A .定值a B .定值bC .定值cD .不确定,随P 点位置变化而变化【答案】A【解析】依题意如图,延长F 1Q ,交PF 2于点T , ∵PQ 是∠F 1PF 2的角分线.TF 1是PQ 的垂线, ∴PQ 是TF 1的中垂线,∴|PF 1|=|PT |,∵P 为双曲线2222x y a b-=1上一点,∴|PF 1|﹣|PF 2|=2a , ∴|TF 2|=2a ,在三角形F 1F 2T 中,QO 是中位线, ∴|OQ |=a . 故选:A .6.(2020·浙江省杭州第二中学高三)设点(),P x y 是圆22:2210C x y x y ++-+=上任意一点,若212x y x y a -+++--为定值,则a 的值可能为( )A .3-B .4-C .5-D .6-【答案】D【解析】圆C 标准方程为22(1)(1)1x y ++-=,圆心为(1,1)C -,半径为1r =,直线:20l x y a --=2115a---=,35a =-当35a =-+C 在直线l 上方,20x y a --≤,当=--35a C 在直线l 下方,20x y a --≥,若212x y x y a -+++--为定值,则20x y a --≥,因此35a ≤-D 满足. 故选:D.7.(2020·湖北高考模拟(理))已知圆C : 224x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线,PA PB , ,A B 为切点,则直线AB 经过定点( )A .48,99⎛⎫⎪⎝⎭ B .24,99⎛⎫⎪⎝⎭C .()2,0D .()9,0 【答案】A【解析】设()()()112200,,,,,,A x y B x y P x y 则1122:4;:4;PA x x y y PB x x y y +=+= 即101020204;4;x x y y x x y y +=+=因此A 、B 在直线004x x y y +=上,直线AB 方程为004x x y y +=, 又00290x y +-=,所以()()0009242940y x y y y y x x -+=⇒-+-= 即8420,940,99y x x y x -=-=⇒==,直线AB 经过定点48,99⎛⎫⎪⎝⎭,选A. 8.(2020·全国高三期末(理))已知圆O :2214x y +=,直线l :y =kx +b (k ≠0),l 和圆O 交于E ,F 两点,以Ox 为始边,逆时针旋转到OE ,OF 为终边的最小正角分别为α,β,给出如下3个命题: ①当k 为常数,b 为变数时,sin (α+β)是定值; ②当k 为变数,b 为变数时,sin (α+β)是定值; ③当k 为变数,b 为常数时,sin (α+β)是定值. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】B【解析】设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,, 将直线EF 的方程与的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得2221(1)204k x kbx b +++-=, 由韦达定理得122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩,,所以2112sin()sin cos cos sin 44x y x y αβαβαβ+=+=+=222112121222188244()4()84()11k b kb k x kx b x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭+++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B (特值法可秒杀)9.(2020·浙江高三期末)斜率为k 的直线l 过抛物线22(0)y px p =>焦点F ,交抛物线于,A B 两点,点00(,)P x y 为AB 中点,作OQ AB ⊥,垂足为Q ,则下列结论中不正确的是( )A .0ky 为定值B .OA OB ⋅为定值C .点P 的轨迹为圆的一部分D .点Q 的轨迹是圆的一部分【答案】C【解析】设抛物线22(0)y px p =>上,A B 两点坐标分别为()()1122,,,A x y B x y ,则2211222,2,y px y px ==两式做差得,121212()()2()y y y y p x x +-=-,整理得1201212022,,2.y y p pk ky p x x y y y -=∴=∴=-+为定值,所以A 正确.因为焦点(,0)2p F ,所以直线AB 方程为()2p y k x =-.由2()22p y k x y px⎧=-⎪⎨⎪=⎩得2222244(2)0k x p k x p k -++=,则22121222(2),,4p k p x x x x k ++== 222212121212()()[()]2224p p p p y y k x x k x x x x p =--=-++=-.2121234OA OB x x y y p ∴⋅=+=-为定值.故B 正确. ,OQ AB ⊥∴点Q 的轨迹是以OF 为直径的圆的一部分,故D 正确.本题选择C 选项.10.(2020·安徽高三月考(理))已知抛物线2:8C y x =,圆22:(2)4F x y -+=,直线:(2)(0)l y k x k =-≠自上而下顺次与上述两曲线交于1234,,,M M M M 四点,则下列各式结果为定值的是( ) A .1324M M M M ⋅ B .14FM FM ⋅ C .1234M M M M ⋅ D .112FM M M ⋅【答案】C 【解析】由()228y k x y x⎧=-⎨=⎩消去y 整理得2222(48)40(0)k x k x k k -++=≠,设111422(,),(,)M x y M x y ,则21212248,4k x x x x k++==. 过点14,M M 分别作直线:2l x '=-的垂线,垂足分别为,A B , 则11422,2M F x M F x =+=+.对于A ,13241412(2)(2)(4)(4)M M M M M F M F x x ⋅=++=++12124()16x x x x =+++,不为定值,故A 不正确.对于B ,14121212(2)(2)2()4FM FM x x x x x x ⋅=++=+++,不为定值,故B 不正确. 对于C ,12341412(2)(2)4M M M M M F M F x x ⋅=--==,为定值,故C 正确.对于D ,1121111(2)(2)FM M M M F M F x x ⋅=⋅-=+,不为定值,故D 不正确.选C .11.(2020·南昌县莲塘第一中学高三月考(理))在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L -距离”定义为121212|||||.PP x x y y =-+-‖则平面内与x 轴上两个不同的定点12,F F 的“L -距离”之和等于定值(大于12|F F )的点的轨迹可以是( )A .B .C .D .【答案】A【解析】设12(,0),(,0)F c F c -,再设动点(,)M x y ,动点到定点12,F F 的“L距离”之和等于(20)m m c >>,由题意可得:x c y x c y m ++-++=,即2x c x c y m -+++=, 当,0x c y <-≥时,方程化为220x y m -+=; 当,0x c y <-<时,方程化为220x y m ++=;当,0c x c y -≤<≥时,方程化为2my c =-; 当,0c x c y -≤<<时,方程化为2my c =-;当,0x c y ≥≥时,方程化为220x y m +-=; 当,0x c y ≥<时,方程化为220x y m --=;结合题目中给出四个选项可知,选项A 中的图象符合要求,故选A . 12.(2020·东北育才学校高三月考(理))有如下3个命题;①双曲线22221(0,0)x y a b a b-=>>上任意一点P 到两条渐近线的距离乘积是定值;②双曲线2222222211(0,0)x y x y a b a b b a-=-=>>与的离心率分别是12e e 、,则22122212e e e e +是定值;③过抛物线22(0)x py p =>的顶点任作两条互相垂直的直线与抛物线的交点分别是A B 、,则直线AB 过定点;其中正确的命题有( ) A .3个 B .2个C .1个D .0个【答案】A【解析】①双曲线22221x y a b-=(a >0,b >0)上任意一点P ,设为(m ,n ),两条渐近线方程为y=±ba x=222222b m a n a b -+, 由b 2m 2﹣a 2n 2=a 2b 2,可得两个距离乘积是定值2222a b a b+; ②双曲线2222x y a b -=1与22221x y b a -=(a >0,b >0)的离心率分别是e 1,e 2,即有e 12=222a b a +,e 22=222a b b +,可得22122212e e e e +为定值1;③过抛物线x 2=2py (p >0)的顶点任作两条互相垂直的直线与抛物线的交点分别是A ,B ,可设A (s ,22s p),B (t ,22t p ),由OA ⊥OB 可得st+2224s t p=0,即有st=﹣4p 2, k AB =()222t s p t s --=2t s p +,可得直线AB 的方程为y ﹣22s p=2t s p +(x ﹣s ),即为y=2t s p +x+2p , 则直线AB 过定点(0,2p ).三个命题都正确.故选A .13.已知O 为坐标原点,点M 在双曲线22:C x y λ-=(λ为正常数)上,过点M 作双曲线C 的某一条渐近线的垂线,垂足为N ,则ON MN ⋅的值为( ) A .2λB .λC .2λD .无法确定【来源】四川省南充市2021届高三第三次模拟考试数学(文)试题 【答案】A【解析】设(,)M m n ,即有22m n λ-=,双曲线的渐近线为y x =±,可得MN =,由勾股定理可得ON ===,可得2222m n ON MN λ-⋅=== .故选:A .14.已知1F 、2F 是双曲线C :2214y x -=的左、右两个焦点,若双曲线在第一象限上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||||PF PF λ=,则λ的值为( ).A .13B .12C .2D .3【来源】河南省豫南九校2020-2021学年高三上学期期末联考理数试题 【答案】C 【解析】1a =,2b =,∴c =1(F,2F, 设点)P m ,∴2222()(1))1504m OP OFF P m m m +⋅=⋅=+-+=, ∴2165m =,m =,则P ±,14PF ===, ∴2122PF PF a =-=,∴12422PF PF λ===, 故选:C.15.已知1F ,2F 是双曲线221169x y -=的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为60︒,那么22||+-PF QF PQ 的值为A .16B .12C .8D .随α变化而变化【答案】A【解析】由双曲线方程221169x y -=知,28a =,双曲线的渐近线方程为34y x 直线PQ 的倾斜角为60︒,所以334PQ k =>,又直线PQ 过焦点1F ,如图 所以直线PQ 与双曲线的交点都在左支上.由双曲线的定义得,2128PF PF a -==…………(1),2128QF QF a -== (2)由(1)+(2)得2211()16PF QF QF PF +-+=,2216PF QF PQ ∴+-=. 故选:A16.已知椭圆()2221024x y b b+=<<,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,()2,1M ,1MF 平分角12PF F ∠,则1MPF 与2MPF 的面积之和为( ) A .1B .32C .2D .3【来源】中学生标准学术能力诊断性测试2020-2021学年高三上学期1月测试理文数学(一卷)试题 【答案】C【解析】如图,椭圆()222210x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,作一圆与线段F 1P ,F 1F 2的延长线都相切,并且与线段PF 2也相切,切点分别为D ,A ,B ,1111221122||||||||||||||||||||F D F A PF PD F F F A PF PB F F F A =⇔+=+⇔+=+, 12122212122||||||||||||||||||2||PF PB F B F F F A F B PF PF F F F A ⇔++=++⇔+=+,所以2||F A a c =-(c 为椭圆半焦距),从而点A 为椭圆长轴端点,即圆心M 的轨迹是直线x =a (除点A 外). 因点M (2,1)在12PF F ∠的平分线上,且椭圆右端点A (2,0),所以点M 是上述圆心轨迹上的点,即点M 到直线F 1P ,PF 2,F 1F 2的距离都相等,且均为1,1MPF 与2MPF 的面积之和为1212111||1||1(||||)2222PF PF PF PF ⋅⋅+⋅⋅=+=.故选:C17.已知椭圆2214x y +=的上顶点为,A B C 、为椭圆上异于A 的两点,且AB AC ⊥,则直线BC 过定点( ) A .(1,0) B .(3,0)C .10,2⎛⎫ ⎪⎝⎭D .30,5⎛⎫- ⎪⎝⎭【答案】D【解析】设直线BC 的方程为x ky m =+,()()1122,,B x y C x y 、,则由2214x ky m x y =+⎧⎪⎨+=⎪⎩整理得()2224240k y mky m +++-=, 所以212122224,44mk m y y y y k k --+==++, ()22222121212224244m mkx x k y y mk y y m k mk m k k --=+++=++++,因为()0,1A ,()()1122,1,1A x y B C x y A --==,,AB AC ⊥, 所以()()()1212121212111x x y y x x y y y y AB AC +-=-=++⋅-+22222222224242125304444m mk m mk k mk m km m k k k k k ---=+++++=+-=++++解得m k =-或35m k =, 当m k =-时,直线BC 的方程为()1x ky k k y =-=-,直线过()0,1点而()0,1A ,而,A B C 、不在同一直线上,不合题意; 当35m k =时,直线BC 的方程为3355x ky k k y ⎛⎫=+=+ ⎪⎝⎭,直线过30,5⎛⎫- ⎪⎝⎭,符合题意.故选:D.18.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54B .45C .43D .34【来源】安徽省宣城市第二中学2020-2021学年高三下学期第一次月考理科数学试题 【答案】D【解析】设112233(,),(,),(,)P x y Q x y G x y ,则切线GP 的方程为114x x y y +=,切线GQ 的方程为224x x y y +=, 因为点G 在切线,GP GQ 上,所以13134x x y y +=,23234x x y y +=,所以直线PQ 的方程为334x x y y +=, 所以3344(,0),(0,)M N x y , 因为点33(,)G x y 在椭圆221124y x +=上,所以2233312x y +=,所以22223333223311123(3)161616164x y x y OM ON+=+=+==, 故选:D19.已知椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q 两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =( ) A .13B .3C .12D .2【来源】湖北省“大课改、大数据、大测评”2020-2021学年高三上学期联合测评数学试题 【答案】A【解析】设(),N x y ,()11,P x y ,()22,Q x y ,设直线PQ 的方程:4x my =-由,,P N A 和,,Q N B 三点共线可知11222222y y x x y y x x ⎧=⎪++⎪⎨⎪=⎪--⎩ , 解得:()()()()()()()()1221122112211221222226222262y x y x y my y my x y x y x y my y my -++-+-==--++--+-1212122623my y y y x y y --∴=-,12121226643my y y y x y y +-+=-,(*)联立224142x my x y =-⎧⎪⎨+=⎪⎩ ,得()2228120m y my +-+=,22226448(2)16(6)0,6m m m m ∆=-+=->>,12121212228123,,()222m y y y y my y y y m m +==∴=+++, 代入(*)得121293433y y x y y -+==-,14y k x =+,22y k x =+ ,122211443k x k x x +∴==-=++.故选:A20.(2020·北京市第二中学分校高三(理))抛物线24y x =上两个不同的点A ,B ,满足OA OB ⊥,则直线AB 一定过定点,此定点坐标为__________. 【答案】(4,0).【解析】设直线l 的方程为x ty b =+代入抛物线24y x =,消去x 得2440y ty b --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y b =-,∴()()()221212121212OA OB ty b ty b y y t y y bt y y b y y ⋅=+++=++++222444bt bt b b =-++- 24b b =-=0,∴0b =(舍去)或4b =, 故直线l 过定点()4,0.21.(2020·江苏扬州中学高三月考)已知点(2,0),(4,0)A B -,圆,16)()4(:22=+++b y x C 点P 是圆C 上任意一点,若PAPB为定值,则b =________.【答案】0【解析】设(,)P x y ,PAk PB =k =, 整理得222222(1)(1)(48)4160k x k y k x k -+-+++-=, 又P 是圆C 上的任意一点,故1k ≠,圆C 的一般方程为222820x y x by b ++++=,因此20b =,22222484168,11k k b k k+-==--,解得0b =. 22.(2020·江苏海安高级中学高三)在平面直角坐标系xOy 中,A ,B 为x 轴正半轴上的两个动点,P (异于原点O )为y 轴上的一个定点.若以AB 为直径的圆与圆x 2+(y -2)2=1相外切,且∠APB 的大小恒为定值,则线段OP 的长为_____.【解析】设O 2(a ,0),圆O 2的半径为r (变量),OP=t (常数),则222222221)222tan ,tan ,2tan 141,(4,22tan 3232r a r a rOPA OPB t t a r a rrtt t APB a r t a r t a r a rt tAPB t t r r +-+∠=∠=+--∴∠==-+-++=+∴=-∴∠==-+-+∵∠APB 的大小恒为定值,∴t23.在平面直角坐标系xOy 中,椭圆22184x y +=上一点A ,点B 是椭圆上任意一点(异于点A ),过点B 作与直线OA 平行的直线l 交椭圆于点C ,当直线AB 、AC 斜率都存在时,AB AC k k +=___________. 【答案】0【解析】取特殊点B ()0,2-,则BC的方程为22y x +=,由22242y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩得C ()所以202AB AC k k +==. 24.(2020·河北定州一中高三月考)P 为圆()22:15C x y -+=上任意一点,异于点()2,3A 的定点B 满足PBPA为常数,则点B 的坐标为______. 【答案】33,22⎛⎫⎪⎝⎭【解析】设()()00,,,,PA P x y B x y PBλ=,则()2215x y -+=,可得2242x y x +=+,① ()()()()222220023x x y y x y y λ⎡⎤-+-=-+-⎣⎦,②由①②得()2200002224x x y y x y --+++2222617x y λλλ=--+,可得202002220022226417x y x y λλλ⎧-=-⎪-=-⎨⎪++=⎩,解得002323212x y λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,B ∴点坐标为33,22⎛⎫ ⎪⎝⎭,故答案为33,22⎛⎫ ⎪⎝⎭. 25.(2020·上海长岛中学高三)在平面直角坐标系中,O 为坐标原点,M 、N 是双曲线22124x y -=上的两个动点,动点P 满足2OP OM ON =-,直线OM 与直线ON 斜率之积为2,已知平面内存在两定点1F 、2F ,使得12PF PF -为定值,则该定值为________【答案】【解析】设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由2OP OM ON =-,得(x ,y )=2(x 1,y 1)-(x 2,y 2), 即x=2x 1-x 2,y=2y 1-y 2,∵点M ,N 在双曲线22124x y -=上,所以2211124x y -=,2222124x y -=,故2x 2-y 2=(8x 12+2x 22-8x 1x 2)-(4y 12+y 22-4y 1y 2)=20-4(2x 1x 2-y 1y 2), 设k 0M ,k ON 分别为直线OM ,ON 的斜率,根据题意可知k 0M k ON =2, ∴y 1y 2-2 x 1x 2=0, ∴2x 2-y 2=20,所以P 在双曲线2x 2-y 2=20上; 设该双曲线的左,右焦点为F 1,F 2,由双曲线的定义可推断出12PF PF -为定值,该定值为26.(2020·江苏高三月考)椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k-+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k+-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为:(1,0).27.已知双曲线22:13y C x -=的右焦点为F ,过点F 的直线l 与双曲线相交于P 、Q 两点,若以线段PQ为直径的圆过定点M ,则MF =______.【来源】金科大联考2020届高三5月质量检测数学(理科)试题 【答案】3【解析】点F 的坐标为()2,0,双曲线的方程可化为2233x y -=,①当直线l 的斜率不存在时,点P 、Q 的坐标分别为()2,3、()2,3-, 此时以线段PQ 为直径的圆的方程为()2229x y -+=;②当直线l 的斜率存在时,设点P 、Q 的坐标分别为()11,x y ,()22,x y , 记双曲线C 的左顶点的坐标为()1,0A -,直线l 的方程为()2y k x =-,联立方程()22332x y y k x ⎧-=⎪⎨=-⎪⎩,消去y 后整理为()()222234340kxk x k -+-+=,2422230164(3)(34)36(1)0k k k k k ⎧-≠⎨∆=+-+=+>⎩,即k ≠ 有2122212243343k x x k k x x k ⎧+=⎪⎪-⎨+⎪=⎪-⎩,()()()22121212122224y y k x x k x x x x =--=-++⎡⎤⎣⎦,222222234894333k k k k k k k ⎛⎫+=-+- ⎪---⎝⎭,()111,AP x y =+,()221,AQ x y =+,()()()1212121212111AP AQ x x y y x x x x y y ⋅=+++=+++⎡⎤⎣⎦ 22222222344931103333k k k k k k k k +-=+-+=+=----. 故以线段PQ 为直径的圆过定点()1,0M -,3MF =.28.双曲线22:143x y C -=的左右顶点为,A B ,以AB 为直径作圆O ,P 为双曲线右支上不同于顶点B 的任一点,连接PA 交圆O 于点Q ,设直线,PB QB 的斜率分别为12,k k ,若12k k λ=,则λ=_____. 【答案】34-【解析】设()()()00,,2,02,0P x y A B - 2200143x y -=,()222000331444x y x ⎛⎫=-=- ⎪⎝⎭2000200032424PA PBy y y x x k k x =⋅=+--= PA 交圆O 于点Q ,所以PA QB ⊥ 易知:33441PA PB PB QBPA QB k k k k k k λ⎧=⎪⇒==-⎨⎪⋅=-⎩即1234k k λ==-. 故答案为:34-29.过双曲线22221x y a b-=的右焦点(,0)F c 的直线交双曲线于M 、N 两点,交y 轴于P 点,若1PM MF λ=,2PN NF λ=,规定12λλ+=PM PN MF NF +,则PM PNMF NF +的定值为222a b .类比双曲线这一结论,在椭圆22221(0)x y a b a b +=>>中,PM PN MF NF+的定值为________. 【来源】贵州省铜仁市思南中学2020-2021学年高三上学期期末考试数学(理)试题【答案】222a b-【解析】如图,设椭圆()222210x y a b a b+=>>的右焦点为(),0F c ,过点(),0F c 的直线为()y k x c =-,代入椭圆的方程得:()2222222222220b a kxa k cx a k c ab +-+-=,设()11,M x y ,()22,N x y ,则22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k-⋅=+, 过点,M N 分别作x 轴的垂线,垂足为,D E ,则111x PM x c MF λ==--,222=x PNx c NFλ=--,所以()()()()()1221121212122212121212122x x c x x c x x c x x x x x c x c x x c x x c x x c x x c λλ-+--+⎛⎫+=-+=-=-⎪---++-++⎝⎭将22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k -⋅=+代入化简得:21222a b λλ+=-. 故答案为:222a b-.30.若M ,P 是椭圆2214x y +=两动点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于不同的两点A (m ,0),B (n ,0),则mn =_________.【来源】四川省资阳市2020-2021学年高三上学期期末数学文科试题 【答案】4 【解析】设(),M a b ,则(),N a b -,(),P c d ,则2214a b +=,2214c d +=所以PM d bk c a-=- 直线PM 的方程为()d b y b x a c a --=--,令0y =可得ad bcm d b-=- 同理有PM d b k c a+=- 直线PN 的方程为()d b y b x a c a ++=--,令0y =可得ad bcn d b+=+ 则222222ad bc ad bc a d b c mn d b d b d b -+-⎛⎫⎛⎫== ⎪⎪-+-⎝⎭⎝⎭222222111144111144a c c a c a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭()2222414a c a c -==- 31.椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k -+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k +-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为(1,0).。
匀变速直线运动的位移与时间的关系-新课改2021
3 匀变速直线运动的位移与时间的关系[学习目标] 1.理解匀变速直线运动的位移与时间的关系,会用公式x =v 0t +12at 2解决匀变速直线运动的问题.2.理解匀变速直线运动的速度与位移的关系式并会应用解题.3.知道v -t 图像中的“面积”与位移的对应关系,并会用此关系推导位移和时间关系式.一、匀变速直线运动的位移 1.利用v -t 图像求位移v -t 图像与时间轴所围的 表示位移,如图所示,在图乙中,匀变速直线运动位移2.匀变速直线运动位移与时间的关系式: , 二、速度与位移的关系推导:由速度时间关系式v =v 0+at ,位移时间关系式x =v 0t +12at 2,1.判断下列说法的正误.(1)在v -t 图像中,图线与时间轴所包围的“面积”与物体的位移相等.( )(2)位移公式x =v 0t +12at 2仅适用于匀加速直线运动,而v 2-v 02=2ax 适用于任意运动.( )(3)初速度越大,时间越长,做匀变速直线运动的物体的位移一定越大.( ) (4)因为v 2-v 02=2ax ,v 2=v 02+2ax ,所以物体的末速度v 一定大于初速度v 0.( )2.汽车沿平直公路做匀加速运动,初速度为10 m /s ,加速度为2 m/s 2,5 s 末汽车的速度为________,5 s 内汽车的位移为________,在汽车速度从10 m /s 达到30 m/s 的过程中,汽车的位移为________.一、匀变速直线运动的位移导学探究 阅读教材43页“拓展学习”栏目,体会微元法的基本思想.图2如图2所示,某质点做匀变速直线运动,已知初速度为v 0,在t 时刻的速度为v ,加速度为a ,利用位移大小等于v -t 图线下面梯形的面积推导匀变速直线运动的位移与时间关系知识深化1.在v -t 图像中,图线与t 轴所围的面积对应物体的位移,t 轴上方面积表示位移为 ,t 轴下方面积表示位移为 .2.位移公式x =v 0t +12at 2只适用于匀变速直线运动.3.公式中x 、v 0、a 都是矢量,应用时必须选取正方向.一般选v 0的方向为正方向.当物体做匀减速直线运动时,a 取负值,计算结果中,位移x 的正负表示其方向.4.当v 0=0时,x =12at 2,即由静止开始的匀加速直线运动的位移公式,位移x 与t 2成正比.一物体做匀减速直线运动,初速度大小为v 0=5 m /s ,加速度大小为0.5 m/s 2,求:(1)物体在3 s 内的位移大小; (2)物体在第3 s 内的位移大小.针对训练1 一个物体从静止开始做匀加速直线运动,第1秒内的位移为2 m ,则下列说法正确的是( ) A .物体运动的加速度为2 m/s 2 B .物体第2秒内的位移为4 m C .物体在第3秒内的平均速度为8 m/sD .物体从静止开始通过32 m 的位移需要4 s 的时间 二、匀变速直线运动速度与位移的关系导学探究 如果你是机场跑道设计师,若已知飞机的加速度为a ,起飞速度为v ,则跑道的长度至少为多长?哪种方法较简单.知识深化对速度与位移的关系v2-v02=2ax的理解1.适用范围:仅适用于匀变速直线运动.2.矢量性:公式中v0、v、a、x都是矢量,应用解题时一定要先设定正方向,一般取v0方向为正方向:(1)若是加速运动,a取正值,若是减速运动,a取负值.(2)x>0,位移的方向与初速度方向相同,x<0则为减速到0,又返回到计时起点另一侧的位移.(3)v>0,速度的方向与初速度方向相同,v<0则为减速到0,又返回过程的速度.注意应用此公式时,注意符号关系,必要时对计算结果进行分析,验证其合理性.3.公式的特点:不涉及时间,v0、v、a、x中已知三个量可求第四个量.长100 m的列车通过长1 000 m的隧道时做匀加速直线运动,列车刚进隧道时的速度是10 m/s,完全出隧道时的速度是12 m/s,求:(1)列车过隧道时的加速度的大小;(2)列车通过隧道所用的时间.针对训练2(2019·临沂市高一期末)在交通事故分析中,刹车线的长度是事故责任认定的重要依据,刹车线是汽车刹车后,停止转动的轮胎在地面上滑动时留下的痕迹.在某次交通事故中,汽车刹车线的长度是10 m,假设汽车刹车时的加速度大小为5 m/s2,则汽车开始刹车时的速度为()A.5 m/s B.10 m/s C.15 m/s D.20 m/s三、刹车问题分析一辆汽车正在平直的公路上以72 km/h的速度行驶,司机看见红色信号灯后便立即踩下制动器,此后,汽车开始做匀减速直线运动.设汽车减速过程的加速度大小为5 m/s2,求:(1)开始制动后,前2 s内汽车行驶的距离;(2)开始制动后,前5 s内汽车行驶的距离.四、逆向思维法飞机着陆后以6 m/s2的加速度做匀减速直线运动直至静止.其着陆速度为60 m/s,求:(1)飞机着陆过程中滑行的距离;(2)在此过程中,飞机后4 s滑行的位移大小.1.(位移公式的理解)(多选)(2019·抚州临川一中高一期末)质点做直线运动的位移x与时间t的关系为x=5t+2t2(各物理量均采用国际单位制单位),则该质点()A.加速度为2 m/s2B.前2 s内位移为18 m C.第2 s内的位移是18 mD.前2 s内的平均速度是9 m/s2.(速度与位移关系的应用)如图3所示,一辆以8 m/s的速度沿直线行驶的汽车突然以1 m/s2的加速度加速行驶,则汽车加速行驶了18 m时的速度为()图3A.8 m/s B.12 m/s C.10 m/s D.14 m/s3.(位移公式的应用)一个做匀加速直线运动的物体,初速度v0=2.0 m/s,它在第3 s内通过的位移是4.5 m,则它的加速度为()A.0.5 m/s2B.1.0 m/s2C.1.5 m/s2D.2.0 m/s2答案 B4.(速度与位移关系的应用)做匀加速直线运动的物体,速度从v增加到3v时经过的位移是x,则它的速度从3v增加到5v时经过的位移是()A.32x B.52x C.x D.2x5.(刹车问题)(2019·豫南九校高一上学期期末联考)汽车在平直公路上以10 m/s的速度做匀速直线运动,发现前面有情况而刹车,获得的加速度大小是2 m/s2,求:(1)汽车经3 s时速度的大小;(2)汽车经6 s时速度的大小;(3)从刹车开始经过8 s,汽车通过的距离.。
精品解析:【市级联考】河南省南阳市2018-2019学年高一上学期期末考试数学试题(原卷版)
2018年秋期高中一年级期终质量评估数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|03}A x x =<<,{|1}B x y x ==-,则A B =( )A. [0,3)B. (1,3)C. (0,1]D. (0,1)2.已知圆锥的侧面积展开图是一个半圆,则其母线与底面半径之比为( ) A. 1B.2C.3D. 23.设2ln ln 20x x --=的两根是αβ、,则log log αββα+=( )A.32B. 32-C.52D. 52-4.设,,x y z 为大于1的正数,且235log log log x y z ==,则12x ,13y ,15z 中最小的是( )A.12xB. 13yC.15zD. 三个数相等5.已知3()2f x ax bx =++,若(2)3f -=,则(2)f =( ) A .1B. 2C. 3D. 46.如图所示,'''A B C ∆是水平放置的ABC ∆的直观图,则在ABC ∆的三边及线段AD 中,最长的线段是( )A. ABB. ADC. BCD. AC7.已知矩形ABCD ,4AB =,3BC =,将矩形ABCD 沿对角线AC 折成大小为θ的二面角B AC D --,则折叠后形成的四面体ABCD 的外接球的表面积是( )A. 9πB. 16πC. 25πD. 与θ的大小有关8.已知原点到直线l 的距离为1,圆22(2)(5)4x y -+-=与直线l 相切,则满足条件的直线l 有( ) A. 1条B. 2条C. 3条D. 4条9.如图,在正方体1111ABCD A B C D -中,,E F 分别为,BC CD 的中点,则异面直线AF 和1D E 所成角的大小为( )A. 30B. 45C. 60D. 9010.已知函数lg(1),0()1lg ,01x x f x x x +≥⎧⎪=⎨<⎪-⎩,且0a b +>,0b c +>,0c a +>,则()()()f a f b f c ++的值( )A. 恒为正B. 恒为负C. 恒为0D. 无法确定11.已知某几何体的三视图如图所示,则该几何体的最长棱为( )A. 4B. 22C. 7D. 212.已知函数()(](]111,1,012,0,1x x f x x x -⎧-∈-⎪=+⎨⎪∈⎩,且()()2g x f x mx m =-+在(]1,1-内有且仅有两个不同的零点,则实数m 的取值范围是( ) A. 11,4⎛⎤-- ⎥⎝⎦B. (]1,1,4⎛⎫-∞-⋃-+∞ ⎪⎝⎭ C. 11,4⎡⎫--⎪⎢⎣⎭D. ()1,1,4⎡⎫-∞-⋃-+∞⎪⎢⎣⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.不等式ln(21)0x -<的解集是__________.14.经过点(2,1)且在x 轴和y 轴上的截距相等的直线的方程为__________. 15.已知函数()()2402h x x x =-≤≤的图象与函数()2log f x x =及函数()2xg x =的图象分别交于()()1122,,,A x y B x y 两点,则2212x x +的值为__________.16.已知函数2()f x x bx =+,若函数(())y f f x =的最小值与函数()y f x =的最小值相等,则实数b 的取值范围是__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知直线1:60l x my ++=,2:(2)320l m x y m -++=. (1)若12l l ⊥,求m 的值; (2)若12l l //,求m 的值.18.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PA AC =,PAD DAC ∠=∠.(1)求证:AD PC ⊥;(2)若PAD ∆为等边三角形,2PA =,平面PAD ⊥平面ABCD ,求四棱锥P ABCD -的体积.19.(1)利用函数单调性定义证明:函数(5,0,5y x x x⎤=+∈⎦是减函数;(2)已知当[]2,1x ∈--时,函数425xxy m =-⋅+的图象恒在x 轴的上方,求实数m 的取值范围. 20.已知正方体1111ABCD A B C D -,,E F 分别为AC 和1A D 上的点,且EF AC ⊥,1EF A D ⊥.(1)求证:1//EF BD ;(2)求证:1,,BE D F DA 三条直线交于一点. 21.已知二次函数243y x x =-+的图象与x 轴、y 轴共有三个交点.(1)求经过这三个交点的圆C 的标准方程;(2)当直线2y x m =+与圆C 相切时,求实数m 的值;(3)若直线2y x m =+与圆C 交于,M N 两点,且2MN =,求此时实数m 的值. 22.已知函数2()log f x x =,(0,)x ∈+∞. (1)解不等式:2()3()4f x f x +≥;(2)若函数2()()3()F x f x f x m =+-在区间[1,2]上存在零点,求实数m 的取值范围; (3)若函数()f x 反函数为()G x ,且()()()G xg xh x =+,其中()g x 为奇函数,()h x 为偶函数,试比较(1)g -与1()h -的大小.。
河南省中原名校(即豫南九校)2024-2024学年高一下学期第一次联考全真演练物理试题1
河南省中原名校(即豫南九校)2024-2024学年高一下学期第一次联考全真演练物理试题1一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题地球上只有百万分之一的碳是以碳14形式存在于大气中。
能自发进行衰变,关于发生衰变下列说法正确的是()A.衰变放出的粒子来自于的核外电子B.衰变产生的新核是C.衰变产生的新核的比结合能比大D.衰变放出的粒子带负电,具有很强的电离能力第(2)题核污染水中含有的氚、锶-90、铯-137、碘-129等放射性元素,都有可能对人类和自然界造成损害。
其中锶()半衰期为30年,它经β衰变转变为钇核。
下列说法正确的是( )A.锶经通过β衰变产生的电子来自锶原子的核外电子B.钇原子核内有52个中子C.钇核的比结合能比锶核大D.100个锶原子核经过30年,还剩50个第(3)题关于电磁波,以下说法中不正确的是( )A.微波炉利用了微波的热效应B.家用电器的遥控器大多采用红外线遥控的原理,它有一个有效使用的角度范围C.电磁波从空气中进入水中,频率不发生变化D.我们看到的电视直播节目,声音和画面基本同步,表明声波和光波传播速度十分接近第(4)题如图所示,某理想变压器原、副线圈的匝数比为2:1,电源输出的电压有效值恒为U,理想电流表A和滑动变阻器R与变压器原线圈连接,阻值为的定值电阻接在副线圈两端。
已知滑动变阻器R的最大阻值为,现调节滑动变阻器R的滑片,下列说法正确的是( )A.电流表的示数与滑动变阻器接入电路的阻值R之间的关系为B.电源输出的最小功率为C.当滑动变阻器接入电路的阻值为时,定值电阻两端的电压最大D.滑动变阻器的最大功率为第(5)题一物体做匀加速直线运动,连续经过B、C、D三点, B、C间的距离为4.5m,C、D间的距离为9.5m,通过 BC与CD的时间相同,则经过B点与C点的速度之比为( )A.3:5B.2:7C.9:19D.5:7第(6)题下列有关匀变速直线运动的认识正确的是( )A.物体在一条直线上运动,若在相等的时间内通过的位移相等,则物体的运动就是匀变速直线运动B.加速度大小不变的运动就是匀变速直线运动C.匀变速直线运动是速度变化量为零的运动D.匀变速直线运动的加速度是一个恒量第(7)题在带电量为的金属球的电场中,为测量球附近某点的电场强度E,现在该点放置一带电量为的点电荷,点电荷受力为,则该点的电场强度( )A.B.C.D.第(8)题福建南平茶文化久负盛名,“风过武夷茶香远”“最是茶香沁人心”。
2018-2019学年高一上学期期末考试数学试题(答案+解析)(4)
2018-2019学年高一上学期期末考试数学试卷一、选择题1.(5分)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=()A.{5} B.{2,4} C.{2,4,5,6} D.{1,2,3,4,5,7}2.(5分)下列函数中,既是奇函数又是周期函数的是()A.y=sin x B.y=cos x C.y=ln x D.y=x33.(5分)已知平面向量=(1,﹣2),=(2,m),且∥,则m=()A.1 B.﹣1 C.4 D.﹣44.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A. B. C. D.5.(5分)下列各组向量中,可以作为基底的是()A., B.,C.,D.,6.(5分)已知a=sin80°,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a7.(5分)已知cosα+cosβ=,则cos(α﹣β)=()A.B.﹣C.D.18.(5分)已知非零向量,满足||=4||,且⊥(2+),则与的夹角为()A.B.C.D.9.(5分)函数y=log0.4(﹣x2+3x+4)的值域是()A.(0,﹣2] B.[﹣2,+∞)C.(﹣∞,﹣2] D.[2,+∞)10.(5分)把函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.11.(5分)已知函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,那么h(x)在(﹣∞,0)上的最小值为()A.﹣5 B.﹣1 C.﹣3 D.512.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2017)B.(1,2018)C.[2,2018] D.(2,2018)二、填空题13.(5分)已知tanα=3,则的值.14.(5分)已知,则的值为.15.(5分)已知将函数的图象向左平移个单位长度后得到y=g(x)的图象,则g(x)在上的值域为.16.(5分)下列命题中,正确的是.①已知,,是平面内三个非零向量,则()=();②已知=(sin),=(1,),其中,则;③若,则(1﹣tanα)(1﹣tanβ)的值为2;④O是△ABC所在平面上一定点,动点P满足:,λ∈(0,+∞),则直线AP一定通过△ABC的内心.三、解答题17.(10分)已知=(4,3),=(5,﹣12).(Ⅰ)求||的值;(Ⅱ)求与的夹角的余弦值.18.(12分)已知α,β都是锐角,,.(Ⅰ)求sinβ的值;(Ⅱ)求的值.19.(12分)已知函数f(x)=cos4x﹣2sin x cos x﹣sin4x.(1)求f(x)的最小正周期;(2)当时,求f(x)的最小值以及取得最小值时x的集合.20.(12分)定义在R上的函数f(x)满足f(x)+f(﹣x)=0.当x>0时,f(x)=﹣4x+8×2x+1.(Ⅰ)求f(x)的解析式;(Ⅱ)当x∈[﹣3,﹣1]时,求f(x)的最大值和最小值.21.(12分)已知向量=(),=(cos),记f(x)=.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)若,求的值;(Ⅲ)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,若函数y=g(x)﹣k在上有零点,求实数k的取值范围.22.(12分)已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0(1)求证:f(x)是奇函数;(2)若,试求f(x)在区间[﹣2,6]上的最值;(3)是否存在m,使f(2()2﹣4)+f(4m﹣2())>0对任意x∈[1,2]恒成立?若存在,求出实数m的取值范围;若不存在,说明理由.【参考答案】一、选择题1.B【解析】∵全集U={1,2,3,4,5,6,7},B={1,3,5,7},∴C U B={2,4,6},又A={2,4,5},则A∩(C U B)={2,4}.故选B.2.A【解析】y=sin x为奇函数,且以2π为最小正周期的函数;y=cos x为偶函数,且以2π为最小正周期的函数;y=ln x的定义域为(0,+∞),不关于原点对称,没有奇偶性;y=x3为奇函数,不为周期函数.故选A.3.D【解析】∵∥,∴m+4=0,解得m=﹣4.故选:D.4.A【解析】∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ),又∵当x=时取得最大值2,∴2sin(2•+φ)=2,可得+φ=+2kπ(k∈Z),∵,∴取k=0,得φ=﹣,故选:A.5.B【解析】对于A,,,是两个共线向量,故不可作为基底.对于B,,是两个不共线向量,故可作为基底.对于C,,,是两个共线向量,故不可作为基底..对于D,,,是两个共线向量,故不可作为基底.故选:B.6.B【解析】a=sin80°∈(0,1),=2,<0,则b>a>c.故选:B.7.B【解析】已知两等式平方得:(cosα+cosβ)2=cos2α+cos2β+2cosαcosβ=,(sinα+sinβ)2=sin2α+sin2β+2sinαsinβ=,∴2+2(cosαcosβ+sinαsinβ)=,即cosαcosβ+sinαsinβ=﹣,则cos(α﹣β)=cosαcosβ+sinαsinβ=﹣.故选B.8.C【解析】由已知非零向量,满足||=4||,且⊥(2+),可得•(2+)=2+=0,设与的夹角为θ,则有2+||•4||•cosθ=0,即cosθ=﹣,又因为θ∈[0,π],所以θ=,故选:C.9.B【解析】;∴有;所以根据对数函数log0.4x的图象即可得到:=﹣2;∴原函数的值域为[﹣2,+∞).故选B.10.A【解析】图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到函数;再将图象向右平移个单位,得函数,根据对称轴处一定取得最大值或最小值可知是其图象的一条对称轴方程.故选A.11.B【解析】令F(x)=h(x)﹣2=af(x)+bg(x),则F(x)为奇函数.∵x∈(0,+∞)时,h(x)≤5,∴x∈(0,+∞)时,F(x)=h(x)﹣2≤3.又x∈(﹣∞,0)时,﹣x∈(0,+∞),∴F(﹣x)≤3⇔﹣F(x)≤3⇔F(x)≥﹣3.∴h(x)≥﹣3+2=﹣1,故选B.12.D【解析】作出函数的图象,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log2017x=1,解得x=2017,即x=2017,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c可得1<c<2017,因此可得2<a+b+c<2018,即a+b+c∈(2,2018).故选:D.二、填空题13.【解析】===,故答案为:.14.﹣1【解析】∵,∴f()==,f()=f()﹣1=cos﹣1=﹣=﹣,∴==﹣1.故答案为:﹣1.15.[﹣1,]【解析】将函数=sin2x+﹣=sin(2x+)的图象,向左平移个单位长度后得到y=g(x)=sin(2x++)=﹣sin2x的图象,在上,2x∈[﹣],sin2x∈[﹣,1],∴﹣sin(2x)∈[﹣1,],故g(x)在上的值域为[﹣1,],故答案为:[﹣1,].16.②③④【解析】①已知,,是平面内三个非零向量,则()•=•()不正确,由于()•与共线,•()与共线,而,不一定共线,故①不正确;②已知=(sin),=(1,),其中,则•=sinθ+=sinθ+|sinθ|=sinθ﹣sinθ=0,则,故②正确;③若,则(1﹣tanα)(1﹣tanβ)=1﹣tanα﹣tanβ+tanαtanβ=1﹣tan(α+β)(1﹣tanαtanβ)+tanαtanβ=1﹣(﹣1)(1﹣tanαtanβ)+tanαtanβ=2,故③正确;④∵,λ∈(0,+∞),设=,=,=+λ(+),﹣=λ(+),∴=λ(+),由向量加法的平行四边形法则可知,以,为邻边的平行四边形为菱形,而菱形的对角线平分对角∴直线AP即为A的平分线所在的直线,即一定通过△ABC的内心,故④正确.故答案为:②③④.三、解答题17.解:(Ⅰ)根据题意,=(4,3),=(5,﹣12).则+=(9,﹣9),则|+|==9,(Ⅱ)=(4,3),=(5,﹣12).则•=4×5+3×(﹣12)=﹣16,||=5,||=13,则cosθ==﹣.18.解:(Ⅰ)∵α,β都是锐角,且,.∴cos,sin(α+β)=,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=;(Ⅱ)=cos2β=1﹣2sin2β=1﹣2×.19.解:f(x)=cos2x﹣2sin x cos x﹣sin2x=cos2x﹣sin2x=cos(2x+)(1)T=π(2)∵∴20.解:由f(x)+f(﹣x)=0.当,则函数f(x)是奇函数,且f(0)=0,当x>0时,f(x)=﹣4x+8×2x+1.当x<0时,﹣x>0,则f(﹣x)=﹣4﹣x+8×2﹣x+1.由f(x)=﹣f(﹣x)所以:f(x)=4﹣x﹣8×2﹣x﹣1.故得f(x)的解析式;f(x)=(Ⅱ)x∈[﹣3,﹣1]时,令,t∈[2,8],则y=t2﹣8t﹣1,其对称轴t=4∈[2,8],当t=4,即x=﹣2时,f(x)min=﹣17.当t=8,即x=﹣3时,f(x)max=﹣1.21.解:(Ⅰ)f(x)==sin cos+=sin+=sin(+)+,由2kπ+≤+≤2kπ+,求得4kπ+≤x≤4kπ+,所以f(x)的单调递减区间是[4kπ+,4kπ+].(Ⅱ)由已知f(a)=得sin(+)=,则a=4kπ+,k∈Z.∴cos(﹣a)=cos(﹣4kπ﹣)=1.(Ⅲ)将函数y=f(x)的图象向右平移个单位得到g(x)=sin(﹣)+的图象,则函数y=g(x)﹣k=sin(﹣)+﹣k.∵﹣≤﹣≤π,所以﹣sin(﹣)≤1,∴0≤﹣sin(﹣)+≤.若函数y=g(x)﹣k在上有零点,则函数y=g(x)的图象与直线y=k在[0,]上有交点,所以实数k的取值范围为[0,].22.(1)证明:令x=0,y=0,则f(0)=2f(0),∴f(0)=0.令y=﹣x,则f(0)=f(x)+f(﹣x),∴﹣f(x)=f(﹣x),即f(x)为奇函数;(2)解:任取x1,x2∈R,且x1<x2,∵f(x+y)=f(x)+f(y),∴f(x2)﹣f(x1)=f(x2﹣x1),∵当x>0时,f(x)>0,且x1<x2,∴f(x2﹣x1)>0,即f(x2)>f(x1),∴f(x)为增函数,∴当x=﹣2时,函数有最小值,f(x)min=f(﹣2)=﹣f(2)=﹣2f(1)=﹣1.当x=6时,函数有最大值,f(x)max=f(6)=6f(1)=3;(3)解:∵函数f(x)为奇函数,∴不等式可化为,又∵f(x)为增函数,∴,令t=log2x,则0≤t≤1,问题就转化为2t2﹣4>2t﹣4m在t∈[0,1]上恒成立,即4m>﹣2t2+2t+4对任意t∈[0,1]恒成立,令y=﹣2t2+2t+4,只需4m>y max,而(0≤t≤1),∴当时,,则.∴m的取值范围就为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省豫南九校联考2018-2019学年高一上学期期末考试数学试题★祝考试顺利★注意事项:1、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
3、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
5、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题。
1.同学们,当你任意摆放手中笔的时候,那么桌面所在的平面一定存在直线与笔所在的直线A. 平行B. 相交C. 异面D. 垂直【答案】D【解析】【分析】由题设条件可知,可以借助投影的概念对及三垂线定理选出正确选项.【详解】解:由题意,若笔所在直线若与地面垂直,则在地面总有这样的直线,使得它与笔所在直线垂直;若笔所在直线若与地面不垂直,则其必在地面上有一条投影线,在平面中一定存在与此投影线垂直的直线,由三垂线定理知,与投影垂直的直线一定与此斜线垂直,综上,当你任意摆放手中笔的时候,那么桌面所在的平面一定存在直线与笔所在的直线垂直.故选:D.【点睛】本题考查空间中直线与平面之间的位置关系,解题的关键是熟练掌握线面垂直与三垂线定理,再结合直线与地面位置关系的判断得出答案.2.已知直线l经过点,且斜率为,则直线l的方程为A. B.C. D.【答案】A【解析】直线经过点,且斜率为,则即故选A3.若线段AB的长等于它在平面内的射影长的2倍,则AB所在直线与平面所成的角为A. B. C. D.【答案】C【解析】【分析】根据图形找到线面角,进而在直角三角形中求解即可.【详解】如图,AC⊥α,AB∩α=B,则BC是AB在平面α内的射影,则BC=AB,所以∠ABC =60°,它是AB与平面α所成的角.故选C.【点睛】本题主要考查了线面角的求解,属于基础题.4.下列函数中,满足的单调递增函数是A. B. C. D.【答案】A【解析】【分析】根据题意,由依次分析选项,综合即可得答案.【详解】解:根据题意,依次分析选项:对于A,对于,有,满足,符合题意;对于B,,为对数函数,不满足,不符合题意;对于C,,为指数函数,不满足,不符合题意;对于D,,为指数函数,不满足,不符合题意;故选:A.【点睛】本题考查函数的值的计算,涉及函数单调性的判断,属于基础题.5.若直线:过点,:,则直线与A. 平行B. 相交但不垂直C. 垂直D. 相交于点【答案】C【解析】【分析】利用直线:过点,求出a,求出两条直线的斜率,即可得出结论.【详解】解:直线:过点,,,直线:的斜率为2,:的斜率为,直线与:互相垂直.故选:C.【点睛】本题考查直线方程,考查直线与直线的位置关系,考查学生的计算能力,比较基础.6.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为A. B.C. D.【答案】C【解析】解:将长方体截去一个四棱锥,得到的几何体中可以从左向右看得到,则该几何体的侧视图为D7.已知函数,则=()A. 4B.C.D.【答案】B【解析】【分析】根据分段函数的解析式,代入求解,即可得到答案.【详解】由题意,函数,则,所以,选B.【点睛】本题主要考查了分段函数的求值问题,其中解答中正确把握分段函数的解析式,根据分段条件代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.8.如图是一个正方体的平面展开图,则在正方体中直线AB与CD的位置关系为A. 相交B. 平行C. 异面而且垂直D. 异面但不垂直【答案】D【解析】解:利用展开图可知,线段AB与CD是正方体中的相邻两个面的面对角线,仅仅异面,所成的角为600,因此选D9.已知函数,且,当时,,方程表示的直线是A. B.C. D.【答案】C【解析】∵f(x)=a x,且x<0时,f(x)>1,∴0<a<1,>1.又∵y=ax+在x轴、y轴上的截距分别为-和,且|-|>,故C项图符合要求.10.如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,错误的是()A. B. 截面PQMNC. D. 异面直线PM与BD所成的角为【答案】C【解析】【分析】首先由正方形中的线线平行推导线面平行,再利用线面平行推导线线平行,这样就把AC、BD 平移到正方形内,即可利用平面图形知识做出判断.【详解】解:因为截面PQMN是正方形,所以、,则平面ACD、平面BDA,所以,,由可得,故A正确;由可得截面PQMN,故B正确;异面直线PM与BD所成的角等于PM与QM所成的角,故D正确;综上C是错误的.故选:C.【点睛】本题主要考查线面平行的性质与判定.11.已知在上的减函数,则实数a的取值范围是A. B. C. D.【答案】B【解析】【分析】先将函数转化为,,两个基本初等函数,再利用复合函数的单调性求解.【详解】解:令,,若,则函,是减函数,由题设知为增函数,需,故此时无解;若,则函数是增函数,则t为减函数,需且,可解得综上可得实数a的取值范围是故选:B.【点睛】本题考查复合函数的单调性,关键是分解为两个基本函数,利用同增异减的结论研究其单调性,再求参数的范围.12.九章算术是我国古代著名数学经典其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示阴影部分为镶嵌在墙体内的部分已知弦尺,弓形高寸,估算该木材镶嵌在墙中的体积约为( )(注:1丈尺寸,,)A. 600立方寸B. 610立方寸C. 620立方寸D. 633立方寸【答案】D【解析】【分析】由三角形,利用勾股定理可得半径,进而得,再利用,乘以高即可得体积.【详解】连接,设⊙的半径为,则,所以.由于,所以,即.所以平方寸.∴该木材镶嵌在墙中的体积为立方寸,故选D.【点睛】本题主要考查了垂径定理和勾股定理及扇形的面积公式,柱体的体积公式,属于中档题二、填空题。
13.已知直线,则直线恒经过的定点______.【答案】【解析】试题分析:将直线化简为点斜式,可得,∴直线经过定点,且斜率为.即直线恒过定点.故答案为:.考点:恒过定点的直线.【方法点晴】本题给出含有参数的直线方程,求直线经过的定点坐标.着重考查了直线的基本量与基本形式等知识,属于基础题;如果一条直线经过某一定点,那么这条直线就是过该定点的直线.这里面可以看出,过一个定点的直线是不唯一的,事实上是由无数条直线组成,将直线化简成点斜式的形式得:,可得直线的斜率为且经过定点,从而得到答案.14.在中,,,,平面ABC,,M是AB上一个动点,则PM的最小值为______.【答案】【解析】【分析】要使PM的最小,只需CM最小即可,作于H,连PH,根据线面垂直的性质可知,PH为PM的最小值,在直角三角形PCH中求出PH即可.【详解】解:如图,作于H,连PH,面ABC,,PH为PM的最小值,而,,.故答案为:【点睛】本题主要考查了点、线、面间的距离计算,考查了空间想象能力,推理论证的能力,属于基础题.15.已知集合,集合,则__.【答案】【解析】【分析】解对数不等式得:A=,求指数函数值域有:B=,再利用交集及其运算可得解,【详解】解:解不等式:log2(2x-4)≤1得:0<2x-4≤2,即:2<x≤3,即A=,由y=()x,x,求其值域得:0<y,即B=,即A∩B=,故答案为:.【点睛】本题考查了解对数不等式、求指数函数值域及交集及其运算,属简单题16.平面以任意角度截正方体,所截得的截面图形可以是_____填上所有你认为正确的序号正三边形正四边形正五边形正六边形钝角三角形等腰梯形非矩形的平行四边形【答案】【解析】【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得正六边形,最少与三个面相交得正三边形,因此用一个平面去截一正方体,截面可能为正三边形,正四边形,正六边形,等腰梯形,非矩形的平行四边形.【详解】解:画出截面图形如图:可以画出三边形,但不能画出直角三角形和钝角三角形,故正确,错误;可以画出正四边形,故正确;经过正方体的一个顶点去切就可得到五边形但此时不可能是正五边形,故错误;.正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,且可以画出正六边形,故正确;可以画出梯形但不是直角梯形,故正确.可以画出非矩形的平行四边形,故.故平面以任意角度截正方体,所截得的截面图形可以是:正三边形,正四边形,正六边形,等腰梯形,非矩形的平行四边形.故答案为:.【点睛】本题考查平面截正方体的截面图形的判断,考查棱柱的结构特征等基础知识,考查学生的空间想象能力,考查运算求解能力,是中档题.三、解答题。
17.已知直线l的方程为,直线与l平行且与两坐标轴围成的三角形的面积为4,求直线的方程.【答案】.【解析】【分析】由题意可设直线的方程为:,可得与两坐标轴的交点,利用三角形面积计算公式即可得出.【详解】解:由题意可设直线的方程为:,可得与两坐标轴的交点分别为:,则,解得.直线的方程为:.【点睛】本题考查了相互平行的直线斜率之间的关系、直线与坐标轴的交点、三角形面积计算公式,考查了推理能力与计算能力,属于基础题.18.设函数.当时,求函数的零点.当时,恒成立,求m的最大值.【答案】(1)的零点为1或;(2)3【解析】【分析】求得的解析式,令,解方程可得所求零点;由题意可得在的最小值,由二次函数的单调性可得最小值,即可得到所求m的最大值.【详解】解:时,,由,可得或,则的零点为1或;当时,恒成立,可得在的最小值,由在递增,可得函数y的最小值为3,即有,即m的最大值为3.【点睛】本题考查二次函数的零点和二次不等式恒成立问题解法,注意运用转化思想,考查运算能力,属于基础题.19. (10分)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体ABCD的体积;(2)证明:四边形EFGH是矩形.【答案】(1);(2)详见解析【解析】试题分析:(Ⅰ)证明AD⊥平面BDC,即可求四面体ABCD的体积;(Ⅱ)证明四边形EFGH是平行四边形,EF⊥HG,即可证明四边形EFGH是矩形试题解析:(1)由该四面体的三视图可知,BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1,∴AD⊥平面BDC.∴四面体体积V=××2×2×1=(2)证明:∵BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面E FGH∩平面ABC=EH,∴BC∥FG,BC∥EH.∴FG∥EH.同理EF∥AD,HG∥AD,∴EF∥HG.∴四边形EFGH是平行四边形.又∵AD⊥平面BDC,∴AD⊥BC.∴EF⊥FG.∴四边形EFGH是矩形.考点:1.直线与平面垂直的性质;2.棱柱、棱锥、棱台的体积20.已知的顶点,AB边上的中线CM所在直线方程为边上的高BH 所在直线为求:顶点C的坐标;直线BC的方程.【答案】(1);(2)【解析】试题分析:(1)点是直线与的交点,所以第一步先求直线的方程,利用过定点,和与已知直线垂直,第二步,就求两直线的交点;(2)这一问主要求点的坐标,所以设,代入直线方程,然后求的中点,代入直线方程,最后解方程,根据两点求直线方程.试题解析:解:(1)直线AC的方程为: y﹣1=﹣2(x﹣5),即2x+y﹣11=0,解方程组得则C点坐标为(4,3).(2)设B(m,n),则M(,),,整理得,解得则B点坐标为(﹣1,﹣3),y﹣3=(x﹣4),即直线BC 的方程6x﹣5y﹣9=0.考点:1.求直线方程;2.垂直;2.中点.21.已知四棱锥的底面为菱形,且,,,O为AB 的中点.(1)求证:平面ABCD;(2)求点D到面AEC的距离.【答案】⑴见证明;⑵【解析】试题分析:(Ⅰ)求证EO⊥平面ABCD,只需证明垂直平面内的两条直线即可,注意到,则为等腰直角三角形,是的中点,从而得,由已知可知为边长为2的等边三角形,可连接CO,利用勾股定理,证明EO⊥CO,利用线面垂直的判定,可得EO⊥平面ABCD;(Ⅱ)求点D到平面AEC的距离,求点到平面的距离方法有两种,一.垂面法,二.等体积法,此题的体积容易求,且的面积也不难求出,因此可利用等体积,即,从而可求点D到面AEC的距离.试题解析:(Ⅰ)连接CO.∵,∴△AEB为等腰直角三角形. 1分∵O为AB的中点,∴EO⊥AB,EO=1. 2分又∵四边形ABCD是菱形,∠ABC=60°,∴△ACB是等边三角形,∴CO=. 3分又EC=2,∴EC2=EO2+CO2,∴EO⊥CO. 4分又CO⊂平面ABCD,EO平面ABCD,∴EO⊥平面ABCD. 6分(Ⅱ)设点D到平面AEC的距离为h.∵AE=,AC=EC=2,∴S△AEC=. 8分∵S△ADC=,E到平面ACB的距离EO=1,V D-AEC=V E-ADC, 9分∴S△AEC·h=S△ADC·EO,∴h=, 11分∴点D到平面AEC的距离为. 12分考点:线线垂直的判定、线面垂直的判定,以及棱锥的体积公式,点到平面距离.22.已知函数.判断并证明在上的单调性;若存在使得在上的值域为求实数a的取值范围.【答案】(1)见解析;(2).【解析】【分析】(1)利用定义法证明在上的单调性即可;(2)由(1)可得在上单调递增,若存在由题可得即在区间上有两个不同的根. 列出不等式组求解即可.【详解】(1)、所以在上的单调递增.(2)因为在上的单调递增,所以若存在使得在上的值域为则有也就是即在区间上有两个不同的根. …….8分令要使在区间上有两个不同的根,只需解得则实数的取值范围为【点睛】本题为函数单调性的证明,并利用单调性来解决问题,把方程有两实根转化为二次函数问题是解决问题的关键,属中档题.。