电力电子实验报告

合集下载

电力电子技术实验报告全

电力电子技术实验报告全

电力电子技术实验报告全一、实验目的本次电力电子技术实验旨在加深学生对电力电子器件工作原理的理解,掌握其基本应用和设计方法,提高学生的动手能力和解决实际问题的能力。

二、实验原理电力电子技术是利用电子器件对电能进行高效转换和控制的技术。

通过电力电子器件,可以实现电能的变换、分配和控制,广泛应用于工业、交通、能源等领域。

常见的电力电子器件包括二极管、晶闸管、IGBT等。

三、实验设备和材料1. 电力电子实验台2. 晶闸管、IGBT等电力电子器件3. 电阻、电容、电感等基本电子元件4. 示波器、万用表等测量仪器5. 连接线、焊锡等辅助材料四、实验内容1. 晶闸管触发电路的搭建与测试2. 单相桥式整流电路的设计和测试3. 三相桥式整流电路的设计与测试4. PWM控制技术在电能转换中的应用5. IGBT驱动电路的设计与测试五、实验步骤1. 根据实验要求,设计电路图,并选择合适的电力电子器件和电子元件。

2. 在实验台上搭建电路,注意器件的连接方式和电路的布局。

3. 使用示波器和万用表等测量仪器,对电路进行测试,记录实验数据。

4. 分析实验数据,验证电路设计的正确性和性能指标。

5. 根据实验结果,调整电路参数,优化电路性能。

六、实验结果与分析通过本次实验,我们成功搭建了晶闸管触发电路、单相桥式整流电路、三相桥式整流电路,并对PWM控制技术在电能转换中的应用进行了测试。

实验结果表明,所设计的电路能够满足预期的性能要求,验证了电力电子器件在电能转换和控制方面的重要作用。

七、实验总结通过本次电力电子技术实验,我们不仅加深了对电力电子器件工作原理的理解,而且提高了实践操作能力和问题解决能力。

实验过程中,我们学会了如何设计电路、选择合适的器件和元件,以及如何使用测量仪器进行测试和数据分析。

这些技能对于我们未来的学习和工作都具有重要意义。

八、实验心得在本次实验中,我们体会到了理论与实践相结合的重要性。

通过亲自动手搭建电路,我们更加深刻地理解了电力电子技术的原理和应用。

电力电子技术实验报告总结

电力电子技术实验报告总结

电力电子技术实验报告总结电力电子技术作为一门重要的电气工程学科分支,在现代工业和生活中有着广泛的应用。

通过一系列的电力电子技术实验,我不仅加深了对理论知识的理解,还提高了自己的实践操作能力和解决问题的能力。

以下是我对这些实验的总结。

一、实验目的和要求电力电子技术实验的主要目的是让我们熟悉各种电力电子器件的特性和工作原理,掌握基本电力电子电路的分析、设计和调试方法。

同时,培养我们的实验技能、数据处理能力和创新思维。

在实验过程中,我们被要求严格遵守实验室的安全规则,正确使用实验仪器设备,认真观察实验现象,准确记录实验数据,并对实验结果进行分析和总结。

二、实验设备和仪器实验所用到的设备和仪器包括示波器、信号发生器、万用表、电力电子实验箱等。

其中,示波器用于观测电路中的电压和电流波形,信号发生器用于产生各种控制信号,万用表用于测量电路中的电压、电流和电阻等参数,电力电子实验箱则集成了各种电力电子器件和电路模块,方便我们进行实验操作。

三、实验内容(一)单相半波可控整流电路实验在这个实验中,我们研究了单相半波可控整流电路在不同控制角下的输出电压和电流特性。

通过改变触发角,观察输出电压的平均值和有效值的变化,并与理论计算值进行对比。

同时,还分析了负载性质(电阻性负载、电感性负载)对电路工作性能的影响。

(二)单相桥式全控整流电路实验单相桥式全控整流电路是一种常见的整流电路结构。

在实验中,我们深入了解了其工作原理和特性。

通过调节触发角,观察输出电压和电流的波形,并计算输出电压的平均值和有效值。

此外,还研究了电路的有源逆变工作状态,以及逆变失败的原因和预防措施。

(三)三相桥式全控整流电路实验三相桥式全控整流电路是大功率整流装置中常用的电路拓扑。

通过这个实验,我们掌握了三相电路的工作原理和调试方法。

观察了不同控制角下的输出电压和电流波形,分析了三相电源的相序对电路工作的影响,并研究了电路在电阻性负载和电感性负载下的性能差异。

电力电子实习报告总结

电力电子实习报告总结

一、实习背景随着科技的不断发展,电力电子技术在各个领域的应用越来越广泛。

为了更好地了解电力电子技术在实际生产中的应用,提高自己的实践能力,我于xx年xx月xx日至xx年xx月xx月在xx公司进行了为期一个月的电力电子实习。

在此期间,我学习了电力电子技术的基本原理、应用及实验方法,对电力电子技术在工业、交通、家电等领域的应用有了更深入的认识。

二、实习内容1. 电力电子技术基本原理学习实习期间,我首先学习了电力电子技术的基本原理,包括电力电子器件、电力电子电路、电力电子变换器等。

通过学习,我对电力电子技术的基本概念、工作原理及发展趋势有了较为全面的了解。

2. 电力电子器件实验在实验过程中,我熟悉了电力电子器件的测试方法,包括二极管、晶体管、功率MOSFET等。

通过实验,我掌握了电力电子器件的导通、关断特性,以及在不同电路中的应用。

3. 电力电子电路实验在电力电子电路实验中,我学习了单相交流电源、逆变器、斩波器、整流器等电路的设计与调试。

通过实验,我掌握了电力电子电路的基本设计方法,能够根据实际需求设计出满足要求的电力电子电路。

4. 电力电子变换器实验在电力电子变换器实验中,我学习了开关电源、变频器等变换器的设计与调试。

通过实验,我了解了电力电子变换器的工作原理,掌握了变换器的设计方法。

5. 电力电子技术在实际应用中的探讨实习期间,我还对电力电子技术在工业、交通、家电等领域的应用进行了探讨。

通过查阅资料、与工程师交流,我对电力电子技术在实际应用中的问题及解决方案有了更深入的认识。

三、实习收获1. 理论与实践相结合通过这次实习,我深刻体会到理论与实践相结合的重要性。

在实习过程中,我将所学的理论知识应用于实际操作中,使我对电力电子技术有了更深入的理解。

2. 提高动手能力在实验过程中,我学会了使用各种实验设备,提高了自己的动手能力。

同时,通过解决实验中出现的问题,锻炼了自己的分析问题和解决问题的能力。

3. 增强团队协作能力实习期间,我与同学们共同完成实验任务,互相学习、互相帮助。

电力电子技术课程实训报告

电力电子技术课程实训报告

一、前言电力电子技术是一门研究电力电子器件及其在电力系统中的应用的学科,是电气工程及其自动化专业的一门核心课程。

为了更好地理解和掌握电力电子技术的理论知识,提高动手实践能力,我参加了电力电子技术课程实训。

以下是实训过程中的总结和体会。

二、实训目的1. 理解电力电子器件的工作原理和特性;2. 掌握电力电子电路的设计和调试方法;3. 培养动手实践能力,提高解决实际问题的能力;4. 提高团队合作意识,增强沟通能力。

三、实训内容1. 电力电子器件实验:实验内容包括晶闸管、二极管、可控硅等电力电子器件的伏安特性测试、开关特性测试等。

2. 电力电子电路实验:实验内容包括可控整流电路、逆变电路、斩波电路等电力电子电路的设计、搭建和调试。

3. 电力电子装置实验:实验内容包括电力电子装置的组成、工作原理、性能测试等。

四、实训过程1. 实验准备:根据实验要求,准备好实验所需的器件、仪器和设备。

2. 实验操作:按照实验步骤,进行电力电子器件的测试、电路的搭建和调试。

3. 结果分析:对实验数据进行整理和分析,找出实验过程中存在的问题,并提出改进措施。

4. 实验报告撰写:根据实验过程和结果,撰写实验报告。

五、实训成果1. 理解了电力电子器件的工作原理和特性,掌握了器件的伏安特性测试和开关特性测试方法。

2. 掌握了电力电子电路的设计和调试方法,能够根据电路原理图搭建和调试电路。

3. 提高了动手实践能力,能够独立完成电力电子电路的设计和调试。

4. 增强了团队合作意识,与团队成员共同完成实验任务。

六、实训体会1. 实践是检验真理的唯一标准。

通过实训,我深刻认识到理论知识与实际操作之间的紧密联系。

2. 电力电子技术是一门综合性较强的学科,需要掌握多个方面的知识。

在实训过程中,我意识到只有不断学习,才能提高自己的综合素质。

3. 实训过程中,我学会了如何与他人沟通和协作,提高了自己的团队协作能力。

4. 在实训过程中,我遇到了一些问题,通过查阅资料、请教老师和同学,最终解决了这些问题。

电力电子实习实习报告

电力电子实习实习报告

一、实习时间2023年6月1日至2023年6月30日二、实习地点XX电力电子实验室三、指导老师XX老师四、实习目的本次电力电子实习的主要目的是通过实际操作,加深对电力电子技术的理解,提高动手实践能力,培养独立解决问题的能力。

同时,通过实习,了解电力电子技术在现代工业中的应用,为今后的学习和工作打下坚实基础。

五、实习内容1. 电力电子器件的认识与使用在实习过程中,我们首先学习了电力电子器件的基本知识,包括二极管、晶体管、可控硅等。

通过实际操作,掌握了这些器件的使用方法,了解了它们在电路中的作用。

2. 电力电子电路的组装与调试在老师的指导下,我们组装了几个典型的电力电子电路,如整流电路、逆变电路、斩波电路等。

在组装过程中,我们学习了电路图的阅读、元器件的焊接、电路的调试等技能。

3. 电力电子技术的应用研究在实习后期,我们针对一个具体的应用案例进行了研究,即利用电力电子技术实现交流电源的稳定输出。

通过对电路的设计、仿真、实验验证,掌握了电力电子技术在实际工程中的应用。

六、实习心得与体会1. 实践是检验真理的唯一标准。

在这次实习中,我深刻体会到了这一点。

虽然在学校学习了大量的理论知识,但实际操作过程中遇到的问题让我更加明白了理论与实践相结合的重要性。

2. 动手能力是关键。

在组装电路的过程中,我发现自己的动手能力还有待提高。

通过不断尝试和总结,我逐渐掌握了电路的组装技巧,提高了自己的动手能力。

3. 团队合作精神不可或缺。

在实习过程中,我们经常需要互相协作,共同解决问题。

这使我明白了团队合作精神的重要性,也使我更加珍惜与同学们的友谊。

4. 电力电子技术在现代社会中的应用越来越广泛。

通过这次实习,我对电力电子技术在工业、交通、能源等领域的应用有了更深入的了解,为今后的学习和工作指明了方向。

七、总结本次电力电子实习让我受益匪浅。

在实习过程中,我不仅掌握了电力电子技术的基本知识和实践技能,还培养了独立解决问题的能力和团队合作精神。

电力电子技能实训报告(3篇)

电力电子技能实训报告(3篇)

第1篇一、实训背景随着我国经济的快速发展,电力电子技术在各个领域的应用越来越广泛。

为了提高学生的实践能力和专业技能,我校组织了一次电力电子技能实训。

本次实训旨在使学生了解电力电子技术的基本原理、电路设计方法以及在实际工程中的应用,培养学生的动手能力和团队合作精神。

二、实训目的1. 理解电力电子技术的基本概念和原理;2. 掌握电力电子电路的设计方法和调试技巧;3. 学会使用电力电子实验设备;4. 培养学生的动手能力和团队合作精神;5. 提高学生对电力电子技术的实际应用能力。

三、实训内容1. 电力电子技术基础理论实训期间,我们学习了电力电子技术的基本概念、工作原理和主要特点。

通过对电力电子器件、电路拓扑结构、控制策略等方面的学习,使我们对电力电子技术有了更深入的了解。

2. 电力电子电路设计实训过程中,我们学习了电力电子电路的设计方法和步骤。

以单相桥式逆变器为例,我们进行了电路设计和仿真实验。

通过仿真实验,我们验证了电路设计的正确性,并优化了电路参数。

3. 电力电子实验设备使用实训期间,我们学习了电力电子实验设备的使用方法。

包括实验设备的操作规程、安全注意事项以及故障排除等。

通过实际操作,我们熟练掌握了实验设备的操作技巧。

4. 电力电子电路调试在完成电路设计后,我们进行了电路调试。

通过调整电路参数,使电路达到预期的工作状态。

在调试过程中,我们遇到了一些问题,如电路参数不稳定、波形失真等。

通过查阅资料、请教老师和同学,我们逐一解决了这些问题。

5. 电力电子技术实际应用实训过程中,我们学习了电力电子技术在实际工程中的应用。

以变频调速为例,我们了解了变频调速的原理、电路设计方法以及在实际工程中的应用。

四、实训过程1. 理论学习在实训开始前,我们进行了电力电子技术基础理论的学习。

通过查阅教材、资料和参加讲座,我们对电力电子技术有了初步的了解。

2. 电路设计在电路设计环节,我们以单相桥式逆变器为例,进行了电路设计。

电力电子实验报告

电力电子实验报告

电力电子实验报告电力电子实验报告引言:电力电子是现代电气工程领域中重要的研究方向之一,它涉及到电力的转换、控制和调节等方面。

本次实验旨在通过实际操作,加深对电力电子原理的理解,并掌握电力电子器件的使用和调试技巧。

一、实验目的本次实验的主要目的是通过搭建电力电子系统,实现对交流电的变换、控制和调节,掌握电力电子器件的使用和调试技巧,加深对电力电子原理的理解。

二、实验装置与方法实验装置包括交流电源、电力电子器件(如整流器、逆变器等)、控制电路以及负载等。

实验方法主要是通过搭建电路,调试参数和观察输出结果,来验证电力电子原理。

三、实验内容1. 整流器实验通过搭建单相半波整流电路,将交流电转换为直流电。

调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。

2. 逆变器实验通过搭建单相半桥逆变电路,将直流电转换为交流电。

调节输入电压和负载电阻,观察输出的交流电压波形和电压波动情况,并记录实验数据。

3. DC-DC变换器实验通过搭建DC-DC变换电路,将直流电转换为不同电压的直流电。

调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。

4. AC-DC变换器实验通过搭建AC-DC变换电路,将交流电转换为直流电。

调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。

四、实验结果与分析在整流器实验中,通过调节输入电压和负载电阻,可以得到稳定的直流输出电压。

而在逆变器实验中,通过调节输入电压和负载电阻,可以得到稳定的交流输出电压。

在DC-DC变换器和AC-DC变换器实验中,通过调节输入电压和负载电阻,可以得到不同电压的直流输出。

实验结果表明,电力电子器件能够有效地实现对电能的变换、控制和调节。

通过调整电路参数,可以实现不同电压、频率和波形的输出。

这为电力系统的稳定运行和能源的高效利用提供了技术支持。

五、实验总结通过本次实验,我深入了解了电力电子的基本原理和应用。

电力电子_实习报告

电力电子_实习报告

一、实习时间20xx年x月x日至20xx年x月x日二、实习地点xx大学电力电子实验室三、指导老师xx老师四、实习目的通过本次电力电子实习,旨在使我对电力电子技术的基本原理、电路设计、设备操作以及实际应用有更加深入的了解。

实习过程中,我将理论知识和实践操作相结合,提高自己的动手能力,培养严谨的工作作风,增强团队合作精神。

五、实习内容1. 实习概述电力电子技术是研究电力电子器件及其在电力系统中的应用的一门学科。

本次实习主要围绕以下几个方面展开:(1)电力电子器件的认识与操作;(2)电力电子电路的设计与调试;(3)电力电子设备的操作与维护;(4)电力电子技术的实际应用。

2. 实习过程(1)电力电子器件的认识与操作实习初期,我们首先学习了电力电子器件的基本原理和分类。

在指导老师的带领下,我们对晶体管、MOSFET、IGBT等常用电力电子器件进行了认识和操作。

(2)电力电子电路的设计与调试在掌握了电力电子器件的基础上,我们开始学习电力电子电路的设计与调试。

实习过程中,我们设计了单相桥式整流电路、三相桥式整流电路、逆变器等常用电力电子电路,并进行了实际调试。

(3)电力电子设备的操作与维护为了更好地了解电力电子设备在实际工程中的应用,我们参观了实验室的电力电子设备,并学习了设备的操作与维护方法。

(4)电力电子技术的实际应用实习后期,我们学习了电力电子技术在工业、交通、家电等领域的实际应用。

通过案例分析和现场演示,我们对电力电子技术的应用有了更加直观的认识。

六、实习体会通过本次电力电子实习,我深刻体会到以下几点:1. 理论知识与实践操作相结合的重要性。

只有将理论知识应用于实际操作,才能真正掌握电力电子技术。

2. 严谨的工作作风和团队合作精神。

在实习过程中,我们遇到了许多困难,但在老师和同学的帮助下,我们共同克服了困难,完成了实习任务。

3. 电力电子技术的广泛应用。

电力电子技术在各个领域都有广泛的应用,为我们提供了更多的就业机会。

电力电子仿真实验实训报告

电力电子仿真实验实训报告

一、实验目的本次电力电子仿真实验实训旨在通过MATLAB/Simulink软件,对电力电子电路进行仿真分析,加深对电力电子电路工作原理、性能特点以及设计方法的了解,提高实际工程应用能力。

二、实验环境1. 软件环境:MATLAB R2020b、Simulink R2020b2. 硬件环境:计算机三、实验内容本次实验主要涉及以下内容:1. 单相桥式整流电路仿真2. 三相桥式整流电路仿真3. 逆变器电路仿真4. 直流斩波电路仿真四、实验步骤1. 单相桥式整流电路仿真(1)建立仿真模型:在Simulink中搭建单相桥式整流电路模型,包括二极管、电源、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。

2. 三相桥式整流电路仿真(1)建立仿真模型:在Simulink中搭建三相桥式整流电路模型,包括二极管、电源、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。

3. 逆变器电路仿真(1)建立仿真模型:在Simulink中搭建逆变器电路模型,包括电力电子器件、驱动电路、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率因数等参数。

4. 直流斩波电路仿真(1)建立仿真模型:在Simulink中搭建直流斩波电路模型,包括电力电子器件、驱动电路、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。

五、实验结果与分析1. 单相桥式整流电路仿真结果通过仿真实验,我们得到了单相桥式整流电路的输出电压、电流、功率等参数。

电力电子实验报告

电力电子实验报告

实验一:单相半波可控整流电路的仿真一、实验名称:单相半波可控整流电路的仿真二、实验原理:在大功率的电力电子电路中广泛采用可控整流电路对输出电压进行控制和调整,以满足各种功率较大的用电器对电源的要求。

可控整流电路最常用的控制器件是晶闸管,因为晶闸管性能可靠、价格低廉、控制电路简单。

整流电路按负载的不同可以分为带电阻负载和带阻感负载两种情况。

在生产实践中,更常见的是后者,即既有电感又有电阻,若负载中感抗ωL>>电阻R时,负载主要呈现为电感,成为电感负载。

三、仿真电路图各项参数为:图中V3 为220V, 50Hz 的正弦交流电源,X1 为晶闸管,V2 为晶闸管的触发脉冲信号源。

触发脉冲的幅度为-10V(对门、阴极间而言是+10V),脉冲宽度为0.lms,上升、下降时间均为1us,周期等于输入电源V3 的周期(20ms)。

电组R=2Ω,电感L取6.5mH。

四、波形图分析:电压波形图:现象:电压有跳变!上面是电阻电压,下面是电感电压。

相加大概为110V 左右,实验时占空比是50%,正好是110V。

电压突变是晶闸管由断态转向触发时所致。

电感两端的电压电流波形图:现象:上面是电感电流,下面是电感电压。

电压跳变是电流过0点时,晶闸管由断态触发开通时,由于电感L作用使电流不能突变。

电感很大的时候会没有跳变或跳变很小。

电阻电压电流波形图:结论:有跳变,电流从正向负跳变时候跳变要剧烈一点。

五、心得体会:通过本次实验基本上学会了此软件的基本用法。

同时仿真了单相半波可控整流电路,验证了晶闸管的作用及观察到其对电路的影响。

实验二:三相半波可控整流电路的仿真刘峻玮222007322042015 工程技术学院自动化1班一、实验名称:三相半波可控整流电路的仿真二、实验原理:当整流负载容量很大时,或要求直流电压脉动较小时,应采用三相整流电流,其交流侧由三相电源供电。

三相可控整流电路中,最基本的是三相电路可控整流电路,应用最为广泛的是三相桥式全控整流电路以及双反星形可控整流电路等等,均可在三相半波的基础上分析。

电力电子实习总结报告

电力电子实习总结报告

为了提高自己的实践能力,深入了解电力电子技术,我参加了为期一个月的电力电子实习。

实习期间,我深入了解了电力电子技术的应用,掌握了电力电子设备的基本操作和维护方法,以下是实习总结。

二、实习目的1. 了解电力电子技术的应用领域和发展趋势。

2. 掌握电力电子设备的基本操作和维护方法。

3. 培养自己的动手能力和团队协作精神。

三、实习内容1. 电力电子技术概述在实习的第一周,我学习了电力电子技术的基本概念、发展历程和应用领域。

通过学习,我了解到电力电子技术是电力系统的重要组成部分,广泛应用于电能变换、控制、保护等领域。

2. 电力电子设备操作实习期间,我参与了电力电子设备的安装、调试和维护工作。

具体内容包括:(1)电力电子设备的安装:学习电力电子设备的安装步骤、注意事项和操作方法。

(2)电力电子设备的调试:掌握电力电子设备的调试流程、参数设置和调试技巧。

(3)电力电子设备的维护:了解电力电子设备的日常维护、故障排查和预防性维护。

3. 电力电子设备故障分析在实习过程中,我学会了如何分析电力电子设备的故障原因,并采取相应的措施进行处理。

具体包括:(1)设备故障现象的观察和记录。

(2)故障原因的分析和判断。

(3)故障处理方案的设计和实施。

1. 理论知识与实践相结合通过实习,我深刻体会到理论知识与实践操作的重要性。

在实习过程中,我将所学知识运用到实际工作中,提高了自己的动手能力。

2. 掌握电力电子设备的基本操作和维护方法实习期间,我掌握了电力电子设备的基本操作和维护方法,为今后从事相关工作奠定了基础。

3. 培养了团队协作精神在实习过程中,我与团队成员共同完成任务,培养了团队协作精神。

4. 提高了沟通能力在实习过程中,我学会了与同事、师傅和领导进行有效沟通,提高了自己的沟通能力。

五、实习感悟1. 电力电子技术的重要性电力电子技术在现代社会中具有广泛的应用,对电力系统的安全、稳定和高效运行具有重要意义。

2. 严谨的工作态度在电力电子领域,严谨的工作态度至关重要。

电力电子实验报告

电力电子实验报告
• 4.画出电阻电感负载下,有续流二极管下,α=54°时Ud波形。
有续流二极管时,当电源电压过零变负时, 二极管因正向电压而导通,负载上电感维持的电 流经二极管继续续流,二极管导通后,晶闸管被 加上反向电压而截至,此时负载上就不会出现负 电压而是为零(忽略二极管压降)。
• 5.分析续流二极管的作用。 • 答: 线圈断电时,线圈里有磁场将产生反向电动势,很容易击穿其他电路元件。这时由于续

• 四.实验设备及仪器 • • 1.教学实验台主控制屏 • 2.NMCL—33组件 • 3.NMCL—05E组件 • 4.NMCL—03组件 • 5.双踪示波器(自备) • 6.万用表(自备)
• 五.注意事项 •
• 1.双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的 地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一 电路的不同两点上,否则将使这两点通过示波器发生电气短路。为此, 在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根 地线。当需要同时观察两个信号时,必须在电路上找到这两个被测信号 的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器 上同时观察到两个信号,而不致发生意外。
• 1.单结晶体管触发电路调试及各点波形的观察 • 将NMCL—05E面板左上角的同步电压输入接SMCL-02的U、V输出端,
“触发电路选择”拨至“单结晶”。按照实验接线图正确接线,但由单结晶 体管触发电路连至晶闸管VT1的脉冲UGK不接(将NMCL—05E面板中G、 K接线端悬空),而将触发电路“2”端与脉冲输出“K”端相连,以便观察 脉冲的移相范围。
梯形波通过电阻及等效可变电阻三极管向5点处的电
容充电,当充电电压达到单结晶体管的峰值电压Up时,单 结晶体管导通,电容通过脉冲变压器原边放电,脉冲变压 器副边输出脉冲。同时由于放电时间常数很小,电容两端 的电压很快下降到单结晶体管的谷点电压Uv,使单结晶体 管关断,电容再次充电,周而复始,在电容两端呈现锯齿 波形,在脉冲变压器副边输出尖脉冲。在一个梯形波周期 内,单结晶体管可能导通、关断多次,但只有输出的第一 个触发脉冲对晶闸管的触发时刻起作用。充电时间常数由 电容和等效电阻等决定,调节RP改变电容的充电的时间, 控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。

电力电子整流实验报告

电力电子整流实验报告

一、实验目的1. 理解电力电子整流电路的基本原理和组成;2. 掌握单相半波、全波和桥式整流电路的工作特性;3. 分析整流电路的输出波形和纹波系数;4. 学习整流电路在工程实际中的应用。

二、实验原理电力电子整流电路是一种将交流电转换为直流电的装置。

其主要原理是利用二极管等电力电子器件的导通和截止特性,将交流电的正半周或负半周转换为直流电。

三、实验内容1. 单相半波整流电路实验(1)搭建单相半波整流电路实验平台;(2)观察整流电路的输出波形,记录整流输出电压Ud和输入电压U2的波形;(3)计算整流输出电压Ud的平均值Ud(AV)和纹波系数Sd。

2. 单相全波整流电路实验(1)搭建单相全波整流电路实验平台;(2)观察整流电路的输出波形,记录整流输出电压Ud和输入电压U2的波形;(3)计算整流输出电压Ud的平均值Ud(AV)和纹波系数Sd。

3. 单相桥式整流电路实验(1)搭建单相桥式整流电路实验平台;(2)观察整流电路的输出波形,记录整流输出电压Ud和输入电压U2的波形;(3)计算整流输出电压Ud的平均值Ud(AV)和纹波系数Sd。

四、实验步骤1. 实验准备(1)准备实验所需的实验设备,包括交流电源、整流电路组件、示波器、万用表等;(2)熟悉实验设备的操作方法和注意事项。

2. 单相半波整流电路实验(1)按照实验原理图搭建单相半波整流电路;(2)使用示波器观察整流电路的输出波形,记录Ud和U2的波形;(3)使用万用表测量整流输出电压Ud的平均值Ud(AV)和纹波系数Sd。

3. 单相全波整流电路实验(1)按照实验原理图搭建单相全波整流电路;(2)使用示波器观察整流电路的输出波形,记录Ud和U2的波形;(3)使用万用表测量整流输出电压Ud的平均值Ud(AV)和纹波系数Sd。

4. 单相桥式整流电路实验(1)按照实验原理图搭建单相桥式整流电路;(2)使用示波器观察整流电路的输出波形,记录Ud和U2的波形;(3)使用万用表测量整流输出电压Ud的平均值Ud(AV)和纹波系数Sd。

电力电子大实验报告

电力电子大实验报告

一、实验目的1. 熟悉电力电子实验的基本流程和操作规范。

2. 掌握电力电子器件的工作原理和特性。

3. 了解电力电子电路的设计与调试方法。

4. 培养实际动手能力和团队协作精神。

二、实验内容1. 电力电子器件实验(1)实验原理:通过实验观察电力电子器件(如二极管、晶闸管、GTR、MOSFET 等)在电路中的工作状态和特性。

(2)实验步骤:a. 根据实验要求,搭建实验电路。

b. 测量并记录器件的静态特性,如正向导通电压、反向阻断电压、开通和关断时间等。

c. 通过实验观察器件在不同工作状态下的表现。

2. 电力电子电路实验(1)实验原理:通过实验了解电力电子电路(如整流电路、逆变电路、变频电路等)的工作原理和特性。

(2)实验步骤:a. 根据实验要求,搭建实验电路。

b. 测量并记录电路的静态特性,如输出电压、电流、功率等。

c. 通过实验观察电路在不同工作状态下的表现。

3. 电力电子电路控制实验(1)实验原理:通过实验了解电力电子电路的控制方法,如PWM控制、斩波控制等。

(2)实验步骤:a. 根据实验要求,搭建实验电路。

b. 利用控制信号对电力电子器件进行控制,观察控制效果。

c. 分析控制信号的时序和波形,优化控制策略。

三、实验结果与分析1. 电力电子器件实验结果与分析(1)实验结果:通过实验观察,二极管、晶闸管、GTR、MOSFET等器件在电路中的工作状态和特性符合理论分析。

(2)实验分析:实验结果验证了电力电子器件的基本特性和工作原理。

2. 电力电子电路实验结果与分析(1)实验结果:通过实验观察,整流电路、逆变电路、变频电路等电力电子电路在不同工作状态下的表现符合理论分析。

(2)实验分析:实验结果验证了电力电子电路的基本工作原理和特性。

3. 电力电子电路控制实验结果与分析(1)实验结果:通过实验观察,利用PWM控制、斩波控制等控制方法对电力电子器件进行控制,实现了电路的稳定运行。

(2)实验分析:实验结果验证了电力电子电路控制方法的有效性。

电力电子实验报告

电力电子实验报告

电力电子实验报告一、实验目的本实验旨在通过搭建电力电子电路和测量电路参数,深入理解电力电子的基本原理和应用。

二、实验装置与仪器1. 稳压直流电源2. 功率电子器件(如二极管、晶闸管、MOS管等)3. 示波器4. 变压器5. 整流电路、逆变电路等电力电子实验电路板6. 电阻、电容、电感等元件7. 其他必要的实验器材和配件三、实验内容1. 实验一:整流器的实验a. 搭建并测量单相半波和全波整流电路的输出电压波形、输出电压和电流的平均值、有效值等参数。

b. 分析和比较两种整流电路的性能差异,并讨论其应用特点和限制。

2. 实验二:逆变器的实验a. 搭建并测量单相半桥和全桥逆变电路的输出电压波形、输出电压和电流的平均值、有效值等参数。

b. 分析和比较两种逆变电路的性能差异,并讨论其应用特点和限制。

3. 实验三:电力电子开关功率调节实验a. 搭建开关转换器或斩波电路实验电路,测量不同调节方式下的输出电压、电流和效率等参数。

b. 讨论开关功率调节的优缺点,以及不同调节方式的适用场景。

4. 实验四:PWM调制电路的实验a. 搭建简单的PWM调制电路,测量输出电压的调节范围、带宽等参数。

b. 分析PWM调制电路的工作原理和调节性能,探讨其在电力电子中的应用前景。

5. 实验五:电力电子控制系统的实验a. 搭建基于微控制器的电力电子控制系统,实现对某一电力电子器件的自动控制。

b. 测试并分析控制系统的稳定性、响应速度等性能指标,并讨论控制系统的设计考虑因素。

四、实验步骤与结果根据实验内容,按照以下步骤进行实验并记录实验结果:1. 记录实验所使用的电路和元件的连接方式和参数设置。

2. 使用示波器等仪器测量电路各个节点的电压和电流,并记录数据。

3. 分析实验结果,计算输出电压的平均值、有效值、波形畸变率等参数。

4. 对比实验数据,进行数据处理和性能比较。

5. 撰写实验结果报告并进行讨论。

五、实验结果分析根据实验结果,对各个实验内容进行数据分析和讨论,包括:1. 整流电路的性能比较:比较半波和全波整流电路的输出电压波形、平均值、有效值等参数,分析其差异和应用场景。

电力电子实验报告仿真

电力电子实验报告仿真

电力电子实验报告仿真电力电子是关于电力系统中的电力变换和控制的一门学科,它主要应用于电力系统中的功率调节、电能质量控制和电能传输等方面。

在电力电子实验中,我们通过仿真软件对电力电子器件和系统进行建模、仿真和分析。

下面是一份关于电力电子实验仿真的报告,旨在介绍电力电子的基本原理、实验内容和结果分析。

实验名称:电力电子的仿真实验实验目的:通过仿真软件对电力电子器件和系统进行建模、仿真和分析,学习电力电子的基本原理和应用。

实验装置和器件:电力电子仿真软件、开关管、二极管、滤波电容、电源、负载等。

实验原理:电力电子是利用电子器件来对电能进行变换和控制的学科,其主要包括开关电源、直流调速、电能质量控制等方面。

在本实验中,我们将模拟建立电力电子器件和系统的模型,并通过仿真软件进行仿真和分析。

实验步骤:1.模拟建立电力电子器件和系统的模型。

根据实验要求,选择适当的电力电子器件和系统,建立相应的电路模型。

2.进行仿真实验。

在模拟建立模型后,通过仿真软件对电路进行仿真实验,记录下相关的参数和波形。

3.分析实验结果。

根据仿真结果,分析电路的性能和特点,探讨电力电子器件和系统的优化方案。

实验结果和分析:在本次实验中,我们选择了一个开关电源电路进行仿真实验。

通过调节电源和负载的参数,我们得到了不同工作状态下的电压、电流和功率波形。

根据仿真结果,我们可以看到开关电源具有宽的输入电压范围,输出电压稳定,响应速度快等特点。

同时,我们还发现,在输入电压变化较大时,开关电源的输出电压仍能保持稳定,表明开关电源具有良好的稳压性能。

结论:通过本次仿真实验,我们进一步了解了电力电子的基本原理和应用,学会了使用仿真软件进行电力电子器件和系统的建模、仿真和分析。

同时,通过对开关电源电路的仿真实验,我们验证了开关电源具有宽输入电压范围、稳压性好的优点。

实验心得:电力电子实验是电力专业中重要的实践环节,通过仿真实验,我们更深入地理解了电力电子的工作原理和特点。

电力电子实验

电力电子实验

电力电子实验报告实验一单相交流调压电路实验电路原理图一.纯电阻负载Uun=100V,R=450Ωα=60°负载电压u 晶闸管电压Uvtα=90°负载电压u 晶闸管电压Uvtα=120°负载电压u 晶闸管电压Uvt二.电阻-电感性负载Uun=100V,R=450ΩL=700mh时,φ=arctan((2π/0.02)*0.7/450)=26.04°R=150ΩL=700mh时,φ=arctan((2π/0.02)*0.7/450)=55.76°α=45°调节R 450Ω→150Ω用示波器同时观察调压输出UO、iO信号,记录其α>φ,α=φ,α<φ时的负载电压和负载电流的波形α=45°不变φ=26.04°→55.76°α>φα=φ三.电阻-电感性负载Uun=100VR=150ΩL=700mh时,φ=arctan((2π/0.02)*0.7/450)=55.76°α=90°调节α90°→30°用示波器同时观察调压输出UO、iO信号,记录其α>φ,α=φ,α<φ时的负载电压和负载电流的波形φ=55.76°不变α>φα=φ3 分析电阻电感性负载时,α角与φ角相应关系的变化对调压器工作的影响电阻电感负载时,α大于φ时,调压器能正常工作.α等于φ时,调压器没有调压的作用.电压不变.α小于φ没有作用其稳态工作情况和α等于φ相同。

4.实验中的问题在做二,三实验时对α>φ,α=φ,α<φ的情况理解不够,在老师的帮助下才做出波形整体上容易出现各种情况导致无法出现波形。

实验二全桥DC/DC变换电路实验UPW模块的sg3525性能测试1端电压波形250mv 50us 2端波形占空比50% 1650mv 56us最小占空比最大占空比2.逻辑延时时间测试0.6us 同一桥臂上下管子驱动信号列区时间测试波形图如下占空比20% 占空比30%占空比70%波形图如下:占空比40% 占空比65%。

电力电子技术实践报告

电力电子技术实践报告

电力电子技术实践报告一、引言电力电子技术在现代电力系统中起着至关重要的作用。

通过对电力电子器件和系统的实践应用,我们能够更好地理解电力电子技术的工作原理和应用领域。

本报告将详细介绍我们在电力电子技术实践中所进行的实验和取得的成果。

二、实验目的本次实践旨在通过对电力电子器件的实验应用,掌握电力电子技术在能量转换和电力控制中的应用原理和方法。

具体目标如下:1. 理解电力电子器件的基本原理和特性。

2. 学习电力电子器件的实验测量方法和参数计算。

3. 掌握电力电子器件的性能评估和使用技巧。

4. 通过实验应用,培养综合运用电力电子技术的能力。

三、实验内容在本次实验中,我们主要进行了以下几项内容的实践应用:1. 单相电压源逆变技术实验通过搭建电压源逆变电路,实现对直流电源的逆变,将直流电压转换为交流电压输出。

在实验过程中,我们观察了逆变电路的波形和电压的变化,计算了逆变电路的效率。

2. 三相桥式整流实验通过搭建三相桥式整流电路,将交流电源转换成直流输出。

我们对整流电路的输出电压和电流进行了测量,并计算了电路的整流效率。

同时,利用示波器观察了电路波形的变化,并对整流电路的性能进行了评估。

3. 交流调压换流器实验通过搭建交流调压换流器电路,实现对输入电压的调整和输出电压的换流。

我们准确测量了电路的输入和输出参数,并对电路的控制方法和性能进行了研究和分析。

四、实验结果与讨论我们通过以上三个实验的实践应用,详细记录并分析了实验结果。

在单相电压源逆变技术实验中,我们观察到逆变电路的波形和电压变化较为稳定,且逆变电路的效率较高。

在三相桥式整流实验中,我们得到了较为稳定的直流输出,并计算出整流电路的效率较高。

在交流调压换流器实验中,我们成功实现了输入电压的调整和输出电压的换流,并对电路的控制方法和性能进行了分析。

五、结论通过本次电力电子技术实践,我们深入了解了电力电子器件和系统的工作原理和应用方法。

实验结果表明,我们成功地掌握了电力电子技术的实验测量方法和参数计算,增强了我们的实践能力和综合运用能力。

电力电子实验报告

电力电子实验报告

一、实验目的1. 熟悉电力电子器件的基本特性和工作原理。

2. 掌握电力电子电路的组成和功能。

3. 了解电力电子电路在实际应用中的工作情况。

4. 培养动手实践能力和分析问题、解决问题的能力。

二、实验器材1. 电力电子实验箱2. 万用表3. 示波器4. 信号发生器5. 晶闸管6. 二极管7. 电阻8. 电容9. 电感10. 连接线三、实验内容及步骤1. 电力电子器件特性实验(1)晶闸管导通特性实验:观察晶闸管在不同触发角下的导通情况,分析其导通特性。

(2)二极管反向恢复特性实验:测量二极管在反向电压作用下的恢复时间,分析其反向恢复特性。

2. 电力电子电路实验(1)单相半波可控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。

(2)三相半波可控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。

(3)单相桥式全控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。

(4)三相桥式全控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。

3. 电力电子电路应用实验(1)交流调压电路实验:观察电路在不同输入电压下的输出电压,分析其调压效果。

(2)直流稳压电路实验:观察电路在不同输入电压下的输出电压,分析其稳压效果。

四、实验结果与分析1. 晶闸管导通特性实验通过实验,观察到晶闸管在触发角为0°时导通,随着触发角的增大,导通时间逐渐缩短。

这说明晶闸管的导通特性受触发角的影响。

2. 二极管反向恢复特性实验通过实验,测量出二极管在反向电压作用下的恢复时间为5μs。

这说明二极管的反向恢复特性对电路的开关速度有一定影响。

3. 电力电子电路实验(1)单相半波可控整流电路实验通过实验,观察到电路在触发角为0°时输出电压最高,随着触发角的增大,输出电压逐渐降低。

这说明触发角对整流效果有较大影响。

(2)三相半波可控整流电路实验通过实验,观察到电路在触发角为0°时输出电压最高,随着触发角的增大,输出电压逐渐降低。

电力电子实训实习报告

电力电子实训实习报告

一、实习背景随着科技的飞速发展,电力电子技术在工农业生产、国防、交通、能源和人民生活的各个领域得到了广泛应用。

为了使同学们更好地了解和掌握电力电子技术,提高动手能力和实际操作技能,我们班级组织了一次电力电子实训实习。

二、实习目的1. 熟悉电力电子技术的基本原理和常用元器件;2. 掌握电力电子电路的设计、安装和调试方法;3. 提高动手能力和实际操作技能;4. 培养团队合作精神和创新意识。

三、实习内容1. 电力电子器件的认识与选用实习过程中,我们首先学习了电力电子器件的基本原理和特点,如二极管、晶闸管、MOSFET、IGBT等。

通过实验,我们掌握了器件的选用方法和注意事项,为后续电路设计奠定了基础。

2. 电力电子电路的设计与安装在老师的指导下,我们学习了电力电子电路的设计方法,包括电路拓扑、元件选择、参数计算等。

然后,我们根据所学知识,设计并安装了以下电路:(1)单相半波整流电路:将交流电转换为直流电,实现电压的初步稳定。

(2)三相半波整流电路:提高整流电路的输出电压和电流,满足更大功率负载的需求。

(3)有源逆变电路:将直流电转换为交流电,实现电能的逆向传输。

(4)交流调压电路:调节交流电压的大小,满足不同负载的需求。

3. 电力电子电路的调试与测试在安装完成后,我们对电路进行了调试和测试,确保电路性能达到预期要求。

主要测试内容包括:(1)输出电压和电流的稳定性:通过调整电路参数,使输出电压和电流保持稳定。

(2)电路的响应速度:测试电路对输入信号的变化的响应速度,确保电路的实时性。

(3)电路的功率损耗:测试电路在工作过程中的功率损耗,提高电路的效率。

四、实习总结1. 通过本次实习,我们掌握了电力电子技术的基本原理和常用元器件,为今后从事相关工作打下了基础。

2. 实践操作能力的提高:在实习过程中,我们学会了电路设计、安装、调试和测试,提高了动手能力和实际操作技能。

3. 团队合作精神的培养:在实习过程中,我们相互协作,共同解决问题,培养了团队合作精神。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电力电子技术》实验课程报告姓名学号时间 2016年5月河海大学物联网工程学院自动化系目录1. 实验1 单相桥式可控整流电路工作原理仿真 (3)1.1实验目的 (3)1.2实验系统组成及工作原理 (3)1.3实验所需软、硬件设备及仪器 (3)1.4 实验内容 (3)1.5 步骤及方法 (3)1.6 课后思考与总结 (4)1. 6.1仿真结果及分析 (4)1.6.2 单相整流桥工作原理 (5)2. 实验2 三相桥式可控整流电路工作原理仿真 (8)2.1实验目的 (8)2.2实验系统组成及工作原理 (8)2.3实验所需软、硬件设备及仪器 (8)2.4 实验内容 (8)2.5 步骤及方法 (8)2.5.1 仿真参数设置 (9)2.5.2 建立模型 (9)2.6 课后思考与总结 (9)2. 6.1仿真结果及分析 (9)2.6.2 三相整流桥工作原理 (11)2.6.3 三相桥式全控整流电路的特点 (14)3. 实验3 直-直变流器工作原理仿真 (15)3.1实验目的 (15)3.2实验系统组成及工作原理 (15)3.3实验所需软、硬件设备及仪器 (15)3.4 实验内容 (15)3.5 步骤及方法 (15)3.6 课后思考与总结 (16)3. 6.1 建立模型 (16)3.6.2 仿真结果及分析 (16)3.6.3 buck变换器连续和断续工作模式下与电感取值的关系 (17)3.6.4 断续模式下buck变换器的输出和输入电压关系 (18)4. 实验4 单相桥式可控整流电路工作原理仿真 (19)4.1实验目的 (19)4.2实验系统组成及工作原理 (19)4.3实验所需软、硬件设备及仪器 (19)4.4 实验内容 (19)4.5 步骤及方法 (19)4.6 课后思考与总结 (19)4. 6.1 建立模型 (19)4.6.2 仿真结果及分析 (19)实验1 单相桥式可控整流电路工作原理仿真1.1 实验目的加深对单相桥式可控整流电路工作原理的理解,学会使用仿真软件MATLAB 中的SIMULINK模块,搭建单相桥式可控整流电路模型,以及如何利用脉冲发生器来构建晶闸管的触发脉冲,并利用仿真模型,示波器和多路测量器分析单相桥式可控整流电路在不同触发延迟角α、不同性质负载下的电流、输出电压波形。

1.2 实验系统组成及工作原理单相桥式全控整流原理电路1.3 实验所需软、硬件设备及仪器(1)计算机(装有windows XP以上操作系统);(2)MATLAB 6.1版本以上软件;1.4 实验内容单相桥式全控整流电路,电源电压为220V/50Hz,观察不同触发角(30=α°、90=α°)下阻性负载(Ω=2LR)与感性负载下(Ω=2LR,H01.0=L)时的输出电压、负载电流以及晶闸管的耐压波形等。

1.5 步骤及方法仿真参数设置(1)电压源参数。

电压为220V,频率50Hz,输入电压峰值为220*sqrt(2)。

(2)变压器参数。

电压为220V(有效值),二次电压为100V(有效值)。

(3)晶闸管使用默认参数。

(4)负载RLC的参数。

阻性负载Ω=2LR,感性负载下Ω=2LR,HL01.0=。

(5)触发角α的参数。

30=α、90=α。

1.6 课后思考与总结(1)撰写仿真实验报告;(2)思考不同负载下的单相整流桥的工作原理,并仿真单相桥式半波可控电路,理解其(带续流二极管电路)在阻性和感性负载下的工作原理。

1. 6.1仿真结果及分析A. 电阻负载a. 时,︒=30α仿真波形如图1-2,b. 时,︒=90α仿真波形如图1-3,图1-2 ︒=30α,单相桥式全控整流电路 带电阻负载时的仿真结果图1-3 ︒=90α,单相桥式全控整流电路 带电阻负载时的仿真结果B. 阻感负载a. 时,︒=30α仿真波形如图1-4,b. 时,︒=90α仿真波形如图1-5,1.6.2 单相整流桥工作原理(1) 电阻负载(如图1-6)图1-4 ︒=30α,单相桥全控整流电路带阻感负载时的仿真结果图1-5 ︒=90α,单相桥式全控整流电路带阻感负载时的仿真结果在单相桥式全控整流电路中,晶闸管1VT 和4VT 组成一对桥臂,32VT VT 和组成另一对桥臂。

在2u 正半周,若4个晶闸管均不导通,负载电流d i 为零,d u 也为零,1VT 、4VT 串联承受电压2u 。

若在触发角α处给1VT 和4VT 加触发脉冲,1VT 和4VT 即导通,电流从电源经1VT 、R 、4VT 流回电源。

当2u 过零时,流经晶闸管的电流也降到零,1VT 和4VT 关断。

在2u 负半周,仍在触发延迟角α处触发32VT VT 和(32VT VT 和的α=0处为πω=t ),32VT VT 和导通,电流从电源流出,经过3VT 、R 、2VT 流回电源。

到2u 过零时,电流又降为零,32VT VT 和关断。

此后又是1VT 和4VT 导通,如此循环地工作下去。

(2) 阻感负载(如图1-7)假设电路已工作于稳态,d i 的平均值不变。

在2u 的正半周期,触发角α处给晶闸管1VT 和4VT 加触发脉冲使其开通,2u u d =。

负载中有电感存在使负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流d i 连续且波形近似为一水平线。

2u 过零变负时,由于电感的作用晶闸管1VT 和4VT 中仍流过电流d i ,并不关断,至απω+=t 时刻,给32VT VT 和加触发脉冲,因32VT VT 和本已承受正电压,故两管导通。

32VT VT 和导通后,2u 通过32VT VT 和分别向1VT 和4VT 施加反压使1VT 和4VT 关断,流过1VT 和4VT 的电流迅速转移到32VT VT 和上,此过程称为换相,亦称换流。

至下一周期重复上述过程,如此循环下去。

图1-6 单相桥式全控整流电路 带电阻负载时的电路 图1-7 单相桥式全控整流电路 带阻感负载时的电路实验2 三相桥式可控整流电路工作原理仿真2.1 实验目的加深对三相桥式可控整流电路工作原理的理解,学会使用仿真软件MATLAB 中的SIMULINK 模块,搭建三相桥式可控整流电路模型,以及如何构建三相桥式驱动电路——6脉冲驱动发生器,并利用仿真模型,分析三相桥式整流电路在不同触发延迟角α、不同性质负载下的电流、输出电压波形,学会用Fourier 分析模块分析相电流的谐波情况。

2.2 实验系统组成及工作原理三相桥式全控整流原理电路2.3 实验所需软、硬件设备及仪器(1)计算机(装有windows XP 以上操作系统);(2)MATLAB 6.1版本以上软件;2.4 实验内容三相桥式全控整流电路,电源相电压为220V ,整流变压器输出电压为100V (相电压),观察整流器在不同负载,不同触发延迟角时,整流电路输出电压、电流波形,测量整流输出电压平均值,并观察整流器交流侧电流波形和分析其主要次谐波。

(1)电阻负载(Ω=5L R ,30=α°)(2)感性负载(Ω=5L R ,H 01.0=L ,60=α°)(3)容性负载(Ω=2L R ,μF 500=C ,0=α°)2.5 步骤及方法2.5.1 仿真参数设置(1)电压源参数。

交流电压源参数V U 100=,三相电源相位依次延迟120°。

(2)负载RLC 的参数。

电阻负载︒=Ω=30,5αL R ;感性负载下Ω=5L R ,︒==60,01.0αH L ;容性负载时,︒==Ω=0,500,2αμF C R L 。

2.5.2 建立模型在MATLAB 中建立如图2-1所示模型,2.6 课后思考与总结2.6.1 仿真结果及分析A. 电阻负载(Ω=5L R ,30=α°)仿真波形如图2-2,B. 感性负载(Ω=5L R ,H 01.0=L ,60=α°)仿真波形如图2-3,C. 容性负载(Ω=2L R ,μF 500=C ,0=α°)仿真波形如图2-4,图2-1 三相桥式全控整流 电路仿真模型图2-2 电阻负载下三相桥式全控整流电路的仿真波型图2-3 阻感负载下三相桥式全控整流电路的仿真波型2.6.2 三相整流桥工作原理(1) 电阻负载对于共阴极组的三个晶闸管,阳极所接交流电压值最大的一个导通。

而对于共阳极组的三个晶闸管,则是阴极所接交流电压值最小的一个导通。

这样,任意时刻共阳极组和共阴极组中各有一个晶闸管处于导通状态,施加于负载上的电压为某一线电压。

此时电路工作波形如图2-5所示。

︒=0α时,各晶闸管均在自然换相点处换相。

由图中变压器二次绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。

在分析d u 的波形时,既可从相电压波形分析,也可以从线电压波形分析。

从相电压波形看,共阴极组晶闸管导通时,以变压器二次侧的中点n 为参考点,整流输出电压1d u 为相电压在正半周的包络线;共阳极组导通时,整流输出电压2d u 为相电压在负半周的包络线,总的整流输出电压21d d d u u u -=,是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周期的包络线。

图2-4 容性负载下三相桥式全控整流电路的仿真波型直接从线电压波形看,由于共阴极组中处于通态的晶闸管对应的是最大的相电压,而共阳极组中处于通态的晶闸管对应的是最小的相电压,输出整流电压d u 为这两个相电压想减,是线电压中最大的一个,因此输出整流电压d u 波形为线电压在正半周期的包络线。

为了说明各晶闸管的工作情况,将波形中的一个周期等分为六段,每段为︒60,如图2-5所示。

六个晶闸管的导通顺序为654321VT VT VT VT VT VT -----。

(2)感性负载当︒≤60α时,d u 波形连续,电路的工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压d u 波形、晶闸管承受的电压波形等都一样。

区别在于由于负载不同,同样的整流输出电压加到负载上,得到的负载电流d i 波形不同,电阻负载时d i 与d u 波形形状一样。

而阻感负载时,由于电感的作用,使得负载电流波形变得平直,当电感足够大的时候,负载电流的波形可近似为一条水平线。

图2-6给出了三相桥式全控整流电路带阻感负载︒=0α时的波形。

图2-5 三相桥式全控整流电路带电阻负载︒=0α时的波形(3)容性负载容性负载时,当某一对二极管导通时,输出直流电压等于交流侧线电压中最大的一个,该线电压既向电容供电,也向负载供电。

当没有二极管导通时,由电容向负载放电,d u 按指数规律下降。

设二极管在距线电压过零点δ角处开始导通,并以二极管16VD VD 和开始同时导通 的时刻为时间零点,则线电压为)sin(62δω+=t U u ab相电压为)6sin(22πδω-+=t U u ab 在0=t 时,二极管16VD VD 和开始同时导通,直流侧电压等于ab u ;下一次同时导通的一对管子是21VD VD 和,直流侧电压等于ac u 。

相关文档
最新文档