指数函数定义域与值域以及单调性

合集下载

数学高一指数函数知识点

数学高一指数函数知识点

数学高一指数函数知识点在高中数学中,指数函数是一个非常重要且常见的函数类型。

它以指数为变量并与常数底数相乘,具有许多特殊的性质和应用。

本文将围绕高一学生学习指数函数的知识点展开讨论。

1. 基本概念指数函数的定义如下:y = a^x,其中a是底数,x是指数。

指数函数的定义域为实数集,值域为正实数集。

底数a可以是任何正数,但在学习指数函数的初期,常见的底数为2和10。

对于底数为2的指数函数,其函数图像呈现出逐渐增长的特征。

当指数为正偶数时,函数值呈现出平滑增长的趋势;当指数为负偶数时,函数值呈现出平滑下降的趋势。

对于底数为10的指数函数,其函数图像更为陡峭,当指数增大时,函数值也呈现出更大的变化。

2. 指数函数的性质2.1 指数函数的奇偶性对于指数函数y = a^x,当底数a为正时,指数函数是奇函数;当底数a为负时,指数函数是偶函数。

这是因为负底数的指数函数存在奇数个负数解,而正底数的指数函数则不存在负数解。

2.2 指数函数的单调性当底数a大于1时,指数函数为递增函数;当底数a在0和1之间时,指数函数为递减函数。

这是因为当底数大于1时,指数函数的值随着指数的增大而增大;当底数在0和1之间时,指数函数的值随着指数的增大而减小。

2.3 指数函数的极限对于正底数a和实数x,当x趋近于无穷大时,指数函数的极限为正无穷;当x趋近于负无穷大时,指数函数的极限为零。

这是因为指数函数随着指数的增大,其函数值也呈现出更大的变化。

3. 指数函数的应用指数函数在实际生活中有着广泛的应用,下面介绍两个常见的应用场景。

3.1 货币利率计算指数函数可以用于计算货币的复利增长。

当我们将存款存入银行,并以固定的利率计算复利时,我们可以使用指数函数来计算未来的金额。

复利计算公式可以表示为:A = P(1+r/n)^(nt),其中A是最终金额,P是本金,r是利率,n是复利次数,t是时间。

可以看出,指数函数在其中起到了关键的作用。

3.2 爆炸与核衰变指数函数在描述爆炸和核衰变等过程中也具有重要的作用。

数学中的指数函数

数学中的指数函数

数学中的指数函数指数函数是数学中常见的一种函数形式,广泛应用于各个领域。

它的形式可以用f(x) = a^x来表示,其中的a被称为底数,x被称为指数。

在本文中,我将介绍指数函数的定义、性质和应用。

一、指数函数的定义与性质指数函数是一种具有特定形式的函数,它具有以下几个重要的性质:1. 定义域与值域:指数函数的定义域为实数集R,而值域则取决于底数a的取值范围。

当底数a大于1时,指数函数的值域为(0, +∞),表示函数的值是无穷增长的;当0 < a < 1时,指数函数的值域为(0, 1),表示函数的值是递减的。

2. 单调性与奇偶性:当底数a大于1时,指数函数是递增函数,即随着指数的增大,函数的值也随之增大;当0 < a < 1时,指数函数是递减函数,即随着指数的增大,函数的值逐渐减小。

指数函数都是奇函数,即满足f(-x) =1/f(x)的性质。

3. 连续性与导数性质:指数函数在定义域内是连续函数,在任意一点x处存在导数。

导数的计算规则是f'(x) = a^x * ln(a),其中ln(a)表示底数a的自然对数。

4. 逆函数关系:指数函数与对数函数是互为逆函数关系。

具体来说,如果y = a^x,那么x = loga(y),其中loga表示以底数a对y取对数。

二、指数函数的应用领域指数函数在现实生活中有着广泛的应用,主要体现在以下几个方面:1. 自然科学中的模型:指数函数常常被用来描述自然界中的现象。

例如,在生物学中,用指数函数可以描述细胞的繁殖过程;在物理学中,指数函数可以用来表示放射性衰变过程。

2. 经济与金融领域的应用:指数函数被广泛应用于经济学和金融学中的各种模型。

例如,GDP增长模型中的经济增长率可以用指数函数来表示;在复利计算中,利息的增长也符合指数函数的形式。

3. 工程问题的建模:指数函数可以用来解决一些与增长、衰减相关的工程问题。

例如,在化工领域中,指数函数可以用来描述化学反应速率的变化;在电路中,指数函数可以用来描述电容或电感的充电和放电过程。

知识讲解_指数函数及其性质_基础

知识讲解_指数函数及其性质_基础

指数函数及其性质要点一、指数函数的概念:函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释:(1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23xy =⋅,12xy =,31xy =+等函数都不是指数函数.(2)为什么规定底数a 大于零且不等于1:①如果0a =,则000x x ⎧>⎪⎨≤⎪⎩xx时,a 恒等于,时,a 无意义.②如果0a <,则对于一些函数,比如(4)xy =-,当11,,24x x ==⋅⋅⋅时,在实数范围内函数值不存在.③如果1a =,则11xy ==是个常量,就没研究的必要了. 要点二、指数函数的图象及性质:y=a x0<a<1时图象a>1时图象图象性质 ①定义域R ,值域 (0,+∞)②a 0=1, 即x=0时,y=1,图象都经过(0,1)点 ③a x =a ,即x=1时,y 等于底数a④在定义域上是单调减函数 ④在定义域上是单调增函数 ⑤x<0时,a x >1 x>0时,0<a x <1⑤x<0时,0<a x <1 x>0时,a x >1⑥ 既不是奇函数,也不是偶函数(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。

(2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。

当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。

当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。

(3)指数函数xy a =与1xy a ⎛⎫= ⎪⎝⎭的图象关于y 轴对称。

要点三、指数函数底数变化与图像分布规律 (1)① xy a = ②xy b = ③x y c = ④x y d =则:0<b <a <1<d <c又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数112,3,(),()23x x x x y y y y ====的图像:要点四、指数式大小比较方法(1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法比较法有作差比较与作商比较两种,其原理分别为:①若0A B A B ->⇔>;0A B A B -<⇔<;0A B A B -=⇔=; ②当两个式子均为正值的情况下,可用作商法,判断1A B >,或1AB<即可. 【典型例题】类型一、指数函数的概念例1.函数2(33)xy a a a =-+是指数函数,求a 的值. 【答案】2【解析】由2(33)xy a a a =-+是指数函数,可得2331,0,1,a a a a ⎧-+=⎨>≠⎩且解得12,01,a a a a ==⎧⎨>≠⎩或且,所以2a =.【总结升华】判断一个函数是否为指数函数:(1)切入点:利用指数函数的定义来判断;(2)关键点:一个函数是指数函数要求系数为1,底数是大于0且不等于1的常数,指数必须是自变量x .举一反三:【变式1】指出下列函数哪些是指数函数(1)4xy =;(2)4y x =;(3)4xy =-;(4)(4)xy =-;(5)1(21)(1)2xy a a a =->≠且;(6)4x y -=.【答案】(1)(5)(6)【解析】(1)(5)(6)为指数函数.其中(6)4x y -==14x⎛⎫ ⎪⎝⎭,符合指数函数的定义,而(2)中底数x 不是常数,而4不是变数;(3)是-1与指数函数4x 的乘积;(4)中底数40-<,所以不是指数函数.类型二、函数的定义域、值域 例2.求下列函数的定义域、值域.(1)313xxy =+;(2)y=4x -2x +1;(4)y =为大于1的常数)【答案】(1)R ,(0,1);(2)R [+∞,43);(3)1,2⎡⎫-+∞⎪⎢⎣⎭[)0,+∞;(4)(-∞,-1)∪[1,+∞) [1,a)∪(a ,+∞)【解析】(1)函数的定义域为R (∵对一切x ∈R ,3x ≠-1).∵ (13)1111313x x xy +-==-++,又∵ 3x >0, 1+3x >1, ∴ 10113x <<+, ∴ 11013x-<-<+,∴ 101113x<-<+, ∴值域为(0,1). (2)定义域为R ,43)212(12)2(22+-=+-=x x x y ,∵ 2x >0, ∴ 212=x即 x=-1时,y 取最小值43,同时y 可以取一切大于43的实数,∴ 值域为[+∞,43). (3)要使函数有意义可得到不等式211309x --≥,即21233x --≥,又函数3x y =是增函数,所以212x -≥-,即12x ≥-,即1,2⎡⎫-+∞⎪⎢⎣⎭,值域是[)0,+∞.(4)∵011112≥+-=-+x x x x ∴ 定义域为(-∞,-1)∪[1,+∞), 又∵111011≠+-≥+-x x x x 且,∴ a ay a y x x x x≠=≥=-+-+1121121且, ∴值域为[1,a)∪(a ,+∞).【总结升华】求值域时有时要用到函数单调性;第(3)小题中值域切记不要漏掉y>0的条件,第(4)小题中112111≠+-=+-x x x 不能遗漏. 举一反三:【变式1】求下列函数的定义域: (1)2-12x y =(2)y =(3)y =(4)0,1)y a a =>≠【答案】(1)R ;(2)(]-3∞,;(3)[)0,+∞;(4)a>1时,(]-0∞,;0<a<1时,[)0+∞,【解析】(1)R(2)要使原式有意义,需满足3-x ≥0,即3x ≤,即(]-3∞,.(3) 为使得原函数有意义,需满足2x -1≥0,即2x ≥1,故x ≥0,即[)0,+∞(4) 为使得原函数有意义,需满足10xa -≥,即1xa ≤,所以a>1时,(]-0∞,;0<a<1时,[)0+∞,.【总结升华】本题中解不等式的依据主要是指数函数的单调性,根据所给的同底指数幂的大小关系,结合单调性来判断指数的大小关系.类型三、指数函数的单调性及其应用例3.讨论函数221()3x xf x -⎛⎫= ⎪⎝⎭的单调性,并求其值域.【思路点拨】对于x ∈R ,22103x x-⎛⎫> ⎪⎝⎭恒成立,因此可以通过作商讨论函数()f x 的单调区间.此函数是由指数函数及二次函数复合而成的函数,因此可以逐层讨论它的单调性,综合得到结果.【答案】函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数 (0,3] 【解析】解法一:∵函数()f x 的定义域为(-∞,+∞),设x 1、x 2∈(-∞,+∞)且有x 1<x 2,∴222221()3x x f x -⎛⎫= ⎪⎝⎭,211211()3x x f x -⎛⎫= ⎪⎝⎭,222222121212121122()()(2)2211()113()3313x x x x x x x x x x x x f x f x -----+--⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭. (1)当x 1<x 2<1时,x 1+x 2<2,即有x 1+x 2-2<0.又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)<0,则知2121()(2)113x x x x -+-⎛⎫> ⎪⎝⎭.又对于x ∈R ,()0f x >恒成立,∴21()()f x f x >. ∴函数()f x 在(-∞,1)上单调递增.(2)当1≤x 1<x 2时,x 1+x 2>2,即有x 1+x 2-2>0. 又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)>0,则知2121()(2)1013x x x x -+-⎛⎫<< ⎪⎝⎭.∴21()()f x f x <.∴函数()f x 在[1,+∞)上单调递减.综上,函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数.∵x 2―2x=(x ―1)2―1≥-1,1013<<,221110333x x--⎛⎫⎛⎫<≤= ⎪⎪⎝⎭⎝⎭. ∴函数()f x 的值域为(0,3].解法二:∵函数()f x 的下义域为R ,令u=x 2-2x ,则1()3uf u ⎛⎫= ⎪⎝⎭.∵u=x 2―2x=(x ―1)2―1,在(―∞,1]上是减函数,1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内是减函数,∴函数()f x 在(-∞,1]内为增函数.又1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内为减函数,而u=x 2―2x=(x ―1)2―1在[1,+∞)上是增函数,∴函数()f x 在[1,+∞)上是减函数.值域的求法同解法一.【总结升华】由本例可知,研究()f x y a =型的复合函数的单调性用复合法,比用定义法要简便些,一般地有:即当a >1时,()f x y a=的单调性与()y f x =的单调性相同;当0<a <1时,()f x y a=的单调与()y f x =的单调性相反.举一反三:【变式1】求函数2323xx y -+-=的单调区间及值域.【答案】3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减. 14(0,3]【解析】[1]复合函数——分解为:u=-x 2+3x-2, y=3u ;[2]利用复合函数单调性判断方法求单调区间; [3]求值域. 设u=-x 2+3x-2, y=3u ,其中y=3u 为R 上的单调增函数,u=-x 2+3x-2在3(,]2x ∈-∞上单增, u=-x 2+3x-2在3[,)2x ∈+∞上单减, 则2323xx y -+-=在3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减.又u=-x 2+3x-22311()244x =--+≤, 2323x x y -+-=的值域为14(0,3].【变式2】求函数2-2()(01)xxf x a a a =>≠其中,且的单调区间.【解析】当a>1时,外层函数y=a u 在()-∞+∞,上为增函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()(-1)x xf x a =∞在区间,上为减函数,在区间[)1+∞,上为增函数; 当0<a<1时,外层函数y=a u 在()-∞+∞,上为减函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()xxf x a =在区间(1)-∞,上为增函数,在区间[)1,+∞上为减函数.例4.证明函数1()(1)1x xa f x a a -=>+在定义域上为增函数. 【思路点拨】利用函数的单调性定义去证明。

指数函数与对数函数

指数函数与对数函数

指数函数与对数函数指数函数与对数函数是高中数学中重要的函数之一,它们在数学中具有广泛的应用。

本文将介绍指数函数与对数函数的定义、性质以及它们之间的关系。

一、指数函数的定义与性质指数函数是以底数为正实数的幂的函数,即f(x)=a^x,其中a>0且a≠1。

指数函数的定义域为实数集,值域为正实数集。

1. 指数函数的单调性:当底数a>1时,指数函数是严格递增函数;当底数02. 指数函数的特殊值:当x=0时,任何底数的指数函数等于1,即a^0=1;当a>0且a≠1时,当x→+∞时,指数函数趋于正无穷大;当a>0且a≠1时,当x→-∞时,指数函数趋于正零。

3. 指数函数的性质:指数函数具有复合函数性质,即a^x=a^(p·q)=(a^p)^q。

指数函数还具有指数法则:a^m·a^n=a^(m+n)、(a^m)^n=a^(m·n)、(a·b)^n=a^n·b^n。

二、对数函数的定义与性质对数函数是指以某个正实数为底的指数函数的反函数,即f(x)=log<sub>a</sub>x,其中a>0且a≠1。

对数函数的定义域为正实数集,值域为实数集。

1. 对数函数的单调性:对数函数是严格递增函数,即x<y,则log<sub>a</sub>x2. 对数函数的特殊值:当x=1时,任何底数的对数函数等于0,即log<sub>a</sub>1=0;当x=a>0且a≠1时,log<sub>a</sub>a=1。

3. 对数函数的性质:对数函数的基本性质是a^log<sub>a</sub>x=x。

对数函数还具有对数法则:log<sub>a</sub>(x·y)=log<sub>a</sub>x+log<sub>a</sub>y、log<sub>a</sub>(x/y)=log<sub>a</sub>x-log<sub>a</sub>y、log<sub>a</sub>x<sup>n</sup>=n·log<sub>a</sub>x。

指数函数与对数函数的性质与像

指数函数与对数函数的性质与像

指数函数与对数函数的性质与像指数函数与对数函数是高中数学中的两个重要概念,它们在数学和自然科学中有着广泛的应用。

本文将介绍指数函数和对数函数的性质,以及它们的像。

一、指数函数的性质与像指数函数可以表示为f(x)=a^x,其中a为底数(a>0且a≠1),x为指数。

指数函数的性质如下:1. 定义域与值域:指数函数的定义域为实数集R,值域为正实数集R+。

2. 单调性:当底数a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。

3. 对称性:当底数为a>1时,指数函数关于y轴对称;当0<a<1时,指数函数关于x轴对称。

4. 连续性:指数函数在定义域上连续。

指数函数的像表示为y=a^x,其中a为底数,x为自变量。

根据指数函数的性质,我们可以得出以下结论:正实数。

2. 当0<a<1时,指数函数的像是逐渐减小的,并且可以取到所有正实数。

二、对数函数的性质与像对数函数可以表示为g(x)=logₐ(x),其中a为底数(a>0且a≠1),x 为实数。

对数函数的性质如下:1. 定义域与值域:对数函数的定义域为正实数集R+,值域为实数集R。

2. 单调性:当底数a>1时,对数函数是递增函数;当0<a<1时,对数函数是递减函数。

3. 对称性:当底数为a>1时,对数函数关于y=x对称;当0<a<1时,对数函数关于y=-x对称。

4. 连续性:对数函数在定义域上连续。

对数函数的像表示为y=logₐ(x),其中a为底数,x为自变量。

根据对数函数的性质,我们可以得出以下结论:实数。

2. 当0<a<1时,对数函数的像是逐渐减小的,并且可以取到所有实数。

综上所述,指数函数与对数函数都是重要的数学概念,在数学和自然科学中有着广泛应用。

它们的性质包括定义域与值域、单调性、对称性和连续性。

它们的像也可以根据底数的大小分为不同情况,分别是根据指数函数和对数函数的单调性逐渐增大或逐渐减小。

指数函数经典例题(答案)

指数函数经典例题(答案)

指数函数1.指数函数的定义:函数叫做指数函数,其中x是自变量,函数定义域是R2.指数函数的图象和性质:在同一坐标系中分别作出函数y=,y=,y=,y=的图象.我们观察y=,y=,y=,y=图象特征,就可以得到的图象和性质。

指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨.1.比较大小 例1 已知函数满足,且,则与的大小关系是_____. 分析:先求的值再比较大小,要注意的取值是否在同一单调区间内. 解:∵, ∴函数的对称轴是. 故,又,∴. ∴函数在上递减,在上递增. 若,则,∴; 若,则,∴. 综上可得,即. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式 例2 已知,则x的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵, ∴函数在上是增函数, ∴,解得.∴x的取值范围是. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.3.求定义域及值域问题 例3 求函数的定义域和值域. 解:由题意可得,即, ∴,故.∴函数的定义域是. 令,则, 又∵,∴.∴,即. ∴,即. ∴函数的值域是. 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响. 4.最值问题 例4 函数在区间上有最大值14,则a的值是_______. 分析:令可将问题转化成二次函数的最值问题,需注意换元后的取值范围. 解:令,则,函数可化为,其对称轴为. ∴当时,∵, ∴,即. ∴当时,. 解得或(舍去); 当时,∵, ∴,即, ∴时,, 解得或(舍去),∴a的值是3或. 评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等. 5.解指数方程 例5 解方程. 解:原方程可化为,令,上述方程可化为,解得或(舍去),∴,∴,经检验原方程的解是. 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题 例6 为了得到函数的图象,可以把函数的图象( ). A.向左平移9个单位长度,再向上平移5个单位长度 B.向右平移9个单位长度,再向下平移5个单位长度 C.向左平移2个单位长度,再向上平移5个单位长度 D.向右平移2个单位长度,再向下平移5个单位长度 分析:注意先将函数转化为,再利用图象的平移规律进行判断. 解:∵,∴把函数的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数的图象,故选(C). 评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.习题1、比较下列各组数的大小: (1)若,比较与; (2)若,比较与; (3)若,比较与; (4)若,且,比较a与b; (5)若,且,比较a与b. 解:(1)由,故,此时函数为减函数.由,故. (2)由,故,故.从而. (3)由,因,故.又,故.从而. (4)应有.因若,则.又,故,这样,故.从而,这与已知矛盾. (5)应有.因若,则.又,故,这样有.又因,且,故.从而,这与已知矛盾. 小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2,曲线分别是指数函数,和的图象,则与1的大小关系是 ( ). ( 分析:首先可以根据指数函数单调性,确定,在轴右侧令,对应的函数值由小到大依次为,故应选. 小结:这种类型题目是比较典型的数形结合的题目,第(1)题是由数到形的转化,第(2)题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识.求最值3,求下列函数的定义域与值域.(1)y=2; (2)y=4x+2x+1+1.解:(1)∵x-3≠0,∴y=2的定义域为{x|x∈R且x≠3}.又∵≠0,∴2≠1,∴y=2的值域为{y|y>0且y≠1}.(2)y=4x+2x+1+1的定义域为R.∵2x>0,∴y=4x+2x+1+1=(2x)2+2·2x+1=(2x+1)2>1.∴y=4x+2x+1+1的值域为{y|y>1}.4,已知-1≤x≤2,求函数f(x)=3+2·3x+1-9x的最大值和最小值解:设t=3x,因为-1≤x≤2,所以,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。

指数函数的图像及性质

指数函数的图像及性质

∴1-3c>3a-1,即3c+3a<2. 【答案】 D
求与指数函数有关的函数的定义域与值域
求下列函数的定义域和值域:
(1) y=( 1 )2x-x2;(2)y=9x+2×3x-1.
2
思路点拨:这是与指数函数有关的复合函数,可以利 用指数函数的概念和性质来求函数的定义域、值域,对于 形式较为复杂的可以考虑利用换元法(如(2)).
素材2.1 设函数f x =a- (a 0且a 1),
x
若f 2 = 4,则a = f (2)与f 1的大小关系 是 ;

xa x 2 函数y = 0 a 1的 | x| 图象的大致形状是

解析:
1由f 2 4,得a
-2
1 4,所以a , 2
另一部分是:y=3x
(x<0)
向左平移
1个单位
y=3x+1 (x<-1).
图象如图:
(2)由图象知函数在(-∞,-1]上是增函数,
在(-1,+∞)上是减函数. (3)由图象知当x=-1时,函数有最大值1,无最小值. 探究提高
在作函数图象时,首先要研究函数与某一
基本函数的关系.然后通过平移或伸缩来完成.
考点探究
点评: 利用单调性可以解决与指数函数有关的值域 问题.指数函数本身是非奇非偶函数,但是与指数函数有
关的一些函数则可能是奇函数或偶函数.要注意使用相关
的概念和性质解决问题.
考点探究
2 2.已知 f(x)是定义在 R 上的奇函数,且当 x∈(0,1)时,f(x)= x . 4 +1 (1)求 f(x)在(-1,1)上的解析式; (2)证明:f(x)在(0,1)上是减函数.

指数函数有什么性质?如何证明指数函数的单调性?

指数函数有什么性质?如何证明指数函数的单调性?

指数函数有什么性质?如何证明指数函数的单调性? 指数函数是数学中重要的函数。

应用到值e上的这个函数写为exp(x)。

还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。

在高中数学中占有一定位置。

那幺指数函数有什幺性质?如何证明指数函数的单调性? 指数函数有什幺性质? 指数函数一般具有以下性质:(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于0函数无意义一般也不考虑。

(2) 指数函数的值域为大于0的实数集合。

(3) 函数图形都是下凹的。

(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

小编推荐:《2018年高考数学备考计划好的复习计划是成功的开始》(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。

(7) 函数总是通过(0,1)这点,(若Y=Ax+B,则函数定过点(0,1+b) (8) 显然指数函数无界。

(9) 指数函数既不是奇函数也不是偶函数。

(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 课件(20张)

4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 课件(20张)
4.2 指数函数
4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质
1.理解指数函数的概念. 2.探索指数函数的单调性与图象的特殊点,并掌握指数函数图象的性质. 3.体会直观想象的过程,加强数学抽象、数学运算素养的培养.
指数函数 一般地,函数① y=ax(a>0,且a≠1) 叫做指数函数,其中指数x是自变量,定义 域是② R .
解下列方程:
(1)81×32x=
1 9
x2
;(2)22x+2+3×2x-1=0.
思路点拨
(1)两边化为同底数幂 利用指数相等求解.
(2)令2x=t(t>0),将原方程化为4t2+3t-1=0 求出t的值
解析
(1)∵81×32x=
1 9
x
2
,∴32x+4=3-2(x+2),
∴2x+4=-2(x+2),解得x=-2.
与指数函数有关的复合函数的定义域、值域问题
大家对“水痘”应该不陌生,它与其他的传染病一样,有一定的潜伏期,这段时 间里病原体在机体内不断地繁殖.病原体的繁殖方式有很多种,分裂就是其中的一 种.我们来看某种球菌的分裂过程:由1个分裂成2个,2个分裂成4个,4个分裂成8个, …… 问题 1.2个这样的球菌分裂x次后,得到的球菌的个数y与分裂次数x的关系式是什么? 提示:y=2x+1. 2.上述求出的关系式中x的范围是什么? 函数的值域是什么? 提示:x∈N*;值域是{22,23,24,…}.
比较指数幂大小
1.01365 37.8, 0.99365 0.03,
1.02365 1 377.4, 0.98365 0.000 6.
问题 1.上面的式子告诉我们一个什么道理? 提示:积跬步以致千里,积怠惰以致深渊. 2.如果不计算出结果,如何比较上式中各指数幂的大小? 提示:利用函数单调性进行比较.

2021年人教版高一数学必修一第4单元 指数函数与对数函数(讲解和习题)

2021年人教版高一数学必修一第4单元 指数函数与对数函数(讲解和习题)

人教版高一数学必修一第4单元指数函数与对数函数(讲解和习题)基础知识讲解一.指数函数的定义、解析式、定义域和值域【基础知识】1、指数函数的定义:一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R,值域是(0,+∞).2、指数函数的解析式:y=a x(a>0,且a≠1)【技巧方法】①因为a>0,x是任意一个实数时,a x是一个确定的实数,所以函数的定义域为实数集R.①规定底数a大于零且不等于1的理由:如果a=0,当x>0时,a x恒等于0;当x≤0时,a x无意义;如果a<0,比如y=(﹣4)x,这时对于x=,x=在实数范围内函数值不存在.如果a=1,y=1x=1是一个常量,对它就没有研究的必要,为了避免上述各种情况,所以规定a>0且a≠1.二.指数函数的图象与性质【基础知识】1、指数函数y=a x(a>0,且a≠1)的图象和性质:y =a x a >1 0<a <1图象定义域 R 值域 (0,+∞) 性质过定点(0,1)当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R 上是增函数在R 上是减函数2、底数与指数函数关系①在同一坐标系内分别作函数的图象,易看出:当a >l 时,底数越大,函数图象在第一象限越靠近y 轴;同样地,当0<a <l 时,底数越小,函数图象在第一象限越靠近x 轴. ①底数对函数值的影响如图.①当a >0,且a ≠l 时,函数y =a x 与函数y =的图象关于y 轴对称.3、利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较: 若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.三.二次函数的性质与图象【二次函数】二次函数相对于一次函数而言,顾名思义就知道它的次数为二次,且仅有一个自变量,因变量随着自变量的变化而变化.它的一般表达式为:y=ax2+bx+c(a≠0)【二次函数的性质】二次函数是一个很重要的知识点,不管在前面的选择题填空题还是解析几何里面,或是代数综合体都有可能出题,其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.这里面略谈一下他的一些性质.①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称轴x=﹣;最值为:f(﹣);判别式①=b2﹣4ac,当①=0时,函数与x轴只有一个交点;①>0时,与x轴有两个交点;当①<0时无交点.①根与系数的关系.若①≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1•x2=;①二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.①平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;四.指数型复合函数的性质及应用【基础知识】指数型复合函数性质及应用:指数型复合函数的两个基本类型:y=f(a x)与y=a f(x)复合函数的单调性,根据“同增异减”的原则处理U=g(x)y=a u y=a g(x)增增增减减增增减减减增减.五.指数函数的单调性与特殊点【基础知识】1、指数函数单调性的讨论,一般会以复合函数的形式出现,所以要分开讨论,首先讨论a 的取值范围即a>1,0<a<1的情况.再讨论g(x)的增减,然后遵循同增、同减即为增,一减一增即为减的原则进行判断.2、同增同减的规律:(1)y=a x如果a>1,则函数单调递增;(2)如果0<a<1,则函数单调递减.3、复合函数的单调性:(1)复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大;(2)复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X.因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大.因此可得“同增”若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小.反之亦然,因此可得“异减”.六.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.七.指数式与对数式的互化【基础知识】a b=N①log aN=b;指数方程和对数方程主要有以下几种类型:(1)a f(x)=b①f(x)=log a b;log a f(x)=b①f(x)=a b(定义法)(2)a f(x)=a g(x)①f(x)=g(x);log a f(x)=log a g(x)①f(x)=g(x)>0(同底法)(3)a f(x)=b g(x)①f(x)log m a=g(x)log m b;(两边取对数法)(4)log a f(x)=log b g(x)①log a f(x)=;(换底法)(5)A log x+B log a x+C=0(A(a x)2+Ba x+C=0)(设t=log a x或t=a x)(换元法)八.对数的运算性质【基础知识】对数的性质:①=N;①log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.九.换底公式的应用【基础知识】换底公式及换底性质:(1)log a N=(a>0,a≠1,m>0,m≠1,N>0).(2)log a b=,(3)log a b•log b c=log a c,十.对数函数的定义域【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.十一.对数函数的值域与最值【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.定点:函数图象恒过定点(1,0)十二.对数值大小的比较【基础知识】1、若两对数的底数相同,真数不同,则利用对数函数的单调性来比较.2、若两对数的底数和真数均不相同,通常引入中间变量(1,﹣1,0)进行比较3、若两对数的底数不同,真数也不同,则利用函数图象或利用换底公式化为同底的再进行比较.(画图的方法:在第一象限内,函数图象的底数由左到右逐渐增大)十三.对数函数的单调性与特殊点【基础知识】对数函数的单调性和特殊点:1、对数函数的单调性当a>1时,y=log a x在(0,+∞)上为增函数当0<a <1时,y =log a x 在(0,+∞)上为减函数 2、特殊点对数函数恒过点(1,0)十四.对数函数图象与性质的综合应用 【基础知识】1、对数函数的图象与性质:a >10<a <1图象定义域 (0,+∞)值域 R 定点 过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x >1时,y >0;当0<x <1,y <0当x >1时,y <0;当0<x <1时,y >02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【技巧方法】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十五.指数函数与对数函数的关系【基础知识】指数函数和对数函数的关系:(1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.(2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.(3)指数函数与对数函数的联系与区别:十六.反函数【基础知识】【定义】一般地,设函数y=f(x)(x①A)的值域是C,根据这个函数中x,y的关系,用y把x表示出,得到x=g(y).若对于y在中的任何一个值,通过x=g(y),x在A中都有唯一的值和它对应,那么,x=g(y)就表示y是自变量,x是因变量是y的函数,这样的函数y=g(x)(y①C)叫做函数y=f(x)(x①A)的反函数,记作y=f(﹣1)(x)反函数y=f (﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了角色(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射;(3)一个函数与它的反函数在相应区间上单调性一致;(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C(其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.(5)一切隐函数具有反函数;(6)一段连续的函数的单调性在对应区间内具有一致性;(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】;(8)反函数是相互的且具有唯一性;(9)定义域、值域相反对应法则互逆(三反);(10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)).十七.对数函数图象与性质的综合应用【基础知识】1、对数函数的图象与性质:a>10<a<1图象定义域(0,+∞)值域R定点过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x>1时,y>0;当0<x<1,y<0当x>1时,y<0;当0<x<1时,y>02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【解题方法点拨】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十八.函数的零点【基础知识】一般地,对于函数y=f(x)(x①R),我们把方程f(x)=0的实数根x叫作函数y=f (x)(x①D)的零点.即函数的零点就是使函数值为0的自变量的值.函数的零点不是一个点,而是一个实数.十九.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.【技巧方法】(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.二十.函数的零点与方程根的关系【基础知识】函数的零点表示的是函数与x轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.二十一. 二分法【基础知识】二分法即一分为二的方法.设函数f(x)在[a,b]上连续,且满足f(a)•f(b)<0,我们假设f(a)<0,f(b)>0,那么当x1=时,若f(x1)=0,这说x1为零点;若不为0,假设大于0,那么继续在[x1,b]区间取中点验证它的函数值为0,一直重复下去,直到找到满足要求的点为止.这就是二分法的基本概念.习题演练一.选择题(共12小题)1.已知函数()21x f x x =--,则不等式()0f x >的解集是( ) A .()1,1- B .()(),11,-∞-+∞C .()0,1D .()(),01,-∞⋃+∞2.下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )2=21m - C .m 2+m 2=2m 2D .(m +n )2=m 2+n 23.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A . B .C .D .4.设2,8()(8),8x x f x f x x ⎧≤=⎨->⎩,则(17)f =( )A .2B .4C .8D .165.函数13x y a +=-(0a >,且1a ≠)的图象一定经过的点是( ) A .()0,2-B .()1,3--C .()0,3-D .()1,2--6.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+7.已知函数1()ln 1f x x x =--,则()y f x =的图象大致为( ).A .B .C .D .8.已知2log a e =,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>9.函数()2xf 的定义域为[1,1]-,则()2log y f x =的定义域为( )A .[1,1]-B.C .1,22⎡⎤⎢⎥⎣⎦D .[1,4]10.设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减11.已知函数()ln 1,01,0xx x f x e x ⎧+>=⎨+≤⎩,()22g x x x =--,若方程()()0f g x a -=有4个不相等的实根,则实数a 的取值范围是( ) A .(),1-∞B .(]0,1C .(]1,2D .[)2,+∞12.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭二.填空题(共6小题)13.计算:13021lg8lg 25327e -⎛⎫-++= ⎪⎝⎭__________.14.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 15.已知当(]1,2x ∈时,不等式()21log a x x -≤恒成立,则实数a 的取值范围为________.16.若关于x 的方程11224a x x =-++-的解集为空集,求实数a 的取值范围______. 17.已知函数223,3()818,3x x f x x x x -⎧<=⎨-+≥⎩,则函数()()2g x f x =-的零点个数为_________.18.已知定义在R 上的函数()f x 满1(2)()f x f x +=,当[0,2)x ∈时,()x f x x e =+,则(2019)f =_______.三.解析题(共6小题)19.已知函数()log (1)log (3)(01)a a f x x x a =-++<<.(1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为-4,求a 的值.20.已知定义域为R 的函数,12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.21.设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)=2f . (1)求a 的值;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.22.已知实数0a >,定义域为R 的函数()x x e af x a e=+是偶函数,其中e 为自然对数的底数.(①)求实数a 值;(①)判断该函数()f x 在(0,)+∞上的单调性并用定义证明;(①)是否存在实数m ,使得对任意的t R ∈,不等式(2)(2)f t f t m -<-恒成立.若存在,求出实数m 的取值范围;若不存在,请说明理由.23.函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >. (1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422x xf -<.24.甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P (元)与时间t (天)的函数关系如图所示(1),该商品日销售量Q (件)与时间t (天)的函数关系如图(2)所示.(1)(2)(1)写出图(1)表示的销售价格与时间的函数关系式()P f t =,写出图(2)表示的日销售量与时间的函数关系式()Q g t =及日销售金额M (元)与时间的函数关系式()M h t =. (2)乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N (元)与时间t (天)之间的函数关系式为22102750N t t =--+,试比较4月份每天两商店销售金额的大小关系。

指数函数单调区间

指数函数单调区间

指数函数单调区间指数函数单调区间指数函数是一类常见的函数,其形式为f(x) = a^x,其中a为一个正实数且不等于1。

在指数函数中,a被称为底数,x被称为指数。

指数函数在数学、物理、化学等领域都有广泛的应用。

本文将介绍指数函数的单调性及其单调区间。

一、定义与基本性质1. 定义指数函数是以常数e为底的幂函数,即f(x) = e^x。

2. 基本性质(1)定义域:实数集R。

(2)值域:(0,+∞)。

(3)单调性:当x1<x2时,e^x1<e^x2,即指数函数在整个定义域上是严格增加的。

(4)连续性:e^x在整个定义域上连续。

二、单调性指数函数在整个定义域上是严格增加的。

这意味着对于任意两个实数x1和x2,如果满足x1<x2,则有e^x1<e^x2。

这一特点可以通过求导来证明。

三、单调区间根据上述结论,我们可以得到指数函数的单调区间。

由于其在整个定义域上都是严格增加的,因此不存在下降的区间。

因此,指数函数的单调区间为整个定义域,即(-∞,+∞)。

四、例题解析下面通过一道例题来进一步理解指数函数的单调性及其单调区间。

例题:求指数函数y=2^x的单调区间。

解析:根据指数函数的定义和基本性质,我们可以知道2^x在整个定义域上是严格增加的。

因此,其单调区间为整个定义域,即(-∞,+∞)。

五、总结本文介绍了指数函数的定义、基本性质、单调性及其单调区间。

通过对指数函数的学习,我们可以更好地理解和应用这一类常见的函数。

人教A版必修1指数函数及其性质知识点总结与例题讲解

人教A版必修1指数函数及其性质知识点总结与例题讲解

指数函数及其性质知识点总结本节知识点(1)指数函数的概念 (2)指数函数的图象和性质 (3)指数函数的定义域和值域 (4)指数函数的单调性及其应用 (5)指数函数的图象变换 知识点一 指数函数的概念一般地,函数xa y =(0>a 且1≠a )叫做指数函数,其中x 是自变量,函数的定义域是R . 1.为什么规定“0>a 且1≠a ”?答:若0=a ,则当0>x 时,0=x a ,当x ≤0时,xa 无意义;若0<a ,则对于x 的某些值,xa 无意义,如函数()xy 2-=,当 41,21=x 时,函数无意义;若1=a ,则对任意的∈x R ,都有1=x a ,没有研究的必要.基于上面的原因,在指数函数的定义中,规定0>a 且1≠a .上面的定义,是形式定义. 2.为什么指数函数的定义域是R ?答:对于指数幂来说,当底数大于0时,指数已经由整数指数推广到了实数指数,所以在指数函数的定义里面,自变量的取值范围是全体实数,即函数的定义域为R . 3.指数函数的结构特征指数函数的定义是形式上的定义,其函数解析式的结构具有非常明显的特征,如下: (1)指数中只有一个自变量x ,而不是含自变量的多项式; (2)xa 的系数必须为1,不能是其它的数字,也不能含有自变量; (3)底数a 必须满足0>a 且1≠a 的一个常数.根据上面的三个特征,可以判断一个函数是否为指数函数,也可以在已知指数函数的前提下,求参数的值或参数的取值范围.例1. 已知函数()()x a a x f ⋅-=32是指数函数,求a 的值. 分析:本题考查指数函数的定义,指数函数的定义有三个特征: (1)指数的位置只有一个自变量,但不是含自变量的多项式; (2)底数是一个大于0且不等于1的常数;(3)x a 的系数必须为1.解:∵函数()()x a a x f ⋅-=32是指数函数∴⎪⎩⎪⎨⎧≠>=-10132a a a ,解之得:2=a . 例2. 已知指数函数()()32--+=a a a y x 的图象过点()4,2,则=a _________.解:由题意可得:()()⎪⎩⎪⎨⎧≠>=--10032a a a a ,解之得:2=a 或3=a .∵函数的图象经过点()4,2 ∴2=a .例3. 若指数函数()x f 的图象经过点()9,2,求()x f 的解析式及()1-f 的值. 解:设函数()x a x f =.∵其图象经过点()9,2,∴2239==a ,∴3=a . ∴()x f 的解析式为()x x f 3=. ∴()31311==--f . 例4. 函数()x a a a y 442+-=是指数函数,则a 的值是【 】 (A )4 (B )1或3 (C )3 (D )1解:由题意可得:⎪⎩⎪⎨⎧≠>=+-101442a a a a ,解之得:3=a .∴x y 3=.选择【 C 】.例5. 若函数()xa y 12-=(x 是自变量)是指数函数,则a 的取值范围是_________.解:∵函数()xa y 12-=是指数函数∴⎩⎨⎧≠->-112012a a ,解之得:21>a 且1≠a .∴a 的取值范围是⎭⎬⎫⎩⎨⎧≠>121a a a 且.例6. 若函数()xa a y 32-=是指数函数,求实数a 的取值范围.解:∵函数()xa a y 32-=是指数函数∴⎩⎨⎧≠->-130322a a a a ,解之得:⎪⎩⎪⎨⎧±≠<>213303a a a 或. ∴实数a 的取值范围是⎭⎬⎫⎩⎨⎧±≠<>213303a a a a 且或.知识点二 指数函数的图象和性质一般地,指数函数xa y =(0>a 且1≠a )的图象和性质如下表所示:指数函数函数值的特点:(1)当10<<a 时,若0<x ,则恒有1>y ;若0>x ,则恒有10<<y ; (2)当1>a 时,若0<x ,则恒有10<<y ;若0>x ,则恒有1>y . 1. 指数函数图象的画法对于指数函数xa y =(0>a 且1≠a ),当0=x 时,1=y ;当1=x 时,a y =;当1-=x时,a y 1=.所以指数函数的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1.在画指数函数图象的草图时,应抓住以上三个关键点作图.(1)由于指数函数xa y =(0>a 且1≠a )的图象经过点()a ,1,所以指数函数的图象与直线1=x 的交点的纵坐标等于函数的底数.交点的位置越高,底数a 就越大. (2)由于指数函数xa y =(0>a 且1≠a )的图象经过点⎪⎭⎫⎝⎛-a 1,1,所以指数函数的图象与直线1-=x 的交点的纵坐标等于底数的倒数.交点的位置越高,a1越大,底数就越小. 2. 函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫ ⎝⎛=1(0>a 且1≠a )的图象的关系在同一平面直角坐标系中,函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫ ⎝⎛=1(0>a 且1≠a )的图象关于y 轴对称.即两个指数函数底数互为倒数,图象关于y 轴对称.如下图所示,指数函数x y 2=与xy ⎪⎭⎫⎝⎛=21的图象关于y 轴对称.(1)指数函数xa y =(0>a 且1≠a )与函数xa y -=(0>a 且1≠a )的图象关于x 轴对称.如上右图所示,指数函数xy 2=与函数xy 2-=的图象关于x 轴对称.(2)指数函数x a y =(0>a 且1≠a )与函数xa y --=(0>a 且1≠a )(即xa y ⎪⎭⎫ ⎝⎛-=1)的图象关于原点对称(成中心对称).如下图所示,指数函数x y 2=与函数xy --=2(即xy ⎪⎭⎫ ⎝⎛-=21)的图象关于原点对称.3.与指数函数有关的恒过定点问题由于指数函数xa y =(0>a 且1≠a )的图象恒过定点()1,0,因此我们讨论与指数函数有关的函数的图象过定点的问题时,只需令指数等于0,解出相应的y x ,,即为定点坐标.例7. 函数()531-=-x a x f (1,0≠>a a 且)的图象恒过定点_________. 解:令01=-x ,则1=x ,2513-=-⨯=y .∴函数()531-=-x a x f (1,0≠>a a 且)的图象恒过定点()2,1-.例8. 函数1-=x a y (1,0≠>a a 且)的图象恒过定点P ,则点P 的坐标为【 】 (A )()1,0 (B )()1,1 (C )()1,1- (D )()0,1 解:令01=-x ,则1=x ,10==a y . ∴定点P 的坐标为()1,1.选择【 B 】.例9. 函数1+=x a y (1,0≠>a a 且)的图象恒过的定点坐标为_________. 解:令01=+x ,则1-=x ,10==a y .∴函数1+=x a y (1,0≠>a a 且)的图象恒过定点()1,1-.例10. 函数33+=-x a y (1,0≠>a a 且)的图象过定点_________.解:令03=-x ,则3=x ,43130=+=+=a y .∴函数33+=-x a y (1,0≠>a a 且)的图象过定点()4,3.例11. 如果指数函数()()xa x f 1-=是R 上的减函数,那么a 的取值范围是【 】(A )2<a (B )2>a (C )21<<a (D )10<<a分析 对于指数函数xa y =(0>a 且1≠a ),当10<<a 时,函数的图象从左到右是下降的,函数为R 上的减函数.解:∵函数()()xa x f 1-=是R 上的减函数∴110<-<a ,解之得:21<<a . ∴a 的取值范围是()2,1.选择【 C 】.例12. 已知集合{}3<=x x A ,{}42>=x x B ,则=B A __________. 分析:指数函数x y 2=为R 上的增函数. 解:42>x ,222>x∵函数x y 2=为R 上的增函数 ∴2>x ,∴{}2>=x x B ∴{}32<<=x x B A .例13. 解不等式22112>⎪⎭⎫ ⎝⎛-x .解:()22121>--x ,2221>-x∵函数x y 2=为R 上的增函数 ∴121>-x ,解之得:0<x . ∴原不等式的解集为()0,∞-. 例14. 不等式422<-xx 的解集为__________.解:2222<-xx∵函数x y 2=为R 上的增函数 ∴22<-x x ,解之得:21<<-x . ∵原不等式的解集为()2,1-.4.指数函数xa y =(0>a 且1≠a )的底数a 对函数图象的影响 底数a 与1的大小关系决定了指数函数图象的“升”与“降”:(1)当1>a 时,指数函数的图象是上升的,函数是R 上的增函数.底数越大,函数图象在y 轴右侧部分越接近于y 轴,即图象越陡,说明函数值增长得越快;(2)当10<<a 时,指数函数的图象是下降的,函数为R 上的减函数.底数越小,函数图象在y 轴左侧部分越接近于y 轴,即函数图象越陡,说明函数值减小得越快.根据上面的介绍,在上图中,各个指数函数的底数之间的大小关系为:01>>>>>>>f e d c b a .前面已经提到,因为指数函数x a y =(0>a ,且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1,所以直线1=x 与指数函数图象的交点即为点()a ,1,交点的纵坐标等于指数函数的底数,故底数越大,交点的位置越高.于是有下面的结论:结论 底数a 的大小决定了指数函数图象相对位置的高低:不论是1>a 还是10<<a ,在第一象限内底数越大,函数图象越靠上.简记为:在y 轴右侧,底大图高.另外,直线1-=x 与指数函数图象的交点为⎪⎭⎫ ⎝⎛-a 1,1(即()1,1--a ),交点的纵坐标等于底数的倒数,故底数越小,倒数越大,交点的位置越高.简记为:在y 轴左侧,底大图低.5.指数函数xa y =(0>a 且1≠a )与xb y =(0>b 且1≠b )的图象特点(1)若1>>b a ,则当0<x 时,总有10<<<xxb a ;当0=x 时,总有1==xxb a ;当0>x 时,总有1>>x x b a ;(2)若10<<<a b ,则当0<x 时,总有1>>xxa b ;当0=x 时,总有1==xxb a ;当0>x 时,总有10<<<x x a b .综上所述,当0>x ,0>>b a ,且1≠a ,1≠b 时,总有xx b a >;当0<x ,0>>b a ,且1≠a ,1≠b 时,总有xx b a <.6. 指数函数xa y =(0>a 且1≠a )的图象和性质再说明 指数函数xa y =(0>a 且1≠a )的定义域是R ,值域是()+∞,0.图象:(1)若1>a ,当-∞→x 时,0→y ,即x 的值越小,函数的图象越接近于x 轴,但不相交; (2)若10<<a ,当+∞→x 时,0→y .即x 的值越大,函数的图象越接近于x 轴,但不相交.因此,x 轴(即直线0=y )是指数函数xa y =(0>a 且1≠a )的图象的一条渐近线. 性质:(1)若1>a ,则当0>x 时,总有1>y ,即函数图象y 轴右侧的部分在直线1=y 的上方;当0<x 时,总有10<<y ,即函数图象y 轴左侧的部分在直线1=y 和x 轴之间. (2)若10<<a ,则当0>x 时,总有10<<y ,即函数图象y 轴右侧的部分在直线1=y 和x 轴之间;当0<x 时,总有1>y ,即函数图象y 轴左侧的部分在直线1=y 的上方.例15. 设0>x ,且x x a b <<1,则【 】(A )10<<<a b (B )10<<<b a (C )a b <<1 (D )b a <<1 解法一:∵0>x ,且x x a b <<1∴指数函数x a y =(0>a 且1≠a )和x b y =(0>b 且1≠b )在y 轴右侧的图象f x () =12(都在直线1=y 的上方,它们的的图象是上升的,∴1>a ,1>b∵在y 轴右侧,指数函数x a y =(0>a 且1≠a )的图象在x b y =(0>b 且1≠b )的图象的上方∴根据第一象限“底大图上”,有b a >. ∴1>>b a .选择【 C 】.解法二:∵x x a b <<1,∴x x a a b b <<00, ∵0>x ,∴1,1>>a b . ∵x x a b <,0>x a ,0>x∴1<⎪⎭⎫⎝⎛=xx x a b a b ,∴10<<a b ,∴b a >.∴1>>b a .例16. 已知实数b a ,满足ba ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛3121,给出下面的五种关系,则其中可能成立的序号为__________.①b a <<0; ②a b <<0; ③0<<a b ; ④0<<b a ; ⑤0==a b . 分析:采用数形结合的方法解决本题:在同一平面直角坐标系中分别画出指数函数x y ⎪⎭⎫ ⎝⎛=21和xy ⎪⎭⎫⎝⎛=31的草图,在画图时要注意y 轴左侧“底小图高”和y 轴右侧“底大图高”,还有指数函数的图象都经过定点()1,0.解:如下图所示,在同一平面直角坐标系中分别画出函数x y ⎪⎭⎫ ⎝⎛=21和xy ⎪⎭⎫ ⎝⎛=31的图象.为便于观察并发现问题,设m ba=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛3121.当0<x 时,有0<<b a ; 当0>x 时,有a b <<0;当0=x 时,有0==b a ,此时1=m . ∴可能成立的序号为②④⑤.例17. 设3132⎪⎭⎫ ⎝⎛=a ,3231⎪⎭⎫ ⎝⎛=b ,3131⎪⎭⎫ ⎝⎛=c ,则c b a ,,的大小关系是【 】 (A )b c a >> (B )c b a >> (C )b a c >> (D )a c b >>分析:(1)对于同底数幂比较大小,则可以利用指数函数的单调性比较.如本题中b 与c 的大小比较;(2)对于非同底数幂比较大小,则要借助于中间量或借助于指数函数的图象比较大小.如本题中a 与c 的大小比较.本题知识储备(1)对于指数函数xa y =(0>a 且1≠a ),当10<<a 时,函数在R 上为减函数,即y 随x 的增大而减小.(2)对于指数函数xa y =(0>a 且1≠a )与xb y =(0>b 且1≠b ),若b a >,则当0<x 时,xxb a <;当0>x 时,xx b a >.解:∵指数函数xy ⎪⎭⎫ ⎝⎛=31在R 上为减函数∴31323131⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛,即b c >. ∵3132>,∴31313132⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛,即c a >. ∴b c a >>,选择【 A 】.另外,也可以这样比较a 与c 的大小:∵12231323132031313131=>=⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=ca ,∴c a >. 例18. 设6.06.0=a ,5.16.0=b ,6.05.1=c ,则c b a ,,的大小关系是__________.解:∵指数函数xxy ⎪⎭⎫⎝⎛==536.0在R 上为减函数∴6.05.16.06.0<,即a b <. ∵16.06.006.0=<,15.15.106.0=>∴6.06.05.16.0<,即c a <. ∴c a b <<.另外,根据: 对于指数函数x a y =(0>a 且1≠a )与x b y =(0>b 且1≠b ),若b a >,则当0<x 时,xx b a <;当0>x 时,x x b a >.可直接得到c a <.例19. 设9.014=y ,61.028=y ,5.1321-⎪⎭⎫⎝⎛=y ,则【 】(A )321y y y >> (B )312y y y >> (C )231y y y >> (D )123y y y >>分析:三个幂是不同底数的幂,但每个幂根据底数与2的关系都可以化为以2为底的幂,最后借助于指数函数的单调性即可得到三者之间的大小关系. 解:∵9.014=y ,61.028=y ,5.1321-⎪⎭⎫ ⎝⎛=y∴()8.19.02122==y ,()83.161.03222==y ,()5.15.11322==--y .∵指数函数x y 2=在R 上为增函数∴83.18.15.1222<<,即61.09.05.18421<<⎪⎭⎫⎝⎛-∴312y y y >>.选择【 B 】.例20. 设1212121<⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<ab ,那么【 】(A )a b a b a a << (B )b a a a b a << (C )a a b b a a << (D )a a b a b a <<解:∵1212121<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<a b ,∴0121212121⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛a b . ∵指数函数xy ⎪⎭⎫ ⎝⎛=21为R 上的减函数∴10<<<b a .在同一平面直角坐标系中分别画出函数x a y =与x b y =的图象如下页图所示.x x由图象可得:a a b b a a <<.选择【 C 】.知识点三 指数函数的定义域和值域 1 定义域(1)指数函数xa y =(0>a 且1≠a )的定义域为R . (2)函数()x f ay =(0>a 且1≠a )的定义域与函数()x f 的定义域相同.(3)函数()xaf y =的定义域与函数()x f 的定义域不一定相同.例如,函数()x x f =的定义域为[)+∞,0,而函数x a y =的定义域为R .注意:求指数型复合函数的定义域时,先观察函数是()xa f y =型还是()x f ay =型.例21. 函数()3121++-=x x f x 的定义域为【 】(A )(]0,3- (B )(]1,3-(C )()(]0,33,--∞- (D )()(]1,33,--∞-解:由题意可得:⎩⎨⎧>+≥-03021x x,解之得:x <-3≤0.∴函数()x f 的定义域为(]0,3-.选择【 A 】. 例22. 求下列函数的定义域:(1)xy ⎪⎭⎫ ⎝⎛-=211; (2)153-=x y .解:由题意可知:x⎪⎭⎫ ⎝⎛-211≥0,∴x⎪⎭⎫ ⎝⎛21≤1021⎪⎭⎫ ⎝⎛=,∴x ≥0. ∴该函数的定义域为[)+∞,0;(2)由题意可知:15-x ≥0,解之得:x ≥51.∴该函数的定义域为⎪⎭⎫⎢⎣⎡+∞,51.例23. 函数()2311-⎪⎭⎫ ⎝⎛-=x x f x的定义域为__________. 解:由题意可得:⎪⎩⎪⎨⎧≠-≥⎪⎭⎫⎝⎛-020311x x,解之得:x ≥0且2≠x .∴函数()x f 的定义域为[)()+∞,22,0 . 例24. 求函数()423212-⨯-=xxx f 的定义域.解:由题意可得:042322>-⨯-x x∴()()04212>-+x x ,解之得:12-<x (舍去),42>x . ∵函数x y 2=为R 上的增函数,2242=>x ,∴2>x . ∴函数()x f 的定义域为()+∞,2.2 值域(1)指数函数xa y =(0>a 且1≠a )的值域为()+∞,0.(2)求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数ta y =的单调性,即可求出函数()x f a y =的值域.(3)求形如()xa f y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.例25. 求函数1241--=+x x y 的值域. 解:()122212421-⨯-=--=+x x x x y .设x t 2=,则0>t ,∴()211222--=--=t t t y .∵()+∞∈,0t∴()21min -==f y ,无最大值.∴函数1241--=+x x y 的值域为[)+∞-,2. 例26. 求函数1241-+=+x x y 的值域. 解:()122212421-⨯+=-+=+x x x x y .设x t 2=,则0>t ,∴()211222-+=-+=t t t y .∴函数在()+∞∈,0t 上为增函数 ∴函数1241-+=+x x y 的值域为()+∞-,1. 注意例25和例26的区别.例27. 已知函数()1-=x a x f (x ≥0)的图象经过点⎪⎭⎫⎝⎛21,2,其中0>a ,且1≠a .(1)求a 的值;(2)求函数()x f 的值域.分析:求指数函数x a y =(0>a 且1≠a )的解析式,只需要其图象上一个点的坐标即可.解:(1)把⎪⎭⎫⎝⎛21,2代入()1-=x a x f 得:21=a ;(2)由(1)知()121-⎪⎭⎫⎝⎛=x x f ,为R 上的减函数∵x ≥0,∴1-x ≥1-,∴()x f <0≤2211=⎪⎭⎫⎝⎛-.∴函数()x f 的值域为(]2,0.注意:指数函数x a y =(0>a 且1≠a )的图象位于x 轴的上方,并且在一个方向上无限接近于x 轴,函数的值域为()+∞,0.本题易错结果为(]2,∞-.总结 求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数t a y =的单调性,即可求出函数()x f ay =的值域.例28. 若函数()1-=x a x f (0>a 且1≠a )的定义域和值域都是[]2,0,求实数a 的值.分析:指数函数的单调性与底数和1的大小关系有关,若关系不明确,必要时要进行分类讨论. 解:由题意可知:当10<<a 时,函数()1-=x a x f 在[]2,0上为减函数∴⎩⎨⎧=-=-012120a a ,显然无解; 当1>a 时,函数()1-=x a x f 在[]2,0上为增函数∴⎩⎨⎧=-=-210120a a ,解之得:3=a (3-=a 舍去). 综上所述,实数a 的值为3. 例29. 求下列函数的定义域和值域: (1)412-=x y ; (2)32221--⎪⎭⎫⎝⎛=x x y .本题知识点储备 (1)函数()x f ay =(0>a 且1≠a )的定义域与函数()x f 的定义域相同.(2)求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数ta y =的单调性,即可求出函数()x f ay =的值域.解:(1)由题意可得:04≠-x ,解之得:4≠x . ∴函数412-=x y 的定义域为()()+∞∞-,44, .∵041≠-x ,∴122041=≠=-x y ,且0>y . ∴函数412-=x y 的值域为{}10≠>y y y 且;(2)函数32221--⎪⎭⎫⎝⎛=x x y 的定义域为R .∵()413222--=--x x x ≥4-∴32221--⎪⎭⎫ ⎝⎛x x ≤16214=⎪⎭⎫ ⎝⎛-,且021322>⎪⎭⎫ ⎝⎛--x x .∴函数32221--⎪⎭⎫⎝⎛=x x y 的值域为(]16,0.例30. 求下列函数的定义域和值域:(1)xy -⎪⎭⎫⎝⎛=32; (2)222x x y -=.解:(1)函数xy -⎪⎭⎫⎝⎛=32的定义域为R .∵x ≥0,∴x -≤0. ∴1320min=⎪⎭⎫⎝⎛=y ∴函数xy -⎪⎭⎫⎝⎛=32的值域为[)+∞,1;(2)函数222x x y -=的定义域为R . ∵()11222+--=-x x x ≤1∴()2211max ===f y ,且0>y . ∴函数222x x y -=的值域为(]2,0.例31. 如果函数122-+=x x a a y (0>a 且1≠a )在[]1,1-上有最大值,且最大值为14,试求a 的值.分析:这是求()x a f y =型函数的定义域和值域.求形如()xaf y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.解:()121222-+=-+=x x x x a a a a y .设x a t =,则0>t ,∴()211222-+=-+=t t t y .当1>a 时,∵[]1,1-∈x ,∴⎥⎦⎤⎢⎣⎡∈a a t ,1.∵函数()212-+=t y 在⎥⎦⎤⎢⎣⎡∈a a t ,1上为增函数∴()14122max =-+==a a a f y ,解之得:3=a (5-=a 不符合题意,舍去);当10<<a 时,∵[]1,1-∈x ,∴⎥⎦⎤⎢⎣⎡∈a a t 1,∵函数()212-+=t y 在⎥⎦⎤⎢⎣⎡∈a a t 1,上为增函数∴1412112max =-+=⎪⎭⎫ ⎝⎛=a aa f y ,解之得:31=a (51-=a 不符合题意,舍去).综上所述,3=a 或31=a . 例32. 求函数12141+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=xxy 的值域.解:12121121412+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=xxxxy 设xt ⎪⎭⎫ ⎝⎛=21,则0>t ,∴4321122+⎪⎭⎫ ⎝⎛+=++=t t t y . ∴函数43212+⎪⎭⎫ ⎝⎛+=t y 在()+∞∈,0t 上为增函数.取0=t ,得1=y .∴函数12141+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=xx y 的值域为()+∞,1.例33. 已知[]3,2-∈x ,求函数()12141+-=x x x f 的最值. 解:()1212112141121412+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-=xxxxx x x f .设xt ⎪⎭⎫ ⎝⎛=21,∵[]3,2-∈x ,∴⎥⎦⎤⎢⎣⎡∈4,81t .∴4321122+⎪⎭⎫ ⎝⎛-=+-=t t t y∵⎥⎦⎤⎢⎣⎡∈4,81t∴()134,4321max min ===⎪⎭⎫ ⎝⎛=f y f y .例34. 若122+x ≤241-⎪⎭⎫ ⎝⎛x ,则函数x y 2=的值域是_________.解:∵122+x ≤241-⎪⎭⎫ ⎝⎛x ,∴122+x≤()x x 242222---=.∵函数x y 2=在R 上为增函数∴12+x ≤x 24-,解之得:3-≤x ≤1,即[]1,3-∈x .∴函数x y 2=在[]1,3-上的值域为⎥⎦⎤⎢⎣⎡2,81.例35. ()1331+=+x x x f 的值域是【 】(A )()+∞,3 (B )()3,0 (C )()2,0 (D )()+∞,2解法一:()13331331+⋅=+=+x xx x x f 设x t 3=,则()+∞∈,0t ,()()133131313+-+=+-+=+=t t t t t t f . ∵()+∞∈,0t ,∴0133<+-<-t ,∴31330<+-+<t .∴()30<<t f ,即函数()1331+=+x x x f 的值域为()3,0.选择【 B 】.解法二:()xxx xx x x f ⎪⎭⎫ ⎝⎛+=+=+⋅=+=+3113311313331331. ∵031>⎪⎭⎫ ⎝⎛x ,∴1311>⎪⎭⎫ ⎝⎛+x,∴331130<⎪⎭⎫ ⎝⎛+<x,∴()()3,0∈x f .例36. 已知定义在R 上的偶函数()x f 满足:当x ≥0时,()x x a x f 22+=,()251=f . (1)求实数a 的值;(2)用定义法证明()x f 在()+∞,0上是增函数; (3)求函数()x f 在[]2,1-上的值域. 解:(1)∵当x ≥0时,()x x a x f 22+=,()251=f ∴2522=+a ,解之得:1=a ; (2)证明:由(1)可知:()xx x f 212+=. 任取()+∞∈,0,21x x ,且21x x <,则()()()()()212121212122112122221212221221221x x x x x x x x x x x x x x x f x f ++--=⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛+-+=-∵()+∞∈,0,21x x ,且21x x < ∴02,012,022212121>>-<-++x x x x x x ∴()()()()2121,0x f x f x f x f <<-. ∴()x f 在()+∞,0上是增函数;(3)∵函数()x f 为偶函数,且在[)+∞,0上为增函数 ∴()x f 在(]0,∞-上为减函数 ∴()()20min ==f x f .∵()252211=+=-f ,()4174142=+=f ,25417> ∴在区间[]2,1-上()()4172max ==f x f .∴函数()x f 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡417,2.利用单调性法求最值的结论(1)如果函数()x f y =在区间[]b a ,上单调递增,在区间[]c b ,上单调递减,那么函数()x f y =在区间[]c a ,上有最大值)()(max b f x f =.如下页图所示;(2)如果函数()x f y =在区间[]b a ,上单调递减,在区间[]c b ,上单调递增,那么函数()x f y =在区间[]c a ,上有最小值)()(min b f x f =.如下图所示.f x ()max = f b ()f x ()min = f b ()第(3)问另解:∵函数()x f 为定义在R 上的偶函数 ∴()x f 在区间[]0,1-和[]1,0上的值域相同 ∴()x f 在[]2,1-上的值域即在[]2,0上的值域. ∵()x f 在[)+∞,0上为增函数 ∴()x f 在[]2,0上为增函数∴()()20min ==f x f ,()()4172max ==f x f . ∴函数()x f 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡417,2.例37. 设函数()axx f -⎪⎭⎫⎝⎛=1021,a 是不为零的常数.(1)若()213=f ,求使()x f ≥4的x 的取值范围; (2)当[]2,1-∈x 时,()x f 的最大值是16,求a 的值.解:(1)∵()axx f -⎪⎭⎫⎝⎛=1021,()213=f ∴2121310=⎪⎭⎫ ⎝⎛-a,∴1310=-a ,解之得:3=a . ∴()()103310122---==x xx f .∵()x f ≥4,∴1032-x ≥22,∴103-x ≥2,解之得:x ≥4. ∴使()x f ≥4的x 的取值范围是[)+∞,4;(2)()()10101102221----==⎪⎭⎫⎝⎛=ax axaxx f .当0>a 时,()x f 在[]2,1-上为增函数∴()()4102max 21622====-a f x f ,∴4102=-a ,解之得:7=a ; 当0<a 时,()x f 在[]2,1-上为减函数∴()()410max 21621===-=--a f x f ,∴410=--a ,解之得:14-=a . 综上所述,7=a 或14-=a .例38. 已知函数()ax a x f -=3(0>a 且1≠a ). (1)当2=a 时,()4<x f ,求x 的取值范围;(2)若()x f 在[]1,0上的最小值大于1,求a 的取值范围. 解:(1)当2=a 时,()x ax a x f 2332--==.∵()4<x f ,∴223242=<-x ,∴223<-x ,解之得:21>x . ∴x 的取值范围是⎪⎭⎫⎝⎛+∞,21;(2)∵0>a 且1≠a∴函数ax y -=3在[]1,0上为减函数. 当1>a 时,()x f 在[]1,0上为减函数∴()()03min 11a a f x f a =>==-,∴03>-a ,解之得:3<a . ∴31<<a ;当10<<a 时,()x f 在[]1,0上为增函数 ∴()()103min >==a f x f ,显然不成立. 综上所述,a 的取值范围是()3,1.例39. 已知函数()1+=-a x a x f 的图象(0>a 且1≠a )过点⎪⎭⎫⎝⎛2,21.(1)求实数a 的值;(2)若函数()121-⎪⎭⎫ ⎝⎛+=x f x g ,求函数()x g 的解析式;(3)在(2)的条件下,若函数()()()12--=x mg x g x F ,求()x F 在[]0,1-∈x 上的最小值()m h .本题知识储备 求形如()xaf y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.解:(1)∵函数()1+=-a x a x f 的图象过点⎪⎭⎫⎝⎛2,21∴2121=+-a a,解之得:21=a . ∴实数a 的值为21; (2)由(1)知:()12121+⎪⎭⎫⎝⎛=-x x f∵()121-⎪⎭⎫ ⎝⎛+=x f x g∴()xx x g ⎪⎭⎫⎝⎛=-+⎪⎭⎫⎝⎛=-+2111212121;(3)∵()()()12--=x mg x g x F∴()xx x x m m x F ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-212212121212. 设xt ⎪⎭⎫⎝⎛=21,∵[]0,1-∈x ,∴[]2,1∈t∴()()2222m m t mt t t F --=-=,[]2,1∈t .①当2>m 时,()t F 在[]2,1∈t 上为减函数∴()()()442222min +-=--==m m m F t F ,∴()44+-=m m h ;②当1≤m ≤2时,()()2min m m F t F -==,∴()2m m h -=; ③当1<m 时,()t F 在[]2,1∈t 上为增函数∴()()()121122+-=--==m m m F t F ,∴()12+-=m m h .综上所述,()⎪⎩⎪⎨⎧<+-≤≤->+-=1,1221,2,442m m m m m m m h .例40. 已知函数()x a x f =,()m a x g x +=2,其中1,0,0≠>>a a m 且.当[]1,1-∈x 时,()x f y =的最大值与最小值之和为25. (1)求a 的值;(2)若1>a ,记函数()()()x mf x g x h 2-=,求当[]1,0∈x 时,()x h 的最小值()m H . 分析:(1)指数函数()x a x f =(10≠>a a 且)在其定义域内为单调函数,所以指数函数在给定闭区间上的最值在区间的端点处取得,故本问不用进行分类讨论. 解:(1)∵函数()x a x f =(10≠>a a 且)在[]1,1-上为单调函数 ∴由题意可知:()()2511=-+f f . ∴251=+a a ,解之得:2,2121==a a . ∴a 的值为21或2;(2)∵1>a ,∴2=a ,∴()()m x g x f x x +==22,2. ∵()()()x mf x g x h 2-=∴()()m m m m x h x x x x +⋅-=⋅-+=22222222.设x t 2=,∵[]1,0∈x ,∴∈t []2,1 ∴()()m m m t m mt t t h +--=+-=2222①当2>m 时,()t h 在[]2,1上为减函数 ∴()()432min +-==m h t h ,即()43+-=m m H ;②当1≤m ≤2时,()()m m m h t h +-==2min ,即()m m m H +-=2; ③当1<m 时,()t h 在[]2,1上为增函数 ∴()()11min +-==m h t h ,即()1+-=m m H .综上所述,()⎪⎩⎪⎨⎧<+-≤≤+->+-=1,121,2,432m m m m m m m m H .例41. 已知函数()1242--⋅=x x a x f . (1)当1=a 时,解不等式()0>x f ; (2)当21=a ,∈x []2,0时,求()x f 的值域. 解:(1)当1=a 时,()()122212422--=--⋅=x x x x x f . 设x t 2=,则0>t ,()122--=t t t f .∵()0>x f ,∴0122>--t t ,解之得:1>t 或21-<t .∵0>t∴1>t ,∴0212=>x ,∴0>x . ∴不等式()0>x f 的解集为()+∞,0; (2)当21=a 时,()()1221242--=--=x x x x x f . 设xt 2=,∵∈x []2,0,∴∈t []4,1,()4521122-⎪⎭⎫ ⎝⎛-=--=t t t t f∵()t f 在[]4,1上为增函数∴()()()()114,11max min ==-==f t f f t f .∴函数()t f 的值域为[]11,1-,即函数()x f 在∈x []2,0上的值域为[]11,1-. 例42. 已知函数()x x b a x f +=(其中b a ,为常数,10,10≠>≠>b b a a 且且)的图象经过点()6,1A ,⎪⎭⎫ ⎝⎛-43,1B .(1)求函数()x f 的解析式;(2)若b a >,函数()211+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=xx b a x g ,求函数()x g 在[]2,1-上的值域.解:(1)把()6,1A ,⎪⎭⎫ ⎝⎛-43,1B 分别代入()x x b a x f +=得:⎪⎩⎪⎨⎧=+=+43116b a b a ,解之得:⎩⎨⎧==42b a 或⎩⎨⎧==24b a . ∴函数()x f 的解析式为()x x x f 42+=; (2)若b a >,则2,4==b a∴()22141211+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=xx x x b a x g设xt ⎪⎭⎫ ⎝⎛=21,∵∈x []2,1-,∴∈t ⎥⎦⎤⎢⎣⎡2,41,()4721222+⎪⎭⎫ ⎝⎛-=+-=t t t t g . ∴()4721min =⎪⎭⎫ ⎝⎛=g t g ,()()42max ==g t g .∴()t g 在⎥⎦⎤⎢⎣⎡2,41上的值域为⎥⎦⎤⎢⎣⎡4,47,即函数()x g 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡4,47.说明:方程组⎪⎩⎪⎨⎧=+=+43116b a b a 可以这样求解:∵⎪⎩⎪⎨⎧=+=+43116b a b a ,∴⎩⎨⎧==+86ab b a .∴b a ,是方程0862=+-x x 的两个实数根(方程思想).解之得:4,221==x x ,∴⎩⎨⎧==42b a 或⎩⎨⎧==24b a .例43. 函数221341+⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛=xxy ,∈x []2,2-的值域是__________.解:设xt ⎪⎭⎫ ⎝⎛=21,∵∈x []2,2-,∴∈t ⎥⎦⎤⎢⎣⎡4,41,41232322-⎪⎭⎫ ⎝⎛-=+-=t t t y . ∴()64,4123max min ==-=⎪⎭⎫⎝⎛=f y f y∴函数41232-⎪⎭⎫ ⎝⎛-=t y 在∈t ⎥⎦⎤⎢⎣⎡4,41上的值域为⎥⎦⎤⎢⎣⎡-6,41.∴函数221341+⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛=xx y ,∈x []2,2-的值域是⎥⎦⎤⎢⎣⎡-6,41. 例44. 已知函数()ax xx f ++-=223(∈a R ).(1)若()271=f ,求a 的值; (2)若()x f 有最大值9,求a 的值. 解:(1)∵()271=f∴3213273==++-a ,∴31=+a ,解之得:2=a ; (2)设()()11222++--=++-=a x a x x x g∴()()11max +==a g x g∴()()21max 3933max ====+a x g x f ,∴21=+a ,解之得:1=a .例45. 若函数()m x f x -=-3的最大值为2,则实数m 的值为【 】 (A )1- (B )2- (C )3- (D )4- 解:设()x x g -=3,则()x g <0≤130=,即函数()x g 的最大值为1. ∵函数()m x f x -=-3的最大值为2 ∴()2max =-m x g ,∴21=-m 解之得:1-=m .选择【 A 】.例46. 例45的第三种解法 以下几例为求()x a f y =型函数的值域()1331+=+x x x f 的值域是【 】(A )()+∞,3 (B )()3,0 (C )()2,0 (D )()+∞,2 解:设x t 3=,则0>t ,()13+==t t t f y . ∴03>-=yyt ,解之得:30<<y .选择【 B 】.例47. 函数x y --=328(x ≥0)的值域为__________.不等分析法和单调性法解:∵x ≥0,∴x -≤0,∴x -3≤3 ∴x -<320≤823=,∴8-≤023<--x .∴0≤8283<--x ,0≤8<y ,即函数x y --=328(x ≥0)的值域为[)8,0.注意: 不要漏掉023>-x这一范围.例48. 函数x y 416-=的值域是__________.解:由题意可知:x 40<≤16,∴16-≤04<-x ,∴0≤16416<-x . ∴0≤4416<-x ,0≤4<y . ∴函数x y 416-=的值域是[)4,0. 例49. 函数()xxx f 242-=的定义域是__________,值域是__________. 解:由题意可知:0242>-xx,∴024>-x ,解之得:2<x . ∴函数()x f 的定义域是()2,∞-.设x t 2=,则40<<t (2<x ),()tt t t g -+-=-=4414. ∵40<<t ,∴04<-<-t ,∴440<-<t ,∴144>-t(可结合图象)∴0441>-+-t ,()0>t g ,∴()0>x f∴函数()x f 的值域为()+∞,0. 例50. 函数xx y +-=112的值域为__________.解:()xxx xx y ++-+++-+-===12112111222∵012≠+x ,∴1121-≠++-x ,∴21221121=≠-++-x ,即21≠y . ∵0>y ,∴该函数的值域为⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛,2121,0 .例51. 函数()xx xx x f --+-=10101010的值域是【 】(A )(][)+∞-∞-,11, (B )()()+∞-∞-,11, (C )[]1,1- (D )()1,1-解:()11021110211011011010110101101010101022222+-=+-+=+-=+-=+-=--x x x x x xx x x x x xxx f . ∵0102>x ,∴11102>+x ,∴2110202<+<x ,∴0110222<+-<-x∴11102112<+-<-x ,即()11<<-x f .∴函数()xx xx x f --+-=10101010的值域是()1,1-.选择【 D 】. 解法二:()11011010110101101010101022+-=+-=+-=--x x xxx x x x x x x f 设t x =210,则0>t ,11+-=t t y∴011>---=y y t ,∴011<-+y y ,解之得:11<<-y . ∴函数()x f 的值域为()1,1-. 例52. 求下列函数的值域:(1)11+-=x x a a y (0>a ,且1≠a );(2)124+-=x x y .解:(1)12112111+-=+-+=+-=xx x x x a a a a a y . ∵0>x a ,∴11>+x a ,∴2120<+<x a ,∴0122<+-<-x a ∴11211<+-<-x a ,即11<<-y . ∴该函数的值域为()1,1-.解法二:设x a t =,则0>t ,11+-=t t y ∴011>---=y y t ,∴011<-+y y ,解之得:11<<-y . ∴该函数的值域为()1,1-. (2)()1221242+-=+-=x x x x y设xt 2=,则0>t ,4321122+⎪⎭⎫ ⎝⎛-=+-=t t t y∵()+∞∈,0t ,∴4321min =⎪⎭⎫ ⎝⎛=f y .∴函数124+-=x x y 的值域为⎪⎭⎫⎢⎣⎡+∞,43.例53. 已知函数()b a x f x +=(10≠>a a 且)的定义域和值域都是[]0,1-,则=+b a _________.解:当10<<a 时,函数()x f 在[]0,1-上为减函数∴()()⎩⎨⎧-==-1001f f ,即⎪⎩⎪⎨⎧-=+=+1101b b a ,解之得:⎪⎩⎪⎨⎧-==221b a .∴=+b a 23-; 当1>a 时,函数()x f 在[]0,1-上为增函数∴()()⎩⎨⎧=-=-0011f f ,即⎪⎩⎪⎨⎧=+-=+0111b b a ,显然方程组无解.综上所述,=+b a 23-. 例54. 函数124--=x y 的值域为【 】 (A )[)+∞,1 (B )()1,1- (C )()+∞-,1 (D )[)1,1-解:由题意可知:x 20<≤4,∴4-≤02<-x ,∴0≤424<-x ∴0≤224<-x ,∴1-≤1124<--x ,即1-≤1<y . ∴函数124--=x y 的值域为[)1,1-,选择【 D 】. 例55. 已知函数()13-=-x x f ,则()x f 的【 】 (A )定义域是()+∞,0,值域是R (B )定义域是R ,值域是()+∞,0 (C )定义域是R ,值域是()+∞-,1 (D )定义域、值域都是R 解:函数()13-=-x x f 的定义域为R . ∵03>-x ,∴13->-x ,即()1->x f∴函数()13-=-x x f 的值域为()+∞-,1.选择【 C 】. 例56. 下列各函数中,值域为()+∞,0的是【 】 (A )22x y -= (B )x y 21-= (C )12++=x x y (D )113+=x y解:(A )函数22x y -=的定义域为R ,值域为()+∞,0,故(A )正确; (B )∵x 20<≤1,∴1-≤02<-x ,∴0≤121<-x ,∴0≤121<-x . ∴函数x y 21-=的值域为[)1,0;(C )∵4321122+⎪⎭⎫ ⎝⎛+=++=x x x y ≥43 ∴函数12++=x x y 的值域为⎪⎭⎫⎢⎣⎡+∞,43;(D )对于函数113+=x y ,因为011≠+x ,所以130=≠y ,且0>y ,故该函数的值域为()()+∞,11,0 .例57. 关于x 的方程0131=--⎪⎭⎫⎝⎛a x有解,则a 的取值范围是__________.解:∵0131=--⎪⎭⎫ ⎝⎛a x,∴131+=⎪⎭⎫ ⎝⎛a x∵x ≥0,∴x⎪⎭⎫ ⎝⎛<310≤1∵方程0131=--⎪⎭⎫⎝⎛a x有解∴10+<a ≤1,解之得:a <-1≤0. ∴a 的取值范围是(]0,1-.例58. 关于x 的方程a a x-+=⎪⎭⎫ ⎝⎛52353有正实数根,则实数a 的取值范围是_________. 分析:该方程有正实数根指的是0>x .解:∵方程a a x-+=⎪⎭⎫ ⎝⎛52353有正实数根 ∴0>x ,∴1535300=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<x,∴15230<-+<a a . 解之得:4332<<-a ,即实数a 的取值范围是⎪⎭⎫⎝⎛-43,32. 例59. 已知方程013329=-+⋅-k x x 有两个实数解,求实数k 的取值范围. 分析:设x t 3=,则0>t ,方程可转化为关于t 的一元二次方程,且方程有两个正实数根.结论 一元二次方程()002≠=++a c bx ax 有两个正实数根的条件是⎪⎪⎪⎩⎪⎪⎪⎨⎧>=⋅>-=+≥∆0002121ac x x a b x x 解:设x t 3=,则0>t ,∵013329=-+⋅-k x x ,∴01322=-+-k t t由题意可知:方程01322=-+-k t t 有两个正实数根∴()()⎪⎩⎪⎨⎧>-=⋅>=+≥---013020134221212k t t t t k ,解之得:k <31≤32.∴实数k 的取值范围是⎥⎦⎤⎝⎛32,31.例60. 已知函数122-+=x x a a y (0>a 且1≠a ),当x ≥0时,求该函数的值域. 解:设x a t =,则0>t ,()211222-+=-+=t t t y .当1>a 时,∵x ≥0,∴t ≥1∵函数()212-+=t y 在[)+∞,1上为增函数∴()21min ==f y ,∴函数的值域为[)+∞,2; 当10<<a 时,∵x ≥0,∴t <0≤1∴()y f <0≤()1f ,∴y <-1≤2,即函数的值域为(]2,1-.综上所述,当1>a 时,函数的值域为[)+∞,2;当10<<a 时,函数的值域为(]2,1-.知识点四 指数函数的单调性及其应用 1 单调性当1>a 时,函数xa y =在R 上为增函数;当10<<a 时,函数xa y =在R 上为减函数.利用这一性质,可以判断复合函数()x f a y =的单调性,判断的依据是:同增异减.如下表:注意 讨论形如()x f ay =的函数的单调性,首先要确定函数()x f 的单调性,然后结合底数a 的范围来确定函数()x f a y =的单调性.确定的依据是:同增异减.2 单调性的应用 (1)应用于比较大小类型一 比较同底数不同指数的幂的大小,利用指数函数的单调性进行比较;类型二 比较不同底数同指数的幂的大小,借助于函数的图象比较大小,或者借助于口诀:在y 轴右侧(即0>x )底大图高(函数值大),在y 轴左侧,底小图高;类型三 比较不同底数不同指数的幂的大小,利用中间量(如0和1)并结合函数的单调性比较大小.(2)应用于解简单不等式 不等式可化为()()x g x f a a<的形式,利用指数函数的单调性,将不等式转化为()()x g x f <(当1>a 时)或()()x g x f >(当10<<a 时),然后进行求解.例61. 求函数x y -=2的单调性.解:设x t -=,则函数t 在(]0,∞-上为增函数,在[)+∞,0上为减函数 ∴函数x y -=2在(]0,∞-上为增函数,在[)+∞,0上为减函数.例62. 求函数xy -⎪⎭⎫⎝⎛=21的单调性.解:设x t -=,则函数t 在(]0,∞-上为增函数,在[)+∞,0上为减函数∴函数xy -⎪⎭⎫⎝⎛=21在(]0,∞-上为减函数,在[)+∞,0上为增函数.例63. 函数xx y 2221+-⎪⎭⎫⎝⎛=的单调递增区间是【 】(A )[)+∞-,1 (B )(]1,-∞- (C )[)+∞,1 (D )(]1,∞-解:设()11222+--=+-=x x x t ,则函数t 在(]1,∞-上为增函数,在[)+∞,1上为减函数∵指数函数ty ⎪⎭⎫⎝⎛=21在R 上为减函数∴函数xx y 2221+-⎪⎭⎫⎝⎛=的单调递增区间为[)+∞,1.选择【 C 】.例64. 求函数()2222++-=x xx f 的单调区间.解:设()312222+--=++-=x x x t ,则()t y x f 2==.∵函数t 在(]1,∞-上为增函数,在[)+∞,1上为减函数,函数t y 2=在R 上为增函数 ∴函数()x f 的单调递增区间为(]1,∞-,单调递减区间为[)+∞,1. 例65. 求函数32212+-=+x x y 的单调区间. 解:()3222322212+⋅-=+-=+x x x x y设x t 2=,则0>t ,且函数x t 2=在R 上为增函数 ∴()213222+-=+-=t t t y∴函数()212+-=t y 在∈t (]1,0上为减函数,此时(]0,∞-∈x ;在[)+∞∈,1t 上为增函数,此时[)+∞∈,0x .∴函数32212+-=+x x y 的单调递增区间为[)+∞,0,单调递减区间为(]0,∞-.例66. 求函数1121+-⎪⎭⎫⎝⎛=x x y 的单调区间.解:设12112111+-=+-+=+-=x x x x x t ,()()+∞--∞-∈,11, x ,则ty ⎪⎭⎫⎝⎛=21,且1≠t .∵函数121+-=x t 在()1,-∞-和()+∞-,1上均为增函数 函数ty ⎪⎭⎫⎝⎛=21在()()+∞∞-∈,11, t 上为减函数∴函数1121+-⎪⎭⎫⎝⎛=x x y 的单调递减区间为()1,-∞-和()+∞-,1,无单调递增区间.1例67. 函数()()32212---=x x x f 的单调增区间为__________.解:∵221<<,∴1120<-< ∴函数()()32212---=x x x f 的单调增区间即函数322--=x x t 的单调减区间.∵()413222--=--=x x x t∴函数t 的单调减区间为(]1,∞- ∴函数()()32212---=x x x f 的单调增区间为(]1,∞-.例68. 若函数axxy +-=22在()1,∞-内单调递增,则a 的取值范围是__________.解:设42222a a x ax x t +⎪⎭⎫ ⎝⎛--=+-=∵函数axxy +-=22在()1,∞-内单调递增∴函数4222a a x t +⎪⎭⎫ ⎝⎛--=在()1,∞-内单调递增∴2a≥1,解之得:a ≥2,即a 的取值范围是[)+∞,2. 例69. 若函数12-=x y 在(]m ,∞-上单调递减,则m 的取值范围是__________. 解法一:设x t 2=,则0>t ,1-=t y . ∵函数1-=t y 在(]1,0∈t 上为减函数 ∴x 20<≤021=,解之得:x ≤0.∴函数12-=x y 在(]0,∞-∈x 上为减函数. ∵函数12-=x y 在(]m ,∞-上单调递减 ∴m ≤0,即m 的取值范围是(]0,∞-. 解法二:函数12-=x y 的图象大致如图所示. 由图象可知:函数12-=x y 的单调递减区间 为(]0,∞-,所以(]0,∞-∈m .。

教案指数函数与对数函数的性质

教案指数函数与对数函数的性质

教案指数函数与对数函数的性质指数函数和对数函数是数学中非常重要的两大函数类型。

它们在数学和实际应用中具有广泛的应用,本文将详细介绍指数函数和对数函数的性质。

一、指数函数的定义与性质指数函数的定义:指数函数的一般形式是f(x) = a^x,其中a为常数且a>0且a≠1。

指数函数的自变量为x,因变量为f(x)。

指数函数的图像通常表现为一个逐渐上升或下降的曲线。

指数函数的性质:1. 定义域和值域:指数函数的定义域为全体实数;值域为大于0的实数,即f(x) > 0。

2. 单调性:当a > 1时,指数函数是严格递增函数;当0 < a < 1时,指数函数是严格递减函数。

3. 变化趋势:a) 当a > 1时,随着x的增大,指数函数的值逐渐增大,趋近于正无穷;b) 当0 < a < 1时,随着x的增大,指数函数的值逐渐减小,趋近于0。

4. 奇偶性:指数函数没有奇偶性,即不满足f(x) = f(-x)。

5. 与y轴的交点:指数函数与y轴交于点(0, 1),即f(0) = 1。

6. 渐近线:指数函数有一条水平渐近线,即y = 0,当x趋于负无穷时,函数值趋近于0。

二、对数函数的定义与性质对数函数的定义:对数函数的一般形式是f(x) = logₐx,其中a为常数,a>0且a≠1。

对数函数的自变量为x,因变量为f(x)。

对数函数和指数函数是互逆的关系,即f(x) = logₐa^x = x。

对数函数的性质:1. 定义域和值域:对数函数的定义域为正实数;值域为负无穷到正无穷的实数,即f(x)为实数。

2. 单调性:对数函数是严格递增函数,即随着x的增大,函数值也逐渐增大。

3. 变化趋势:对数函数的增长速度相对于自变量的增长速度较小,即对数函数的值增加较为缓慢。

4. 奇偶性:对数函数没有奇偶性,即不满足f(x) = f(-x)。

5. 与y轴的交点:对数函数与y轴交于点(1, 0),即f(1) = 0。

指数与指数函数知识点及题型归纳总结

指数与指数函数知识点及题型归纳总结

指数与指数函数知识点及题型归纳总结知识点精讲一、指数的运算性质 当a >0,b >0时,有 (1)a m a n=am +n(m ,n ∈R );(2)mm n n a a a-=( m ,n ∈R) (3)(a m )n =a mn (m ,n ∈R );(4)(ab )m =a m b m (m ∈R );(5)pp a a-=1(p ∈Q ) (6)mm n n a a =(m ,n ∈N +)二、指数函数(1)一般地,形如y =a x (a >0且a ≠1)的函数叫做指数函数; (2)指数函数y =a x (a >0y =a x a >1 0<a <1图象(1)定义域:R (1)定义域:R 值域(2)值域:(0,+∞) (2)值域:(0,+∞) (3)过定点(0,1)(3)过定点(0,1) (4)在R 上是增函数. (4)在R 上是减函数. (5)0<y <1⇔x >0y =1⇔x =0 y >1⇔x <0(5)0<y <1⇔x <0y =1⇔x =0 y >1⇔x >0题型归纳及思路提示题型1指数运算及指数方程、指数不等式 思路提示利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如a 2x +B a x +C =0或a 2x +Ba x +C ≥0(≤0)的形式,可借助换元法转化二次方程或二次不等式求解. 一、指数运算例2.48化简并求值.(1)若a =2,b =4()()a a b b ab a b b+÷+--223333311的值; (2)若x x -+=11223,x x x x --+-+-33222232的值; (3)设nna --=11201420142(n ∈N +),求()n a a +21的值.分析:利用指数运算性质解题.===.当a=2,b=4,原式===12.(2)先对所给条件作等价变形:()x x x x--+=+-=-=11122222327,()()x x x x x x---+=++-=⨯=33111222213618,x2+x-2=(x+x-1)2-2=72-2=47.故x xx x--+--==+--3322223183124723.(3)因为n na--=11201420142,所以()n na-++=11222014201412,n n n nna---+--=-=111112014201420142014201422.所以)na-=12014.变式1 设2a=5b=m,且a b+=112,则m=( ).A. B. 10 C. 20 D. 100二、指数方程例2.49 解下列方程(1)9x-4⋅3x+3=0;(2)()()x x⋅=29643827;分析:对于(1)方程,将其化简为统一的底数,9x=(3x)2;对于()()x x⋅2938,对其底进行化简运算. 解析:(1)9x-4⋅3x+3=0⇒(3x)2-4⋅3x+3=0,令t=3x(t>0),则原方程变形为t2-4t+3=0,得t1=1,t2=3,即x=131或x=233,故x1=0,x2=1.故原方程的解为x1=0,x2=1.(2)由()()x x⋅=29643827,可得()x⨯=33294383即()()x=33443,所以()()x-=33344,得x=-3.故原方程的解为x=-3.变式1方程9x-6⋅3x-7=0的解是________.变式2 关于x 的方程()x aa+=-32325有负实数根,则a 的取值范围是__________. 三、指数不等式例2.50若对x ∈[1,2],不等式x m +>22恒成立,求实数m 的取值范围. 分析:利用指数函数的单调性转化不等式.解析:因为函数y =2x 是R 上的增函数,又因为x ∈[1,2],不等式x m +>22恒成立,即对∀x ∈[1,2],不等式x +m >1恒成立⇔函数y =x +m 在[1,2]上的最小值大于1,而y =x +m 在[1,2]上是增函数,其最小值是1+m ,所以1+m >1,即m >0.所以实数m 的取值范围是{m |m >0}.变式1 已知对任意x ∈R ,不等式()x mx m x x -+++>22241122恒成立,求m 的取值范围.变式2 函数()xf x x -=-21的定义域为集合A ,关于x 的不等式ax a x +<222(x ∈R)的解集为B ,求使A ∩B =A 的实数a 的取值范围.题型2 指数函数的图像及性质 思路提示解决指数函数有关问题,思路是从它们的图像与性质考虑,按照数形结合的思路分析,从图像与性质找到解题的突破口,但要注意底数对问题的影响. 一、指数函数的图像 例2.51 函数()x bf x a-=的图象如图2-14所示,其中a ,b 为常数,则下列结论中正确的是( ).A. a >1,b <0B. a >1,b >0C. 0<a <1,0<b <1D. 0<a <1,b <0 分析:考查指数函数的图象及其变换.解析:由图2-14可知0<a <1,当x =0时,b a -∈(0,1),故-b >0,得b <0,故选D. 评注:若本题中的函数变为()xf x a b =-,则答案又应是什么?由图2-14可知ƒ(x )单调递减,即0<a <1,函数y =a x 的图像向下平移得到xy a b =-的图像,故0<b <1,故选C. 变式1 若函数y =a x +b -1(a >0且a ≠1)的图像经过第二、三、四象限,则一定有( ). A. 0<a <1且b >0 B. a >1且b >0 C. 0<a <1且b <0 D. a >1且b <0 变式2 (2012四川理5)函数x y a a=-1(a >0,a ≠1)的图象可能是( ).变式3 已知实数a ,b 满足()()a b =1123,下列5个关系式:①0<b <a ,②a <b <0,③0<a <b ,④b <a <0,⑤a =b =0.其中不可能...成立的有( ). A. 1个B. 2个C. 3个D. 4个例2.52 函数ƒ(x )=x a +1(a >0且a ≠1)的图像过定点_________. 分析:指数函数的图像恒过定点(0,1),即a 0=1.解析:因为函数ƒ(x )=a x (a >0且a ≠1)的图像过定点(0,1),又函数ƒ(x )=x a +1(a >0且a ≠1)的图像是由函数ƒ(x )=a x (a >0且a ≠1)的图像向左平移一个单位得到的,故函数ƒ(x )=x a +1(a >0且a ≠1)的图像过定点(-1,1). 变式1 函数ƒ(x )=a x +1(a >0且a ≠1)的图像过定点________. 变式2 函数ƒ(x)=ax+x-2的图像过定点________.变式3 ƒ(x )=x a -1(a >0且a ≠1)的图像恒过定点A ,若点A 在直线mx +ny -1=0(m ,n >0)上,则m n+11的最小值为________.二、指数函数的性质(单调性、最值(值域))例2.53 函数ƒ(x )=a x (a >0且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是_______. 分析:本题考查指数函数的单调性.解析:当0<a <1时,函数ƒ(x )=a x 在[1,2]上单调递减,故在[1,2]上最大值为a ,最小值为a 2,则a a a -=22,得a a =22,又0<a <1,所以a =12; 当a >1时,函数ƒ(x )=a x 在[1,2]上单调递增,故在[1,2]上最大值为a 2,最小值为a ,那么a a a -=22,得aa =232,又a >1,所以a =32. 综上所述,a 的值是12或32.评注:函数ƒ(x )=a x (a >0且a ≠1),不论0<a <1还是a >1都是单调的,故最大值和最小值在端点处取得. 所以||a a a -=22,解得a =12或a =32. 变式1 函数ƒ(x )=a x (a >0且a ≠1)在区间[a ,a +2]上的最大值是最小值的3倍,则a =_____.变式2 定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.变式3 若y =3|x |(x ∈([a ,b ])的值域为[1,9],则a 2+b 2-2a 的取值范围是( ).A. [2.4]B. [4,16]D. [4,12]例2.54 函数xx y a --+=+248145(0<a <1)的单调增区间是________.分析:复合函数xx y a --+=+248145内层为二次函数,外层为指数型函数,根据复合函数单调性判定法求解.解析:因为u =-4x 2-8x +1=-4(x +1)2+5在[-1,+∞)上单调递减,在(-∞,-1]上单调递增,且y =a x (0<a <1)是减函数,所以xx y a --+=+248145(0<a <1)的单调增区间是[-1,+∞).变式1 函数()f x 1________.变式2 求函数()()()x x f x =-+11142(x ∈[-3,2])的单调区间及值域.变式3 已知0≤x ≤2,求函数x xa y a -=-⋅++1224212的最大值和最小值.变式4 设函数y =ƒ(x )在(-∞,+∞)内有定义,对于给定的正数k ,定义函数(),(),k f x f x k ⎧=⎨⎩()()f x kf x k ≤>,取函数ƒ(x )=2-|x |,当k =12时,函数ƒk (x )的单调增区间为( ). A. (-∞,0] B. [0,+∞) C. (-∞,-1] D. [1,+∞)变式5 若函数||()x y m -=+112的图像与x 轴有公共点,则m 的取值范围是________.变式6 已知函数()||x f x -=-21,x ∈R ,若方程ƒ(x )=a 有两个不同实根,则a 的取值范围是__________. 题型3 指数函数中的恒成立问题 思路提示(1)利用数形结合思想,结合指数函数图像求解.(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题求解.例2.55 设()x x f x a =++⋅124(x ∈R),当x ∈(-∞,-1]时,ƒ(x )的图象在x 轴上方,求实数a 的取值范围. 分析:本题等价于当x ≤1时,x x a ++⋅124>0恒成立.分离自变量x 与参变量a ,转化为求解函数的最值. 解析:因为当x ∈(-∞,1]时,ƒ(x )的图像在x 轴上方,所以对于任意x ≤1,x x a ++⋅124>0恒成立,即x x a +>-214(x ≤1)恒成立.令()()()x x x x u x +=-=--2111424(x ≤1),a >u (x )max ,x ∈(-∞,1].因为()x y =12,()x y =14均是减函数,所以u (x )在(-∞,1]上单调递增,故当x =1时,max ()()u x u ==-314,故a >-34.故实数a 的取值范围为(-34,+∞).变式1 已知函数()()x x af x a a a -=--21(a >0且a ≠1). (1)判断函数ƒ(x )的奇偶性; (2)讨论函数ƒ(x )的单调性;(3)当x ∈[-1,1]时,ƒ(x )≥b 恒成立,求实数b 的取值范围. 变式2定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1) 求a,b 的值.(2) 若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围. 变式3 已知函数1()22x xf x =-,若2(2)()0tf t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.最有效训练题1.函数2(33)xy a a a =-+是指数函数,则有( )A a=1或a=2B a=1C a=2D 0a >且1a ≠ 2.设0.90.48 1.512314,8,()2y y y -===,则( )A 312y y y >>B 213y y y >>C 123y y y >>D 132y y y >>3.设函数()f x 定义在实数集上,其图像关于直线x=1对称,且当1x ≥时,()31xf x =-,则有( )A 132()()()323f f f <<B 231()()()323f f f <<C 213()()()332f f f <<D 321()()()233f f f <<4. 函数()22xxf x -=-是( ) A 奇函数,在区间(0,)+∞上单调递增 B 奇函数,在区间(0,)+∞上单调递减 C 偶函数,在区间(,0)-∞上单调递增 D 偶函数,在区间(,0)-∞上单调递减.5.若关于x 的方程9(4)340xxa ++•+=有解,则实数a 的取值范围是( ) A (,8)[0,)-∞-+∞ B (,4)-∞- C [8,4)- D (,8]-∞-6.函数221(0)(1)(0)(){ax ax x a e x f x +≥-<=在R 上单调,则a 的取值范围是( )A (,(1,2]-∞B [1)[2,)-+∞C (1)D )+∞7.不等式2223330x x a a •-+-->,当01x ≤≤时,恒成立,则实数a 的取值范围为 .8. 函数1(2y =的单调递增区间是 .9.已知关于x 的方程923310x x k -⨯+-=有两个不同实数根,则实数k 的取值范围为 .10. 偶函数()f x 满足 (1)(1)f x f x -=+,且在[0,1]x ∈时,()f x x =,则关于x 的方程1()()10xf x =,在[0,2014]x ∈上的解的个数是 .11.已知函数()xf x b a =⋅(其中a,b 为常数且0,1)a a >≠的图像经过点A (1,6),B (3,24). (1)确定()f x .(2)若不等式11()()0x x m a b+-≥在(,1]x ∈-∞时恒成立,求实数m 的取值范围.12.已知函数1()(),[1,1]3x f x x =∈-,函数2()[()]2()3g x f x af x =-+的最小值为h(a). (1)求h(a);(2)是否存在实数m,n 同时满足下列条件:①3m n >>;②当h(a)的定义域为[n,m]时,值域为22[,]n m .若存在,求出m,n 的值;若不存在,说明理由.。

指数函数与对数函数的性质

指数函数与对数函数的性质

指数函数与对数函数的性质指数函数与对数函数是高中数学中的重要内容,它们在数学和实际问题中有着广泛应用。

本文将介绍指数函数和对数函数的定义、性质及其应用。

一、指数函数的定义与性质指数函数是以常数e为底的幂函数,公式为f(x) = a^x,其中a为实数且a>0且a≠1。

指数函数具有以下性质:1. 定义域与值域:指数函数的定义域为实数集R,值域为(0, +∞)。

2. 基本性质:当x为整数时,指数函数是幂函数;当x为有理数时,指数函数是有理指数幂函数;当x为无理数时,指数函数是无理指数幂函数。

3. 单调性与符号:若a>1,则指数函数是增函数且f(x)>0;若0<a<1,则指数函数是减函数且f(x)>0。

4. 对称性:指数函数具有对称轴y=0或x轴。

5. 与常函数的关系:当a>1时,指数函数与常函数y=b (b>0) 的图像会有交点;当0<a<1时,指数函数与常函数y=b的图像不会有交点。

二、对数函数的定义与性质对数函数是指数函数的逆函数,公式为f(x) = log<sub>a</sub>x,其中a为常数且a>0且a≠1。

对数函数具有以下性质:1. 定义域与值域:对数函数的定义域为(0, +∞),值域为实数集R。

2. 基本性质:对数函数是指数函数的逆函数,即y =log<sub>a</sub>x 是 x = a<sup>y</sup> 的解,其中x>0,a>0且a≠1。

3. 单调性与符号:若a>1,则对数函数是增函数且f(x)>0;若0<a<1,则对数函数是减函数且f(x)>0。

4. 对称性:对数函数的图像关于直线y=x对称。

5. 特殊值:log<sub>a</sub>1 = 0,log<sub>a</sub>a = 1。

指数函数的概念与性质

指数函数的概念与性质

指数函数的概念与性质指数函数是高中数学中的一个重要概念,它在各个学科中都有广泛的应用。

本文将介绍指数函数的概念,并详细讨论其性质和特点。

一、指数函数的概念指数函数是以底数为常数且指数为变量的函数,通常以f(x) = a^x 的形式表示,其中a为底数,x为指数,a为正数且不等于1。

指数函数是一种具有指数增长或指数衰减特征的函数,其增长速度非常快。

当x增大时,函数值也会迅速增大;当x减小时,函数值会迅速减小。

在实际应用中,指数函数常用于描述人口增长、金融投资、物质衰变等现象。

它具有十分重要的意义。

二、指数函数的性质1. 定义域和值域对于指数函数f(x) = a^x,其定义域为全体实数集R,即指数可以是任意实数。

值域的范围与底数a有关:- 当a>1时,函数的值域为(0, +∞),即正实数集;- 当0<a<1时,函数的值域为(0, 1),即(0, 1)之间的正实数集。

2. 奇偶性指数函数的奇偶性与底数有关:- 当底数a为正数时,指数函数为奇函数,即f(-x) = 1/(a^x) = 1/f(x)。

图像关于原点对称;- 当底数a为负数时,指数函数为偶函数,即f(-x) = a^x = f(x)。

图像关于y轴对称。

3. 单调性当底数a>1时,指数函数是递增函数,即对于任意的x₁ < x₂,有a^(x₁) < a^(x₂);当0<a<1时,指数函数是递减函数,即对于任意的x₁ < x₂,有a^(x₁) > a^(x₂)。

4. 极限性质当x趋向于无穷大时,指数函数具有如下极限性质:- 当a>1时,a^x的极限为正无穷大,即lim(x→+∞) a^x = +∞;- 当0<a<1时,a^x的极限为0,即lim(x→+∞) a^x = 0。

5. 图像特点指数函数的图像特点与底数a的大小有关:- 当0<a<1时,函数的图像在x轴上方,随着x的增大而逐渐趋近于x轴;- 当a>1时,函数的图像在x轴下方,随着x的增大而迅速上升;- 当a=1时,指数函数退化为常数函数,即f(x) = 1。

指数函数考点总结(精华加强版)

指数函数考点总结(精华加强版)

指数函数考点总结指数函数定义:函数)1,0(≠>=a a a y x且称指数函数,函数的定义域为R ;函数的值域为),0(+∞;(2)函数图像及性质:①指数函数的图象都经过点(0,1),且图象都在第一、二象限; ②当10<<a 时函数为减函数,当1>a 时函数为增函数。

③指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴);④对于相同的)1,0(≠>a a a 且,函数xxa y a y -==与的图象关于y 轴对称。

⑤函数值的变化特征:()()()10110010y x a y x y x >>⎧⎪>==⎨⎪<<<⎩时 ()()()010011010y x a y x y x <<>⎧⎪<<==⎨⎪><⎩时一指数函数定义1.某种细菌在培养过程中,每20分钟分裂一次(一次分裂为2个),经过3小时,这种细菌由1个繁殖成( ) 个2.已知以x 为自变量的函数,其中属于指数函数的是( )A.y =(a+1)x(其中a>-1,且a ≠0) B.y =(-3)xC.y =-(-3)xD.y =3x+12(33)x y a a a =-+是指数函数,则a 的值为 .3.已知a <41,则化简42)14(-a 的结果是定点问题1..指数函数()f x 的图象过点(2,9),则(2)f -=2.函数5()26x f x -=+恒过定点求奇偶性1.当a>1时,证明函数 是奇函数。

2.函数y =xx aa 2211-+(a>0,且a ≠1)( ) f(x) 奇偶性 3.设f(x)=244+x x,若0<a<1,f(x)奇偶性4.F(x)=(1+122-x )f(x)(x ≠0)是偶函数,且f(x)不恒等于零,则f(x)奇偶性 5.判断函数xx xx 10101010)x (f +-=--的奇偶性6.试求:f(a)+f(1-a)的值,进一步求f(10011)+f(10012)+f(10013)+……+f(10011000)的值. (1)f(x)=x x 2)21(2+;判断函数的奇偶性:f(x)=xx 2)21(2+是偶函数.(2)f(x)=11+x a -21 (a>0,且a ≠1). 判断函数的奇偶性:f(x)=11+x a -21是奇函数. 7.对于解析式比较复杂的函数通常将其化简(在确定了其定义域的情况下),然后再判定函11)(-+=xx a a x f数的奇偶性.8.判断函数的奇偶性的问题,通常是根据函数奇偶性定义,也可将问题转化为证明下述结论:若f(-x)+f(x)=0,则f(x)为奇函数;若f(-x)+f(x)=2f(x),则f(x)为偶函数奇偶性解析式1.已知函数)(x f y =是奇函数,则当0≥x 时,13)(-=x x f ,求当0x <时()y f x =的解析式。

指数函数定义域值域复合函数单调性平移轴对称PPT讲稿

指数函数定义域值域复合函数单调性平移轴对称PPT讲稿

比较函数
y 2x y 2x1 y 2x2
的图象关系.
-4
y
9 8 7 6 5 4 3 2 1
-2 O
2 4x
比较函数
y 2x y 2x1 y 2x2
的图象关系.
-4
y
9 8 7 6 5 4 3 2 1
-2 O
2 4x
比较函数
y 2x y 2x1 y 2x2
的图象关系.
-4
y
9 8 7 6 5 4 3 2 1
指数函数定义域值域复合函数 单调性平移轴对称课件
一.求指数型复合函数的定义域、值域: 1
(1) y 0.4 x1 (2) y 3 5x1
(3) y 2x 1
(4) y 4x 2x1 1
二.求下列函数的定义域、值域:
1
(1) y 32 x
(2) y ( 1 ) x1 2
(3) y ( 1 )x24x 4
单调区间为( -∞ ,+∞ )
函数在该区间上是减函数
(2) f (x) ( 1 )|x1| 2
单调区间为: (-∞,1]、 [1,+∞)
2 4x
(3) y 2x 1, y 2x 1. y
9
比较函数
8
y 2x
7
6
y 2x 1
5
y 2x 1
4
3
的图象关系.
2
1
-4 -2 O
2 4x
小 结:
f(x)的图象 向左平移a个单位得到f(x+a)的图象; 向右平移a个单位得到f(x-a)的图象; 向上平移a个单位得到f(x)+a的图象; 向下平移a个单位得到f(x)-a的图象.
-2 O
2 4x
(2) y 2x1 , y 2x2

中职生数学基础模块上册课《指数函数》

中职生数学基础模块上册课《指数函数》
பைடு நூலகம்
自然现象中的指数函数
01
02
03
04
放射性衰变:放 射性物质的衰变 速度与指数函数 相关
生物生长:生物 种群的数量增长 与指数函数相关
化学反应:化学 反应的速度与指 数函数相关
地震波传播:地 震波的传播速度 与指数函数相关
科技领域的指数函数
计算机科学:指 数函数在算法优 化、数据压缩等 方面有广泛应用。
指数函数的图像与 对数函数的图像互 为反函数图像
函数性质
单调性:指数函 数在定义域内是
单调递增的
奇偶性:指数函 数是奇函数
周期性:指数函 数没有周期性
极限性质:当x 趋于正无穷时, 指数函数趋于正 无穷;当x趋于 负无穷时,指数
函数趋于0
Part Two
指数函数的图像与 性质
图像的绘制
01
确定底数和指数: 选择适当的底数和 指数,如y=2^x
价于a=b^c
底数关系:对数 函数的底数与指 数函数的底数互
为倒数,即 log_b(a)=c等价
于b=1/a
值域与定义域: 对数函数的值域 与指数函数的定 义域互为补集, 即log_b(a)的值 域为(0,∞),而 a^c的定义域为
(0,∞)
单调性:对数函 数与指数函数的 单调性相反,即 对数函数在定义 域内单调递增, 而指数函数在定 义域内单调递减
Simple & Creative
中职生数学基础模块上册 课《指数函数》
汇报人XXX
Contents
目录
01. 指数函数的定义
02. 指数函数的图像与性质
03. 指数函数的应用
04.
指数函数与对数函数的 关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四课时 指数函数的定义域与值域以及单调性
主备人 张岳超 校对 年级主任 孙重社 备课组长 张建民 课题 指数函数的定义域与值域以及单调性
课时
考纲要求 掌握指数形式的函数定义域、值域,判断其单调性;培养学生数学应用意识. 学习重点 掌握指数函数的性质及应用. 学习难点
理解指数函数的简单应用模型.
填空
1.形如)(x f a y =的函数的定义域是使)(x f 有意义的x 的集合.
2.形如)
(x f a
y =的值域都是先求出)(x f 的值域,再有单调性得出)
(x f a y =的值域,若
1,0≠>a a 且,要对a 进行分类讨论.
例1 求函数1
1
5
-=x y 的值域
解: 01
1
≠-x
.1511
≠∴-x , }{
10≠>∴y y y 且值域为. 练习: 求下列函数的值域
(1)x x y 22)31(-= (2)1
21
2+-=x x y (3)x
x y 422
--=
(4)1329-⨯+=x
x y (5)x
y -=3)
3
1(
指数函数单调性的应用
一、 幂的大小比较
(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断; 例1 14
.33
3与π
解:构造函数x y 3= ∴>=,13a x y 3=在),(∞+∞-上是增函数
14.33314.3>∴>ππ
练习: 比较4
3
41 -)3
2(32-与)(的大小
(2)对于底数不同,指数相同的两个幂的大小比较,可以利用指数函数图像的变化规律来判断.
例2
5
.05.035.0与)(的大小 x a y = 在y 轴右侧,底大图高,所以5.05.035.0<
练2:比较41
-41
-55
1与)(的大小
(3)对于底数不同,且指数也不同的幂的大小比较,则应通过中间值来比较 例3 比较的大小与5
.06.06.05.0
解:因为上是减函数,在R y x 5.0=所以5.06
.05.05.0<.又因为x a y = 在y 轴右侧,底大
图高,所以5.06
.06.05
.0<
练3:比较3
.01
.09
.04.1与的大小
(4)对于三个(或三个以上)的幂的大小比较,则应先根据值的大小进行分组,再比较各组数的大小即可.
例4 比较21
332314
332-234),(),(,)(的大小.
解:将2
1
332314
332-234)
,(),(,)(分成如下三类:(1)负数332-)(;(2)大于0小于1的数2143)(;(3)大于1的数.2343231,)
( ,24,43
432
31313
1=<而)( 32
312132)3
4
()43(32-<<<∴)(
练4 比较7
55
.03.05
3
3
.02.03.0-22.03.0-33.0),(,,),(,的大小
二、解简单的不等式 对于形如)
()
(x g x f a a
>)
且(1,0≠>a a 的不等式,解此等不等式的依据是指数函数的单调性,要养成判断底数取值范围的习惯,若不确定,则需进行讨论,即
)
()
(x g x f a
a
>=⎩
⎨⎧<<<>>10),()(1),()(a x g x f a x g x f
例1 已知,)2(2122x x
a a a a -++>++)(求x 的取值范围.
解:因为,14
7
)2
1(22
2
>+
+=++a a a 所以x a a y )2(2++=在R 上是增函数. 所以x x ->1,解得21>x 所以x 的取值范围是),(∞+2
1
练1 已知75+->x x
a a )
且(1,0≠>a a ,求x 的取值范围.
练案
选择题
1.函数13)(-=-x x f 的定义域、值域分别为( )
A.定义域是R,值域是R
B.定义域是R,值域是),(∞+0
C.定义域是R,值域是),(∞+1-
D.以上都不对
2.(2013∙湖北)已知全集为R ,集合A=⎭
⎬⎫≤⎩
⎨⎧
1)2
1(|x x ,B=}{
86|2≤+-x x x
⋂A B C R =( )
A.}{0
|≤x x B.}{42|≤≤x x
C.}{
4
20|><≤x x x 或 D.}{420|≥≤<x x x 或
3.下列函数中,值域是),(∞+0的是( )
A.x
y 1
2= B.12-=
x y C.12+=x y D.x y -=2)2
1
(
4.函数x y 31-=的定义域是( )
A.[)0∞+,
B.(]0,∞-
C.[)1∞+,
D.),(+∞-∞ 5.已知8
.09
.07
.02
.1,8.0,8.0===c b a ,则c b a ,,的大小关系是( )
A.b a c >>
B.a b c >>
C.c b a >>
D.c a b >> 填空 1.函数1
2
3+=x
y 的值域为 .
2.函数)1,0(≠>=a a a y x
在[]1,0上的最大值与最小值的和为3,则a 的值为 .
3.方程32
2=+-x x
的实数解的个数为 .
4.函数c bx x x f +-=2
)(满足3)0(=f ,且对任意实数x 都有),1()1(x f x f -=+则
)()(x x c f b f 与的大小关系是 .
三、大题
1.设x x e
a
a e x f a +=
>)(,0是R 上的偶函数. (1)求a 的值;(2)证明:)(x f 在),(∞+0上为增函数.。

相关文档
最新文档