相位法激光测距原理及算法详解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光相位法测距的原理
激光相位测距中,把连续的激光进行幅度调制,调制光的光强随时间做周期性变化,测定调制光往返过程中所经过的相位变化即可求出时间和距离。
图.1 相位式激光测距原理示意图
如图1所示,设发射处与反射处(提升容器)的距离为x ,激光的速度为c ,激光往返它们之间的时间为t ,则有:
c
x
t 2
设调制波频率为f ,从发射到接收间的相位差为 ,则有:
N c
fx
ft 242 (2) 其中,N 为完整周期波的个数, 为不足周期波的余相位。因此可解出:
)(2)22(24N N f
c
N f c f c x
(3) 其中,f c L s 2 称为测尺或刻度,N 即是整尺数, 2 N 为余尺。 根据测得的相位移的大小,可知道N 余尺的大小。而整尺数N 必须通过选择多个合适的测尺频率才能确定,测尺频率的选择是提升容器精确定位的关键因素之一。
多尺测量方法
测量正弦信号相移的方法都无法确定相位的整周期数,即不能确定出相位变化中 2的整倍数N ,而只能测量不足 2的相位尾数 ,因此公式(2.3)中的N 值无法确定,使该式产生多个解,距离D 就不能确定。解决此缺陷的办法是选用一个较低的测尺频率s f ,使其测尺长度s L 稍大于该被测距离,这种状况下不会出现距离的多值解。但是由于测相系统的测相误差,会导致测距误差,并且选用的s L 越大则测距误差越大。因此为了得到较高的测距精度而使用较短的测尺长度,即较大的测尺频率s f ,系统的单值测定距离就相应变小。
为了解决长测程和高精度之间的矛盾,一般使用的解决办法是:当待测距离D 大于基本测尺sb L (精测测尺)时,可再使用一个或几个辅助测尺sl L (又叫粗测测尺),然后将各个测尺测得的距离值组合起来得到单一的和精确的距离信息。由此可见,用一组测尺共同对距离D 进行测量就可以解决距离的多值解,即用短尺保证精度,用长尺保证量程。这样就解决高精度和长测程的矛盾[4]。
本系统选用10米作为精尺,1000米作为粗尺,带入公式即可求得精尺频率和粗尺频率:
精尺频率 MHz L c
f 1525
10
(4) 粗尺频率 kHz L c
f 15021000
1000 (5) 其中,光速s m c /1038 。
上面公式计算出的只是个大概的数值,实际上光速要小于s m /1038 ,而且c 还和实际的大气条件(比如矿井温湿度、气体成分、风速等)有关,因此,这些测尺频率需要进一步调整,具体的做法是在现场标定。
混频原理及其在系统中的应用
模拟相乘混频器
混频是将信号频率由一个量值变换为另一个量值的过程。如图2.2所示,信号输入
和输出的关系分析如下:
图2.2 模拟相乘混频器
Fig. 2 Frequency mixer
设输入信号分别为)cos()(s s sm s t U t U 和)cos()(l l lm l t U t U ,经过模拟乘法器相乘以后得:
l s l s lm sm M l s l s lm sm M z t U U K t U U K U
)(cos 2
1
)(cos 21
(2.6) 由上式可以看出,经过模拟乘法器将两个信号相乘,就实现了两个信号的差频与和频,其中M K 为增益系数。通过带通滤波器或者低通滤波器后,即可得到差分输出:
l s l s lm sm M I t U U K U
)(cos 2
1
在相位法测距中使用混频
精尺频率15MHz 的正弦信号是中高频信号,对其进行测量是很困难的,这样就要求对信号波形做一定的变化,在保证相位不变的情况下降低信号频率,使后级的模数转换器采样更容易。
在本相位式测距系统中,设由DDS 发出的调制信号和APD 接收到的回波信号分别为1U 、2U :
)cos(11 t U (2.7) )cos(22 t U (2.8)
其中f 2 ,f 是精尺频率,其值为15MHz ,此时两路信号的相位差是21 。另外一个DDS 发出的本振信号)cos(313 t U ,其中112f ,1f 为本振频率,其值
为MHz 985.14。
将调制信号1U 与本振信号3U 混频:
31131131131)(cos )(cos 2
1
)
cos()cos( t t t t U U (2.9) 使用低通滤波器保留其低频 kHz 15的正弦信号,得到:
311)(cos t U s (2.10)
同理可得回波信号2U 与本振3U 混频后的信号:
321)(cos t U l (2.11)
此时我们可以得到s U 与l U 的相位差:
213231)()( (2.12)
由此可见,混频前后相位差不变,信号频率降低到了kHz 15。
同理,对于粗尺频率150kHz ,引入的本振频率为135kHz ,经过上述方法,同样可以在相位差不变的情况下将信号频率降低到kHz 15。
基于快速傅里叶变换的相位测量方法
相位法激光测距系统的测量精度主要取决于测相的精度,而传统的测相方式通常大量采用模拟电路,无法解决模拟元件固有的缺点(如温漂、零漂严重,抗干扰能力差等),尤其在煤矿开采现场,不仅环境条件十分恶劣(淋水、粉尘等),而且现场有各种大功率机电设备,有很强的电磁串扰,因而这种采用模拟元器件搭建电路的测相方法在稳定性和可靠性方面都很不理想[4]。
用基于信号频谱分析的鉴相方法,需要对采样的信号进行数字信号处理,这就要求将回波信号这样的模拟量转换为数字量,系统中采用模数转换器(ADC )实现,采样过程需要遵循一定的条件,采样后的数据进行快速傅里叶变换(FFT )算法。
采样定理
A/D 转换是相位法测距的重要组成部分,是整个数字化处理的基础。从模拟的连续