天津一中2014届高三高考名师圈题模拟(一) 数学文 扫描版含答案

合集下载

2014年全国高考天津市数学(文)试卷及答案【精校版】

2014年全国高考天津市数学(文)试卷及答案【精校版】

绝密 ★ 启用前2014年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2本卷共8小题,每小题5分,共40分。

参考公式:•如果事件A ,B 互斥,那么 •圆锥的体积公式13V Sh =.()()()P A B P A P B =+其中S 表示圆锥的底面面积,•圆柱的体积公式V Sh =. h 表示圆锥的高. 其中S 表示棱柱的底面面积,h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数734ii+=+( )(A )1i - (B )1i -+ (C )17312525i + (D )172577i -+ 解:()()()()73472525134343425i i ii i i i i +-+-===-++-,选A .xED CBA (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5 解:作出可行域,如图结合图象可知,当目标函数通过点()1,1时,z 取得最小值3,选B .(3)已知命题p :0x ">,总有()11x x e +>,则p Ø为( (A )00x $£,使得()0011xx e £+ (B )00x $>,使得0011xx e £+(C )0x ">,总有()11x x e +£ (D )0x "£,总有()11xx e +£解:依题意知p Ø为:00x $>,使得()0011xx e £+,选B .(4)设2log a p =,12log b p =,2c p-=,则( )(A )a b c >> (B )b a c >> (C )a c b >> (D )c b a >> 解:因为1a >,0b <,01c <<,所以a c b >>,选C .(5)设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a =( )(A )2 (B )-2 (C )12 (D )12- 解:依题意得2214S S S =,所以()()21112146a a a -=-,解得112a =-,选D . (6)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -= 解:依题意得22225b ac c a bìï=ïïï=íïïï=+ïî,所以25a =,220b =,选A . (7)如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分C B F Ð;②2FB FD FA =?;③AE CEBE DE ??;④AF BD AB BF ??.则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④解:由弦切角定理得FBD EAC BAE ???,又BFD AFB ??, 所以BFD D ∽AFB D ,所以BF BDAF AB=,即AF BD AB BF ??,排除A 、C .又FBDEAC DBC ???,排除B ,选D .(8)已知函数()cos f x x x w w =+()0w >,x R Î,在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3p,则()f x 的最小正周期为( ) (A )2p(B )23p (C )p (D )2p解:因为()2sin 6f x x p w 骣÷ç=+÷ç÷ç桫,所以()1f x =得1sin 62x p w 骣÷ç+=÷ç÷ç桫, 所以266x k p p w p +=+或5266x k ppw p +=+,k Z Î. 因为相邻交点距离的最小值为3p,所以233p pw =,2w =,T p =,选C . 第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。

2014年天津市高考数学试卷(文科)答案与解析

2014年天津市高考数学试卷(文科)答案与解析

2014年天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2014•天津)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:将复数的分子与分母同时乘以分母的共轭复数3﹣4i,即求出值.解答:解:复数==,故选A.点评:本题考查了复数的运算法则和共轭复数的意义,属于基础题.2.(5分)(2014•天津)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2B.3C.4D.5考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.解答:解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B(1,1)时,直线y=﹣的截距最小,此时z最小.此时z的最小值为z=1+2×1=3,故选:B.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.3.(5分)(2014•天津)已知命题p:∀x>0,总有(x+1)e x>1,则¬p为()A.∃x0≤0,使得(x0+1)e≤1 B.∃x0>0,使得(x0+1)e≤1C.∀x>0,总有(x+1)e x≤1 D.∀x≤0,总有(x+1)e x≤1考点:命题的否定;全称命题.专题:简易逻辑.分析:据全称命题的否定为特称命题可写出命题p的否定.解答:解:根据全称命题的否定为特称命题可知,¬p为∃x0>0,使得(x0+1)e≤1,故选:B.点评:本题主要考查了全称命题的否定的写法,全称命题的否定是特称命题.4.(5分)(2014•天津)设a=log2π,b=logπ,c=π﹣2,则()A.a>b>c B.b>a>c C.a>c>b D.c>b>a考点:对数值大小的比较.专题:函数的性质及应用.分析:根据对数函数和幂函数的性质求出,a,b,c的取值范围,即可得到结论.解答:解:log2π>1,logπ<0,0<π﹣2<1,即a>1,b<0,0<c<1,∴a>c>b,故选:C点评:本题主要考查函数值的大小比较,利用对数函数和幂函数的性质是解决本题的关键,比较基础.5.(5分)(2014•天津)设{a n}的首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1=()A.2B.﹣2 C.D.﹣考点:等比数列的性质;等差数列的性质.专题:等差数列与等比数列.分析:由等差数列的前n项和求出S1,S2,S4,然后再由S1,S2,S4成等比数列列式求解a1.解答:解:∵{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,∴S1=a1,S2=2a1﹣1,S4=4a1﹣6,由S1,S2,S4成等比数列,得:,即,解得:.故选:D.点评:本题考查等差数列的前n项和公式,考查了等比数列的性质,是基础的计算题.6.(5分)(2014•天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1考点:双曲线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:先求出焦点坐标,利用双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.解答:解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1.故选:A.点评:本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.7.(5分)(2014•天津)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④考点:与圆有关的比例线段;命题的真假判断与应用.专题:直线与圆.分析:本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项.解答:解:∵圆周角∠DBC对应劣弧CD,圆周角∠DAC对应劣弧CD,∴∠DBC=∠DAC.∵弦切角∠FBD对应劣弧BD,圆周角∠BAD对应劣弧BD,∴∠FBD=∠BAF.∵AD是∠BAC的平分线,∴∠BAF=∠DAC.∴∠DBC=∠FBD.即BD平分∠CBF.即结论①正确.又由∠FBD=∠FAB,∠BFD=∠AFB,得△FBD~△FAB.由,FB2=FD•FA.即结论②成立.由,得AF•BD=AB•BF.即结论④成立.正确结论有①②④.故答案为D点评:本题考查了弦切角、圆周角与弧的关系,还考查了三角形相似的知识,本题总体难度不大,属于基础题.8.(5分)(2014•天津)已知函数f(x)=sinωx+cosωx(ω>0),x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为()A.B.C.πD.2π考点:三角函数的周期性及其求法;正弦函数的图象.专题:三角函数的图像与性质.分析:根据f(x)=2sin(ωx+),再根据曲线y=f(x)与直线y=1的交点中,相邻交点距离的最小值为,正好等于f(x)的周期的倍,求得函数f(x)的周期T的值.解答:解:∵已知函数f(x)=sinωx+cosωx=2sin(ωx+)(ω>0),x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,正好等于f (x)的周期的倍,设函数f(x)的最小正周期为T,则=,∴T=π,故选:C.点评:本题主要考查函数y=Asin(ωx+φ)的图象特征,得到正好等于f(x)的周期的倍,是解题的关键,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2014•天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取60名学生.考点:分层抽样方法.专题:概率与统计.分析:先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.解答:解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,故应从一年级本科生中抽取名学生数为300×=60,故答案为:60.点评:本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.10.(5分)(2014•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.考点:由三视图求面积、体积.专题:立体几何.分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.11.(5分)(2014•天津)阅读如图的框图,运行相应的程序,输出S的值为﹣4.考点:程序框图.专题:算法和程序框图.分析:写出前二次循环,满足判断框条件,输出结果.解答:解:由框图知,第一次循环得到:S=﹣8,n=2;第二次循环得到:S=﹣4,n=1;退出循环,输出﹣4.故答案为:﹣4.点评:本题考查循环结构,判断框中n≤1退出循环是解题的关键,考查计算能力.12.(5分)(2014•天津)函数f(x)=lgx2的单调递减区间是(﹣∞,0).考点:复合函数的单调性.专题:函数的性质及应用.分析:先将f(x)化简,注意到x≠0,即f(x)=2lg|x|,再讨论其单调性,从而确定其减区间;也可以函数看成由复合而成,再分别讨论内层函数和外层函数的单调性,根据“同増异减”再来判断.解答:解:方法一:y=lgx2=2lg|x|,∴当x>0时,f(x)=2lgx在(0,+∞)上是增函数;当x<0时,f(x)=2lg(﹣x)在(﹣∞,0)上是减函数.∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).方法二:原函数是由复合而成,∵t=x2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=lgt在其定义域上为增函数,∴f(x)=lgx2在(﹣∞,0)上是减函数,在(0,+∞)为增函数,∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).点评:本题是易错题,学生在方法一中,化简时容易将y=lgx2=2lg|x|中的绝对值丢掉,方法二对复合函数的结构分析也是最常用的方法,此外,本题还可以利用数形结合的方式,即画出y=2lg|x|的图象,得到函数的递减区间.13.(5分)(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BC=3BE,DC=λDF,若•=1,则λ的值为2.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据向量的基本定理,结合数量积的运算公式,建立方程即可得到结论.解答:解:∵BC=3BE,DC=λDF,∴=,=,=+=+=+,=+=+=+,∵菱形ABCD的边长为2,∠BAD=120°,∴||=||=2,•=2×2×cos120°=﹣2,∵•=1,∴(+)•(+)=++(1+)•=1,即×4+×4﹣2(1+)=1,整理得,解得λ=2,故答案为:2.点评:本题主要考查向量的基本定理的应用,以及数量积的计算,要求熟练掌握相应的计算公式.14.(5分)(2014•天津)已知函数f(x)=,若函数y=f(x)﹣a|x|恰有4个零点,则实数a的取值范围为(1,2).考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:由y=f(x)﹣a|x|=0得f(x)=a|x|,利用数形结合即可得到结论.解答:解:由y=f(x)﹣a|x|=0得f(x)=a|x|,作出函数y=f(x),y=a|x|的图象,当a≤0,不满足条件,∴a>0,当a=2时,此时y=a|x|与f(x)有三个交点,当a=1时,此时y=a|x|与f(x)有五个交点,∴要使函数y=f(x)﹣a|x|恰有4个零点,则1<a<2,故答案为:(1,2)点评:本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 15.(13分)(2014•天津)某校夏令营有3名男同学,A、B、C和3名女同学X,Y,Z,其年级情况如表:一年级二年级三年级男同学 A B C女同学X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(Ⅰ)用表中字母列举出所有可能的结果;(Ⅱ)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.考点:古典概型及其概率计算公式;列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:(Ⅰ)用表中字母一一列举出所有可能的结果,共15个.(Ⅱ)用列举法求出事件M包含的结果有6个,而所有的结果共15个,由此求得事件M发生的概率.解答:解:(Ⅰ)用表中字母列举出所有可能的结果有:(A,B)、(A,C)、(A,X)、(A,Y)、(A,Z)、(B,C)、(B,X)、(B,Y)、(B,Z)、(C,X)、(C,Y)、(C,Z)、(X,Y)、(X,Z )、(Y,Z),共计15个结果.(Ⅱ)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,则事件M包含的结果有:(A,Y)、(A,Z)、(B,X)、(B,Z)、(C,X)、(C,Y),共计6个结果,故事件M发生的概率为=.点评:本题考主要查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,列举法,是解决古典概型问题的一种重要的解题方法,属于基础题.16.(13分)(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a ﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.考点:正弦定理;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)已知第二个等式利用正弦定理化简,代入第一个等式表示出a,利用余弦定理表示出cosA,将表示出的a,b代入计算,即可求出cosA的值;(Ⅱ)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,进而利用二倍角的正弦、余弦函数公式求出sin2A与cos2A的值,原式利用两角和与差的余弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.解答:解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,二倍角的正弦、余弦函数公式,以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.17.(13分)(2014•天津)如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点.(Ⅰ)证明EF∥平面PAB;(Ⅱ)若二面角P﹣AD﹣B为60°,(i)证明平面PBC⊥平面ABCD;(ii)求直线EF与平面PBC所成角的正弦值.考点:二面角的平面角及求法;直线与平面平行的判定;平面与平面垂直的判定;直线与平面所成的角.专题:空间角;空间向量及应用;立体几何.分析:(Ⅰ)要证明EF∥平面PAB,可以先证明平面EFH∥平面PAB,而要证明面面平行则可用面面平行的判定定理来证;(Ⅱ)(i)要证明平面PBC⊥平面ABCD,可用面面垂直的判定定理,即只需证PB⊥平面ABCD即可;(ii)由(i)知,BD,BA,BP两两垂直,建立空间直角坐标系B﹣DAP,得到直线EF的方向向量与平面PBC法向量,其夹角的余弦值的绝对值即为所成角的正弦值.解答:解:(Ⅰ)证明:连结AC,AC∩BD=H,∵底面ABCD是平行四边形,∴H为BD中点,∵E是棱AD的中点.∴在△ABD中,EH∥AB,又∵AB⊂平面PAB,EH⊄平面PAD,∴EH∥平面PAB.同理可证,FH∥平面PAB.又∵EH∩FH=H,∴平面EFH∥平面PAB,∵EF⊂平面EFH,∴EF∥平面PAB;(Ⅱ)(i)如图,连结PE,BE.∵BA=BD=,AD=2,PA=PD=,∴BE=1,PE=2.又∵E为AD的中点,∴BE⊥AD,PE⊥AD,∴∠PEB即为二面角P﹣AD﹣B的平面角,即∠PEB=60°,∴PB=.∵△PBD中,BD2+PB2=PD2,∴PB⊥BD,同理PB⊥BA,∴PB⊥平面ABD,∵PB⊂平面PBC,∴平面PAB⊥平面ABCD;(ii)由(i)知,PB⊥BD,PB⊥BA,∵BA=BD=,AD=2,∴BD⊥BA,∴BD,BA,BP两两垂直,以B为坐标原点,分别以BD,BA,BP为X,Y,Z轴,建立如图所示的空间直角坐标系B﹣DAP,则有A(0,,0),B(0,0,0),C(,﹣,0),D(,0,0),P(0,0,),∴=(,﹣,0),=(0,0,),设平面PBC的法向量为,∵,∴,令x=1,则y=1,z=0,故=(1,1,0),∵E,F分别是棱AD,PC的中点,∴E(,,0),F(,﹣,),∴=(0,,),∴===﹣,即直线EF与平面PBC所成角的正弦值为.点评:本题主要考查空间直线与平面平行的判定定理以及线面角大小的求法,要求熟练掌握相关的判定定理.18.(13分)(2014•天津)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点M,|MF2|=2,求椭圆的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)分别用a,b,c表示出|AB|和|F1F2|,根据已知建立等式求得a和c的关系,进而求得离心率e.(Ⅱ)根据(1)中a和c的关系,用c表示出椭圆的方程,设出P点的坐标,根据PB为直径,推断出BF1⊥PF1,进而知两直线斜率相乘得﹣1,进而求得sinθ和cosθ,表示出P点坐标,利用P,B求得圆心坐标,则可利用两点间的距离公式分别表示出|OB|,|OF2|,利用勾股定理建立等式求得c,则椭圆的方程可得.解答:解:(Ⅰ)依题意可知=•2c,∵b2=a2﹣c2,∴a2+b2=2a2﹣c2=3c2,∴a2=2c2,∴e==.(Ⅱ)由(Ⅰ)知a2=2c2,∴b2=a2﹣c2=c2,∴椭圆方程为+=1,B(0,c),F1(﹣c,0)设P点坐标(csinθ,ccosθ),以线段PB为直径的圆的圆心为O,∵PB为直径,∴BF1⊥PF1,∴k BF1•k PF1=•=﹣1,求得sinθ=﹣或0(舍去),由椭圆对称性可知,P在x轴下方和上方结果相同,只看在x轴上方时,cosθ==,∴P坐标为(﹣c,c),∴圆心O的坐标为(﹣c,c),∴r=|OB|==c,|OF2|==c,∵r2+|MF2|2=|OF2|2,∴+8=c2,∴c2=3,∴a2=6,b2=3,∴椭圆的方程为+=1.点评:本题主要考查了直线与圆锥曲线的位置关系.第(1)相对简单,主要是求得a和c 的关系;第(2)问较难,利用参数法设出P点坐标是关键.19.(14分)(2014•天津)已知函数f(x)=x2﹣ax3(a>0),x∈R.(Ⅰ)求f(x)的单调区间和极值;(Ⅱ)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,求a 的取值范围.考点:导数在最大值、最小值问题中的应用;函数在某点取得极值的条件;利用导数研究函数的极值.专题:导数的综合应用.分析:(Ⅰ)求导数,利用导数的正负,可得f(x)的单调区间,从而求出函数的极值;(Ⅱ)由f(0)=f()=0及(Ⅰ)知,当x∈(0,)时,f(x)>0;当x∈(,+∞)时,f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B={|x∈(1,+∞),f(x)≠0},则对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,等价于A⊆B,分类讨论,即可求a的取值范围.解答:解:(Ⅰ)f′(x)=2x﹣2ax2=2x(1﹣ax),令f′(x)=0,解得x=0或x=.当x变化时,f′(x),f(x)的变化情况如下表:x (﹣∞,0)0(0,)(,+∞)f′(x)﹣0 + 0 ﹣f(x)递减0 递增递减所以,f(x)的单调递减区间为:(﹣∞,0)和,单调递增区间为,当x=0时,有极小值f(0)=0,当x=时,有极大值f()=;(Ⅱ)由f(0)=f()=0及(Ⅰ)知,当x∈(0,)时,f(x)>0;当x∈(,+∞)时,f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B={|x∈(1,+∞),f(x)≠0},则对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,等价于A⊆B,显然A≠∅下面分三种情况讨论:①当>2,即0<a<时,由f()=0可知,0∈A,而0∉B,∴A不是B的子集;②当1≤≤2,即时,f(2)≤0,且f(x)在(2,+∞)上单调递减,故A=(﹣∞,f(2)),∴A⊆(﹣∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(﹣∞,0),即(﹣∞,0)⊆B,∴A⊆B;③当<1,即a>时,有f(1)<0,且f(x)在(1,+∞)上单调递减,故B=(,0),A=(﹣∞,f(2)),∴A不是B的子集.综上,a的取值范围是[].点评:利用导数可以求出函数的单调区间和极值;解决取值范围问题,很多时候要进行等价转化,分类讨论.20.(14分)(2014•天津)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.考点:数列与不等式的综合;数列的求和.专题:等差数列与等比数列;点列、递归数列与数学归纳法.分析:(Ⅰ)当q=2,n=3时,M={0,1},A={x|,xi∈M,i=1,2,3}.即可得到集合A.(Ⅱ)由于a i,b i∈M,i=1,2,…,n.a n<b n,可得a n﹣b n≤﹣1.由题意可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…++≤﹣[1+q+…+q n﹣2+q n﹣1],再利用等比数列的前n项和公式即可得出.解答:(Ⅰ)解:当q=2,n=3时,M={0,1},A={x|,x i∈M,i=1,2,3}.可得A={0,1,2,3,4,5,6,7}.(Ⅱ)证明:由设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.a n<b n,∴a n﹣b n≤﹣1.可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…++≤﹣[1+q+…+q n﹣2+q n﹣1]=<0.∴s<t.点评:本题考查了考查了集合的运算及其性质、等比数列的前n项和公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.。

数学理卷·2014届天津市红桥区高三第一次模拟考试(含答案解析)扫描版

数学理卷·2014届天津市红桥区高三第一次模拟考试(含答案解析)扫描版

高三数学(理)答案(2014、04)一、选择题:本大题共8小题,每小题5分,满分40分.二、填空题:本大题共6小题,每小题5分,满分30分. 9.{}31≤≤x x 10.4 11.-192 12.23 13.332 14.13 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分13分) (Ⅰ)因为sinC=2sinA 21sin sin ==∴C A c a .............................................2 522==∴BC AB . (4)(Ⅱ)bc a c b A 2cos 222-+==552 (7)55cos 1sin 2=-=∴A A ……8 所以54cos sin 22sin ==A A A 531c o s 22c o s2=-=A A …10 sin 24A π⎛⎫-⎪⎝⎭=4sin 2cos 4cos 2sin ππA A -102= …………13 16.(本小题满分13分)设“A 级第一次考试合格”为事件1A ,“A 级补考合格”为事件A 2;“B 级第一次考试合格”为事件1B ,“B 级补考合格”为事件2B .(Ⅰ)不需要补考就获得合格证书的事件为A 1·B 1,注意到A 1与B 1相互独立,则答:该考生不需要补考就获得合格证书的概率为13………………………4 (Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,可得)()()2(1111B A P B A P P ⋅+⋅==ξ2111114.3233399=⨯+⨯=+= (6))()()()3(221211211B A A P B B A P B B A P P ⋅⋅+⋅⋅+⋅⋅==ξ (8))()()4(21212121B B A A P B B A A P P ⋅⋅⋅+⋅⋅⋅==ξ12111211111,3322332218189=⨯⨯⨯+⨯⨯⨯=+=………………….10 故4418234.9993E ξ=⨯+⨯+⨯=答:该考生参加考试次数的期望为83 (13)17.(本小题满分13分)(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥平面ABCD ...........2 因为SA SB =,所以AO BO = (3)又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥……………4 如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -.0)A ,,(0B,(0C ,(001)S ,,,)0,22,2(-D (6)1)SA =- ,,(0CB =,0=⋅,所以SA BC ⊥ (8)(Ⅱ)设),,(z y x =为平面SAB 的法向量则⎪⎩⎪⎨⎧=⋅=⋅00AS n AB n 得 ⎪⎩⎪⎨⎧=+-=+-02022z x y x 所以 ⎩⎨⎧==xz yx 2 令x=1 )2,1,1(= (10)1122,cos ==>< ………………………………12 SD 与平面SAB 所成的角与与所成的角互余.所以,直线SD 与平面SAB 所成的角正弦值为1122……………………………13 18.(本小题满分13分)函数2()ln(1)f x x b x =++的定义域为()1,-+∞ (2)222'()211b x x bf x x x x ++=+=++ (4)令2()22g x x x b =++,则()g x 在1,2⎛⎫-+∞ ⎪⎝⎭上递增,在11,2⎛⎫-- ⎪⎝⎭上递减,min 11()()22g x g b =-=-+.当12b >时,min 1()02g x b =-+>,2()220g x x x b =++>在()1,-+∞上恒成立.'()0,f x ∴>即当12b >时,函数()f x 在定义域()1,-+∞上单调递增……………………………6 (II )分以下几种情形讨论:(1)由(I )知当12b >时函数()f x 无极值点.(2)当12b =时,212()2'()1x f x x +=+,11,2x ⎛⎫∴∈-- ⎪⎝⎭时,'()0,f x > 1,2x ⎛⎫∈-+∞ ⎪⎝⎭时,'()0,f x >12b ∴=时,函数()f x 在()1,-+∞上无极值点 (8)(3)当12b <时,解'()0f x =得两个不同解112x -=,212x -=. 当0b <时,11x =<-,21x =>-,()()121,,1,,x x ∴∉-+∞∈-+∞此时()f x 在()1,-+∞上有唯一的极小值点2x = (10)当102b <<时,()12,1,,x x ∈-+∞ '()f x 在()()121,,,x x -+∞都大于0 ,'()f x 在12(,)x x 上小于0 ,此时()f x有一个极大值点112x -=和一个极小值点212x -+=综上可知,0b <时,()f x 在()1,-+∞上有唯一的极小值点2x =;102b <<时,()f x有一个极大值点112x -=和一个极小值点212x -= 12b ≥时,函数()f x 在()1,-+∞上无极值点.………………………………………13 19.(本小题满分14分) (Ⅰ)由题意可知,b=1, 又因为23==a c e ,且a 2=b 2+c 2,解得a=2 所以椭圆的方程为1422=+y x ………………………………………………4 (Ⅱ)由题意可得:A (﹣2,0),B (2,0). 设P (x 0,y 0),由题意可得:﹣2<x 0<2, 所以直线AP 的方程为)2(200++=x x y y …………………………………6 令,则)222(200++=x y y ,即2)222(00++=x y DE ……………………8 同理:直线BP 的方程为)2(200--=x x y y ,令,则)222(200--=x y y , 即2)222(00--=x y DF (10)所以=2202024444x y x y -=-……………………………………………………..12 而,即4y 02=4﹣x 02,代入上式,所以|DE|·|DF|=1,所以|DE|·|DF|为定值1.…………………………………………14 20.(本小题满分14分) (Ⅰ)在11()22n n n S a -=--+中,令n=1,可得1112n S a a =--+=,即112a = (1)当2n ≥时,21111111()2()22n n n n n n n n n S a a S S a a ------=--+∴=-=-++,, (2)11n 1112a (),212n n n n n a a a ----∴=+=+n 即2.112,1,n 21n n n n n n b a b b b --=∴=+≥-= n 即当时,b又1121,b a ==∴数列}{n b 是首项和公差均为1的等差数列................................................4 于是1(1)12,2n n n n n nb n n a a =+-⋅==∴=.........................................................................6 (II)由(I )得11(1)()2n n n n c a n n +==+,所以由①-②得 (9)535(3)(221)3212212(21)n n n n n n n n n T n n n ++---=--=+++……………………………………11 于是确定521n n T n +与的大小关系等价于比较221nn +与的大小......猜想:当322 1.nn n ≥>+时,证明如下: 证法1:(1)当n=3时,由猜想显然成立.(2)假设k n =时猜想成立.即122+>k k则1n k =+时,1)1(2)12(1)1(224)12(22221++>-+++=+=+>⋅=+k k k k k k k所以当1n k =+时猜想也成立综合(1)(2)可知 ,对一切3n ≥的正整数,都有22 1.nn >+ 证法2:当3n ≥时综上所述,当1,2n =时521n n T n <+,当3n ≥时521n nT n >+ (14)。

天津市天津一中2014届高三四月月考 数学文 Word版含答案[ 高考]

天津市天津一中2014届高三四月月考 数学文 Word版含答案[ 高考]

天津一中2013-2014学年高三年级四月考数学试卷(文科)一、选择题(每小题5分,共40分)A B 等于( D .{12.设动点),(y x P 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00502402y x y x y x ,则y x z 25+=的最大值是( )A. 50B. 60C. 70D. 1003. 某程序框图如图所示,该程序运行后输出的值是( ) A .3 B .4 C .5 D .64. 下列命题中正确的是( )A.命题“x R ∀∈,2x x -0≤”的否定是“2,0x R x x ∃∈-≥”B.命题“p q ∧为真”是命题“p q ∨为真”的必要不充分条件C.若“22am bm ≤,则a b ≤”的否命题为真 D.若实数,[1,1]x y ∈-,则满足221x y +≥的概率为4π. 5. 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均与22:650C x y x +-+=相切,则该双曲线离心率等于( )A B C .32D6. 某几何体的三视图如下图所示,它的体积为( )A. 72πB. 48πC. 30πD. 24π7. 已知函数)(x f 在),0[+∞上是增函数,()()g x f x =-,若)1()(l g g x g >,则x 的取值范围 是( ) A .),10(+∞ B .)10,101(C .)10,0(D .),10()101,0(+∞8. 已知24(0)()(2)(0)a x x x f x f x x ⎧--<=⎨-≥⎩,且函数()2y f x x =-恰有3个不同的零点,则实数a的取值范围是( )A .[)8,-+∞B .[)4,-+∞C .[-4,0]D .(0,)+∞二、填空题(每小题5分,共30分)9. i 是虚数单位,复数ii 43)21(2-+的值是_______________________10. 在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若2b =,3B π=且sin cos c A C =,则△ABC 的面积为 ________________11. 直线l 过抛物线)0(22>=p px y 的焦点,且交抛物线于B A ,两点,交其准线于C 点,已知AF 3,4||==,则=p ____________________12. 如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若2AB AF ⋅=AE BF ⋅的值是 ____________13. 如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB ,若AB=2,则DE 的长是_________________14. 若实数,,222,2222,aba ba b c a b c a b c c ++++=++=满足则的最大值是 _____三、解答题:(15,16,17,18每题13分,19,20每题14分)15. 某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.16.已知函数())22sin cos 0f x x x x ωωωω=->,直线12,x x x x ==是函数()y f x =的图像的任意两条对称轴,且12x x -的最小值为2π. (I )求ω的值; (II )求函数()f x 的单调增区间; (III )若()23f α=,求5sin 46πα⎛⎫- ⎪⎝⎭的值.17. 如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F (1)证明PA//平面EDB ; (2)证明PB ⊥平面EFD ;(3)求二面角C —PB —D 的大小AC18.已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n bn a )21(2=,设nnn a b c =,求数列{}n c 的前n 项和n T .19.已知椭圆:C 22221(0)x y a b a b+=>>构成的三角形的面积为3. (Ⅰ)求椭圆C 的方程; (Ⅱ)已知动直线(1)y k x =+与椭圆C 相交于A 、B 两点. ①若线段AB 中点的横坐标为12-,求斜率k 的值; ②若点7(,0)3M -,求证:MA MB ⋅为定值.20.设函数()ln af x x x x=+,32()3g x x x =--.(Ⅰ)讨论函数()()f x h x x=的单调性 (Ⅱ)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M (Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围. A B 等于( D .{1【解析】当k =0时,x =1;当k =1时,x =2;当k =5时,x =4;当k =8时,x =5,故选B.2.设动点),(y x P 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00502402y x y x y x ,则y x z 25+=的最大值是( )A. 50B. 60C. 70D. 100 【答案】D3. 某程序框图如图所示,该程序运行后输出的值是( ) A .3 B .4 C .5 D .6 【答案】B4.下列命题中正确的是( )A.命题“x R ∀∈,2x x -0≤”的否定是“2,0x R x x ∃∈-≥”B.命题“p q ∧为真”是命题“p q ∨为真”的必要不充分条件C.若“22am bm ≤,则a b ≤”的否命题为真 D.若实数,[1,1]x y ∈-,则满足221x y +≥的概率为4π. 【答案】C5. 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均与22:650C x y x +-+=相切,则该双曲线离心率等于( )A B C .32D 【答案】A【解析】圆的标准方程为22(3)4x y -+=,所以圆心坐标为(3,0)C ,半径2r =,双曲线的渐近线为b y x a =±,不妨取by x a=,即0bx ay -=,因为渐近线与圆相切,所以圆心到直线的距离2d ==,即22294()b a b =+,所以2254b a =,222245b a c a ==-,即2295a c =,所以29,5e e ==A.6.某几何体的三视图如下图所示,它的体积为( )A. 72πB. 48πC. 30πD. 24π 【答案】C7.已知函数)(x f 在),0[+∞上是增函数,()()g x f x =-,若)1()(lg g x g >,则x 的取值范围是 A .),10(+∞ B .)10,101(C .)10,0(D .),10()101,0(+∞ 【答案】B8.已知24(0)()(2)(0)a x x x f x f x x ⎧--<=⎨-≥⎩,且函数()2y f x x =-恰有3个不同的零点,则实数a的取值范围是( ) A .[)8,-+∞B .[)4,-+∞C .[-4,0]D .(0,)+∞【答案】B9.i 是虚数单位,复数ii 43)21(2-+的值是_________________【答案】 1-10.在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若2b =,3B π=且sin cos c A C =,则△ABC 的面积为 .11. 直线l 过抛物线)0(22>=p px y 的焦点,且交抛物线于B A ,两点,交其准线于C 点,已知BF CB AF 3,4||==,则=p __________【答案】 3812.如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若2AB AF ⋅=AE BF ⋅的值是 .13.如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB ,若AB=2,则DE 的长是_________.【解析】由图知DE ·D F=BD ·CD=1,同理EG ·FG=1.又DG=12AB=1,∴DE(1+FG)=1,FG(1+DE)=1,∴1DE FG .2==答案 14.若实数,,222,2222,aba ba b c a b c a b c c ++++=++=满足则的最大值是【命题意图】本题考查基本不等式的应用,指数、对数等相关知识,考查了转化与化归思想,是难题.【解析】∵2a b +=22a b +≥2a b +≥4,又∵222a b c ++=2a b c++,∴22a bc ++=22a bc+∙,∴221c c-=2a b+≥4,即221c c -≥4,即43221c c -⨯-≥0,∴2c≤43,∴c ≤24log 3=22log 3-,∴c 的最大值为22log 3-. 【答案】22log 3-15.某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.【答案】解:(1) 第3组的人数为0.3×100=30, 第4组的人数为0.2×100=20, 第5组的人数为0.1×100=10. …………3分因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:3060×6=3; 第4组:2060×6=2; 第5组:1060×6=1. 所以应从第3,4,5组中分别抽取3人,2人,1人. …………6分(2)记第3组的3名志愿者为A 1,A 2,A 3,第4组的2名志愿者为B 1,B 2,第5组的1名志愿者为C 1.则从6名志愿者中抽取2名志愿者有:(A 1,A 2), (A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 3,B 1),(A 3,B 2), (A 3,C 1),(B 1,B 2),(B 1,C 1),(B 2,C 1),共有15种. …………8分 其中第4组的2名志愿者B 1,B 2至少有一名志愿者被抽中的有:(A 1,B 1), (A 1,B 2), (A 2,B 1), (A 2,B 2), (A 3,B 1), (A 3,B 2), (B 1,B 2), (B 1,C 1), (B 2,C 1),共有9种, …………10分所以第4组至少有一名志愿者被抽中的概率为93.155=…………13分16.已知函数())22sin cos 0f x x x x ωωωω=->,直线12,x x x x ==是函数()y f x =的图像的任意两条对称轴,且12x x -的最小值为2π. (I )求ω的值; (II )求函数()f x 的单调增区间; (III )若()23f α=,求5sin 46πα⎛⎫- ⎪⎝⎭的值. 【答案】17. 如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F(1)证明PA//平面EDB ; (2)证明PB ⊥平面EFD ;(3)求二面角C —PB —D 的大小(1)证明:连结AC ,AC 交BD 于O ,连结EO ∵底面ABCD 是正方形,∴点O 是AC 的中点 在PAC ∆中,EO 是中位线,∴PA // EO 而⊂EO 平面EDB 且⊄PA 平面EDB , 所以,PA // 平面EDBAC(2)证明:∵PD ⊥底面ABCD 且⊂DC 底面ABCD ,∴DC PD ⊥∵PD=DC ,可知PDC ∆是等腰直角三角形,而DE 是斜边PC 的中线, ∴DE ⊥ ①同样由PD ⊥底面ABCD ,得PD ⊥BC∵底面ABCD 是正方形,有DC ⊥BC ,∴BC ⊥平面PDC 而⊂DE 平面PDC ,∴BC ⊥ ② 由①和②推得⊥DE 平面PBC 而⊂PB 平面PBC ,∴PB DE ⊥又PB EF ⊥且E EF DE = ,所以PB ⊥平面EFD(3)解:由(2)知,DF PB ⊥,故EFD ∠是二面角C —PB —D 的平面角由(2)知,PD EF DE ⊥⊥,设正方形ABCD 的边长为a ,则a BD a DC PD 2,===a BD PD PB 322=+=, a DC PD PC 222=+=a PC DE 2221==在PDB Rt ∆中,aa a PB BD PD DF 3632=⋅=⋅=在EFD Rt ∆中,233622sin ===a aDF DE EFD ,∴3=∠EFD 所以,二面角C —PB —D 318.已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n bn a )21(2=,设nnn a b c =,求数列{}n c 的前n 项和n T . 【答案】解(1)由题意知0,212>+=n n n a S a ………………1分 当1=n 时,21212111=∴+=a a a 当2≥n 时,212,21211-=-=--n n n n a S a S两式相减得1122---=-=n n n n n a a S S a ………………3分 整理得:21=-n na a ……………………4分 ∴数列{}n a 是以21为首项,2为公比的等比数列. 211122212---=⨯=⋅=n n n n a a ……………………5分(2)42222--==n b n na∴n b n 24-=,……………………6分nn n n n n n a b C 28162242-=-==- nn n nn T 28162824282028132-+-⋯+-++=- ① 13228162824202821+-+-+⋯++=n n n n n T ②①-②得1322816)212121(8421+--+⋯++-=n n n nT ………………9分 111122816)211442816211)2112184+-+-----=----⋅-=n n n n nn (( n n24=.………………………………………………………11分.28n n nT =∴…………………………………………………………………13分19. 已知椭圆:C 22221(0)x y a b a b+=>>(Ⅰ)求椭圆C 的方程;(Ⅱ)已知动直线(1)y k x =+与椭圆C 相交于A 、B 两点. ①若线段AB 中点的横坐标为12-,求斜率k 的值;②若点7(,0)3M -,求证:MA MB ⋅为定值.【答案】解:(Ⅰ)因为22221(0)x y a b a b +=>>满足222a b c =+,3c a =,…………2分122b c ⨯⨯=2255,3a b ==,则椭圆方程为221553x y += ……………4分 (Ⅱ)(1)将(1)y k x =+代入221553x y +=中得 2222(13)6350k x k x k +++-=……………………………………………………6分 4222364(31)(35)48200k k k k ∆=-+-=+>2122631k x x k +=-+………………………………………… …………………7分因为AB 中点的横坐标为12-,所以2261312k k -=-+,解得3k =±…………9分(2)由(1)知2122631k x x k +=-+,21223531k x x k -=+ 所以112212127777(,)(,)()()3333MA MB x y x y x x y y ⋅=++=+++ ……………11分 2121277()()(1)(1)33x x k x x =+++++2221212749(1)()()39k x x k x x k =++++++………………………………………12分2222222357649(1)()()313319k k k k k k k -=+++-++++20.设函数()ln af x x x x=+,32()3g x x x =--. (Ⅰ)讨论函数()()f x h x x=的单调性(Ⅱ)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M (Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.1.【解】(Ⅰ)2()ln a h x x x =+,233212()a x ah x x x x-'=-+=, ①00,()a h x '≤≥,函数()h x 在0(,)+∞上单调递增②0a >,0(),h x x '≥≥函数()h x 的单调递增区间为)+∞00(),h x x '≤<≤,函数()h x 的单调递减区间为0((Ⅱ)存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立 等价于:12max [()()]g x g x M -≥,考察32()3g x x x =--,22'()323()g x x x x x =-=-,由上表可知:min max 285()(),()(2)1327g x g g x g ==-==,12max max min 112[()()]()()27g x g x g x g x -=-=, 所以满足条件的最大整数4M =;(Ⅲ)当1[,2]2x ∈时,()ln 1af x x x x=+≥恒成立 等价于2ln a x x x ≥-恒成立,记2()ln h x x x x =-,所以max ()a h x ≥'()12ln h x x x x =--, '(1)0h =.记'()(1)2ln h x x x =--,1[,1)2x ∈,10,ln 0,'()0x x x h x -><>即函数2()ln h x x x x =-在区间1[,1)2上递增,记'()(1)2ln h x x x =--,(1,2]x ∈,10,ln 0,'()0x x x h x -<><即函数2()ln h x x x x =-在区间(1,2]上递减,1,()x h x =取到极大值也是最大值(1)1h =所以1a ≥另解()12ln m x x x x =--,'()32ln m x x =--, 由于1[,2]2x ∈,'()32ln 0m x x =--<, 所以()'()12ln m x h x x x x ==--在1[,2]2上递减, 当1[,1)2x ∈时,'()0h x >,(1,2]x ∈时,'()0h x <,即函数2()ln h x x x x =-在区间1[,1)2上递增,在区间(1,2]上递减,所以max ()(1)1h x h ==,所以1a ≥。

天津市红桥区2014届高三第一次模拟数学(理)试题

天津市红桥区2014届高三第一次模拟数学(理)试题

天津市红桥区2014届高三第一次模拟考试数学(理)试题本试卷分为第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回。

第I卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:如果事件A,B互斥,那么P(AB)=P(A)+P(B)如果事件A,B相互独立,那么P(AB)=P(A)P(B).棱柱的体积公式V=Sh.其中S表示棱柱的底面面积 h表示棱柱的高圆锥的体积公式V=Sh.其中S表示圆锥的底面面积h表示圆锥的高一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的。

1.复数等于A. -i B.1 C. -l D.02.设与垂直,则的值等于A. B. C.0 D.-l3.设m、n是两条不同的直线,、是两个不同的平面,则A.若m//,n//,则m//n B.若m//,m//,则//C.若m//n,m,则n D.若m//,,则m4.一个四棱锥的三视图如图所示,其左视图是等边三角形,该四棱锥的体积等于A.4B.3C.2D.5.函数在区间上的最小值是A.-l B. C. D.06.已知,,则A. a>b>c B.b>a>c C.a>c>b D.c>a>b7.设r>0,那么直线(是常数)与圆(是参数)的位置关系是A.相交 B.相切 C.相离 D.视r的大小而定8.在区间上随机取一个数x,的值介于0到之间的概率为A. B. C. D.第II卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共12小题,共110分.二.填空题:本大题共6小题,每小题5分,共30分。

天津市六校2014届高三上学期第一次联考数学(文)试题 Word版含答案

天津市六校2014届高三上学期第一次联考数学(文)试题 Word版含答案

天津市六校2014届高三第一次联考数学试卷(文科)一、选择题(每题5分,共8题)1.已知复数12z i =-,那么1z =( )A.55+B.55-C.1255i +D.1255i - 2. “1x >”是“1x >” 的A .充分不必要条件 B.必要不充分条件 C. 充分必要条件 D.既不充分又不必要条件3.设变量x,y 满足,x y 1x y 1x +≤⎧⎪-≤⎨⎪≥0⎩,则x y +2的最大值和最小值分别为( )A . 1,-1 B. 2,-2 C. 1,-2 D.2,-14. 方程03log 4=-x x 的根所在区间为( )A .)25,2( B. )3,25( C.)4,3( D.)5,4(5.已知定义在R 上的函数)(x f 是偶函数,对2)3()2()2( -=--=+∈f x f x f R x ,当有都 时,)2013(f 的值为( ) A .-2 B. 2C.4D.-46. 若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( )A . [3,1]-- B. [1,3]- C. [3,1]- D. (,3][1,)-∞-+∞ 7. 在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A . 3B .2 3C .3 3 D. 4 38.则使方程()x f x m +=有解的实数m 的取值范围是( )A .(1,2) B. (,1][2,)-∞⋃+∞ C.(,1)(2,)-∞⋃+∞ D. (,2]-∞-二、填空题(每小题5分,共6小题)9.已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B = 。

10.已知(2,0),(2,2),(2,1)OB OC CA ===,则OA 与OB 夹角的正弦值为_____.11.如图,PT 切圆O 于点T ,PA 交圆O 于A 、B 两点,且与直径CT 交于点D ,6,3,2===BD AD CD ,则=PB 。

【2014红桥一模】天津市红桥区2014届高三第一次模拟考试 数学(理)答案

【2014红桥一模】天津市红桥区2014届高三第一次模拟考试 数学(理)答案

高三数学(理)答案(2014、04)一、选择题:本大题共8小题,每小题5分,满分40分. 题号 1 2 3 4 5 6 7 8 答案DBCDCDBC二、填空题:本大题共6小题,每小题5分,满分30分. 9.{}31≤≤x x 10.4 11.-192 12.2313.332 14.13三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分13分) (Ⅰ)因为sinC=2sinA 21sin sin ==∴C A c a .............................................2 522==∴BC AB . (4)(Ⅱ)bca cb A 2cos 222-+==552 (7)55cos 1sin 2=-=∴A A ……8 所以54cos sin 22sin ==A A A 531c o s 22c o s 2=-=A A …10 sin 24A π⎛⎫-⎪⎝⎭=4sin2cos 4cos2sin ππA A -102=…………13 16.(本小题满分13分)设“A 级第一次考试合格”为事件1A ,“A 级补考合格”为事件A 2;“B 级第一次考试合格”为事件1B ,“B 级补考合格”为事件2B .(Ⅰ)不需要补考就获得合格证书的事件为A 1·B 1,注意到A 1与B 1相互独立,则答:该考生不需要补考就获得合格证书的概率为13………………………4 (Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,可得)()()2(1111B A P B A P P ⋅+⋅==ξ2111114.3233399=⨯+⨯=+= (6))()()()3(221211211B A A P B B A P B B A P P ⋅⋅+⋅⋅+⋅⋅==ξ (8))()()4(21212121B B A A P B B A A P P ⋅⋅⋅+⋅⋅⋅==ξ12111211111,3322332218189=⨯⨯⨯+⨯⨯⨯=+=………………….10 故4418234.9993E ξ=⨯+⨯+⨯=答:该考生参加考试次数的期望为83 (13)17.(本小题满分13分)(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥平面ABCD ...........2 因为SA SB =,所以AO BO = (3)又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥……………4 如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -.(200)A ,,,(020)B ,,,(020)C -,,,(001)S ,,,)0,22,2(-D ………6 (201)SA =- ,,,(0220)CB =,,,0=⋅CB SA ,所以SA BC ⊥ (8)(Ⅱ)设),,(z y x n =为平面SAB 的法向量则⎪⎩⎪⎨⎧=⋅=⋅00AS n AB n 得 ⎪⎩⎪⎨⎧=+-=+-02022z x y x 所以 ⎩⎨⎧==x z yx 2 令x=1 )2,1,1(=n (10)1122,cos =⋅=><SDn SD n SD n ………………………………12 SD 与平面SAB 所成的角与SD 与n 所成的角互余.所以,直线SD 与平面SAB 所成的角正弦值为1122……………………………13 18.(本小题满分13分)函数2()ln(1)f x x b x =++的定义域为()1,-+∞ (2)222'()211b x x bf x x x x ++=+=++ (4)令2()22g x x x b =++,则()g x 在1,2⎛⎫-+∞ ⎪⎝⎭上递增,在11,2⎛⎫-- ⎪⎝⎭上递减,min 11()()22g x g b =-=-+.当12b >时,min 1()02g x b =-+>,2()220g x x x b =++>在()1,-+∞上恒成立.'()0,f x ∴>即当12b >时,函数()f x 在定义域()1,-+∞上单调递增……………………………6 (II )分以下几种情形讨论:(1)由(I )知当12b >时函数()f x 无极值点.(2)当12b =时,212()2'()1x f x x +=+,11,2x ⎛⎫∴∈-- ⎪⎝⎭时,'()0,f x > 1,2x ⎛⎫∈-+∞ ⎪⎝⎭时,'()0,f x >12b ∴=时,函数()f x 在()1,-+∞上无极值点 (8)(3)当12b <时,解'()0f x =得两个不同解11122b x ---=,21122b x -+-=.当0b <时,111212b x ---=<-,211212bx -+-=>-,()()121,,1,,x x ∴∉-+∞∈-+∞此时()f x 在()1,-+∞上有唯一的极小值点21122bx -+-= (10)当102b <<时,()12,1,,x x ∈-+∞ '()f x 在()()121,,,x x -+∞都大于0 ,'()f x 在12(,)x x 上小于0 ,此时()f x 有一个极大值点11122b x ---=和一个极小值点21122bx -+-=综上可知,0b <时,()f x 在()1,-+∞上有唯一的极小值点21122bx -+-=;102b <<时,()f x 有一个极大值点11122b x ---=和一个极小值点21122b x -+-=12b ≥时,函数()f x 在()1,-+∞上无极值点.………………………………………13 19.(本小题满分14分) (Ⅰ)由题意可知,b=1, 又因为23==a c e ,且a 2=b 2+c 2,解得a=2 所以椭圆的方程为1422=+y x ………………………………………………4 (Ⅱ)由题意可得:A (﹣2,0),B (2,0). 设P (x 0,y 0),由题意可得:﹣2<x 0<2,所以直线AP 的方程为)2(200++=x x y y …………………………………6 令,则)222(200++=x y y ,即2)222(00++=x y DE (8)同理:直线BP 的方程为)2(200--=x x y y ,令,则)222(200--=x y y , 即2)222(00--=x y DF (10)所以=22020204444x y x y -=-……………………………………………………..12 而,即4y 02=4﹣x 02,代入上式,所以|DE|·|DF|=1,所以|DE|·|DF|为定值1.…………………………………………14 20.(本小题满分14分) (Ⅰ)在11()22n n n S a -=--+中,令n=1,可得1112n S a a =--+=,即112a =..............1 当2n ≥时,21111111()2()22n n n n n n n n n S a a S S a a ------=--+∴=-=-++,,..................2 11n 1112a (),212n n n n n a a a ----∴=+=+n 即2.112,1,n 21nn n n n n b a b b b --=∴=+≥-= n 即当时,b又1121,b a ==∴数列}{n b 是首项和公差均为1的等差数列................................................4 于是1(1)12,2nn n n nnb n n a a =+-⋅==∴=.........................................................................6 (II)由(I )得11(1)()2n n n n c a n n +==+,所以由①-②得 (9)535(3)(221)3212212(21)n n n nn n n n n T n n n ++---=--=+++……………………………………11 于是确定521n n T n +与的大小关系等价于比较221nn +与的大小......猜想:当322 1.nn n ≥>+时,证明如下: 证法1:(1)当n=3时,由猜想显然成立. (2)假设k n =时猜想成立.即122+>k k则1n k =+时,1)1(2)12(1)1(224)12(22221++>-+++=+=+>⋅=+k k k k k k k所以当1n k =+时猜想也成立综合(1)(2)可知 ,对一切3n ≥的正整数,都有22 1.nn >+ 证法2:当3n ≥时综上所述,当1,2n =时521n n T n <+,当3n ≥时521n nT n >+ (14)。

2024-2025学年天津市天津一中高三(上)统练数学试卷(一)(含答案)

2024-2025学年天津市天津一中高三(上)统练数学试卷(一)(含答案)

2024-2025学年天津一中高三(上)统练数学试卷(一)一、单选题:本题共9小题,每小题5分,共45分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.命题“∀x ∈R ,x 2−3x +5≤0”的否定是( )A. ∃x 0∈R ,x 20−3x 0+5≤0B. ∃x 0∈R ,x 20−3x 0+5>0C. ∀x ∈R ,x 2−3x +5≤0D. ∀x 0∈R ,x 20−3x 0+5>02.已知集合A ={x ∈R|12<2x <8},B ={x ∈R|−1<x <m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是( )A. m ≥2B. m ≤2C. m >2D. −2<m <23.已知a =log 23,b =log 34,c =log 45,则有( )A. a >b >cB. a <b <cC. b >c >aD. b >a >c 4.函数f(x)=sinx |x|的图象大致是( )A. B.C. D.5.若f(x)=x 3+ax 2+bx−a 2−7a 在x =1处取得极大值10,则b a 的值为( )A. −32或−12B. −32或12C. −32D. −126.如图是某校随机抽取100名学生数学月考成绩的频率分布直方图,据此估计该校本次月考数学成绩的总体情况(同一组中的数据用该组区间的中点值为代表),下列说法正确的是( )A. 平均数为74B. 众数为60或70C. 中位数为75D. 该校数学月考成绩80以上的学生约占25%7.已知某函数的图象如图所示,则下列函数中,图象最契合的函数是( )A. y =sin(e x +e −x )B. y =sin(e x −e −x )C. y =cos(e x −e −x )D. y =cos(e x +e −x )8.已知a ,b ,c 为正实数,则代数式a b +3c +b 8c +4a +9c 3a +2b 的最小值为( )A. 4748B. 1C. 3536D. 349.设f(x)是定义在R 上的偶函数,对任意的x ∈R ,都有f(x +4)=f(x),且当x ∈[−2,0]时,f(x)=(13)x−6,若在区间(−2,6]内关于x 的方程f(x)−log a (x +2)=0(a >1)恰有3个不同的实数根,求实数a 的取值范围是( )A. (1,2)B. (2,+∞)C. (1,34)D. (34,2)二、填空题:本题共6小题,每小题5分,共30分。

天津市天津一中2014届高三上学期第一次月考 语文 Word版含答案

天津市天津一中2014届高三上学期第一次月考 语文 Word版含答案

天津一中2013-2014 -1高三年级一月考语文试卷本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试时间150分钟。

第Ⅰ卷一、(15分,每小题3分)1、下列词语中,各对加点字的读音都不相同的一项是( )A. 背.负/背.井离乡模.样/模.棱两可调.动/调.虎离山B. 空.暇/空.口无凭夺冠./冠.冕堂皇为.难/为.虎作伥C. 复辟./无可媲.美劲.头/疾风劲.草干.脆/外强中干.D. 量.刑/量.体裁衣称.道/称.心如意塞.外/敷衍塞.责2.下面各组词语中,只有一个错别字的一项是( )A. 发韧奢靡隔靴搔痒再接再厉改弦更章B. 针贬精粹真知卓见惹是生非弥天大谎C. 坐镇喧泄张皇失措出奇制胜乔装打扮D. 告磬编缉闲情逸致融会贯通黄粱美梦3、依次填入下列各句横线处的词语,最恰当的一组是( )①云南省________报告HIV感染率居全国之首,有效控制艾滋病的蔓延已成为该省卫生工作的当务之急。

②从上个世纪80年代开始,发展航天高新技术,成为世界主要大国综合国力竞争的________。

③任何一种药物都只能在一定的时间内起作用,常用抗生素的________大多为6小时。

A.累积焦点实效B.累计焦点时效C.累计热点实效D.累积热点时效4.下列各句中,标点符号使用正确的一句是()A.“到底去不去呀?我的小祖宗!”妈妈“咚咚咚”地敲着我的房门,“人家来电话催好几趟了,你倒是给人家一个回话呀!”B.她独自一个人在林间小路上走着、想着、感动着,几乎忘记了一切:已分不清天上浙浙沥沥飘洒着的是雨还是雪?也不知道自己脸上缓缓流淌着的是水还是泪?C.19岁的女大学生在《幸运52》节目中连续七次夺魁引起了媒体的好奇。

有的请她讲:“如何多才多艺”;有的追问她:“怎样身兼数职”;还有的让她讲什么都行……D.《新华字典》是我国第一部现代汉语规范字典,由我国著名的语言学家魏建功主持编纂;正因为是“大家编小书”,才使得一本小小的工具书历经数十年而不衰。

天津一中2013—2014学年高三数学(文科)一月考考试试卷-推荐下载

天津一中2013—2014学年高三数学(文科)一月考考试试卷-推荐下载
15.已知△ ABC 的周长为 4( 2 1) ,且 sin B sin C 2 sin A .
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

天津市天津一中2014-2015学年高三零月考考试数学(理)试题

天津市天津一中2014-2015学年高三零月考考试数学(理)试题

天津市天津一中2014-2015学年高三零月考考试数学(理)试题一、选择题:(1)i 是虚数单位,211i i -⎛⎫⎪+⎝⎭的值是 ( )A.-1B.1C.-iD.i(2)在()61x x +的展开式中,含3x 项的系数是 ( )A.30 B,20 C.15 D.10 (3)如图所示,程序框图(算法流程图)的输出结果是 A.16 B.2524 C.34 D.1112(4)若曲线()()a f x g x x ==,在点()1,1P 处的切线分别为12,l l ,且12l l ⊥,则实数a 的值为( )A.-2B.2C.12 D.12- (5)数列{}n a 是公比为q 的等比数列,则"1"q >是数列{}n a 为递增数列的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(6)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队每局的概率相同,则甲队获得冠军的概率为( )A.12 B,23 C. 34 D.35(7)设ABC V 的内角A 、B 、C 所对的边分别为a,b,c ,若cosC ccosB asinA b +=,则ABC V 的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.不确定(8)函数()f x 的定义域是R ,()02f =,对任意()(),1x R f x f x '∈+>,则不等式()1x x e f x e ⋅>+的解集为( )A.{}|0x x >B.{}|0x x <C.{}|101x x x <-<<或D.{}|11x x x ><-或二、填空题: (9)以Rt ABC V 的直角边AB 为径作圆O,圆O 与斜边AC 交于D ,过D 作圆O 的切线与BC 交于E ,若BC=3,AB=4,则OE=(10)某几何体的三视图如图所示,则该几何体的体积为(11)在直角坐标系xoy 中,已知曲线11:()12x t C t y t =+⎧⎨=-⎩为参数与曲线2sin :()3cos x a C y θθθ=⎧⎨=⎩为参数,a>0有一个公式点在x 轴上,则a=(12)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用恒谦分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生.(13)若点O 、F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任一点,则OP PF ⋅u u u v u u u v 的最大值为 (14)设函数()3sin xf x mπ=,若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是 .三、解答题:(15)已知锐角ABC V 中,角A 、B 、C 所对的边分别为a,b,c,且3tan bcA =(I )求角A 的大小:(II )求cos cos B C +的取值范围.(16)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同 (I)从盒中一次随机抽出2个球,求取出的2个球颜色相同的概率:(II)从盒中一次随机抽出4个球,其中红球,黄球,绿球的个数分别记为123,,x x x ,随机变量X 表示123,,x x x 中的最大数,求X 的概率分布列和数学期望()E X .(17)如图,四棱锥P ABCD -中,ABCD PA ⊥底面.BC 2,4,3CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥. (I)求PA 的长:(II )求二面角B AF D --的正弦值.(18)数列{}n a 的各项均为正数,n S 为其前n 项和,对于任意的*n N ∈,总有2,S ,n n n a a 成等差数列 (I)求数列{}n a 的通项恒谦公式:(II)设数列{}n b 前n 项和为n T ,且2ln n nxb a =,求证对任意的实数(1,]x e ∈和任意的正整数n ,总有2n T <(19)已知椭圆()22221,0x y a b a b+=>>的离心率为22,且过点()2,2(I )求椭圆的标准方程:(II )四边形ABCD 的顶点在椭圆上,且对角线AC ,BD 过原点O ,若22AC BDb k k a⋅=-(i) 求OA OB ⋅u u u v u u u v的最值:(ii)求证:四边形ABCD 的面积为定值.(20)设函数()()2ln 1f x x a x =++(I)若函数()y f x =在区间[1,)+∞上是单调恒谦递增函数,求实数a 的取值范围: (II)若函数()y f x =有两个极值点12,x x ,且12x x <,求证:()2110ln 22f x x <<-+15.解析:解:(1)222333tantan sin2cos23bc bcA A A Ab c a bc Aπ=∴=∴=∴=+-(2)213cos cos cos cos cos cos sin322B B B B B B Bπ⎛⎫⎛⎫+=+-=+-+⎪⎪ ⎪⎝⎭⎝⎭132cos sin sin226362B B B BC Bππππ⎛⎫=+=++=∴<<⎪⎝⎭Q(2)X的可能取值为2,3,4()()31314536449911134,312663C C C CP x P xC C+======()113991112663126P x==--=()198********1261269E x++===17.解:2,3BC BD ACB ACD CA BDπ==∠=∠=∴⊥∴如图建立空间坐标系()()()()()0,0,0,0,1,0,3,0,0,3,0,0,0,3,0O C BD A ∴-()0,3,,0,1,2z P z F ⎛⎫-- ⎪⎝⎭()2,00,2,3,3,0602322z z AF PB AF PB z z ⎛⎫⊥∴⋅=∴⋅-=∴-=∴= ⎪⎝⎭u u u v u u u v u u u v u u u v Q ()0,3,23P ∴-()22323PA ∴==(2)设面AFD 的法向量()()0,,3,3,20n AD n x y z n n AF ⎧⋅==∴∴=-⎨⋅=⎩v u u u vv vv u u u v ,设面ABF 的法向量()222*11111112,12,122n n n n n n a a S n a a a a a S n n N ---∴+==+=∴=∴+=≥∈当时,a 且22221111121n n n n n n n n n n n a a a a a a a a a a a ------+-=∴-=+∴-={}n a ∴是等差数列11,d 1a n a n ==∴=(2)[]()222ln ln 11,1,0ln 121n n n x x b x e x n a n n n n ==∈∴<≤∴≥≤<-Q 当时,b 11111111112212231n T n n n n n=-∴≤+-+-+-=-<--L 19.解:22222222222842(1)11844c aa x y ab b a bc ⎧=⎪⎪⎧=⎪+=∴∴+=⎨⎨=⎩⎪=+⎪⎪⎩(2)设()()()22112222:,,,2828AB y kx m l y kx m A x y B x y x kx m x y =+⎧=+∴++=⎨+=⎩()2222121222428124280,1212km m k x kmx m x x x x k k --+++-=∴+==++()()2222212122222848121212m km m k y y kx m kx m k km m k k k ---⎛⎫=++=++= ⎪+++⎝⎭22222212222121812842212212OA OBy y b m k m k k m b a x x k k--⋅=-∴⋅=-∴=-⋅∴=+++Q 222212122222288424212121212m m k k OA OB x x y y k k k k ---⋅=+=+==-++++u u u v u u u v ,22OA OB=-2k AB x OA OB ∴-≤⋅<⋅⊥u u u v u u u v u u u v u u u v,当k=0时,当不存在即轴max 1OA OB =2,S 42ABCD AOB AOB S S ⋅==V V u u u v u u uvQ ABCD S ===20.解:(1)()()2222,011a x x a f x x f x x x ++''=+=≥++在[1,)+∞上恒成立2222212,4a x x a a ≥--∴≥-⋅-≥-(2)()()()22220221,1x x af xg x x x a x ++'==∴=++-+∞+令在上有解()480910102a a ⎧⎪∆=->⎪∴->⎨⎪⎪<<⎩2211121222220,1,220x x a x x x x x x a ∴++=<+=-++=且1221110222x x x =-=-<<()()()()()()2222222221222ln 122ln 11,0112x x x x x x x x f x x x x x x -++-++⎛⎫∴==∈- ⎪----⎝⎭令k ()()()()()222326212ln 1,4211x x x k x x k x k x x ++⎛⎫'''''=++=∴-=- ⎪⎝⎭++()()0102,002k x k x ⎛⎫''''=∴∈-= ⎪⎝⎭存在使()()1100,12ln 20-022k k k x ⎛⎫⎛⎫''=-=-<∴ ⎪ ⎪⎝⎭⎝⎭在,上递减()()()211100ln 222f x k k x k x ⎛⎫<<-∴<<-+ ⎪⎝⎭。

天津市天津一中2014届高三上学期第二次月考 理科数学-推荐下载

天津市天津一中2014届高三上学期第二次月考 理科数学-推荐下载


2
13.已知 O 为△ABC 的外心,| AB | 16,| AC | 10 2 , 若 AO x AB y AC ,且 32x 25y 25 ,则
| OA | ___________ .
14. 若函数 f (x) x3 3x 对任意的
恒成立,则 x
三.解答题:(本大题共 6 小题,共 80 分)
15 的正弦值等于 ?
5
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技写5卷术、重保交电要护底气设装。设备置管备高4动线调、中作敷试电资,设高气料并技中课试3且术资件、卷拒中料管试绝包试调路验动含卷试敷方作线技设案,槽术技以来、术及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

天津市第一中学2014-2015学年高三数学下学期4月月考试卷-文(含解析)

天津市第一中学2014-2015学年高三数学下学期4月月考试卷-文(含解析)

2014-2015学年天津一中高三(下)4月月考数学试卷(文科)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知a,b∈R,i为虚数单位,若,则实数a+b=()A. 2 B. 3 C. 4 D. 5考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:利用复数的除法运算化简等式右侧,然后由复数相等的条件列式求解a,b的值,则答案可求.解答:解:由,得,∵a,b∈R,∴,即a=2,b=1.∴a+b=3.故选:B.点评:本题考查复数代数形式的混合运算,复数的分类,是基础题.2.(5分)已知点P(x,y)在不等式组表示的平面区域上运动,则z=x+y的取值范围是()A. [﹣2,﹣1] B. [﹣2,1] C. [﹣1,2] D. [1,3]考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,通过平移从而求出z的取值范围.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=x+y得y=﹣x+z,即直线的截距最大,z也最大.平移直线y=﹣x+z,即直线y=﹣x+z经过点B(2,1)时,截距最大,此时z最大,为z=2+1=3.经过点A(0,1)时,截距最小,此时z最小,为z=1.∴1≤z≤3,故z的取值范围是[1,3].故选:D.点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.3.(5分)执行如图所示的程序框图,若输出的b的值为31,则图中判断框内①处应填()A. 3 B. 4 C. 5 D. 6考点:程序框图.专题:阅读型.分析:框图中给出了两个累加变量,a、b,b累加的次数与a的大小有关,现在题目给出了算法结果,解答时可把每一次运算写出,从而得到输出b=31时a的值.解答:解:第一次运算为b=3,a=2,第二次运算为b=7,a=3,第三次运算为b=15,a=4,第四次运算为b=31,a=5,第五次运算不满足条件,输出b=31,所以a≤4,故选B.点评:本题考查了程序框图中的当型循环结构,当型循环结构是先判断再执行,若满足条件则进入循环体,否则结束循环.4.(5分)“a=1”是“函数f(x)=|x﹣a|+b(a,b∈R)在区间[1,+∞)上为增函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:函数的性质及应用;简易逻辑.分析:根据函数的单调性的性质,利用充分条件和必要条件的定义进行判断即可得到结论.解答:解:当a=1时,f(x)=|x﹣1|+b在[1,+∞)上为增函数;反之,f(x)=|x﹣1|+b在区间[1,+∞)上为增函数,则a≤1,故“a=1”是“函数f(x)=|x﹣a|+b(a,b∈R)在区间[1,+∞)上为增函数”的充分不必要条件,故选:A.点评:本题主要考查充分条件和必要条件的判断,利用三角函数的图象和性质是解决本题的关键.5.(5分)设a=log54,b=(log53)2,c=log45则()A. a<c<b B. b<c<a C. a<b<c D. b<a<c考点:对数的运算性质;对数函数的单调性与特殊点;不等式比较大小.专题:函数的性质及应用.分析:因为a=log54<log55=1,b=(log53)2<(log55)2,c=log45>log44=1,所以c最大,排除A、B;又因为a、b∈(0,1),所以a>b,排除C.解答:解:∵a=log54<log55=1,b=(log53)2<(log55)2,c=log45>log44=1,∴c最大,排除A、B;又因为a、b∈(0,1),所以a>b,故选D.点评:本题考查对数函数的单调性,属基础题.6.(5分)(2015•沈阳模拟)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期是π,若其图象向右平移个单位后得到的函数为奇函数,则函数y=f(x)的图象() A.关于点(,0)对称 B.关于直线x=对称C.关于点(,0)对称 D.关于直线x=对称考点:正弦函数的图象.专题:三角函数的图像与性质.分析:由周期求出ω=2,故函数f(x)=sin(2x+φ),再根据图象向右平移个单位后得到的函数 y=sin(2x﹣+φ]是奇函数,可得φ=﹣,从而得到函数的解析式,从而求得它的对称性.解答:解:由题意可得=π,解得ω=2,故函数f(x)=sin(2x+φ),其图象向右平移个单位后得到的图象对应的函数为y=sin[2(x﹣)+φ]=sin(2x﹣+φ]是奇函数,又|φ|<,故φ=﹣,故函数f(x)=sin(2x﹣),故当x=时,函数f(x)=sin=1,故函数f(x)=sin (2x﹣)关于直线x=对称,故选:D.点评:本题主要考查诱导公式的应用,利用了y=Asin(ωx+φ)的图象变换规律,正弦函数的对称性,属于中档题.7.(5分)(2015•山东校级模拟)已知A,B是圆O:x2+y2=1上的两个点,P是AB线段上的动点,当△AOB的面积最大时,则•﹣的最大值是()A.﹣1 B. 0 C. D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由题意知当∠AOB=时,S取最大值,此时⊥,建立坐标系可得A、B、P的坐标,可得•﹣为关于x的二次函数,由二次函数的最值可得.解答:解:由题意知:△AOB的面积S=||||sin∠AOB=×1×1×sin∠AOB=sin∠AOB,当∠AOB=时,S取最大值,此时⊥,如图所示,不妨取A(1,0),B(0,1),设P(x,1﹣x)∴•﹣=•(﹣)==(x﹣1,1﹣x)•(﹣x,x﹣1)=﹣x(x﹣1)+(1﹣x)(x﹣1)=(x﹣1)(1﹣2x)=﹣2x2+3x﹣1,x∈[0,1]当x==时,上式取最大值故选:C点评:本题考查平面向量的数量积的运算,涉及三角形的面积公式和二次函数的最值,属中档题.8.(5分)(2014•日照二模)设f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6)内,函数y=f(x)﹣log a(x+2),(a>0,a≠1)恰有1个零点,则实数a的取值范围是()A.(1,4) B.(4,+∞) C.(,1)∪(4,+∞) D.(0,1)∪(1,4)考点:函数奇偶性的性质.专题:数形结合法;函数的性质及应用.分析:由f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),推出函数f(x)是以4为最小正周期的函数,结合题意画出在区间(﹣2,6)内函数f(x)和y=log a(x+2)的图象,注意对a讨论,分a>1,0<a<1,结合图象即可得到a的取值范围.解答:解:∵f(x)是定义在R上的偶函数,∴f(﹣x)=f(x),又f(2+x)=f(2﹣x),即f(x+4)=f(﹣x)∴f(x+4)=f(x),则函数f(x)是以4为最小正周期的函数,∵当x∈[﹣2,0]时,f(x)=()x﹣1,f(x)是定义在R上的偶函数,∴当x∈[0,2]时,f(x)=()﹣x﹣1,结合题意画出函数f(x)在x∈(﹣2,6)上的图象与函数y=log a(x+2)的图象,结合图象分析可知,要使f(x)与y=log a(x+2)的图象,恰有1个交点,则有0<a<1或,解得0<a<1或1<a<4,即a的取值范围是(0,1)∪(1,4).故选:D.点评:本题主要考查函数的奇偶性和周期性及其运用,同时考查数形结合的数学思想方法,以及对底数a的讨论,是一道中档题.二、填空题:(本大题共6小题,每小题5分,共30分,将答案填在题中横线上)9.(5分)已知集合M={﹣1,1},,则M∩N={﹣1} .考点:交集及其运算.专题:计算题.分析:把集合N中的不等式变形后,利用指数函数的单调性列出关于x的不等式,求出解集中的整数解即可得到集合N的元素,然后利用求交集的法则求出M与N的交集即可.解答:解:集合N中的不等式可化为:2﹣1<2x+1<22,因为2>1,所以指数函数y=2x为增函数,则﹣1<x+1<2即﹣2<x<1,由x∈Z得到x的值可以是﹣1和0所以N={﹣1,0},则M∩N═{﹣1,1}∩{﹣1,0}={﹣1}故答案为:{﹣1}点评:本题属于以函数的单调性为平台,求集合的交集的基础题,是高考常会考的题型.10.(5分)(2015春•天津校级月考)已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V1.直径为4的球的体积为V2,则V1:V2= 1:2 .考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图先起床该几何体的条件,结合球的体积公式进行比较即可.解答:解:由几何体的三视图可知,该几何体是一个圆柱挖去一个圆锥,它们的底面半径为2,高为2,故该几何体的体积V1=,球的体积V2=,则V1:V2=,故答案为:1:2点评:本题主要考查空间几何体的体积的计算,根据三视图求出几何体的体积是解决本题的关键.11.(5分)(2015•上饶二模)以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为(x﹣5)2+y2=9 .考点:双曲线的简单性质;直线与圆的位置关系.专题:压轴题;圆锥曲线的定义、性质与方程.分析:确定抛物线的焦点,双曲线的渐近线方程,求出圆的半径,即可得到圆的方程.解答:解:抛物线y2=20x的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x±4y=0由题意,r=3,则所求方程为(x﹣5)2+y2=9故答案为:(x﹣5)2+y2=9.点评:本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题.12.(5分)(2015•西安校级模拟)如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D.若PA=PE,∠ABC=60°,PD=1,PB=9,则EC= 4 .考点:与圆有关的比例线段.专题:直线与圆.分析:利用切割线定理结合题中所给数据,得PA=3,由弦切角定理结合有一个角为60°的等腰三角形是正三角形,得到PE=AE=3,最后由相交弦定理可得BE•DE=AE•CE,从而求出EC的长.解答:解:∵PA是圆O的切线,∴PA2=PD•PB=9,可得PA=3.∵∠PAC是弦切角,夹弧ADC,∴∠PAC=∠ABC=60°,∵△APE中,PE=PA,∴△APE是正三角形,可得PE=AE=PA=3.∴BE=PB﹣PE=6,DE=PE﹣PD=2∵圆O中,弦AC、BD相交于E,∴BE•DE=AE•CE,可得6×2=3EC,∴EC=4,故答案为:4.点评:本题在圆中给出切线,并且以切线长为一边作正三角形的情况下,求线段的长度.着重考查了切线的性质、正三角形的判定和相交弦定理等知识,属于中档题.(5分)(2013秋•启东市校级期中)如图,在等腰三角形ABC中,底边BC=2,=,=,13.若=﹣,则= .考点:平面向量数量积的运算;向量在几何中的应用.专题:平面向量及应用.分析:可取BC的中点O作为坐标建立坐标系.利用向量的坐标运算,求出两向量的坐标,即可得出答案.解答:解:∵在等腰三角形ABC中,底边BC=2,∴可取BC的中点O作为坐标原点建立如图所示的坐标系.∴B(﹣1,0),C(1,0),设A(0,a)(a>0),∵=,∴D为AC的中点,∴D(,),∴=(,),=(1,﹣a),∵=﹣,∴=﹣,解得a=2∴A(0,2),又∵=,∴,∴==(0,2)(﹣1,﹣2)=(,)∴=(,)﹣(1,0)=(,)∴=(,)•(,1)=故答案为:点评:本题考查数量积的运算,建立平面直角坐标系是解决问题的关键,属中档题.14.(5分)(2015春•天津校级月考)已知函数,则方程g[f(x)]﹣a=0(a为正实数)的实数根最多有 6 个.考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:先在同一个坐标系中,分别作出函数f(x)和g(x)的图象,如图所示.方程g[f (x)]﹣a=0,即方程g[f(x)]=a,令f(x)=m,则函数y=f(x)的图象可知,方程f(x)=m最多有三个实数根,且当﹣3<m <1时,方程f(x)=m有三个实数根,另外,由函数y=g(x)的图象可知,方程g(n)=a最多有两个实数根.取a=,从而g[f(x)]=a的实数根最多有 6个.解答:解:在同一个坐标系中,分别作出函数f(x)和g(x)的图象,如图所示.方程g[f(x)]﹣a=0,即方程g[f(x)]=a,令f(x)=m,则函数y=f(x)的图象可知,方程f(x)=m最多有三个实数根,且当﹣3<m <1时,方程f(x)=m有三个实数根,另外,由函数y=g(x)的图象可知,方程g(n)=a最多有两个实数根.取a=,令g(n)=,则函数y=g(x)的图象可知,方程g(n)=有两个实数根,且此两个实数根均在区间(0,1)上,从而g[f(x)]=有六个实数根,且是最多的.故答案为:6.点评:本题考查的知识点是根的存在性及根的个数判断,考查数形结合思想.其中分析内外函数的图象是解答本题的关键.三、解答题:(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤)15.(13分)(2014•重庆)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.考点:古典概型及其概率计算公式;频率分布直方图.专题:概率与统计.分析:(Ⅰ)根据频率分布直方图求出a的值;(Ⅱ)由图可知,成绩在[50,60)和[60,70)的频率分别为0.1和0.15,用样本容量20乘以对应的频率,即得对应区间内的人数,从而求出所求.(Ⅲ)分别列出满足[50,70)的基本事件,再找到在[60,70)的事件个数,根据古典概率公式计算即可.解答:解:(Ⅰ)根据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005.(Ⅱ)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(Ⅲ)记成绩落在[50,60)中的2人为A,B,成绩落在[60,70)中的3人为C,D,E,则成绩在[50,70)的学生任选2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE 共10个,其中2人的成绩都在[60,70)中的基本事件有CD,CE,DE共3个,故所求概率为P=.点评:本题考查频率分布直方图的应用以及古典概型的概率的应用,属于中档题.16.(13分)(2014•日照二模)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求函数f(x)的解析式,并写出f(x)的单调减区间;(2)△ABC的内角分别是A,B,C,若f(A)=1,cosB=,求sinC的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数中的恒等变换应用.专题:计算题;三角函数的图像与性质.分析:(1)由图象易知A=1,T=,可知ω=2,函数图象过(,1),|φ|<可求得φ,从而可得函数f(x)的解析式,继而可得f(x)的单调减区间;(2)由(I)可知,sin(2x+)=1,从而可求得A=,sinB=,于是利用两角和的正弦求得sinC的值.解答:解:(1)由图象最高点得A=1,…(1分)由周期T==,∴T=π=,解得ω=2.…(2分)当x=时,f(x)=1,可得sin(2•+φ)=1,∵|φ|<,∴φ=.∴f(x)=sin(2x+).…(4分)由图象可得f(x)的单调减区间为[kπ+,kπ+],k∈Z.…(6分)(2)由(I)可知,sin(2x+)=1,∵0<A<π,∴<2A+<,∴2A+=,A=.…(8分)∵0<B<π,∴sinB==.…(9分)∴sinC=sin(π﹣A﹣B)=sin(A+B)…(10分)=sinAcosB+cosAsinB=×+×=.…(12分)点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查三角函数中的恒等变换应用,考查运算求解能力,属于中档题.17.(13分)(2013•天津校级模拟)如图在四棱锥P﹣ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,设E、F分别为PC、BD的中点.(Ⅰ)求证:EF∥平面PAD;(Ⅱ)求证:面PAB⊥平面PDC;(Ⅲ)求二面角B﹣PD﹣C的正切值.考点:用空间向量求平面间的夹角;直线与平面平行的判定;平面与平面垂直的判定.专题:证明题;空间位置关系与距离.分析:(Ⅰ)利用线面平行的判定定理:连接AC,只需证明EF∥PA,利用中位线定理即可得证;(Ⅱ)利用面面垂直的判定定理:只需证明PA⊥面PDC,进而转化为证明PA⊥PD,PA⊥DC,易证三角形PAD为等腰直角三角形,可得PA⊥PD;由面PAD⊥面ABCD的性质及正方形ABCD的性质可证CD⊥面PAD,得CD⊥PA;(Ⅲ)设PD的中点为M,连结EM,MF,则EM⊥PD,由(Ⅱ)可证PD⊥平面EFM,则∠EMF是二面角B﹣PD﹣C的平面角,通过解Rt△FEM可得所求二面角的正切值;解答:(Ⅰ)证明:ABCD为平行四边形,连结AC∩BD=F,F为AC中点,E为PC中点,∴在△CPA中EF∥PA,且PA⊂平面PAD,EF⊄平面PAD,∴EF∥平面PAD;(Ⅱ)证明:因为面PAD⊥面ABCD,平面PAD∩面ABCD=AD,ABCD为正方形,∴CD⊥AD,CD⊂平面ABCD,所以CD⊥平面PAD,∴CD⊥PA,又,所以△PAD是等腰直角三角形,且,即PA⊥PD,CD∩PD=D,且CD、PD⊂面ABCD,PA⊥面PDC,又PA⊂面PAB,∴面PAB⊥面PDC;(Ⅲ)解:设PD的中点为M,连结EM,MF,则EM⊥PD,由(Ⅱ)知EF⊥面PDC,EF⊥PD,PD⊥面EFM,PD⊥MF,∠EMF是二面角B﹣PD﹣C的平面角,Rt△FEM中,,,,故所求二面角的正切值为;点评:本题考查线面平行、面面垂直的判定及二面角的求解,考查学生的推理论证能力及逻辑思维能力,属中档题.18.(13分)(2015•天津校级模拟)设等比数列{a n}的前n项和为S n,已知a n+1=2S n+2(n∈N*).(1)求数列{a n}的通项公式;(2)在a n与a n+1之间插入n个数,使这n+2个数组成公差为d n的等差数列,设数列{}的前n项和为T n,证明T n<.考点:数列的求和;等比数列的性质;数列递推式.专题:等差数列与等比数列.分析:(1)由已知得a n+1﹣a n=2a n,a2=3a1,a2=2a1+2,由此能求出a n=2•3n﹣1.(2)由已知得,由此利用错位相减法能证明T n=<.解答:(1)解:∵a n+1=2S n+2(n∈N*),∴a n=2S n﹣1+2(n∈N*,n≥2),两式相减,得a n+1﹣a n=2a n,即a n+1=3a n,n≥2,∵等比数列{a n},∴a2=3a1,又a2=2a1+2,∴a1=2,∴a n=2•3n﹣1.(2)证明:由(1)得,,∵a n+1=a n+(n+1)d n,∴,∴T n=,①=,②①﹣②,得=﹣=﹣=,∴T n=<.点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意错位相减法的合理运用.19.(14分)(2015春•天津校级月考)设椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,在x轴负半轴上有一点B,满足=,且AB⊥AF2.(Ⅰ)求椭圆C的离心率;(Ⅱ)D是过A、B、F2三点的圆上的点,D到直线l:x﹣y﹣3=0的最大距离等于椭圆长轴的长,求椭圆C的方程;(Ⅲ)在(Ⅱ)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,线段MN 的中垂线与x轴相交于点P(m,0),求实数m的取值范围.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)连接AF1,由AB⊥AF2,BF1=F1F2,得AF1=F1F2,由此能求出椭圆的离心率.(Ⅱ)由,得c=,从而F2(,0),B(﹣,0),由D到直线l:x﹣﹣3=0的最大距离等于2a,得圆心到直线的距离为a,由此能求出椭圆方程.(Ⅲ)由F2(1,0),得l:y=k(x﹣1),联立,得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此能求出实数m的取值范围.解答:解:(Ⅰ)连接AF1,因为AB⊥AF2,BF1=F1F2,所以AF1=F1F2,即a=2c,故椭圆的离心率e=.(Ⅱ)由(1)知,得c=,于是F2(,0),B(﹣,0),Rt△ABC的外接圆圆心为,半径r=|F2B|=a,点D到直线l:x﹣﹣3=0的最大距离等于2a,所以圆心到直线的距离为a,所以=a,解得a=2,∴c=1,b=,所求椭圆方程为.(Ⅲ)由(Ⅱ)知F2(1,0),l:y=k(x﹣1),联立,得(3+4k2)x2﹣8k2x+4k2﹣12=0,∵l过点F2,∴△>0恒成立,设M(x1,y1),N(x2,y2),则x1+x2=,y1+y2=k(x1+x2﹣2)=,MN中点(,),当k=0时,MN为长轴,中点为原点,则m=0,当k≠0时,MN中垂线方程y+=﹣(x﹣).令y=0,∴m==,∵,,∴0<m<,综上实数m的取值范围是[0,).点评:本题考查椭圆的离心率的求法,考查椭圆的方程的求法,考查实数m的取值范围的求法,解题时要认真审题,注意函数与方程思想的合理运用.20.(14分)(2013•天津模拟)已知函数f(x)=xlnx,g(x)=(﹣x2+ax﹣3)e x(其中a实数,e是自然对数的底数).(Ⅰ)当a=5时,求函数y=g(x)在点(1,e)处的切线方程;(Ⅱ)求f(x)在区间[t,t+2](t>0)上的最小值;(Ⅲ)若存在x1,x2∈[e﹣1,e](x1≠x2),使方程g(x)=2e x f(x)成立,求实数a的取值范围.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:计算题;分类讨论;导数的概念及应用;导数的综合应用.分析:(Ⅰ)写出当a=5时g(x)的表达式,求出导数,求得切线的斜率和切点,再由点斜式方程,即可得到切线方程;(Ⅱ)求出f(x)的导数,求出极值点,讨论①当t时,②当0<t<时,函数f(x)的单调性,即可得到最小值;(Ⅲ)由g(x)=2e x f(x)可得2xlnx=﹣x2+ax﹣3,得到a=x+2lnx+,令h(x)═x+2lnx+,求出导数,列表求出极值,求出端点的函数值,即可得到所求范围.解答:解:(Ⅰ)当a=5时,g(x)=(﹣x2+5x﹣3)e x,g′(x)=(﹣x2+3x+2)e x,故切线的斜率为g′(1)=4e,且g(1)=e,所以切线方程为:y﹣e=4e(x﹣1),即4ex﹣y﹣3e=0.(Ⅱ)f′(x)=lnx+1,令f′(x)=0,得x=,①当t时,在区间(t,t+2)上,f′(x)>0,f(x)为增函数,所以f(x)min=f(t)=tlnt,②当0<t<时,在区间(t,)上f′(x)<0,f(x)为减函数,在区间(,e)上f′(x)>0,f(x)为增函数,所以f(x)min=f()=﹣;(Ⅲ)由g(x)=2e x f(x)可得2xlnx=﹣x2+ax﹣3a=x+2lnx+,令h(x)═x+2lnx+,h′(x)=1+﹣=x (,1) 1 (1,e)h′(x)﹣ 0 +h(x)单调递减极小值(最小值)单调递增h()=+3e﹣2,h(1)=4,h(e)=+e+2,h(e)﹣h()=4﹣2e+<0则实数a的取值范围为(4,e+2+].点评:本题考查导数的运用:求切线方程和求极值、最值,考查分类讨论的思想方法,考查运算能力,属于中档题.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

天津市天津一中2014-2015学年高三零月考考试数学(文)试题

天津市天津一中2014-2015学年高三零月考考试数学(文)试题

天津市天津一中2014-2015学年高三零月考考试数学(文)试题一、 选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设i 为虚数单位,则51ii-+等于( ) A.-2-3i B.-2+3i C.2-3i D2+3i2.设变量x,y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数23z x y =+的最小值为( )A.6B.7C.8D.23 3.函数sin 22y x π⎛⎫=-⎪⎝⎭,x R ∈是( ) A.最小正周期为π的奇函数 B. 最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D. 最小正周期为2π的偶函数4.阅读右面的程序框图,则输出的S=( ) A.14 B.30 C.20 D.555.已知()f x 是定义在(),-∞+∞上的偶函数,且在(],0-∞上是增函数,设()()0.6412log 7,log 3,0.2a f b f c f ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系是( )A.c<b<aB.b<c<aC.b<a<cD.a<b<c 6.设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( ) A.5B.C.D. 547.函数()244,143,1x x f x x x x -≤⎧=⎨-+>⎩的图像和函数()2log g x x =的图像的交点个数是( )A.1B.2C.3D.48.定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)()[)21.5,0,10.5,x 1,2x x x x f x -⎧-∈⎪=⎨-∈⎪⎩,若[)4,2x ∈--时,()142t f x t ≥-恒成立,则实数t 的取值范围是( )A. [)()2,00,1-B. [)[)2,01,-+∞C. []2,1-D. (](],20,1-∞-二、填空题:(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)9.如左下图所示,是某校高三年级文科60名同学参加谋科考试所得成绩(分数均为整数)整理后得出的频率分布直方图,根据该图这次考试文科60分以上的同学的人数为 .10.某几何体的三视图如图所示,则该几何体的体积为 .11.在ABC ∆中,AB=2,AC=3,D 是边BC 的中点,则AD BC ⋅= .12.已知圆C 的圆心与抛物线24y x =的焦点关于直线y=x 对称,直线4x-3y-2=0与圆C 相交于A,B 两点,且6AB =,则圆C 的标准方程为: .13.如图,PC 切圆O 于点C ,割线PAB 经过圆心O ,弦CD ⊥AB 于点E. 已知恒谦圆O 的半径为3,PA=2,则CD= .14.函数()10,1xy aa a -=>≠的图像恒过定点A ,若点A 在直线mx+ny-1=0(mn>0)上,则11m n+的最小值为 .二、解答题:(本大题共6小题,共80分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档