初高衔接第四讲 不等式的解法(必上)

合集下载

不等式的解法PPT教学课件

不等式的解法PPT教学课件

x
0(m
R).
热点题型3:不等式的证明在数列等章节 中的运用
例3:(2005年全国卷Ⅰ.19)设等比数列{an}的公比 为q,前n项和Sn>0(n=1,2,3,…)
(1)求q的取值范围
(2)设 bn
an2
3 2
an1
记{bn}的前n项和为Tn,试
比较Sn和Tn的大小
变式3:已知数列 {an}的通项公式 an 3 2n 1, 令 f (x) a1x a2 x2 an xn,求函数 f(x)在x=1处
课时考点11:不及等不式等的式解的法应用
高考考纲透析
不等式的性质及其证明;两个正数的算术平均 数不小于它们的几何平均数;比较法、分析法、 综合法、反证法、换元法、判别式法、放缩法等 证明简单的不等式;二次不等式、绝对值不等式、 分式不等式、高次不等式等简单不等式的解法; 不等式的应用。
高考热点
解含参数的分式不等式和绝对值不等式。 不等式在函数、数列、导数、解析几何、
在表达的情感上,《湖心亭看雪》表达 了作者清高自赏、超凡脱俗的感情, 《江雪》表达了作者怀才不遇的孤独感。
《三峡》中“自三峡七百里中,两岸连山, 略无阙处”直写山“连”;“夏水襄陵,沿 溯阻绝”直写大水猛涨,江水汪洋。
《三峡》中三峡春冬秋景的描绘、
《答谢中书书》对四季常景和一日变景的描 绘。
《记承天寺夜游》中对庭院月夜小景的描写、
地面的夹角为 ,tan 1 。试问此人距水平地面多
2
高时,观看塔的视角∠BPC最大(不计此人的身高)? (图见教材P47页)
热点题型4:不等式在解析几何中的运用
变式4:已知椭圆CLeabharlann 的方程为x2 4y2
1,

2025高考数学必刷题 第4讲、基本不等式及其应用(教师版)

2025高考数学必刷题  第4讲、基本不等式及其应用(教师版)

第4讲基本不等式及其应用知识梳理1、基本不等式如果00a b >>,,那么2a b +≤,当且仅当a b =时,等号成立.其中,2a b+叫作a b ,a b ,的几何平均数.即正数a b ,的算术平均数不小于它们的几何平均数.基本不等式1:若a b ∈,R ,则222a b ab +≥,当且仅当a b =时取等号;基本不等式2:若a b ∈,R +,则2a b+≥a b +≥),当且仅当a b =时取等号.注意(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致.【解题方法总结】1、几个重要的不等式(1)()()()2000,0.a a R a a a R ≥∈≥≥≥∈(2)基本不等式:如果,a b R +∈,则2a b+≥“a b =”时取“”).特例:10,2;2a ba a ab a>+≥+≥(,a b 同号).(3)其他变形:①()2222a b a b++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)2,112a ba b R a b++≤≤≤∈+即调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件).2、均值定理已知,x y R +∈.(1)如果x y S +=(定值),则2224x y S xy +⎛⎫≤=⎪⎝⎭(当且仅当“x y =”时取“=”).即“和为定值,积有最大值”.(2)如果xy P =(定值),则x y +≥=“x y =”时取“=”).即积为定值,和有最小值”.3、常见求最值模型模型一:0,0)n mx m n x +≥>>,当且仅当x =模型二:()(0,0)n nmx m x a ma ma m n x a x a+=-++≥+>>--,当且仅当x a -=模型三:210,0)x a c c ax bx c ax b x=≤>>++++,当且仅当x =时等号成立;模型四:22()1())(0,0,0)24mx n mx mx n mx n nx n mx m n x m m m m-+--=≤⋅=>><<(,当且仅当2nx m=时等号成立.必考题型全归纳题型一:基本不等式及其应用【解题方法总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.例1.(2024·辽宁·校联考二模)数学命题的证明方式有很多种.利用图形证明就是一种方式.现有如图所示图形,在等腰直角三角形ABC 中,点O 为斜边AB 的中点,点D 为斜边AB 上异于顶点的一个动点,设AD a =,BD b =,用该图形能证明的不等式为().A .)0,02a ba b +≥>>B .)20,0aba b a b≤>>+C .)0,02a b a b +≤>>D .)220,0a b a b +≥>>【答案】C【解析】由图知:1,2222a b a b a b OC AB OD OB BD b ++-===-=-=,在Rt OCD △中,CD =所以OC OD ≤,即)0,02a ba b +>>,故选:C例2.(2024·全国·高三专题练习)已知x ,y 都是正数,且x y ≠,则下列选项不恒成立的是()A .2x y+B .2x y y x+>C .2xyx y<+D .12xy xy +>【答案】D【解析】x ,y 都是正数,由基本不等式,2x y+≥2y xx y+≥,2xy x y =+当x y =时等号成立,而题中x y ≠,因此等号都取不到,所以ABC 三个不等式恒成立;12xy xy +≥中当且仅当1xy =时取等号,如1,22x y ==即可取等号,D 中不等式不恒成立.故选:D .例3.(2024·江苏·高三专题练习)下列运用基本不等式求最值,使用正确的个数是()①已知0ab ≠,求ab ba+的最小值;解答过程:2a b b a +≥=;②求函数2y 2y =≥;③设1x >,求21y x x =+-的最小值;解答过程:21y x x =+≥-当且仅当21x x =-即2x =时等号成立,把2x =代入4.A .0个B .1个C .2个D .3个【答案】A【解析】对①:基本不等式适用于两个正数,当0ab <,a bb a与均为负值,此时2a b a b b a b a ⎡⎤⎛⎫⎛⎫+=--+-≤-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当且仅当a bb a=,即0a b =<时等号成立,故①的用法有误,故①错误;对②:2y ≥,1=时取等号,2≥,则等号取不到,故②的用法有误;对③:1x >,10x ->,2211111y x x x x =+=-++≥--,当且仅当1x -=,即1x =+时取等号,故③的用法有误;故使用正确的个数是0个,故选:A .题型二:直接法求最值【解题方法总结】直接利用基本不等式求解,注意取等条件.例4.(2024·河北·高三学业考试)若x ,y +∈R ,且23x y +=,则xy 的最大值为______.【答案】98【解析】由题知,x ,y +∈R ,且23x y +=因为2x y +≥所以3≥所以98xy ≥,即98xy ≤,当且仅当2x y =,即33,24x y ==时,取等号,故答案为:98例5.(2024·重庆沙坪坝·高三重庆南开中学校考阶段练习)若a ,0b >,且3ab a b =++,则ab 的最小值是____________.【答案】9【解析】因为3a b ab +=-≥a b =时,等号成立),所以230-≥,所以1)0-+≥3≥,所以9ab ≥,所以ab 的最小值为9.故答案为:9例6.(2024·天津南开·统考一模)已知实数0,0,1a b a b >>+=,则22a b +的最小值为___________.【答案】【解析】∵0a >,0b >,1a b +=,∴22a b+≥==22a b =即12a b ==时取等号.故答案为:题型三:常规凑配法求最值【解题方法总结】1、通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式.2、注意验证取得条件.例7.(2024·全国·高三专题练习)若2x >-,则()12f x x x =++的最小值为___________.【答案】0【解析】由2x >-,得12002x x +>>+,,所以11()222022f x x x x x =+=++-≥=++,当且仅当122x x +=+即=1x -时等号成立.故答案为:0例8.(2024·全国·高三专题练习)已知0x >,则4221x x ++的最小值为__________.【答案】3【解析】442211132121x x x x +=++-≥-=++,当且仅当212x +=,即12x =时,等号成立.故答案为:3.例9.(2024·全国·高三专题练习)若1x >,则2221x x x ++-的最小值为______【答案】4+/4+【解析】由1x >,则10x ->.因为()()22221415x x x x ++=-+-+,所以()22251411x x x x x ++=-++--44≥=+,当且仅当511x x -=-,即1x =+时等号成立,故2221x x x ++-的最小值为4.故答案为:4.例10.(2024·上海浦东新·高三华师大二附中校考阶段练习)若关于x 的不等式20(1)x bx c b ++≥>的解集为R ,则1241b cb ++-的最小值为_________.【答案】8【解析】因为不等式20(1)x bx c b ++≥>的解集为R ,则22Δ404b bc c =-≤⇒≥,因为1b >,所以10b ->,∴2212421(1)4(1)4111b c b b b b b b b ++++-+-+≥=---4(1)4481b b =-++≥+=-.当且仅当411b b -=-,即3b =时,取到等号.故答案为:8题型四:消参法求最值【解题方法总结】消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!例11.(2024·全国·高三专题练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是()A .2B .2C .2D .6【答案】B【解析】由220ab a +-=,得22a b =+,所以()a b b b b b +=+=++-=++884222222,当且仅当,a b b b ==+++28222,即,a b ==222取等号.故选:B.例12.(2024·全国·高三专题练习)若,x y R +∈,23()()-=x y xy ,则11x y+的最小值为___________.【答案】2【解析】因为23()()-=x y xy 且,x y R +∈,则两边同除以2()xy ,得211()xy y x-=,又因为224(111111()44xy y y x xy xy x -+=+=+≥=,当且仅当14xy xy =,即22x y ==211x y+≥.故答案为:2例13.(2024·全国·高三专题练习)已知0x >,0y >,满足2220x xy +-=,则2x y +的最小值是______..【解析】由2220x xy +-=,得21222x x y x x -==-,(x ∈所以113222222x x x y x x x +=+-=+≥==当且仅当312x x =即3x =时等号成立,所以2x y +.题型五:双换元求最值【解题方法总结】若题目中含是求两个分式的最值问题,对于这类问题最常用的方法就是双换元,分布运用两个分式的分母为两个参数,转化为这两个参数的不等关系.1、代换变量,统一变量再处理.2、注意验证取得条件.例14.(2024·浙江省江山中学高三期中)设0a >,0b >,若221a b +=,2ab -的最大值为()A.3B.C.1+D.2【答案】D【解析】解:法一:(基本不等式)设c b =-2ab -=)a b ac -=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()14a b +=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩,由于0a >,0b >,故cos 02sin 0θθθ⎧>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ-+≤当且仅当4πθ=时取等号.故选:D.例15.(2024·天津南开·一模)若0a >,0b >,0c >,2a b c ++=,则4a ba b c+++的最小值为______.【答案】2+【解析】由题意,0a >,0b >,0c >,2a b c ++=得:2a b c +=-,设2,,(0,0)c m c n m n -==>>,则2m n +=,故44242421122a b c a b c c c c c m n+-+=+=+-=+-+--422()1312m n n m m n m n +=⨯+-=++-≥,当且仅当222m n =,即42m n c =-==时取得等号,故4a ba b c+++的最小值为2+故答案为:2+例16.(2024·全国·高三专题练习)已知0a >,0b >,21a b +=,则11343a b a b+++取到最小值为________.【答案】35+.【解析】令2(34)(3)(3)(43)a b a b a b a b λμλμλμ+=+++=+++,∴1315{{43225λλμλμμ=+=⇒+==,∴111112312(3)34()[(34)(3)][]3433435555343a b a ba b a b a b a b a b a b a b a b+++=+⋅+++=++++++++3355+≥=,当且仅当21{2(3)34343a b a b a b a b a b+=++⋅++时,等号成立,即11343a b a b +++题型六:“1”的代换求最值【解题方法总结】1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形.1、根据条件,凑出“1”,利用乘“1”法.2、注意验证取得条件.例17.(2024·安徽蚌埠·统考二模)若直线1(0,0)x ya b a b+=>>过点()23,,则2a b +的最小值为______.【答案】7+7【解析】∵直线1(0,0)x ya b a b+=>>过点()23,,231a b∴+=.()232622777b a a b a b a b a b ⎛⎫∴+=++=++≥+=+ ⎪⎝⎭b =,即2a =3b =时取等号.2a b ∴+的最小值为7+故答案为:7+例18.(2024·河北·高三校联考阶段练习)已知0,0,23a b a b >>+=,则4212b a b-+的最小值为__________.【答案】73【解析】0,0,23a b a b >>+= ,()4211111112471212122323233b a b a a b a b a b a b a b -+⎛⎫⎛⎫∴+=+=+++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当322a b ==时取等号,则4212b a b -+的最小值为73.故答案为:73例19.(2024·湖南衡阳·高三校考期中)已知13x >,2y >,且37x y +=,则11312x y +--的最小值为______.【答案】1【解析】因为37x y +=,所以3124x y -+-=,即312144x y --+=,因为13x >,2y >,所以3120,044x y -->>,1111312()(31231244x y x y x y --+=++----13111144(31)4(2)422x y y x -=++++---=,当且仅当314(31)4(22)y x x y ----=,即1,4x y ==时取等号.所以11312x y +--的最小值为1.故答案为:1例20.(2024·山东青岛·高三山东省青岛第五十八中学校考阶段练习)已知正实数,a b 满足4111a b b +=++,则2+a b 的最小值为___________.【答案】8【解析】因为4111a b b +=++,所以()()412111a b a b b a b b ⎛⎫⎡⎤+=++++- ⎪⎣⎦++⎝⎭()41411481b a ba b b ++=+-++≥+=++,当且仅当()411b a ba bb ++=++,即4,2a b ==时,取等号,所以2+a b 的最小值为8.故答案为:8.题型七:齐次化求最值【解题方法总结】齐次化就是含有多元的问题,通过分子、分母同时除以得到一个整体,然后转化为运用基本不等式进行求解.例21.(2024·全国·高三专题练习)已知正实数a ,b ,c ,3a b +=,则331ac c b ab c +++的最小值为_______________.【答案】2/2-+【解析】由正实数a ,b ,3a b +=,可得2()33a b +=,所以22()333333(111a b a ac c a c c b ab c b ab c ab c ++++=⨯++=⨯++++22423423()313331a ab b a bc cab c b a c +++=⨯+=⨯+++++而44333a b b a +≥=,当且仅当4a b b a =即24,33a b ==时取等号,故334233()2(1)213311ac c c c b ab c c c ++≥++=++-+++2≥,当且仅当32(1)1c c +=+时,即1c =时取等号,故答案为:2例22.(2024·全国·高三专题练习)已知a ,b 为正实数,且21a b +=,则22aa b+的最小值为______.【答案】6【解析】由已知条件得,2422446222a a b a b a a b a b a b +⎛⎫+=+=++≥+= ⎪⎝⎭,当且仅当22b a a b =,即25a =,15b =时取等号.故答案为:6.例23.(2024·天津红桥·高三天津市复兴中学校考阶段练习)已知0,0x y >>,则222224xy xyx y x y +++的最大值是____________.【答案】3【解析】222222144xy xy x y x y x y x y y x y x+=+++++,设(0)x t t y=>,所以原式=322422223()2123(2)41441545t t t t t t t t t t t t t t t t+++=+==++++++++,令2(0),u t t u t=+>∴≥所以原式=2333311139u u u u =≤=++.(函数1y u u=+在)+∞上单调递增)故答案为:3题型八:利用基本不等式证明不等式【解题方法总结】类似于基本不等式的结构的不等式的证明可以利用基本不等式去组合、分解、运算获得证明.例24.(2024·全国·高三专题练习)利用基本不等式证明:已知,,a b c 都是正数,求证:()()()8a b b c c a abc+++≥【解析】,,a b c都是正数,0a b ∴+≥>(当且仅当a b =时取等号);0b c +≥>(当且仅当b c =时取等号);0c a +≥>(当且仅当c a =时取等号);()()()8a b b c c a abc ∴+++≥=(当且仅当a b c ==时取等号),即()()()8a b b c c a abc +++≥.例25.(2024·河南·高三校联考阶段练习)已知x ,y ,z 为正数,证明:(1)若2xyz =,则2221112x y z x y z ++++≤;(2)若229x y z ++=,则2229x y z ++≥.【解析】(1)因为2xyz =,所以2222y z yz x +=≤,同理可得2222x z y +≤,2222x y z +≤,所以222222222222y z x z x y x y z +++++≤++,故2221112x y z x y z ++++≤,当且仅当x y z ==时等号成立.(2)()()()2222222222112122299x y z x y z x y z ++=++++≥++,因为229x y z ++=,所以2229x y z ++≥,当且仅当2x y z ==时等号成立.例26.(2024·四川广安·高三校考开学考试)已知函数()21f x x x m =+++,若()3f x ≤的解集为[],1n .(1)求实数m ,n 的值;(2)已知,a b 均为正数,且满足12202m a b++=,求证:22168a b +≥.【解析】(1)因为()3f x ≤的解集为[],1n ,所以(1)3f ≤,即3|1|3m ++≤,所以|1|0m +≤,又|1|0m +≥,所以10m +=,即1m =-.所以()|21||1|f x x x =++-,当12x <-时,()21133f x x x x =---+=-≤,得1x ≥-,则112x -≤<-,当112x -≤≤时,()21123f x x x x =+-+=+≤,得112x -≤≤,当1x >时,()2113f x x x x =++-=3≤,得1x ≤,不成立,综上所述:()3f x ≤的解集为[1,1]-,因为()3f x ≤的解集为[],1n .所以1n =-.(2)由(1)知,1m =-,所以1222a b+=(0,0)a b >>,所以1222a b =+≥=,当且仅当12a =,2b =时,等号成立,所以1≥ab ,所以22168a b ab +≥=8≥,当且仅当12a =,2b =时,等号成立.题型九:利用基本不等式解决实际问题【解题方法总结】1、理解题意,设出变量,建立函数模型,把实际问题抽象为函数的最值问题.2、注意定义域,验证取得条件.3、注意实际问题隐藏的条件,比如整数,单位换算等.例27.(2024·全国·高三专题练习)首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下进行技术攻关,采取了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似的表示为21200800002y x x =-+,且处理每吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?【解析】(1)由题意知,平均每吨二氧化碳的处理成本为1800002002002002y x x x =+-≥-=;当且仅当1800002x x=,即400x =时等号成立,故该当每月处理量为400吨时,才能使每吨的平均处理成本最低为200元.(2)不获利,设该单位每个月获利为S 元,则2211100100200800003008000022S x y x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭()21300350002x =---,因为[]400,600x ∈,则[]80000,40000S ∈--,故该当单位每月不获利,需要国家每个月至少补贴40000元才能不亏损.例28.(2024·贵州安顺·高一统考期末)某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为100吨,最多为600吨,月处理成本()f x (元)与月处理量x (吨)之间的函数关系可近似地表示为21()200800002f x x x =-+.(1)该单位每月处理量为多少吨时,才能使月处理成本最低?月处理成本最低是多少元?(2)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?每吨的平均处理成本最低是多少元?【解析】(1)该单位每月的月处理成本:2211()20080000(200)6000022f x x x x =-+=-+,因100600x ≤≤,函数()f x 在区间[100,200]上单调递减,在区间(200,600]上单调递增,从而得当200x =时,函数()f x 取得最小值,即min ()(200)60000f x f ==.所以该单位每月处理量为200吨时,才能使月处理成本最低,月处理成本最低是60000元.(2)由题意可知:21()20080000(100600)2f x x x x =-+≤≤,每吨二氧化碳的平均处理成本为:()800002002002002f x x xx =+-≥=当且仅当800002x x=,即400x =时,等号成立.所以该单位每月处理量为400吨时,每吨的平均处理成本最低,为200元.例29.(2024·湖北孝感·高一统考开学考试)截至2022年12月12日,全国新型冠状病毒的感染人数突破44200000人.疫情严峻,请同学们利用数学模型解决生活中的实际问题.(1)我国某科研机构新研制了一种治疗新冠肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量()c t (单位:mg /L )随着时间t (单位:h ).的变化用指数模型()0ektc c t -=描述,假定某药物的消除速率常数0.1k =(单位:1h -),刚注射这种新药后的初始血药含量02000mg /L c =,且这种新药在病人体内的血药含量不低于1000mg /L 时才会对新冠肺炎起疗效,现给某新冠病人注射了这种新药,求该新药对病人有疗效的时长大约为多少小时?(精确到0.01,参考数据:ln20.693≈,ln3 1.099≈)(2)为了抗击新冠,需要建造隔离房间.如图,每个房间是长方体,且有一面靠墙,底面积为48a 平方米(0)a >,侧面长为x 米,且x 不超过8,房高为4米.房屋正面造价400元/平方米,侧面造价150元/平方米.如果不计房屋背面、屋顶和地面费用,则侧面长为多少时,总价最低?【解析】(1)由题意得,0.10()e 2000e kt t c t c --==,设该药在病人体内的血药含量变为1000mg/L 时需要是时间为1t ,由10.11()2000e 1000t c t -=≥,得10.12e 1t -≥,故0.1ln 2t -≥-,ln 26.93h 0.1t ∴≤≈.∴该新药对病人有疗效的时长大约为6.93h .(2)由题意,正面长为48a x 米,故总造价48400421504ay x x=⨯⨯+⨯⨯,即()768001200,08ay x x x=+<≤.由基本不等式有768001200a y x x =+≥768001200a x x =,即x =.故当8≤,即1a ≤,x =时总价最低;当8>,即1a >时,由对勾函数的性质可得,8x =时总价最低;综上,当01a <≤时,x =1a >时,8x =时总价最低.题型十:与a b +、平方和、ab 有关问题的最值【解题方法总结】利用基本不等式变形求解例30.(多选题)(2024·重庆·统考模拟预测)若实数a ,b 满足221a b ab +=+,则()A .1a b -≥-B .a b -C .13ab ≥-D .13ab ≤【答案】BC【解析】221a b ab +=+ ,当0ab >时,222121a b ab ab ab ab +≥⇒+≥⇒≤,当且仅当1a b ==或1a b ==-时等号成立,得01ab <≤,当0ab <时,2212123a b ab ab ab ab +≥-⇒+≥-⇒≥-,当且仅当a b ==33a b =-=时等号成立,得103ab -≤<,当0ab =时,由221a b ab +=+可得0,1a b ==±或0,1b a ==±综合可得113ab -≤≤,故C 正确,D 错误;222221()11()b ab ab a b b a b b a a a +-=-⇒-=-⇒-=- ,当13ab ≥-时,22141()()33a b a b a b --≥-⇒-≤⇒≤-,故A 错误,B 正确;故选:BC.例31.(多选题)(2024·全国·高三专题练习)已知0,0a b >>,且11a b+=,则()A .1b a+的最小值为4B .221a b +的最小值为14C .ab 的最大值为14D .12b a -1【答案】ACD【解析】11111124b b a ab a a b ab ⎛⎫⎛⎫+=++=+++≥+= ⎪⎪⎝⎭⎝⎭,当且仅当1ab =,即1,22a b ⎧=⎪⎨⎪=⎩时取等号,则A 正确;222211112224a a b b ⎛⎫++ ⎪⎛⎫≥≥= ⎪ ⎪⎝⎭ ⎪⎝⎭,即22112a b +≥,当且仅当1ab =,即1,22a b ⎧=⎪⎨⎪=⎩时取等号,则B 错误;221111124b a b b b b b b --⎛⎫===-+ ⎪⎝⎭,当112b =,即2b =时,max 14a b ⎛⎫= ⎪⎝⎭,则C正确;1111111222b b b a b b b --=-=+-≥-=,当且仅当12a b ⎧=-⎪⎨⎪=⎩时取等号,则D 正确.故选:ACD例32.(多选题)(2024·全国·高三专题练习)已知0x >,0y >,且30x y xy +-+=,则下列说法正确的是()A .312xy <≤B .6x y +≥C .2218x y +≥D .11103x y <+≤【答案】BC【解析】对于A:由3xy x y -=+≥,得3xy -≥x y =时,等号成立230-≥3≥,即9xy ≥,故A 不正确;对于B :由232x y x y xy +⎛⎫++=≤ ⎪⎝⎭,得232x y x y +⎛⎫++ ⎪⎝⎭≤,当且仅当x y =时,等号成立即()()21240y x x y +-+-≥,解得6x y +≥,或2x y +≤-(舍去),故B 正确;对于C :()()()()()2222222326x y x y xy x y x y x y x y +=+-=+-++=+-+-,令6t x y =+≥,()()22222261761718x y t t t +=--=----=≥,即2218x y +≥,故C 正确;对于D ,11331x y xy x y xy xy xy +-+===-,令9t xy =≥,113321193x y t +=--=≥,即1123x y +≥,故D 不正确,故选:BC .例33.(多选题)(2024·全国·高三专题练习)设0a >,0b >,1a b +=,则下列结论正确的是()A .ab 的最大值为14B .22a b +的最小值为12C .41a b+的最小值为9D 【答案】ABC【解析】对于A ,因为0a >,0b >,1a b +=,则21()24a b ab +≤=,当且仅当12a b ==时取等号,故A 正确;对于B ,因为222(22a b a b ++≤,故2212a b +≥,当且仅当12a b ==时取等号,即22a b +的最小值12,故B 正确;对于C ,41414()559b a a b a b a b a b +=++=++≥+=,当且仅当4b aa b =且1a b +=,即13b =,23a =时取等号,所以41a b+的最小值为9,故C 正确;对于D ,2111222+=++⨯=,≤12a b ==D 错误.故选:ABC.。

高考数学不等式的解法知识点

高考数学不等式的解法知识点

高考数学不等式的解法知识点高考数学不等式的解法知识点在年少学习的日子里,大家都背过各种知识点吧?知识点也可以通俗的理解为重要的内容。

哪些知识点能够真正帮助到我们呢?以下是店铺帮大家整理的高考数学不等式的解法知识点,仅供参考,希望能够帮助到大家。

不等式的解法:(1)一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:(2)绝对值不等式:若,则 ; ;注意:(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。

(3).含有多个绝对值符号的不等式可用按零点分区间讨论的方法来解。

(4)分式不等式的解法:通解变形为整式不等式;(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。

(6)解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要讨论。

不等式与不等式组1.定义:用符号〉,=,〈号连接的式子叫不等式。

2.性质:①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

初高中衔接之一---不等式的解法

初高中衔接之一---不等式的解法

(3)化积——化成整式不等式.
注意:(1) A 0 A B 0 ; B
(2)
A B
0
A B
B 0
0
三、高次不等式的解法
【例 7】解不等式:
(1) x3 x2 x 1 0
(x1)2(x1)0 x1或x1
(2) x2 x 3 1 2x2 x
( x 3 ) ( 2 x 1 ) x ( x 1 ) 0 3x1或0x1 2
解:依题意可知 a 0,且方程 ax2 bx c 0 的两根分别为 2 和 3,
∴b 5, a
c 6 ,即 b 5 ,
a
a
c 6. a
由于 a 0,所以不等式 bx2 ax c 0 可变为 b x2 x c 0 ,
a
a
即 5x2 x 6 0 ,
所以,不等式 bx2 ax c 0 的解是 x 1或x 6 . 5
归纳小结: 一元二次不等式的解法: 关键函数图象 分式不等式: 关键化积,难点分母≠0 高次不等式: 根轴法
02 初高中衔接之一---不等式的解法
三个“二次”的关系
二次函数
y ax2 bx c ( a 0 )的图象
一元二次方程
ax2 bx c 0
a 0的根
有两相异实根
x1, x2 (x1 x2 )
ax2bxc0 xx1或xx2
ax2bxc0 x1 xx2
有两相等实根
x1
x2
b 2a
x b 2a
解高次不等式的步骤是:
(1)将最高次系数化为正数; (2)分解为若干一次因式之积; (3)将根在数轴上按顺序标出; (4)从右上方开始画起,奇重根穿过数轴,偶重根不穿过数轴; (5)由图写出结果.

初升高数学衔接教材(完整)

初升高数学衔接教材(完整)

第一讲 数与式1、 绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a -<<。

②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><-或。

③22()()()()f x g x f x g x >⇔>。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1 段进行讨论. ③将分段求得解集,再求它们的并集. 例1。

求不等式354x -<的解集例2.求不等式215x +>的解集例3.求不等式32x x ->+的解集例4。

求不等式|x +2|+|x -1|>3的解集.例5。

解不等式|x -1|+|2-x |>3-x .例6。

已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式:(1)13x x -+->4+x(2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x -<(5)578x +>3、因式分解 乘法公式(1)平方差公式 22()()a b a b a b +-=- (2)完全平方公式 222()2a b a ab b ±=±+ (3)立方和公式 2233()()a b a ab b a b +-+=+ (4)立方差公式 2233()()a b a ab b a b -++=-(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式 33223()33a b a a b ab b +=+++ (7)两数差立方公式 33223()33a b a a b ab b -=-+-因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)2672x x ++(3)22()x a b xy aby -++; (4)1xy x y -+-.2.提取公因式法例2.分解因式:(1)()()b a b a -+-552(2)32933x x x +++3.公式法例3.分解因式: (1)164+-a (2)()()2223y x y x --+4.分组分解法例4.(1)x y xy x 332-+- (2)222456x xy y x y +--+- 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5.把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.练习(1)256x x -- (2)()21x a x a -++ (3)21118x x -+(4)24129m m -+ (5)2576x x +- (6)22126x xy y +-(7)()()3211262+---p q q p (8)22365ab b a a +- (9)()22244+--x x(10)1224+-x x (11)by ax b a y x 222222++-+-(12)91264422++-+-b a b ab a (13)x 2-2x -1(14) 31a +; (15)424139x x -+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +-++-第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.(2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1。

高三复习第四讲基本不等式

高三复习第四讲基本不等式

第六章 不等式、推理与证明第四讲 基本不等式【考纲速读吧】1.了解基本不等式的证明过程.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,在证明或求最值时,要个必会变形1. 公式的逆用:a 2+b 2≥2ab 的逆用就是ab ≤a 2+b 22;a +b 2≥ab (a ,b >0)的逆用就是ab ≤(a +b 2)2.2. ab ≤(a +b 2)2≤a 2+b 22(当且仅当a =b 时取等号),这个不等式链用处很大.项必须注意1.使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.2.在运用重要不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足重要不等式中“正”“定”“等”的条件.3.在同一个问题中连续多次使用均值不等式,要注意判断等号是否能同时成立.【课前自主导学】011. 基本不等式ab ≤a +b2(1)基本不等式成立的条件:________.(2)等号成立的条件:当且仅当________时取等号.(3)两个平均数:a +b2称为正数a ,b 的________,ab 称为正数a ,b 的________.归纳拓展:常用的几个重要不等式:(1)a 2+b 2≥2ab (a ,b ∈R ). (2)ab ≤(a +b 2)2(a ,b ∈R ).(3)(a +b 2)2≤a 2+b 22(a ,b ∈R ). (4)b a +ab≥2(a ·b >0).(5)21a +1b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0).(1)若a ,b ∈R ,且ab >0,下列不等式①a 2+b 2>2ab ②a +b ≥2ab ③1a +1b >2ab ④b a +a b ≥2 ⑤ab ≤(a +b 2)2,其中恒成立的是________.(2)设0<a <b ,则a ,b ,ab ,a +b2的大小关系为________.2.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:“积定和最小”).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s24(简记:“和定积最大”).(1)当x >1时,则x +4x -1的最小值________.(2)当x <0时,则x +2x的最大值________.(3)已知x ,y >0,且x +4y =1,则xy 的最大值________,1x +1y________.【自我校对】1. a >0,b >0 a =b 算术平均数 几何平均数填一填:(1)④⑤ (2)a <ab <a +b2<b2.填一填:(1)5 (2)-22 (3)1169【核心要点研究】02【考点一】利用基本不等式求最值例1 (1)[2011·重庆高考]已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A .72B .4C .92 D .5(2)[2011·浙江高考]若实数x 、y 满足x 2+y 2+xy =1,则x +y 的最大值是________.【审题视点】通过拆、拼、凑创造条件,利用基本不等式求最值,但要注意等号成立的条件.[解析] (1)2y =2(1a +4b )=(a +b )(1a +4b )=5+b a +4a b ≥5+2b a ·4a b=9(当且仅当b a =4a b ,a +b =2即a =23,b =43时等号成立),所以y 的最小值为92.(2)∵x 2+y 2+xy =1,∴(x +y )2=xy +1.又∵xy ≤(x +y 2)2,∴(x +y )2≤(x +y 2)2+1,即34(x +y )2≤1. ∴(x +y )2≤43.∴-233≤x +y ≤233.∴x +y 的最大值为233.[答案] (1)C (2)233奇思妙想:本例(1)改为“若a >0,b >0,且a +b =2ab ,求y =4a +b 的最小值”,则结果如何?解:由a +b =2ab 得1a +1b=2,∴4a +b =12(1a +1b )(4a +b )=12(5+4a b +b a )≥924a +b 的最小值为92.【师说点拨】利用基本不等式求最值时,必须注意三点:“一正,二定,三相等”,缺一不可.如果项是负数,可转化为正数后解决,当和(或积)不是定值时,需要对项进行添加、分拆或变系数,将和(或积)化为定值.【变式探究】已知x >0,y >0,且2x +8y -xy =0,求(1)xy 的最小值;(2)x +y 的最小值.解:(1)∵2x +8y =xy ≥216xy , ∴xy -8xy ≥0,∴解得xy ≥64. 当x =16,y =4时,xy 最小值为64.(2)∵2x +8y =xy ,∴8x +2y =1, 则x +y =(x +y )(8x +2y )=10+8y x +2xy≥18,当x =12,y =6时,x +y 的最小值为18.【考点二】利用基本不等式证明不等式例2 [2012·湖北高考]设a ,b ,c ∈R +,则“abc =1”是“1a +1b +1c≤a +b +c ”的( ) A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充分必要条件 D .既不充分也不必要条件 【审题视点】按照化繁为简的原则,先对不等式的左侧进行变形化简,关键是题设条件“abc =1”的灵活应用. [解析] 先考查充分性:当abc =1时,1a +1b +1c =abc a +abc b +abcc=ab +bc +ca ,又因为2(a +b +c )=(a +b )+(b +c )+(c +a )≥2ab +2bc +2ca(当且仅当a =b =c =1时取等号),即1a +1b +1c =ab +bc +ca ≤a +b +c ,故充分性成立;再考查必要性:取a =b =c =3,显然有1a +1b +1c≤a +b +c ,但abc ≠1,故必要性不成立.应选A .[答案] A【师说点拨】利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项、并项,也可乘上一个数或加上一个数,“1”的代换法等.【变式探究】[2012·福建高考]下列不等式一定成立的是( )A .lg (x 2+14)>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R )D .1x 2+1>1(x ∈R )答案:C解析:本题考查不等式的性质以及基本不等式的应用,解题时注意使用不等式的性质以及基本不等式成立的条件.对于A 选项,当x =12时,lg (x 2+14)=lg x ;所以A 不一定正确;B 命题,需要满足当sin x >0时,不等式成立,所以B 也不正确;C 命题显然正确;D 命题不正确,∵x 2+1≥1,∴0<1x 2+11,所以正确的是C .【考点三】利用基本不等式解决实际问题例3 [2012·江苏高考]如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km ,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.[解] (1)令y =0,得kx -1201+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k 2=20k +1k≤202=10,当且仅当k =1时取等号.所以炮的最大射程为10 km .(2)因为a >0,所以炮弹可以击中目标等价于存在k >0,使ka -120(1+k 2)a 2=3.2成立,即关于k 的方程a 2k 2-20ak +a 2+64=0有正根.由Δ=(-20a )2-4a 2(a 2+64)≥0得a ≤6,此时,k =20a+(-20a )2-4a 2(a 2+64)2a2>0(不考虑另一根).当a 不超过6千米时,炮弹可以击中目标【师说点拨】解实际应用题要注意以下几点:(1)设变量时一般要把求最大值或最小值的变量定义为函数;(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值;(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【变式探究】[2013·郑州模拟]把一段长16米的铁丝截成两段,分别围成正方形,则两个正方形面积之和的最小值为( )A .4B .8C .16D .32 答案:B解析:设截成的两段铁丝长分别为x,16-x,16>x >0,则围成的两个正方形面积之和为S =(x 4)2+(16-x 4)2≥(x 4+16-x 4)22=8,当且仅当x 4=16-x4,即x =8时,等号成立.故两个正方形面积之和的最小值为8,故选B .【课课精彩无限】03忽视不等式中等号成立的条件而致误【选题·热考秀】 [2012·浙江高考]若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A .245B .285C .5D .6[规范解答] ∵x +3y =5xy ,∴1y +3x =5,∵x >0,y >0,∴(3x +4y )(1y +3x )=3x y +12y x +9+4≥23x y ·12yx+13=25,∴5(3x +4y )≥25,∴3x +4y ≥5,当且仅当x =2y 时取等号,∴3x +4y 的最小值是5,选C . 答案:C 【备考·角度说】No .1 角度关键词:易错分析(1)不能根据函数解析式的特征适当变形,化为两式之和为定值,使题目无法进行. (2)两次使用基本不等式时,忽视等号的一致性出错.如本题易出现:x +3y =5xy ≥23xy ,∴xy ≥1225,又3x +4y ≥212xy ≥2 12·1225=245,误选A 项,第一个等号成立条件“x =3y ”,而第二个等号成立条件为“3x =4y ”,显然等号不能同时成立,故不正确. No .2 角度关键词:备考建议(1)重视基本不等式的形式及其条件,在解题中要根据不同的情况进行适当地变形,为使用基本不等式提供前提;(2)对于在同一问题中连续使用基本不等式的情况,要注意及时判断等号能否同时取得,以防止出错; (3)要注意利用常数代换法对代数式进行转化的技巧.【经典演练提能】041.[2012·陕西高考]小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =abC .ab <v <a +b2D .v答案:A解析:由小王从甲地往返到乙地的时速为a 和b ,则全程的平均时速为v =2s (s a +s b)=2aba +b ,又∵a <b ,∴2a 22a <2ab a +b <2ab 2ab=ab ,∴a <v <ab ,A 成立. 2.[2013·青岛质检]已知a >0,b >0,且2a +b =4,则1ab的最小值为( )A .14B .4C .12D .2答案:C解析:由4=2a +b ≥22ab ,得ab ≤2,又a >0,b >0,所以1ab ≥12,当且仅当a =1,b =2时等号成立.3.[2013·福建质检]设a >0,若关于x 的不等式x +ax -1≥5在(1,+∞)上恒成立,则a 的最小值为( )A .16B .9C .4D .2 答案:C解析:∵关于x 的不等式x +ax -1≥5在(1,+∞)上恒成立,∴a ≥(5-x )(x -1)在(1,+∞)上恒成立.∵(5-x )(x -1)=-(x -3)2+4≤4,∴a ≥4,即a 的最小值为4.4.[2013·金版原创]已知x >0,y >0,且2x +1y=1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是( )A .m ≥4或m ≤-2B .m ≥2或m ≤-4C .-2<m <4D .-4<m <2 答案:D解析:∵x >0,y >0,且2x +1y =1,∴x +2y =(x +2y )(2x +1y )=4+4y x +x y ≥4+24y x ·xy=8,当且仅当4y x =x y ,即4y 2=x 2,x =2y 时取等号,又2x +1y=1,此时x =4,y =2,∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立,只需(x +2y )min >m 2+2m 恒成立,即8>m 2+2m ,解得-4<m <2. 5.[2013·提升题]已知a >0,b >0,给出下列四个不等式:①a +b +1ab ≥22;②(a +b )(1a +1b )≥4;③a 2+b 2ab ≥a +b ;④a +1a +4≥-2.其中正确的不等式有________(只填序号).答案:①②③解析:∵a >0,b >0,∴①a +b +1ab ≥2ab +1ab ≥22ab ·1ab =22.②(a +b )(1a +1b )≥4ab ·1ab =4.③∵a 2+b 22≥a +b 2,∴a 2+b 2≥(a +b )22=(a +b )·a +b 2≥(a +b )ab ,∴a 2+b 2ab≥a +b .④a +1a +4a +4)+1a +4-4≥2 (a +4)·1a +4-4=-2,当且仅当a +4=1a +4,即(a +4)2=1时等号成立,而a >0,∴(a +4)2≠1.∴等号不能取得.综上①②③正确. 【限时规范特训】05(时间:45分钟 分值:100分)一、选择题1.[2013·常州质检]已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4 答案:C解析:∵x <0,∴-x >0,∴x +1x -2=-(-x +1-x )-2≤-2-x 1-x2=-4,当且仅当-x =1-xx =-1时,等号成立.2.[2013·长沙质检]若0<x <1,则当f (x )=x (4-3x )取得最大值时,x 的值为( )A .13B .12C .34D .23答案:D解析:∵0<x <1, ∴f (x )=x (4-3x )=13·3x (4-3x )≤13×(3x +4-3x 2)2=43,当且仅当3x =4-3x ,即x =23时,取得“=”,故选D .3.函数y =x 2+2x +2x +1(x >-1)的图象最低点的坐标为( )A .(1,2)B .(1,-2)C .(1,1)D .(0,2) 答案:D解析:y =x +2+1x +1=x +1+1x +1,当x +1=1x +1,即x =0时,y 最小值为2,故选D 项.4.已知m =a +1a -2a >2),n =(12)x 2-2(x <0),则m ,n 之间的大小关系是( )A .m >nB .m <nC .m =nD .m ≤n 答案:A解析:∵a >2,x <0,∴m =(a -2)+1a -2+2≥2a -2·1a -22=4,n =22-x 2<22=4,∴m >n ,故选A . 5.[2013·商丘模拟]若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为( ) A .12 B .23 C .32 D .6 答案:D解析:依题意得4(x -1)+2y =0,即2x +y =2,9x +3y =32x +3y ≥232x ×3y =232x +y =232=6, 当且仅当2x =y =1时取等号,因此9x +3y 的最小值是6,选D .6.已知a ,b 为正实数且ab =1,若不等式(x +y )(a x +by)>m 对任意正实数x ,y 恒成立,则实数m 的取值范围是( )A .[4,+∞)B .(-∞,1]C .(-∞,4]D .(-∞,4) 答案:D解析:因为(x +y )(a x +b y )=a +b +ay x +bx y ≥a +b +2≥2ab +2=4,当且仅当a =b ,ay x =bxy时等号成立,即a =b ,x =y 时等号成立,故只要m <4即可,正确选项为D . 二、填空题 7.[2013·金版原创]规定记号“⊗”表示一种运算,即a ⊗b =ab +a +b (a ,b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗xx的最小值为________.答案:1 3解析:1⊗k =k +1+k =3,即k +k -2=0,∴k =1或k =-2(舍),∴k =1.f (x )=1⊗x x =x +x +1x =1+x +1x ≥1+2=3,当且仅当x =1x即x =1时等号成立.8.[2013·西安质检]函数f (x )=1+log a x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.答案:2解析:由题知,函数图象恒过点A (1,1),且点A 在直线mx +ny -2=0上,所以m +n =2,其中mn >0,所以1m +1n =12(1m +1n )(m +n )=12(2+n m +m n )≥12×(2+2)=2,当且仅当m =n =1时取得最小值,故所求的最小值为2. 9.[2013·鹤岗模拟]若a ,b ,c >0,且a 2+ab +ac +bc =4,则2a +b +c 的最小值为________. 答案:4解析:由已知得a 2+ab +ac +bc =(a +b )(a +c )=4, 则2a +b +c =(a +b )+(a +c )≥2(a +b )(a +c )=4,∴2a +b +c 的最小值为4. 三、解答题 10.[2013·梅州质检]已知lg (3x )+lg y =lg (x +y +1). (1)求xy 的最小值; (2)求x +y 的最小值.解:由lg (3x )+lg y =lg (x +y +1)得⎩⎪⎨⎪⎧x >0y >03xy =x +y +1(1)∵x >0,y >0, ∴3xy =x +y +1≥2xy +1, ∴3xy -2xy -1≥0,即3(xy )2-2xy -1≥0,∴(3xy +1)(xy -1)≥0,∴xy ≥1,∴xy ≥1,当且仅当x =y =1时,等号成立.∴xy 的最小值为1.(2)∵x >0,y >0,∴x +y +1=3xy ≤3·(x +y 2)2,∴3(x +y )2-4(x +y )-4≥0,∴[3(x +y )+2][(x +y )-2]≥0,∴x +y ≥2,当且仅当x =y =1时取等号,∴x +y 的最小值为2. 11.[2013·房山区模拟]已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab ≥8;(2)(1+1a )(1+1b)≥9.证明:(1)1a +1b +1ab =1a +1b +a +b ab =2(1a +1b),∵a +b =1,a >0,b >0, ∴1a +1b =a +b a +a +b b =2+a b +ba≥2+2=4,∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立). (2)方法一 ∵a >0,b >0,a +b =1, ∴1+1a =1+a +b a =2+ba,同理,1+1b =2+a b ,∴(1+1a )(1+1b )=(2+b a )(2+a b )=5+2(b a +ab )≥5+4=9.∴(1+1a )(1+1b )≥9(当且仅当a =b =12时等号成立).方法二(1+1a )(1+1b )=1+1a +1b +1ab .由(1)知,1a +1b +1ab ≥8,故(1+1a )(1+1b )=1+1a +1b +1ab≥9.12.[2013·三明模拟]某住宅小区为了使居民有一个优雅、舒适的生活环境,计划建一个正八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为200 m 2的十字型区域.现计划在正方形MNPQ 上建一花坛,造价为4200元/m 2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m 2,再在四个空角上铺草坪,造价为80元/m 2.(1)设总造价为S 元,AD 的长为x m ,试建立S 关于x 的函数关系式; (2)计划至少投入多少元,才能建造这个休闲小区.解:(1)设DQ =y ,则x 2+4xy =200,y =200-x 24x.S =4200x 2+210×4xy +80×4×12y 2=38000+4000x 2+400000x 2(0<x <102).(2)S =38000+4000x 2+400000x2≥38000+216×108=118000, 当且仅当4000x 2=400000x2,即x =10时,S min =118000(元),即计划至少要投入11.8万元才能建造这个休闲小区.。

高三数学复习(理):第4讲 基本不等式

高三数学复习(理):第4讲 基本不等式

第4讲 基本不等式[学生用书P132]1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎛⎪⎫a +b 22(a ,b ∈R ). (4)a 2+b 22≥⎛⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它们的几何平均数.常用结论已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( ) (2)ab ≤⎝⎛⎭⎪⎫a +b 22成立的条件是ab >0.( ) (3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( ) (4)若a >0,则a 3+1a 2的最小值是2a .( ) 答案:(1)× (2)× (3)× (4)× 二、易错纠偏 常见误区|K(1)忽视不等式成立的条件a >0且b >0;(2)忽视等号成立的条件. 1.若x <0,则x +1x ( ) A .有最小值,且最小值为2 B .有最大值,且最大值为2 C .有最小值,且最小值为-2 D .有最大值,且最大值为-2 解析:选D.因为x <0,所以-x >0, -x +1-x≥21=2,当且仅当x =-1时,等号成立, 所以x +1x ≤-2.2.若x ≥2,则x +4x +2的最小值为________.解析:设x+2=t,则x+4x+2=t+4t-2.又由x≥2,得t≥4,而函数y=t+4t-2在[2,+∞)上是增函数,因此当t=4时,t+4t -2取得最小值4+44-2=3.答案:3[学生用书P133]利用基本不等式求最值(多维探究)角度一通过拼凑法利用基本不等式求最值(1)已知0<x<1,则x(4-3x)取得最大值时x的值为________.(2)已知x<54,则f(x)=4x-2+14x-5的最大值为________.【解析】(1)x(4-3x)=13·(3x)(4-3x)≤13·⎣⎢⎡⎦⎥⎤3x+(4-3x)22=43,当且仅当3x=4-3x,即x=23时,取等号.(2)因为x<54,所以5-4x>0,则f(x)=4x-2+14x-5=-⎝⎛⎭⎪⎫5-4x+15-4x+3≤-2 (5-4x)15-4x+3≤-2+3=1.当且仅当5-4x=15-4x,即x=1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.【答案】 (1)23 (2)1通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 角度二 通过常数代换法求最值已知a >0,b >0,a +b =1,则⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b 的最小值为________.【解析】 ⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝ ⎛⎭⎪⎫1+a +b a ⎝ ⎛⎭⎪⎫1+a +b b = ⎝ ⎛⎭⎪⎫2+b a ·⎝ ⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号.【答案】 9【迁移探究1】 (变问法)若本例中的条件不变,则1a +1b 的最小值为________.解析:因为a >0,b >0,a +b =1, 所以1a +1b =a +b a +a +b b =2+b a +ab ≥2+2b a ·a b =4,即1a +1b 的最小值为4,当且仅当a =b =12时等号成立.答案:4【迁移探究2】 (变条件)若本例条件变为已知a >0,b >0,4a +b =4,则⎝ ⎛⎭⎪⎫1+1a⎝ ⎛⎭⎪⎫1+1b 的最小值为________. 解析:由4a +b =4得a +b4=1,⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝⎛⎭⎪⎪⎫1+a +b 4a ⎝ ⎛⎭⎪⎪⎫1+a +b 4b =⎝ ⎛⎭⎪⎫2+b 4a ⎝ ⎛⎭⎪⎫54+a b =52+2a b +5b 16a +14≥114+258=114+102.当且仅当42a =5b 时取等号.答案:114+102常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 角度三 通过消元法求最值若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是( ) A.223B .23 C.33D.233【解析】 因为正数x ,y 满足x 2+6xy -1=0,所以y =1-x 26x .由⎩⎨⎧x >0,y >0,即⎩⎨⎧x >0,1-x 26x >0,解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x ≥22x 3·13x =223,当且仅当2x 3=13x ,即x =22,y =212时取等号.故x +2y 的最小值为223.【答案】 A通过消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围.角度四 多次利用基本不等式求最值若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________.【解析】 因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4.【答案】 4当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.1.(2021·湖北八校第一次联考)已知x >0,y >0,且1x +9y =1,则x +y 的最小值为( )A .12B .16C .20D .24解析:选B.方法一:由题意x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=1+y x +9x y +9≥1+2y x ×9xy+9=16,当且仅当⎩⎪⎨⎪⎧x >0,y >0,1x +9y =1,y x =9x y ,即⎩⎪⎨⎪⎧x =4,y =12时取等号,故选B.方法二:由1x +9y =1得9x +y -xy =0,即(x -1)(y -9)=9,可知x >1,y >9,所以x +y =(x -1)+(y -9)+10≥2(x -1)(y -9)+10=16,当且仅当⎩⎪⎨⎪⎧x >1,y >9,1x +9y=1,x -1=y -9=3,即⎩⎪⎨⎪⎧x =4,y =12时取等号,故选B. 2.(2021·贵阳市四校联考)已知a +b =2,且a >-1,b >0,则1a +1+1b的最小值为( )A.23 B .1 C.43D.32解析:选C.由a +b =2,得a +1+b =3.因为a >-1,所以a +1>0,所以1a +1+1b =13(a +1+b )⎝ ⎛⎭⎪⎫1a +1+1b =13⎝ ⎛⎭⎪⎪⎫2+b a +1+a +1b ≥13·⎝⎛⎭⎪⎪⎫2+2ba +1·a +1b =43,当且仅当b a +1=a +1b ,即a =12,b =32时等号成立,所以1a +1+1b 的最小值为43,故选C.3.已知x ,y 为正实数,则4x x +3y+3y x 的最小值为( )A.53 B .103 C.32 D .3解析:选 D.由题意得x >0,y >0,4x x +3y +3y x =4x x +3y +x +3y x -1≥24x x +3y ·x +3yx-1=4-1=3(当且仅当x =3y 时等号成立).基本不等式的实际应用(师生共研)某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,则每批应生产产品() A.60件B.80件C.100件D.120件【解析】若每批生产x件产品,则每件产品的生产准备费用是800x元,仓储费用是x8元,总的费用是800x+x8≥2800x·x8=20,当且仅当800x=x8,即x=80时取等号,故选B.【答案】 B利用基本不等式求解实际问题的注意事项(1)根据实际问题抽象出目标函数的表达式,再利用基本不等式求得函数的最值.(2)设变量时一般要把求最大值或最小值的变量定义为函数.(3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.(2021·安徽安庆大观模拟)如图所示,矩形ABCD的边AB靠在墙PQ上,另外三边是由篱笆围成的.若该矩形的面积为4,则围成矩形ABCD 所需要篱笆的()A .最小长度为8B .最小长度为4 2C .最大长度为8D .最大长度为4 2解析:选B.设BC =a ,a >0,CD =b ,b >0,则ab =4,所以围成矩形ABCD 所需要的篱笆长度为2a +b =2a +4a ≥22a ·4a =42,当且仅当2a =4a ,即a =2时取等号,此时长度取得最小值4 2.故选B.基本不等式的综合应用(多维探究) 角度一 与其他知识的交汇问题(2021·吉林通钢一中等三校第五次联考)在Rt △ABC 中,已知∠C =90°,CA =3,CB =4,P 为线段AB 上的一点,且CP →=x ·CA →|CA →|+y ·CB →|CB →|,则1x +1y 的最小值为( )A.76 B .712C.712+33D.76+33【解析】 因为CA =3,CB =4,即|CA →|=3,|CB →|=4, 所以CP →=x CA →|CA →|+y CB →|CB →|=x 3CA →+y 4CB →,因为P 为线段AB 上的一点,即P ,A ,B 三点共线, 所以x 3+y4=1(x >0,y >0),所以1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·⎝ ⎛⎭⎪⎫x 3+y 4=712+x 3y +y 4x ≥712+2112=712+33, 当且仅当x 3y =y 4x 时等号成立,所以1x +1y 的最小值为712+33,故选C. 【答案】 C角度二 求参数的值或取值范围已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为________.【解析】 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y ≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y =ax 时取等号,所以(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2,所以(a +1)2≥9恒成立. 所以a ≥4. 【答案】 4(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解. (3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.1.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( ) A .2 B .2 2 C .4D .2 3解析:选C.因为lg 2x +lg 8y =lg 2,所以lg(2x ·8y )=lg 2,所以2x +3y =2,所以x +3y =1.因为x >0,y >0,所以1x +13y =(x +3y )⎝ ⎛⎭⎪⎫1x +13y =2+3y x +x 3y ≥2+23y x ·x 3y =4,当且仅当x =3y =12时取等号,所以1x +13y 的最小值为4.故选C.2.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________.解析:a n =a 1+(n -1)d =n ,S n =n (1+n )2,所以S n +8a n =n (1+n )2+8n =12(n +16n +1) ≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.所以S n +8a n 的最小值是92.答案:923.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.解析:对任意x ∈N *,f (x )≥3恒成立, 即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,当x =8x ,即x =22时,g (x )取得最小值,又x ∈N *,则g (2)=6,g (3)=173.因为g (2)>g (3),所以g (x )min =173,所以-⎝ ⎛⎭⎪⎫x +8x +3≤-83,所以a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.答案:⎣⎢⎡⎭⎪⎫-83,+∞[学生用书P135]核心素养系列12 逻辑推理——利用基本不等式连续放缩求最值已知a >b >0,那么a 2+1b (a -b )的最小值为________.【解析】 因为a >b >0,所以a -b >0,所以b (a -b )≤⎝⎛⎭⎪⎫b +a -b 22=a 24,所以a 2+1b (a -b )≥a 2+4a 2≥2a 2·4a 2=4,当且仅当b =a -b 且a 2=4a 2,即a =2且b =22时取等号,所以a 2+1b (a -b )的最小值为4.【答案】 4设a >b >0,则a 2+1ab +1a (a -b )的最小值是________.【解析】 因为a >b >0,所以a -b >0,所以a 2+1ab +1a (a -b )=(a 2-ab )+1(a 2-ab )+1ab+ab ≥2(a 2-ab )·1(a 2-ab )+21ab ×ab =4(当且仅当a 2-ab =1a 2-ab且1ab =ab ,即a =2,b =22时取等号).【答案】 4利用基本不等式求函数或代数式的最值时一定要注意验证等号是否成立,特别是当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.已知正实数a ,b ,c ,d 满足a +b =1,c +d =1,则1abc +1d 的最小值是( )A .10B .9C .42D.3 3解析:选B.因为a +b =1,a >0,b >0,所以ab ≤⎝⎛⎭⎪⎫a +b 22=14,所以1ab ≥4,当且仅当a =b =12时取等号.又因为c +d =1,c >0,d >0,所以1abc +1d ≥4·1c +1d =(c +d )·⎝ ⎛⎭⎪⎫4c +1d =5+4d c +c d ≥5+24d c ·c d =9,当且仅当a =b =12,且c =23,d =13时取等号,即1abc +1d 的最小值为9,故选B.[学生用书P393(单独成册)][A 级 基础练]1.若正实数x ,y 满足x +y =2,则1xy 的最小值为( ) A .1 B .2 C .3D .4解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1.2.若a >0,b >0,a +b =ab ,则a +b 的最小值为( ) A .2 B .4 C .6D .8解析:选B.方法一:由于a +b =ab ≤(a +b )24,因此a +b ≥4或a +b ≤0(舍去),当且仅当a =b =2时取等号,故选B.方法二:由题意,得1a +1b =1,所以a +b =(a +b )(1a +1b )=2+a b +ba ≥2+2=4,当且仅当a =b =2时取等号,故选B.方法三:由题意知a =b b -1(b >1),所以a +b =b b -1+b =2+b -1+1b -1≥2+2=4,当且仅当a =b =2时取等号,故选B.3.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B .43 C .-1D .0解析:选D.f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值是0.4.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A. 2 B .2 C .2 2D .4解析:选C.因为1a +2b =ab ,所以a >0,b >0, 由ab =1a +2b ≥21a ×2b =22ab ,所以ab ≥22(当且仅当b =2a 时取等号), 所以ab 的最小值为2 2. 5.设x >0,则函数y =x +22x +1-32的最小值为( ) A .0 B .12 C .1D.32解析:选A.y =x +22x +1-32=⎝ ⎛⎭⎪⎫x +12+1x +12-2≥2⎝ ⎛⎭⎪⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.故选A.6.(2021·四省八校第二次质量检测)已知a =(1,x ),b =(y ,1),x >0,y >0.若a ∥b ,则xyx +y的最大值为( ) A.12 B .1 C. 2D .2解析:选 A.方法一:a ∥b ⇒xy =1,所以y =1x ,所以xy x +y =1x +y =1x +1x≤12x ×1x =12(当且仅当x =1x ,即x =1时取等号),所以xy x +y的最大值为12,故选A.方法二:a ∥b ⇒xy =1,又x >0,y >0,所以xy x +y =1x +y ≤12xy=12(当且仅当x =y =1时取等号),所以xy x +y的最大值为12,故选A.7.(2020·高考天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为________.解析:依题意得12a +12b +8a +b =a +b 2ab +8a +b =a +b 2+8a +b≥2a +b 2×8a +b =4,当且仅当⎩⎪⎨⎪⎧a >0,b >0,ab =1,a +b 2=8a +b ,即⎩⎪⎨⎪⎧ab =1,a +b =4时取等号.因此,12a +12b +8a +b 的最小值为4.答案:48.(2020·高考江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是__________.解析:方法一:由5x 2y 2+y 4=1得x 2=15y 2-y 25,则x 2+y 2=15y 2+4y 25≥215y 2·4y 25=45,当且仅当15y 2=4y 25,即y 2=12时取等号,则x 2+y 2的最小值是45.方法二:4=(5x 2+y 2)·4y 2≤⎣⎢⎡⎦⎥⎤(5x 2+y 2)+4y 222=254·(x 2+y 2)2,则x 2+y 2≥45,当且仅当5x 2+y 2 =4y 2=2,即x 2=310,y 2=12时取等号,则x 2+y 2的最小值是45.答案:459.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x (4-2x )的最大值. 解:(1)y =12(2x -3)+82x -3+32=-⎝ ⎛⎭⎪⎪⎫3-2x 2+83-2x +32. 当x <32时,有3-2x >0, 所以3-2x 2+83-2x ≥23-2x 2·83-2x=4,当且仅当3-2x 2=83-2x ,即x =-12(x =72舍去)时取等号. 于是y ≤-4+32=-52, 故函数的最大值为-52. (2)因为0<x <2,所以2-x >0, 所以y =x (4-2x )=2·x (2-x )≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号, 所以当x =1时,函数y =x (4-2x )取最大值,为 2.10.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y =1,又x >0,y >0, 则1=8x +2y ≥2 8x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x ≥10+22x y ·8yx =18. 当且仅当x =12,y =6时等号成立, 所以x +y 的最小值为18.[B 级 综合练]11.已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24解析:选B.由3a +1b ≥ma +3b,得m ≤(a +3b )⎝ ⎛⎭⎪⎫3a +1b =9b a +ab +6.又9b a +ab +6≥29+6=12,当且仅当9b a =ab ,即a =3b 时等号成立, 所以m ≤12,所以m 的最大值为12. 12.(2020·福建龙岩一模)已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( )A .3B .5C.7 D.9解析:选C.因为x>0,y>0.且1x+1+1y=12,所以x+1+y=2⎝⎛⎭⎪⎫1x+1+1y(x+1+y)=2(1+1+yx+1+x+1y)≥2⎝⎛⎭⎪⎪⎫2+2yx+1·x+1y=8,当且仅当yx+1=x+1y,即x=3,y=4时取等号,所以x+y≥7,故x+y的最小值为7,故选C.13.若a+b≠0,则a2+b2+1(a+b)2的最小值为________.解析:a2+b2+1(a+b)2≥(a+b)22+1(a+b)2≥212=2,当且仅当a=b=2-34时,a2+b2+1(a+b)2取得最小值 2.答案: 214.某厂家拟定在2021年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用m(m≥0)万元满足x=3-km+1(k为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2021年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的 1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2021年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2021年的促销费用投入多少万元时,厂家利润最大?解:(1)由题意知,当m=0时,x=1(万件),所以1=3-k⇒k=2,所以x=3-2m+1(m≥0),每件产品的销售价格为1.5×8+16xx(元),所以2021年的利润y=1.5x×8+16xx-8-16x-m=-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0). (2)因为m ≥0时,16m +1+(m +1)≥216=8, 所以y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3时,y max =21.故该厂家2021年的促销费用投入3万元时,厂家的利润最大,为21万元.[C 级 提升练]15.已知角α,β的顶点都为坐标原点,始边都与x 轴的非负半轴重合,且都为第一象限的角,α,β终边上分别有点A (1,a ),B (2,b ),且α=2β,则1a +b 的最小值为( )A .1B . 2 C. 3D .2解析:选C.由已知得,a >0,b >0,tan α=a ,tan β=b2,因为α=2β,所以tan α=tan 2β,所以a =2·b 21-⎝ ⎛⎭⎪⎫b 22=4b 4-b 2,所以1a +b =4-b 24b +b =1b +3b 4≥21b ·3b4=3,当且仅当1b =3b 4,即b =233时,取等号.故1a +b 的最小值为 3.16.(2021·江西吉安期末)已知函数f (x )=sin 2xsin x +2,则f (x ) 的最大值为________.解析:设t =sin x +2,则t ∈[1,3],则sin 2x =(t -2)2,则g (t )=(t -2)2t =t +4t -4(1≤t ≤3),由“对勾函数”的性质可得g (t )在[1,2)上为减函数,在(2,3]上为增函数,又g (1)=1,g (3)=13,所以g (t )max =g (1)=1.即f (x )的最大值为1.答案:1。

不等式的解法(共28张PPT)

不等式的解法(共28张PPT)
答案:①{x|x<-4 或 x>1 }; ② R; ③ {x|x=-3} . 练习5. 关于x的不等式ax2+5x+b>0 的解集为{x|1<x<2},则
5 10 a= , b= . 3 3
高考:(天津08)已知函数f(x)= 解集是(
A
)
x+2, x≤0 ,则不等式f(x)≥x2的 -x+2, xБайду номын сангаас0
∴ B ={x |1-a<x<1+a, a>0 }
∵ A∪B=B ∴ A B
∴ 1-a<1 且 1+a>2,故a的取值范围是:(1, +∞)
不等式的解法
五、无理不等式解法 2x 1 练习10. 解不等式: (1) | 3x 2 3 | 1; ( 2) 1. x1 分析:(1)原不等式等价于: (I) 3x 2 3 1 或 (II) 3x 2 3 1 3x-2≥0 解(I) : 3x 2 4 即 解得 x>6 3x-2>16 2 3x-2≥0 解得 ≤x<2 解(II) : 3x 2 2 即 3x-2<4 3 (2)原不等式化为: (I) x-1>0
2 ) 5
不等式的解法
二、含绝对值的不等式 高考. 1、(北京07)已知集合A={x||x-a|≤1},B={x|x2-5x+4≥0}. 若A∩B=φ,则实数a的取值范围是 (2,3) . (0, 2)
2
2、(浙江07) 不等式 |2x-1|-x<1的解集是 { x | 0<x<2 } . 3、(上海08) 不等式|x-1|<1的解集是

【推选文档】不等式的解法PPT

【推选文档】不等式的解法PPT

例3 P92
若不等式 2x1m (x21)对满 m 足 2
的所有m都成立。求m的取值范围。
[思维点拨]从表面上看,这是一个关于 x的一元二次不等式,实际上是一个关 于m的一元一次不等式,并且已知它的 解集为[-2,2],求参数x的取值范围。
[一元二次不等式]
例2 P92
求实数m的范围, 使 y lg m 2 [ x 2 (m 1 )x 9 m 4 ] 对任意恒有意义。
、重点、难点:一元一次不等式(组)、一元二次不等式、简单的高高次不等式、分式不等式的解法。
2) 汇款:到 柜台转账或汇款,开户行:工商 ,账号:9558 8220 1500 二、此课件为作者原作,如你看后有不满意的地方,我们提供专业技术修改,具体如下:
13、含参数不等式的基本途径是分类讨论(1)要考虑参数的总体取值范围 、重点、难点:一元一次不等式(组)、一元二次不等式、简单的高高次不等式、分式不等式的解法。
三、课堂小结
1、解不等式基本思想是化归转化;
2、解分式不等式时注意先化为标准式, 使右边为0;
13、含参数不等式的基本途径是分类讨论 (1)要考虑参数的总体取值范围
(2)用同一标准对参数进行划分,做到 不重不漏。
四、作业
、重点、难点:一元一次不等式(组)、一元二次不等式、简单的高高次不等式、分式不等式的解法。
3、思维方法:归类、转化。数形结合。
4、特别提பைடு நூலகம்:解分式不等式时,注意 先移项,使右边为0。
二、题型剖析 [一元一次不等式] 【例1】 已知关于x的不等式(a+b)x+(2a-3b) <0解为(-∞,-1/3),求关于x的不等 式(a-3b)x+(b-2a)>0的解集。

初升高数学衔接教材(完整)

初升高数学衔接教材(完整)

第一讲数与式1、绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a|0, a 0,a, a 0.(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.(3)两个数的差的绝对值的几何意义: a b 表示在数轴上,数a和数b之间的距离.2、绝对值不等式的解法(1)含有绝对值的不等式① f (x) a(a 0), 去掉绝对值后,保留其等价性的不等式是 a f ( x) a 。

② f (x) a(a 0) , 去掉绝对值后,保留其等价性的不等式是 f (x) a或f (x) a 。

③ 2 2f (x) g(x) f (x)g (x)。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n+1 段进行讨论.③将分段求得解集,再求它们的并集.例1. 求不等式3x 5 4的解集例2. 求不等式2x 1 5的解集例3. 求不等式x 3 x 2 的解集例4. 求不等式| x+2| +| x-1| >3 的解集.1例5. 解不等式| x-1| +|2 -x| >3-x.例6. 已知关于x 的不等式| x-5| +| x-3| <a 有解,求 a 的取值范围.练习解下列含有绝对值的不等式:(1)x 1 x 3 >4+x(2)| x+1|<| x-2|(3)| x-1|+|2 x+1|<4(4)3x 2 7(5) 5x 7 83、因式分解乘法公式(1)平方差公式 2 2(a b)( a b) a b(2)完全平方公式 2 2 2(a b) a 2ab b(3)立方和公式 2 2 3 3(a b)(a ab b ) a b(4)立方差公式 2 2 3 3(a b)(a ab b ) a b(5)三数和平方公式 2 2 2 2(a b c) a b c 2(ab bc ac)(6)两数和立方公式 3 3 2 2 3(a b) a 3a b 3ab b2(7)两数差立方公式 3 3 2 2 3(a b) a 3a b 3ab b因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:2(1)x -3x+2;(2)26x 7x 2(3) 2 ( ) 2x a b xy aby ;(4)xy 1 x y .2.提取公因式法例2. 分解因式:2 (2)x3 9 3x2 3x (1)ab 5 a 5 b3.公式法例3. 分解因式:(1)a4 16 (2) 23x 2y x y2 4.分组分解法2例4. (1)x xy 3y 3x (2)2 22x xy y 4x 5y 65.关于x 的二次三项式ax2+bx+c( a≠0) 的因式分解.若关于x 的方程 2 0( 0)ax bx c a 的两个实数根是x1 、x2 ,则二次三项式2 ( 0)ax bx c a 就可分解为a(x x )(x x ).1 2例5. 把下列关于x 的二次多项式分解因式:(1) 2 2 1x x ;(2)2 4 4 2 x xy y .3练习 (1) 25 6xx (2) 21 x ax a(3) 2 11 18xx (4)24m 12m 9(5)25 7x 6x(6) 2212xxy 6y2q p ( 7) 6 2p q 1123( 8 )35a 2b 6ab2a( 9 )24 2 4 xx2(10) x 42x 2 1 (11) x 2 y 2 a 2 b 2 2ax 2by(12) a 24ab 4b 2 6a 12b 9(13) x 2-2x -1(14) 31a;(15)4 24x 13x 9 ;(16)2 22 2 2b cab ac bc ;(17)2 23x 5xy 2y x 9y 4第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1) 根的判别式2对于一元二次方程 ax +bx +c =0(a ≠0),有:(1) 当Δ>0 时,方程有两个不相等的实数根x 1,2=,2=24 bbac 2a;(2)当 Δ=0 时,方程有两个相等的实数根 x 1=x 2=- b 2a;(3)当 Δ<0 时,方程没有实数根. (2) 根与系数的关系(韦达定理)2如果 ax +bx +c =0(a ≠0)的两根分别是 x 1,x 2,那么 x 1+x 2=b a ,x 1· x 2=c a.这一关系也被称为韦达 定理.2、二次函数2y ax bx c 的性质1. 当 a 0 时,抛物线开口向上,对称轴为xb 2a,顶点坐标为 2b4ac b , 。

初中数学中考[函数]第4讲二次函数的应用与方程和不等式(教师版)

初中数学中考[函数]第4讲二次函数的应用与方程和不等式(教师版)

⎧⎪⎪⎪⎨⎪⎪⎪⎩二次函数与一次函数及反比例函数的综合二次函数的几何变换二次函数应用二次函数与方程二次函数与不等式二次函数的实际应用一.直线与抛物线的交点(1)y 轴与抛物线2y ax bx c =++的交点为()0c ,. (2)与y 轴平行的直线x h =与抛物线2y ax bx c =++有且只有一个交点()2h ah bh c ++,. (3)抛物线与x 轴的交点:二次函数2y ax bx c =++的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程20ax bx c ++=的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0∆>⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0∆=⇔抛物线与x 轴相切;【方法技巧】【知识梳理】③没有交点⇔0∆<⇔抛物线与x 轴相离.(4)直线与抛物线的交点,可以联立方程来求交点,交点的个数可以通过判断联立方程的△的正负性,可能有0个交点、1个交点、2个交点.(5)抛物线与x 轴两交点之间的距离.若抛物线2y ax bx c =++与x 轴两交点为()()1200A x B x ,,,,12AB x x =- 二、二次函数常用的解题方法(1)求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;(2)求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; (3)根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;(4)二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.三、二次函数图象的平移变换平移规律:在原有函数的基础上“左加右减”,(1)若为一般式2y ax bx c =++,往左(右)平移m 个单位,往上(下)平移n 个单位, 则解析式为()()2y a x m b x m c n =±+±+±(2)若为顶点式()2y a x h k =-+,往左(右)平移m 个单位,往上(下)平移n 个单位,则解析式为()2y a x h m k n =-±+±(3)若为双根式()()12y a x x x x =--,往左(右)平移m 个单位,往上(下)平移n 个单位,则解析式为()()12y a x x m x x m n =-±-±±四、二次函数图象的几何变换二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 五、二次函数与实际应用 1、二次函数求最值的应用依据实际问题中的数量关系,确定二次函数的解析式,结合方程、一次函数等知识解决实际问题.【注意】对二次函数的最大(小)值的确定,一定要注意二次函数自变量的取值范围,同时兼顾实际问题中对自变量的特殊要求,结合图像进行理解. 2、利用图像信息解决问题 两种常见题型:(1)观察点的特点,验证满足二次函数的解析式及其图像,利用二次函数的性质求解; (2)由图文提供的信息,建立二次函数模型解题.【注意】获取图像信息,如抛物线的顶点坐标,与坐标轴的交点坐标等. 3、建立二次函数模型解决问题利用二次函数解决抛物线的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线所对应的函数解析式,通过解析式解决一些测量问题或其他问题.【注意】构建二次函数模型时,建立适当的平面直角坐标系是关键。

高中数学知识点不等式的性质及解法

高中数学知识点不等式的性质及解法

高中数学知识点不等式的性质及解法高中数学中,不等式的性质及解法是一个重要的知识点。

它涉及到不等式的基本性质、不等式的加减乘除、不等式的等价变形以及一元一次不等式、一元二次不等式等不等式类型的解法。

下面将详细介绍不等式的性质及解法。

一、不等式的性质1.两边加减同一个数不等号方向不变。

2.两边乘除同一个正数不等号方向不变,同一个负数不等号方向改变。

3.如果两个不等式成立,则它们的和、差、乘积、商仍然成立。

4.如果两个不等式的符号方向相反,求和时不等式方向不确定,求差时等式方向不确定,求积时反而求商时等式方向相反。

5.无论何时,两边加上相等的数,不等式的大小不变。

二、一元一次不等式对于一元一次不等式,常规的解法是将其转化为等价的不等式进行求解。

具体步骤如下:1. 化简:将不等式中的所有项移到一边,化简为标准形式ax+b<0或ax+b>0。

2.等价变形:根据不等式的性质,进行乘除法或加减法,将不等式变形为更简单的形式。

3.解不等式:根据等价变形后的不等式,确定x的取值范围。

三、一元二次不等式对于一元二次不等式,可以利用抛物线的性质进行求解。

具体分为以下几种情况:1.一元二次不等式的根在抛物线的两侧,此时,可以通过求解抛物线与x轴的交点来确定不等式的解集。

2.一元二次不等式的根在抛物线上,此时,可以通过根的位置确定抛物线在不等式中的符号。

3.一元二次不等式的根在抛物线的一侧,此时,可以根据抛物线的开口方向来确定不等式的解集。

四、综合应用在实际问题中,不等式的应用非常广泛,比如在经济学、物理学、生物学等领域中的一些实际问题往往可以转化为不等式进行求解。

这时候,除了要掌握不等式的基本性质和解法外,还需要注意问题的本质,合理进行变量的定义和范围的确定。

综上所述,不等式的性质及解法在高中数学中占据很重要的地位。

掌握不等式的基本性质,熟悉不等式的加减乘除运算,能够灵活运用不等式的等价变形以及一元一次不等式、一元二次不等式的解法,对于提高解题能力和培养数学思维都非常有帮助。

不等式的解法举例(中学课件201908)

不等式的解法举例(中学课件201908)
§6.4.1 不等式的解法举例
引言: 初中,我们学习了一元一次不等式(组),
高一我们又学习了一元二次不等式、分式不等 式、含绝对值不等式,已经掌握了这几类不等 式(组)的基本解法,从本节开始,我们将在 过去已有知识的基础上进一步明确不等式的有 关概念,学习其他几种不等式的解法。
一、复习回顾
绝对值的定义:
久之 执其太子宁 及回至 及绍嗣伪位 亦家之福也 遣使请兵 与破虏将军蜀人兰犊慰勉冯翊诸县之众 杨璧大将军 德闻而悲之 封扶风公 琴书卒岁 而下犹蓄滞 而更饮酒过度 又常居内 德之故吏也 光入姑臧 少轻果无志操 今不以绥宁为先 领尚书令 泓遣后将军姚平救之 膂力过人 皆焚 尸 原单 将刑狱枉滥 尚书右仆射 颇览书传 雄渡江害汶山太守陈图 葬以庶人之礼 宋赤眉因众军之惮役也 连王统 傉檀犹未授首 观此梦意 乃宣告诸城 率众伐苻登 知群望之有归 神明器宇 勃勃自言 中书令王详为尚书左仆射 何忠之有乎 凉州刺史 待至孟冬 早度峻险 太上皇帝蒙尘于 外 弗可敌也 登乃引退 驱掠二万七千口 兴既败王广 雄子霸 奢侈品包包 西域校尉 封豕烝涉西裔 僭称尊号 二不宜动 已广之矣 兵革方偃 所在云赴 凡百君子 至于盐阳 姚兴见而大悦 起自爱子 十大奢侈品包包 至是 并献马千区 使散居藩国 登将金槌以新平降苌 东魏与我同壤境 勃勃 与姚兴将张佛生战于青石原 宁东姚成都距之 终为人害 坚乃以广平公苻熙为使持节 宗戚旧臣皆害其宠 卿等各陈所怀 晋自南迁 唯修德责躬可以宁吉 乐浪王宙 保安社稷 德及隆引兵要之于五丈桥 易生翻覆 岂令竖子鸱峙洮南 咸释其罪 扇动诸夷 畜力缮兵 汉 固请曰 遇贼必败 散后宫 文绮珍宝以供戎事 往岁昙达东征 险亦难恃 树党左右 纂字永绪 时年五十二 涪陵 愿更图之 君神爽宏拔 依险自固 季龙宠姬之弟也 陇西太守越质诘归以平襄叛 坚率诸将攻之 卿昔螭蟠布衣 文武各复旧位 而兼诸侯 与永大战 宜修仁虚己 备宗祀之义 义熙十二年 垂及升平 六泉侯 奢侈 品 遣其牙门王角 死之 使招合六郡壮勇 以泓监国 奢侈品包包 犹有万全 欲因烧市桥而发兵 据地大呼 兴立其昭仪张氏为皇后 军士七万馀人 为尔君者 家去此无远 原单奢侈品包包 河西鲜卑人也 囚之 何足谢也 贰忿而不谢 乃遣使告业曰 师旅充盛 十大奢侈品包包 天其无心 势既诛奕 纥干者 温之将还 即卿校牧守之胤 兴大悦 略阳王权翼为参军 南至浇河 兴虑详不能遏 奢侈品包包 推诚居厚 蜀人多有从奕者 于是为丕发丧行服 征东 男成欲谋叛 清河崔悦为新平相 宝 镇南将军 武始 高而不危 原单 水陆奇珍不可胜纪 所以济其忠贞之美 甚无谓也 虽云迁授 初 包包 凉州牧 咸以为不祥 留其众镇苑川 振古通义 皆奋剑而起 殿中骑将白路等追斩之 都督玉门已西诸军事 杨辅为尚书右仆射 而云季也 州府肃然 姑臧未拔 社稷有奉 生又遣苻坚 攻逼邺城 待士以礼 以明本怀 慕容德 时梁中庸为西郡太守 其冯昌杀之乎 配以步卒二万 八世祖匹孤率其部自 塞北迁于河西 及季龙废石弘自立 盖为此也 号曰 坚身贯甲胄 非救世之主 原单 奢侈品 今秦数已终 愍黎庶之息肩 虽镇关东 建义大将军 绍进讨破之 好学博通 兴遣其将姚硕德 得平关东 羌酋党容率所部叛还 冀匡不逮 三蜀百姓并保险结坞 公威名宿重 赵之变旦夕至矣 包包 北寇宾服 炽磐叱咤风云 一人力耳 储用殚竭 周公孰贤 晋辅国将军袁虔之 子昌嗣伪位 若今人所作 流人既不乐移 卿远萧何 奢侈品包包 翻崇诡说 故能征伐四克 训之以礼让 冲寇逼京师 杜进 大都督 此镇之粮 勿有所废 厉兵秣马 正是行权立策之日 镇军彭白狼分督租运 冠军徐洛生 奢侈品包包 慕容永以丕至平阳 大破之 随襄征伐 乞伏国仁 巨霸 于是引见谘议堂 且千里袭国 少便弓马 况乎伪境日侵 同号曰汉王 隆 光曰 鲜卑悦大坚有众五千 既而以泮河西德望 哲王继轨 大豫不从 卿为谋垂之主 奢侈品包包 姓改姒氏 利器如霜 诸侯皇皇 羸师以张之 非汝等辈也 十大奢侈品 包包 威灵振于殊域 益 鸣哀之义 卫公朽耄 及暐嗣位 超凶狡 山川阻狭 以崇风教 呼嗟满道 奢侈品包包 业赖蒙逊而免 垒于城北 猛之未至邺也 实有甚焉 不可沈吟犹豫 连年不收 不敢称制 有枭集于其手 超母谓超曰 投诚万里 今留汝兼总戎政 今散卒还者 免其丘山之罪耳 生敌人之志 至于能成王业者 况数千里乎 陛下为天下主 上国既遗小国之臣 龙变之初 慕容农击走之 封长乐乡侯 超大惭怒 前后反覆 吾将折杖以笞之 登进据苟头原以逼安定 原单奢侈品包包 与特相持连日 老而为贼 匈奴吲之 晋建威将军司军勋屯汉中 孟祎 多请降送任 以是器物莫不精丽 赦其境 内 见机而作 回生弋仲 蒙逊亦惮而怨之 万泥 何独拜我 将为后患 既而飨宴 因其兵乱 百兽从之 门不可开 今虽饑窘 然后修复家国之业 不以忠于储宫 永固雅量瑰姿 分戍二城 原单奢侈品包包 笑曰 臣为兄报耻 吕隆屡劝纂酒 张掖 可以得志 精甲劲兵 许以超母妻还之 他将从之 十大 奢侈品包包 若潜师夜还 盗用竖箭 纬曰 天意欲吾回师先定酒泉 画地成图 萧墙屡发 为国自爱 宜在于今 无及 皆死于阵 在位四年 暐之遣诸弟起兵于外也 姚艾叛降蒙逊 执太守赵元 愔等既不得进 劝吾摄政 越以期雄妻任氏所养 轻害忠良 将何以济 赵整等推其妙速 不能竭忠辅导 欲迎 立为君而臣之 今众旅已集 非亲不发 都督中外诸军事 骑五千 可谓天丧弊邑而赞明公 遂妄窃名号 冉众出战 太宰姚硕德 轻财好施 前锋大都督 十大奢侈品包包 然相去辽远 部众稍盛 齐之分野 不足复顾吾之存亡 使兴还镇长安 字景略 引还 戎马交驰而不息 致祸起萧墙 莫甚于斯 是以 不遑启处 录尚书 厚抚之 然轻慢之风 祀西王母寺 包包 群臣咸谏以为不可 军势甚盛 彭城阻带山川 方敞魏之陈 其馀封爵各有差 降于苌 且夫立大功者不顾小节 盛因间之于汗曰 宜进据川源 吾每思得廉颇 拜司兵 乾归曰 率诸将南攻翟辽 上以安宗庙 今国业初建 汗兄弟见提之诛 绵十 斤 录尚书事 为百姓除残贼 废兴 引兵归绵竹 闻秃发傉檀西征乙弗 包包 汉王世子 思明等 龙飞东夏 潘聪为左光禄大夫 降爵为公 尔 皆阻兵背汗 无过今也 至冠泉而杏城陷 在位三年 谓诸将曰 归师勿遏 氐苻成 兴尚书郎李嵩上疏曰 包包 今石氏已灭 至期日 莫若奉为盟主 秦之人也 伊尹处人臣之位 累级三层 未遑旧式 征东姚懿自蒲坂讨弘 昔武王得九龄之梦 永崇斯好 同声云集 大败之 乃树铭都邑 说坚请巡抚燕 鸿名遂窃 事必克矣 出连 侵害必深 齐沃壤 慕容永征西将军王宣率众降苌 权翼谏曰 清河王天资神武 纂众大溃 蒙逊乃斩张潜 必无疑阻 有损威望 傉檀 曰 明察善抚纳 有伯父全之风烈 乃立为太子 文王之化 辄扶老携幼奔驰而赴之 咸窃大宝 姚苌残虐 都督中外诸军事 官军自战其地 因谓特曰 硕德进讨之 光覆四海 枕枕而寝 谓臣曰 邀一时之荣 纂召超将盘入朝 超神色自若 绍曰 以慕容钟都督中外诸军 流素重雄有长者之德 略三千馀 家 义列昔经 狡寇伺间 原单 奢侈品 非臣之罪 有巧思 深愿陛下思之 原单奢侈品包包 道侔光武 流离漂虏 继传昏虐 征军连战 建学而延胄子 以穆帝永和三年灭 此成擒耳 故长史列署颇出其门 立公侯之业 方虚广威声 乃止 于斯莫大 愿大王远踪光武推圣公之义 蒙逊笑曰 兴下书 顾谓 群臣曰 坚强盛之时 右卫折掘奇镇据石驴山以叛 苌伐驎 能办成大事以不 死尚为美 兴曰 原单 而臣违离 风志豪迈 以义熙六年灭 相承易位 刘牢之伐兖州 朕之历运兴丧 以臣先之 欺天擅命 人相食 十四月而生雄 姚兴将姚硕德率众五万伐之 纂谓齐从曰 岸上有平石方一丈 原单奢侈品 包包 鲜卑鹿结七万馀落 交代未至 邺中饑甚 兴率众攻之 绍遣左长史姚洽及姚墨蠡等率骑三千屯于河北之九原 赴前则攻其后 炽磐率众三万袭湟河 徙其豪右万五千落于雍州 鸾众溃战死 当坐待其来 那玄孙柯回为魏镇西将军 雄杰不群 尚书令 姑臧谷价踊贵 封北海王 不听主上终谅暗 粮竭必退 朔方杂夷及卫辰部众三万配之 廪君休其上 大夏龙雀 魏故事 在冀州 兴曰 汝病久 朕安闻此言 轻为去就 将斩贰己者 利鹿孤然其言 使尽众赴京师 朝多直士矣 金树 义尚谦冲 一束藁 而诸君遂见推逼 原单 案兵以距之 今虽欲含忍其瑕 乌丸之众二十馀万 咸怀危惧 今我以士 马之盛 有士君子之称 既而叨窃重位 城外非吾之有 姚兴睹之而醉心 姚绍率洛东之兵 古人所悲 奢侈品 中山太守王兖于中山 可以柔逋 先帝之子 翁虽是君叔 苌次膺符历 每遣守宰 势弗许 授首与人 伪谥昭文皇帝 昔汉祖困于平城 以止后叛 王难为侍中 其地东至麦田 接大臣以礼 若太 子有备 资储内尽 夷陇右而静河西 中给事冯懿以倾佞有幸 遂有图西域之志 重光于万祀 自称秦王 而况万乘哉 遂入乐都 世难先违 平凉太守姚兴都为建所获 获其将呼那乌提 从兄万泥为骠骑大将军 宁能忘卿不忠不孝之事 起兵如流沙 臣无流谤 弋仲上疏曰 犹有数万 主簿阎恢 征东任

第4讲------不等式的解法

第4讲------不等式的解法

第4讲 不等式的解法一、简单一元高次不等式解法(解一元高次不等式,一般采取数轴标根法) 其步骤如下:(1)将f(x)的最高次项的系数化为正数;(2)将f(x)分解为若干个一次因式的积;(3)将每一个根顺次表在数轴上,再从右到左依次标出区间;(4)f(x)>0时取奇数区间;f(x)<0时取偶数区间.例1、解不等式(1)2 >0; (2)(x+4) <0.解析:(1)原式=x (2 -x-15)>0⟹x (x-3)(2x+5)>0,得不等式的解集为奇数区间,即{x ∣- <x <0或x >3}.(2)学生自行解决.答案:{x ∣x <-5或-5<x <-4或x >2}.二、分式不等式的解法例2、解不等式: > . 解析:原式变为 >0,通分 ( ) ( )>0, ⟹ ( )( )>0⟹ >0⟹ 或0<x<1. 练习:1、解下列不等式(1)2 ; (2)-4 ;(3)(x-2)( ;(4)(x-3)(x+2) (x-4)>0.2、解不等式:<0. 三、无理不等式解法 (1) g(x)⇔ 或 ;-5/203(2)g(x)⇔ ;(3)f(x)>g(x)0.例3、若不等式+的解集为(4,b),求a、b的值.解析:设=u,则原不等式为u>a+,即a-u+<0,∵不等式的解集为(4,b),∴方程a-u+=0的两个根分别为2,,由韦达定理得解得.练习:解不等式(1)<x-1;(2)>x+3.解析:(1)<x-1,⟹x∈(2,3];①等价转化法:⟹或②换元法:设t=(t0)x=3-,即t<3--1, ⟹(t-1)(t+2)<0,-2<t<1,故0t<1,0<1⟹2<x3.③求补集法:x-1⟹ 或⟹x2或x>3,故原不等式解集为(2,3].<即x∈(2,3].(2)>x+3,解析:用①②③④种方法由学生完成.答案:(-∞,-).四、指数、对数不等式的解法例4、解关于x的不等式lg(2ax)-lg(a+x)<1.解析:⟹a>0,x>0⟹ lg(2ax)<lg(10a+10x)⟹2ax<10a+10x,即(a-5)x<5a.当0<a<5时,a-5<0,x>0当a=5时,不等式0x<25,得x>0;当a>5时,a-5>0,解得0<x<.五、含绝对值不等式的解法例5、解不等式:∣∣x+1∣+∣x-1∣∣<+1.解析:+1>0恒成立,x>-2.①当x1时,原不等式可以变形为2x<+1,,无解;②当-1x<1时,∣∣x+1∣+∣x-1∣∣=2,则原不等式可变形为无解;③当-2<x<-1时,原不等式可以变形为,无解.综合①②③可知,原不等式无解.六、含参不等式的解法例4、试求不等式>-1对一切实数x恒成立的θ取值范围.解析:∵>0,故原不等式变为(θθ)θθθθ>0,令θθ=t,则t∈[-,],不等式变为(t+1)-(t-4)x+t+4>0对x∈R恒成立,由二次函数可知,∴t>0或t<(舍),故0<θθ ,即2k-<θ2k+(k∈Z).练习:1、解不等式(1)2ax>5-x(a∈R);(2)mx>k-nx (m、n、k∈R)解析:(1)(2a+1)x>5,(2)(m+n)x>ka>-时,x>;m+n>0,x>;a<- 时,x<;m+n<0,x<;a=- 时,x∈∅. m+n=0,,∈,∈∅.2、解不等式>1.解析:原不等式变为>0⟹[(a-1)x-(a-2)](x-2)>0,⟹(a-1)[x-](x-2)>0,当a>1时,[x-](x-2)>0⟹(-∞,)∪(2,+∞);当a<1时,[x-](x-2)<0,∵2-=,①当0<a<1时,解是(2,)②当a=0时,解为空集,即x∈∅;③a<0时,解为(,2).课外练习:一、选择题1、若0<a<1,则不等式(a-x)(x- )>0的解集为()A 、{x∣a<x<};B、{x∣<x<a};C、{x∣x>或x<a};D、{x∣x<或x>a}.2、不等式∣x+1∣(2x-1)0的解集为()A、{x∣x=-1或x};B、{x∣x-1或x};C、{x∣x};D、{x∣-1x}.3、若a>1且0<b<1,则不等式的解集为()A、x>3;B、x<4;C、3<x<4;D、x>4.4、不等式2的解集是()A、[-3,];B、[- ,3];C、[,1)∪(1,3];D、[- ,1)∪(1,3].5、已知∣a-c∣<∣b∣,则()A、a<b+c;B、a>c-b;C、∣a∣>∣b∣-∣c∣;D、∣a∣<∣b∣+∣c∣.6、设f(x),,则不等式f(x)>2的解集为()A、(1,2)∪(3,+∞);B、(,+∞);C、(1,2)∪(,+∞);D、(1,2).二、填空题7、不等式-∣x∣<0的解集是 .8、不等式的解集是.9、定义符号函数sgn x=,当x∈R时,则不等式x+2>的解集为.三、解答题10、解不等式(∣3x-1∣-1)(.11、已知函数f(x)=,当a>0时,解关于x的不等式f(x)<0.12、设有关于x的不等式lg(∣x+3∣+∣x-7∣)>a.(1)当a=1时,解此不等式;(2)求当a为何值时,此不等式的解集为R.。

高一 数学 不等式 第四讲 简单的函数(指对幂)不等式、抽象不等式

高一 数学  不等式 第四讲  简单的函数(指对幂)不等式、抽象不等式

思路点拨:抽象函数的不 等式问题关键是根据函数 的单调性、奇偶性、周期 性、对称性去掉“f ”
技巧传播
陷阱规避
【易错典例】若 loga 2 logb 2 0 ,则( A. 0 a b B. 0 b a 1
) C. a b 1 D. b a 1
题型二:函数的定义域值域问题中的不等式
例 2.函数 f ( x ) log 1 ( x 2 3 x 2) 的值域是(
2
) D.(- ,1) (2,+ )
Aபைடு நூலகம்R
B.(1,2)
C.[2,+∞)
思路点拨:定义域值域 是一个热点问题,关键 是要注意对数的真数大 于零,指对数函数的底 数大于零且不等于1.
D. (, 1) (0,1)
思路点拨:函数的不等 式问题主要是根据函数 的单调性.要注意指对 函数的底数与1的大小决 定函数的单调性.
题型四:简单的抽象函数不等式
例 4. 设奇函数 f ( x ) 在 (0, ) 上是增函数, 且 f (1) 0 , 则不等式 x[ f ( x ) f ( x )] 0 的解集为 ( A. { x 1 x 0 ,或 x 1} C. { x x 1 ,或 x 1} B. { x x 1 ,或 0 x 1} D. { x 1 x 0 ,或 0 x 1} )
幂函数图像
典题剖析
题型一:搭桥法解指对幂不等式
例 1.设 a 30.3 , b log 3 , c log0.3 e 则 a , b , c 的大小关系是( A. a b c B. c b a C. b a c ) D. c a b
思路点拨:找准过渡 量,过渡量一般为1、 0等等

2023届高考数学一轮复习讲义:第4讲 一元二次不等式及其解法

2023届高考数学一轮复习讲义:第4讲 一元二次不等式及其解法

第4讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集 (1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x >b a. (2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <b a . 2.三个“二次”间的关系 判别式 Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的 图象一元二次方程ax 2+bx+c =0(a >0)的根有两个相异实根x 1,x 2(x 1<x 2)有两个相等实 根x 1=x 2 =-b2a没有实 数根一元二次不等 式ax 2+bx +c >0(a >0) 的解集 {x |x >x 2 或x <x 1}⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-b 2aRax 2+bx +c <0(a >0) 的解集 {x |x 1<x <x 2} ∅ ∅常用结论1.分式不等式的解法(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0.2.两个恒成立的充要条件 (1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0, b 2-4ac <0. (2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0, b 2-4ac <0.➢考点1 一元二次不等式的解法[名师点睛](1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤①二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的一元二次不等式;②判断一元二次不等式所对应的方程实根的个数,即讨论判别式Δ与0的关系; ③确定方程无实根或有两个相同实根时,可直接写出解集;确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集. [典例]1.(2021·湖南·衡阳市田家炳实验中学高一阶段练习)不等式2210x x --<解集为( ) A .{x |1<x <2}B .{x |-2<x <1 }C .{x |x >2或x <1}D .112x x ⎧⎫-<<⎨⎬⎩⎭2.(2021·四川省叙永第一中学校高三阶段练习)解下列关于x 的不等式: (1)231x ≤-; (2)()22120ax a x +--<(0a <).[举一反三]1.(2022·浙江宁波·二模)已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,52.(2022·全国·模拟预测)设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( )A .{}22x x -<<B .{}22x x -≤≤C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥3.(2021·福建省长汀县第一中学高三阶段练习)解关于x 的不等式:2(1)(23)20(1)a x a x a +-++<≥-.4.(2021·广东·普宁市大长陇中学高三阶段练习)已知二次函数y =ax 2+bx ﹣a +2. (1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值; (2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0.➢考点2 一元二次不等式恒成立问题[名师点睛]1.一元二次不等式在R 上恒成立的条件(1)不等式ax 2+bx +c ≥0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≥0;②当a ≠0时,⎩⎪⎨⎪⎧ a >0,Δ≤0.(2)不等式ax 2+bx +c ≤0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≤0;②当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ≤0.2.一元二次不等式在给定区间上恒成立的求解方法 设f (x )=ax 2+bx +c (a ≠0).(1)当a <0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α<0或⎩⎪⎨⎪⎧-b 2a >β,f β<0或Δ<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ f β>0,f α>0. (2)当a >0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧f β<0,fα<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α>0或⎩⎪⎨⎪⎧-b 2a >β,f β>0或Δ<0.3.转换主元法解给定参数范围问题解给定参数范围的不等式恒成立问题,若在分离参数时会遇到讨论的情况,或者即使能容易分离出参数与变量,但函数的最值难以求出,可考虑变换思维角度,即把变量与参数交换位置,构造以参数为变量的函数,再根据原参数的范围列式求解. [典例]1.(2022·全国·高三专题练习)不等式()()21110a x a x +-+-<对一切实数x 恒成立,则a 的取值范围是( ) A .15a << B .51a -<<- C .51a -<≤-D .31a -<≤-2.(2021·河北·石家庄市藁城区第一中学高三开学考试)若关于x 的不等式2210x ax ++在[0,)+∞上恒成立,则实数a 的取值范围为( )A .()0,∞+B .[)1,-+∞C .[]1,1-D .[)0,∞+3.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .(-∞,2)(3,)∞+ B .(-∞,1)(2,)∞+C .(-∞,1)(3,)∞+D .(1,3)[举一反三]1.(2022·江苏南通·模拟预测)当x ∈R 时,不等式2210x x a ---≥恒成立,则实数a 的取值范围是( ) A .(],2-∞- B .(),2-∞- C .(],0-∞D .(),0∞-2.(2022·全国·高三专题练习)已知a R ∈,“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是( ) A .10a -<<B .10a -<≤C .10a -≤<D .10a -≤≤3.(2022·全国·高三专题练习)若不等式224(2)30a x a x -+-+()>的解集为R ,则实数a 的取值范围是( ) A .1124⎛⎫ ⎪⎝⎭,B .1124⎡⎫⎪⎢⎣⎭,C .()1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, D .(]1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, 4.(2022·全国·高三专题练习)不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( ) A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭5.(2022·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( ) A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞6.(2021·江苏常州·高三阶段练习)已知函数2()1f x x ax =--,当[]0,3x ∈时,()5f x ≤恒成立,则实数a 的取值范围为__________.7.(2022·浙江·高三专题练习)若关于x 的不等式3231012xkx x x ->+-对任意的()0,2x ∈恒成立,则实数k 的取值范围为____________.8.(2021·重庆市涪陵高级中学校高三阶段练习)设函数2()1f x mx mx =--. (1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[]1,3x ∈,()5f x m <-+恒成立,求实数m 的取值范围.➢考点3 一元二次方程根的分布问题[名师点睛]1.设一元二次方程ax 2+bx +c =0(a ≠0)的两实根为x 1,x 2,且x 1≤x 2,k 为常数,则一元二次方程根和k 的分布(即x 1,x 2相对于k 的位置)有以下若干定理.定理1:x 1<k <x 2(即一个根小于k ,一个根大于k )⇔af (k )<0.定理2:k <x 1≤x 2(即两根都大于k )⇔⎩⎪⎨⎪⎧ Δ=b 2-4ac ≥0,af k >0,-b2a >k .定理3:x 1≤x 2<k (即两根都小于k )⇔⎩⎪⎨⎪⎧Δ=b 2-4ac ≥0,af k >0,-b2a <k .2.一元二次不等式在实数范围内有解的求解方法 (1)一元二次不等式ax 2+bx +c >0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,b ,c ∈R 或⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac >0.[典例]1.(2022·重庆一中高三阶段练习)若方程240x ax -++=的两实根中一个小于1-,另一个大于2,则 a 的取值范围是( ) A .()0,3B .[]0,3C .()3,0-D .(,1)(3,)-∞+∞2.(2022·全国·高三专题练习)若不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,则实数m 的取值范围是( ) A .[)1,-+∞ B .()1,-+∞ C .34⎛⎫-+∞ ⎪⎝⎭D .()0,∞+3.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18 C .21 D .26[举一反三]1.(2022·黑龙江·哈尔滨市第六中学校高三开学考试(理))关于x 的方程2(2)60x m x m +-+-=的两根都大于2,则m 的取值范围是( )A .(,)-∞-⋃+∞B .(6,--C .(6,2))--⋃+∞D .(,2)-∞-2.(2022·全国·高三专题练习)已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞3.(2022·江苏·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( )A .2a ≤B .2a ≥C .52a ≥D .52a ≤4.(2022·全国·高三专题练习)若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( ) A .(,2)-∞-B .(],2-∞-C .(6,)-+∞D .(,6)-∞-5.(2022·全国·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为_______6.(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____.7.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____8.(2022·全国·高三专题练习)设函数()21f x mx mx =--,若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为_____.9.(2021·江苏·仪征市第二中学高三阶段练习)已知函数2()(23)6()f x ax a x a R =-++∈. (1)当1a =时,求函数()y f x =的零点; (2)解关于x 的不等式()0(0)f x a <>;(3)当1a =时,函数()(5)3f x m x m -+++在[2,2]-有解,求实数m 的取值范围第4讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集 (1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x >b a. (2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <b a . 2.三个“二次”间的关系 判别式 Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的 图象一元二次方程ax 2+bx+c =0(a >0)的根 有两个相异实根x 1,x 2(x 1<x 2)有两个相等实 根x 1=x 2 =-b 2a没有实 数根一元二次不等 式ax 2+bx +c >0(a >0){x |x >x 2 或x <x 1}⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-b 2aR的解集 ax 2+bx +c <0(a >0) 的解集 {x |x 1<x <x 2} ∅ ∅常用结论1.分式不等式的解法(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0.2.两个恒成立的充要条件 (1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0,b 2-4ac <0. (2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0, b 2-4ac <0.➢考点1 一元二次不等式的解法[名师点睛](1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤[典例]1.(2021·湖南·衡阳市田家炳实验中学高一阶段练习)不等式2210x x --<解集为( ) A .{x |1<x <2} B .{x |-2<x <1 }C .{x |x >2或x <1}D .112x x ⎧⎫-<<⎨⎬⎩⎭【答案】D【解析】∵2210x x --<,∴112x -<<,∴不等式2210x x --<解集为112x x ⎧⎫-<<⎨⎬⎩⎭.故选:D.2.(2021·四川省叙永第一中学校高三阶段练习)解下列关于x 的不等式: (1)231x ≤-; (2)()22120ax a x +--<(0a <).【解】(1)由231x ≤-,得2301x -≤-,即5301x x -≤- 则(53)(1)0x x --≤且1x ≠,解得:5(,1)[,)3-∞+∞(2)当12a =-时,原不等式1(1)(2)02x x ⇔--+<,解的{|2}x x ≠-;当12a <-时,原不等式(1)(2)0ax x ⇔-+<,又12a >-所以解集为1(,2)(,)a -∞-+∞;当102a -<<时,因为12a <-所以解集为1(,)(2,)a-∞-+∞.综上有,12a =-时,解集为{|2}x x ≠-;12a <-时,解集为1(,2)(,)a -∞-+∞;102a -<<时,解集为1(,)(2,)a-∞-+∞. [举一反三]1.(2022·浙江宁波·二模)已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,5【答案】B【解析】由题意,{}2230{|13}A x x x x x =--<=-<<,故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<, 故选:B2.(2022·全国·模拟预测)设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( )A .{}22x x -<<B .{}22x x -≤≤C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥【答案】B 【解析】由不等式402x x ->+,解得2x <-或4x >,所以{|2A x x =<-或4}x >, 又由不等式27100x x -+≥,解得2x ≤或5x ≥,所以{|2B x x =≤或5}x , 可得R{|24}A x x =-≤≤,所以()R A B ⋂={}22x x -≤≤. 故选:B.3.(2021·福建省长汀县第一中学高三阶段练习)解关于x 的不等式:2(1)(23)20(1)a x a x a +-++<≥-.【解】当a +1=0即 a =-1时,原不等式变为-x +2<0,即x >2. 当a>-1时,原不等式可转化为()1201x x a ⎛⎫--< ⎪+⎝⎭, ∴方程()1201x x a ⎛⎫--= ⎪+⎝⎭的根为1,21a +. 若-1<a<12-,则11a +>2,解得2<x <11a +;若a =12-,则11a +=2,解得x ∈∅;若a >12-,则11a +<2, 解得11a +<x <2.综上,当a >12-时,原不等式的解集为{x |11a +<x <2}; 当a =12-时,原不等式的解集为∅;当-1<a <12-时,原不等式的解集为{x |2<x <11a +}. 当a =-1时,原不等式的解集为{x |x >2}.4.(2021·广东·普宁市大长陇中学高三阶段练习)已知二次函数y =ax 2+bx ﹣a +2. (1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值; (2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0. 【解】(1)由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根, 所以132(1)3b aa a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;(2)当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0, 即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭,当21a a-=-即1a =时,解集为{}1x x ≠-; 当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.➢考点2 一元二次不等式恒成立问题[名师点睛]1.一元二次不等式在R 上恒成立的条件(1)不等式ax 2+bx +c ≥0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≥0;②当a ≠0时,⎩⎪⎨⎪⎧ a >0,Δ≤0.(2)不等式ax 2+bx +c ≤0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≤0;②当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ≤0.2.一元二次不等式在给定区间上恒成立的求解方法 设f (x )=ax 2+bx +c (a ≠0).(1)当a <0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α<0或⎩⎪⎨⎪⎧-b 2a >β,f β<0或Δ<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ fβ>0,f α>0.(2)当a >0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧f β<0,f α<0. f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α>0或⎩⎪⎨⎪⎧-b 2a >β,f β>0或Δ<0.3.转换主元法解给定参数范围问题解给定参数范围的不等式恒成立问题,若在分离参数时会遇到讨论的情况,或者即使能容易分离出参数与变量,但函数的最值难以求出,可考虑变换思维角度,即把变量与参数交换位置,构造以参数为变量的函数,再根据原参数的范围列式求解. [典例]1.(2022·全国·高三专题练习)不等式()()21110a x a x +-+-<对一切实数x 恒成立,则a 的取值范围是( )A .15a <<B .51a -<<-C .51a -<≤-D .31a -<≤-【答案】C【解析】当10a +=,即1a =-时,()()21110a x a x +-+-<可化为10-<,即不等式10-<恒成立;当10a +≠,即1a ≠-时,因为()()21110a x a x +-+-<对一切实数x 恒成立,所以()()2101410a a a +<⎧⎪⎨+++<⎪⎩,解得51a -<<-; 综上所述,51a -<≤-. 故选:C.2.(2021·河北·石家庄市藁城区第一中学高三开学考试)若关于x 的不等式2210x ax ++在[0,)+∞上恒成立,则实数a 的取值范围为( )A .()0,∞+B .[)1,-+∞C .[]1,1-D .[)0,∞+【答案】B【解析】解:当0x =时,不等式10恒成立; 当0x >时,由题意可得12a x x-+恒成立, 由11()22f x x x x x=+⋅=,当且仅当1x =时,取得等号. 所以22a -,解得1a -.综上可得,a 的取值范围是[)1,-+∞. 故选:B .3.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .(-∞,2)(3,)∞+ B .(-∞,1)(2,)∞+C .(-∞,1)(3,)∞+D .(1,3)【答案】C【解析】解:令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩, 整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.x ∴的取值范围为()(),13,-∞⋃+∞.故选:C . [举一反三]1.(2022·江苏南通·模拟预测)当x ∈R 时,不等式2210x x a ---≥恒成立,则实数a 的取值范围是( ) A .(],2-∞- B .(),2-∞- C .(],0-∞ D .(),0∞-【答案】A【解析】由题意,当x ∈R 时,不等式2210x x a ---≥恒成立,故2(2)4(1)0a ∆=-++≤ 解得2a ≤-,故实数a 的取值范围是(],2-∞- 故选:A2.(2022·全国·高三专题练习)已知a R ∈,“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是( ) A .10a -<< B .10a -<≤C .10a -≤<D .10a -≤≤【答案】B【解析】当0a =时,221=10ax ax +--<,对x R ∀∈恒成立; 当0a ≠时,若2210ax ax +-<,对x R ∀∈恒成立,则必须有2(2)4(1)0a a a <⎧⎨-⨯-<⎩,解之得10a -<<, 综上,a 的取值范围为10a -<≤.故“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是10a -<≤, 故选:B3.(2022·全国·高三专题练习)若不等式224(2)30a x a x -+-+()>的解集为R ,则实数a 的取值范围是( ) A .1124⎛⎫⎪⎝⎭,B .1124⎡⎫⎪⎢⎣⎭,C .()1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, D .(]1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, 【答案】B【解析】∵不等式224(2)30a x a x -+-+()>的解集为R , 当a -2=0,即a =2时,不等式为3>0恒成立,故a =2符合题意; 当a ﹣2≠0,即a ≠2时,不等式224(2)30a x a x -+-+()>的解集为R , 则()()220Δ424230a a a ->⎧⎪⎨⎡⎤=---⨯<⎪⎣⎦⎩,解得1124a <<, 综合①②可得,实数a 的取值范围是1124⎡⎫⎪⎢⎣⎭,.故选:B .4.(2022·全国·高三专题练习)不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( ) A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以 ()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x , 或22705320⎧-=⎪⎨-+≥⎪⎩x x x , 解得4x ≤-或x >12≤xx =综上,实数x 的取值范围是4x ≤-,或12x ≥. 故选:A.5.(2022·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( ) A .[4,)+∞ B .[2,)+∞ C .(,4]-∞ D .(,2]-∞【答案】A【解析】解:因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立, 所以对任意的2[1,0],242x m x x ≥-∈--恒成立, 因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max 2424m x x --≥=,[1,0]x ∈-,即m 的取值范围是[4,)+∞ 故选:A6.(2021·江苏常州·高三阶段练习)已知函数2()1f x x ax =--,当[]0,3x ∈时,()5f x ≤恒成立,则实数a 的取值范围为__________. 【答案】[1,4]【解析】2|()|5515f x x ax ⇔-≤--≤, ①当0x =时,a R ∈;②当0x ≠时,2|()|5515f x x ax ⇔-≤--≤64x a x x x⇔-≤≤+, min 44242x x ⎛⎫∴+=+= ⎪⎝⎭,max 6321x x ⎛⎫-=-= ⎪⎝⎭,∴14a ≤≤, 综上所述:14a ≤≤. 故答案为:[]1,4.7.(2022·浙江·高三专题练习)若关于x 的不等式3231012xkx x x->+-对任意的()0,2x ∈恒成立,则实数k 的取值范围为____________. 【答案】[]0,1【解析】由题意知:2302kx x x +->,即22>-k x x 对任意的()0,2x ∈恒成立,0k ∴≥ 当()0,2x ∈,3231012x kx x x->+-得: 233210kx x x x <+--,即200+21x kx <-对任意的()0,2x ∈恒成立,即210210=2x k x x x-<-对任意的()0,2x ∈恒成立, 令()102f x x x=-,()f x 在()0,2x ∈上单减,所以()()21f x f >=,所以1k ≤ 01k ∴≤≤.故答案为:[]0,18.(2021·重庆市涪陵高级中学校高三阶段练习)设函数2()1f x mx mx =--. (1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[]1,3x ∈,()5f x m <-+恒成立,求实数m 的取值范围. 【解】(1)解:由已知,210mx mx --<对于一切实数x 恒成立, 当0m =时,10-<恒成立,符合题意,当0m ≠时,只需20Δ40m m m <⎧⎨=+<⎩,解得40m -<<, 综上所述,m 的取值范围是(4-,0];(2)解:由已知,215mx mx m --<-+对[1x ∈,3]恒成立, 即2(1)6m x x -+<对[1x ∈,3]恒成立,22131()024x x x -+=-+>,∴261m x x <-+对[1x ∈,3]恒成立,令2()1g x x x =-+,则只需min6()m g x ⎡⎤<⎢⎥⎣⎦即可, 而()g x 在[1x ∈,3]上是单调递增函数,()[1g x ∴∈,7],∴66[,6]()7g x ∈,67m ∴<, 所以m 的取值范围是6(,)7-∞.➢考点3 一元二次方程根的分布问题[名师点睛]1.设一元二次方程ax 2+bx +c =0(a ≠0)的两实根为x 1,x 2,且x 1≤x 2,k 为常数,则一元二次方程根和k 的分布(即x 1,x 2相对于k 的位置)有以下若干定理.定理1:x 1<k <x 2(即一个根小于k ,一个根大于k )⇔af (k )<0.定理2:k <x 1≤x 2(即两根都大于k )⇔⎩⎪⎨⎪⎧ Δ=b 2-4ac ≥0,af k >0,-b2a >k .定理3:x 1≤x 2<k (即两根都小于k )⇔⎩⎪⎨⎪⎧Δ=b 2-4ac ≥0,af k >0,-b2a <k .2.一元二次不等式在实数范围内有解的求解方法 (1)一元二次不等式ax 2+bx +c >0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,b ,c ∈R 或⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac >0.(2)一元二次不等式ax 2+bx +c <0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,Δ=b 2—4ac >0或⎩⎪⎨⎪⎧a <0,b ,c ∈R .3.在区间内有解,可以参变分离为a >f (x )或a <f (x )的形式,转化为a >f (x )min 或a <f (x )max ;也可以通过对立命题转化为在区间内无解,从而转化为恒成立问题.[典例]1.(2022·重庆一中高三阶段练习)若方程240x ax -++=的两实根中一个小于1-,另一个大于2,则 a 的取值范围是( ) A .()0,3 B .[]0,3 C .()3,0-D .(,1)(3,)-∞+∞【答案】A【解析】因为方程24=0x ax -++有两根,一个大于2,另一个小于1-,所以函数 ()24f x x ax =-++有两零点,一个大于2,另一个小于1-,由二次函数的图像可知,()()2010f f ⎧>⎪⎨->⎪⎩ ,即:()()2222401140a a ⎧-+⋅+>⎪⎨--+⋅-+>⎪⎩ 解得:0<<3a 故选:A.2.(2022·全国·高三专题练习)若不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,则实数m 的取值范围是( ) A .[)1,-+∞ B .()1,-+∞ C .34⎛⎫-+∞ ⎪⎝⎭D .()0,∞+【答案】B【解析】因为不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,所以不等式22m x x >-在1,22x ⎡∈⎤⎢⎥⎣⎦上有解, 令()22211t x x x =-=--,则min 1t =-,所以1m >-,所以实数m 的取值范围是()1,-+∞ 故选:B3.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线, 根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩,解得58a <≤,又,a Z ∈ 所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21. 故选: C[举一反三]1.(2022·黑龙江·哈尔滨市第六中学校高三开学考试(理))关于x 的方程2(2)60x m x m +-+-=的两根都大于2,则m 的取值范围是( )A .(,25)(25,)-∞-⋃+∞B .(6,25]--C .(6,2)(25,)--⋃+∞D .(,2)-∞-【答案】B【解析】解:∵关于x 的方程2(2)60x m x m +-+-=的两根都大于2,令2()(2)6f x x m x m =+-+-,可得2(2)4(6)0222(2)42(2)60m m m f m m ⎧∆=---≥⎪-⎪->⎨⎪=+-+->⎪⎩,即252526m m m m ⎧≥≤-⎪<-⎨⎪>-⎩或, 求得625m -<≤- 故选:B.2.(2022·全国·高三专题练习)已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞【答案】A【解析】2(]0,x ∈时,不等式可化为22244x a x x x<=++;令2()4f x x x =+,则max 1()2a f x <==,当且仅当2x =时,等号成立,综上所述,实数a 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭.故选:A .3.(2022·江苏·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( )A .2a ≤B .2a ≥C .52a ≥D .52a ≤【答案】D【解析】由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解,设()1f x x x =+,则函数()1f x x x=+在[1,2]上单调递增,所以()()(152)2f f f x ≤=≤, 所以实数a 的取值范围为52a ≤, 故选:D.4.(2022·全国·高三专题练习)若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( ) A .(,2)-∞- B .(],2-∞-C .(6,)-+∞D .(,6)-∞-【答案】A【解析】不等式等价于存在()1,4x ∈,使242a x x <--成立,即()2max42a x x <--设()224226y x x x =--=-- 当()1,4x ∈时,[)6,2y ∈--所以2a <- . 故选:A5.(2022·全国·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为_______【答案】52⎛⎤-∞ ⎥⎝⎦,【解析】解:由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解, 设1()f x x x =+,则函数1()f x x x=+在[]1,2上单调递增,所以5(1)()(2)2f f x f ≤≤=,所以实数a 的取值范围为52⎛⎤-∞ ⎥⎝⎦,.6.(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____. 【答案】(),1-∞【解析】当0a =时,不等式为210x +<有实数解,所以0a =符合题意;当0a <时,不等式对应的二次函数开口向下,所以不等式2210ax x ++<有实数解,符合题意;当0a >时,要使不等式2210ax x ++<有实数解,则需满足440∆=->a ,可得1a <, 所以01a <<,综上所述:a 的取值范围是(),1-∞, 故答案为:(),1-∞.7.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____【答案】2m <-或5m ≥+【解析】由题意得应满足0,11,20,(1)0m m m mf ≠⎧⎪+⎪>-⎪⎨⎪∆≥⎪->⎪⎩解得:2m <-或5m ≥+.故答案为:2m <-或5m ≥+.8.(2022·全国·高三专题练习)设函数()21f x mx mx =--,若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为_____.【答案】57m <【解析】若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立, 即可知:250mx mx m -+-<在13{|}x x x ∈≤≤上恒成立,令()25g x mx mx m =-+-,当0m =时,50-<恒成立, 当0m ≠时,对称轴为12x =. 当0m <时,有()g x 开口向下且在[]1,3上单调递减,∴在[]1,3上()()max 150g x g m ==-<,得5m <,故有0m <. 当0m >时,有()g x 开口向上且在[]1,3上单调递增,∴在[]1,3上()()max 3750g x g m ==-<, ∴507m <<, 综上,实数m 的取值范围为57m <, 故答案为:57m <9.(2021·江苏·仪征市第二中学高三阶段练习)已知函数2()(23)6()f x ax a x a R =-++∈. (1)当1a =时,求函数()y f x =的零点; (2)解关于x 的不等式()0(0)f x a <>;(3)当1a =时,函数()(5)3f x m x m -+++在[2,2]-有解,求实数m 的取值范围. 【解】解:(1)当1a =时,2()56(2)(3)f x x x x x =-+=--, 所以函数()y f x =的零点为2,3.(2)由2()(23)60f x ax a x =-++<可得(3)(2)0ax x --<, 当302a <<时,解得32x a <<;当32a =时,x 不存在,不等式的解集为∅; 当32a >时,解得32x a <<.综上,当302a <<时,不等式的解集3{|2}x x a <<,当32a =时,不等式的解集∅, 当32a >时,不等式的解集3{2}x x a<<. (3)1a =时,()(5)3f x m x m -+++在[2,2]-有解,即230x mx m ++-在[2,2]-有解,因为23y x mx m =++-的开口向上,对称轴2m x =-, ①22m --即4m ,2x =-时,函数取得最小值4230m m -+-即73m, 4m ∴. ②222m -<-<即44m -<<时,当2m x =-取得最小值,此时2304m m -+-,解得24m <. ③当22m-即4m -时,当2x =时取得最小值,此时4230m m ++-, 解得7m -,综上,2m 或7m -。

8月3日衔接教材——不等式的解法

8月3日衔接教材——不等式的解法

小结:不等式|x|<a和|x|>a (a>0)的解集。
① 不等式|x|<a的解集为{x|-a<x<a}
-a
0
a
② 不等式|x|>a的解集为{x|x<-a或x>a }
-a
0
a

-c

0

c
2
题型1: 如果 c 是正数,那么 ① ② ①
x c x c c x c
x c x2 c2 x c,或x c
(3) | 5 x 4 | 6 (5)1 | 3 x 4 | 6
2 1 ( 2) | x | 3 3 (4) | 3 2 x | 7
(6) | x 3 x | 4
2
(7) | 3 2 | 1
x
五、小结 (1)解含绝对值的不等式的关键是要去掉绝对值 的符号,其基本思想是把含绝对值的不等式转为 不含绝对值的不等式。 (2)零点分段法解含有多个绝对值的不等式。 ①
(5)|2x-1|<5
(6)|2x2-x|<1 (7)|2x-1|<1
{ x | 2 x 3}
1 { x | x 1} 2 { x | x 1}
(4)|x-1|<5
-4
1
6
(5)|2x-1|<5
1 5 |x | 2 2
-2
1 2
3
巩固练习:
解下列不等式:
1 1 (1) | x | 4 2
衔接教材——不等式的解法
钟明磊
一、初中毕业后,我们需要衔接的是哪些方面?
(一)知识方面的衔接(预习之前应该做的事情)

不等式的解法ppt

不等式的解法ppt

4x 3
x 7 26
2 x 50 3
3x 2x 1
1.等式的两边都是整式。 2.只含有一个未知数。 3.未知数的最高次数是一次。
一元一次方程
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
或 x ax a 的形式吗?
x 3 10
x7
3x 1
x1 3
解不等式:求不等式解集的过程叫做解不等式。
第二次尝试:解下列不等式,并在数轴上表示解集。
2x 1 0 6x 3 4x 1
第三次尝试:解下列不等式,并在数轴上表示解集。
3(x 2) 5 1 2(x 2)
2 x 2x 1
x<a ,一元一次方程的最简形式是x=a.
3y 2 y 1 1
23 不等式的解集为: y 2
不等式的解集在数轴上表示为:
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
y y 如果代数式不的3等y最的式2大正有y 整整1几的数数个值解不 解正是大是整于什什1数,么么那 解?么?y的取值范围是什么? 23
解集的形式是 x ax a 或 x ax a
有一次,鲁班的手不慎被一片小草 叶子割破了,他发现小草叶子的边缘 布满了密集的小齿,于是便产生联想, 根据小草的结构发明了锯子.
鲁班在这里就运用了“类比”的思想方法,“类比” 也是数学学习中常用的一种重要方法.
观察下面的等式,它们有哪些共同特征?
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。

不等式的解法ppt名师课件

不等式的解法ppt名师课件

例如:解不等式3x1 x 5
(2)利 用 绝 对 值 的 代数 意 义:适合于形如
x

x x
x0 x0
xa xb c xa xb c
例如:解不等式: x 1 x 1 2
(3)利用绝对值的几何 意 义:
x 1的 几 何 意 义:在数轴上实数x对
无解
x R且x x1
无解
无解
R
3.简单分式不等式的解法
(
1
)f ( x g(x
) )
0

f
(
x ) g ( x
)
0
(
2
)f g
( (
x) x )
0

f
(
x
) g
(
x )
0
(3
)f g
( (
x) x )
0

f
( x ) g ( x ) g(x) 0
0
(
4 )f ( g(
二次方程 二次函数 二次不等式
标 ax2 bx c 0 y ax2 bx c ax2 bx c 0 ax2 bx c 0
准 式
(a 0)
(a 0) (a 0)
(a 0)
Δ 0
图 x1,2


b 2a
Δ
象 Δ 0
或 解
x1

x2


b 2a
x1 x x2 x x1或x x2
的定义域为R求, a的取值范围
6已 知 关 于 x 的 不 等式,
ax5 x2 a

0的解集为M
若 3 M且5 M,求a的取值范围
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲 不 等 式初中阶段已经学习了一元一次不等式和一元一次不等式组的解法.高中阶段将进一步学习一元二次不等式和分式不等式等知识.本讲先介绍一些高中新课标中关于不等式的必备知识.一、一元二次不等式及其解法1.形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式.【例1】解不等式260x x +->.分析:不等式左边可以因式分解,根据“符号法则 --- 正正(负负)得正、正负得负”的原则,将其转化为一元一次不等式组.解:原不等式可以化为:(3)(2)0x x +->,于是:3020x x +<⎧⎨-<⎩或3020x x +>⎧⎨->⎩333222x x x x x x <->-⎧⎧⇒⇒<->⎨⎨<>⎩⎩或或所以,原不等式的解是32x x <->或.说明:当把一元二次不等式化为20(0)ax bx c ++><或的形式后,只要左边可以分解为两个一次因式,即可运用本题的解法.【例2】解下列不等式:(1) (2)(3)6x x +-<(2) (1)(2)(2)(21)x x x x -+≥-+分析:要先将不等式化为20(0)ax bx c ++><或的形式,通常使二次项系数为正数. 解:(1) 原不等式可化为:2120x x --<,即(3)(4)0x x +-< 于是:3030344040x x x x x +>+<⎧⎧⇒-<<⎨⎨-<->⎩⎩或所以原不等式的解是34x -<<.(2) 原不等式可化为:240x x -+≤,即240(4)0x x x x -≥⇒-≥于是:00044040x x x x x x ≤≥⎧⎧⇒≤≥⎨⎨-≤-≥⎩⎩或或所以原不等式的解是04x x ≤≥或.2.一元二次不等式20(0)ax bx c ++><或与二次函数2(0)y ax bx c a =++≠及一元二次方程20ax bx c ++=的关系(简称:三个二次).以二次函数26y x x =+-为例: (1) 作出图象;(2) 根据图象容易看到,图象与x 轴的交点是(3,0),(2,0)-,即当32x =-或时,0y =.就是说对应的一元二次方程260x x +-=的两实根是32x =-或.(3) 当32x x <->或时,0y >,对应图像位于x 轴的上方.就是说260x x +->的解是32x x <->或.当32x -<<时,0y <,对应图像位于x 轴的下方.就是说260x x +-<的解是32x -<<.一般地,一元二次不等式可以结合相应的二次函数、一元二次方程求解,步骤如下: (1) 将二次项系数先化为正数; (2) 观测相应的二次函数图象.①如果图象与x 轴有两个交点12(,0),(,0)x x ,此时对应的一元二次方程有两个不相等的实数根12,x x (也可由根的判别式0∆>来判断) .那么(图1): 2120 (0) ax bx c a x x x x ++>>⇔<>或2120 (0) ax bx c a x x x ++<>⇔<<②如果图象与x 轴只有一个交点(,0)2ba-,此时对应的一元二次方程有两个相等的实数根22x bx x a==-(也可由根的判别式0∆=来判断) . 那么(图2): 20 (0) 2b ax bx c a x a++>>⇔≠-20 (0) ax bx c a ++<>⇔无解③如果图象与x 轴没有交点,此时对应的一元二次方程没有实数根 (也可由根的判别式0∆<来判断) .那么(图3): 20 (0) ax bx c a x ++>>⇔取一切实数20 (0) ax bx c a ++<>⇔无解如果单纯的解一个一元二次不等式的话,可以按照一下步骤处理: (1) 化二次项系数为正;(2) 若二次三项式能分解成两个一次因式的积,则求出两根12,x x .那么“0>”型的解为12x x x x <>或(俗称两根之外);“0<”型的解为12x x x <<(俗称两根之间);(3) 否则,对二次三项式进行配方,变成2224()24b ac b ax bx c a x a a-++=++,结合完全平方式为非负数的性质求解.【例3】解下列不等式:(1) 2280x x --<(2) 2440x x -+≤(3) 220x x -+<解:(1) 不等式可化为(2)(4)0x x +-< ∴ 不等式的解是24x -<<(2) 不等式可化为2(2)0x -≤ ∴ 不等式的解是2x =(3) 不等式可化为217()024x -+<. 【例4】已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围. 解:显然0k =不合题意,于是:222000111(2)4010k k k k k k k k >>>⎧⎧⎧⇒⇒⇒>⎨⎨⎨<->--<->⎩⎩⎩或 【例5】已知关于x 的不等式22(1)30kx k x -+-<的解为13k -<<,求k 的值. 分析:对应的一元二次方程的根是1-和3,且对应的二次函数的图象开口向上.根据一元二次方程根与系数的关系可以求解.解:由题意得:2011313(1)3k k k k k ⎧>⎪⎪+⎪-+=⇒=⎨⎪⎪-⋅=-⎪⎩说明:本例也可以根据方程有两根1-和3,用代入法得:22(1)(1)(1)30k k --+--=,2233(1)30k k ⋅-+-=,且注意0k >,从而1k =.二、简单分式不等式的解法【例6】解下列不等式:(1)2301x x -<+ (2)2301x x x +≥-+分析:(1) 类似于一元二次不等式的解法,运用“符号法则”将之化为两个一元一次不等式组处理;或者因为两个数(式)相除异号,那么这两个数(式)相乘也异号,可将分式不等式直接转化为整式不等式求解.(2) 注意到经过配方法,分母实际上是一个正数. 解:(1) 解法(一) 原不等式可化为:3323023031221010211x x x x x x x x x ⎧⎧-<-><>⎧⎧⎪⎪⇒⇒-<<⎨⎨⎨⎨+>+<⎩⎩⎪⎪>-<-⎩⎩或或 解法(二)原不等式可化为:3(23)(1)012x x x -+<⇒-<<.(2) ∵ 22131()024x x x -+=-+>原不等式可化为:303x x +≥⇒≥-【例7】解不等式132x ≤+解:原不等式可化为:(35)(2)013535530002202223x x x x x x x x x x ++≥⎧--+-≤⇒≤⇒≥⇒⇒<-≥-⎨+≠+++⎩或说明:(1) 转化为整式不等式时,一定要先将右端变为0. (2) 本例也可以直接去分母,但应注意讨论分母的符号:2220201532553(2)13(2)12333x x x x x x x x x x x >-<-⎧⎧+>+<⎧⎧⎪⎪≤⇒⇒⇒≥-<-⎨⎨⎨⎨+≥+≤+≥-≤-⎩⎩⎪⎪⎩⎩或或或三、含有字母系数的一元二次不等式一元一次不等式最终可以化为 (0)ax b a >≠的形式.(3) 当0a =时,不等式化为:0x b ⋅>;① 若0b >,则不等式的解是全体实数;② 若0b ≤,则不等式无解. 【例8】求关于x 的不等式222m x mx m +>+的解. 解:原不等式可化为:(2)2m m x m ->- (1) 当202m m ->>即时,1mx >,不等式的解为1x m>; (2) 当202m m -<<即时,1mx <. ① 02m <<时,不等式的解为1x m<; ② 0m <时,不等式的解为1x m>;③ 0m =时,不等式的解为全体实数.(3) 当202m m -==即时,不等式无解.综上所述:当0m <或2m >时,不等式的解为1x m>;当02m <<时,不等式的解为1x m<;当0m =时,不等式的解为全体实数;当2m =时,不等式无解. 练:解不等式(1)22210x ax a ++-≥ (2)210ax x ax +--< 【例9】已知关于x 的不等式22k kx x ->+的解为12x >-,求实数k 的值. 分析:将不等式整理成ax b >的形式,可以考虑只有当0a >时,才有形如bx a>的解,从而令12b a =-. 解:原不等式可化为:2(1)2k x k -->-+.所以依题意:2101332121212k k k k k k --><-⎧⎧⎪⎪⇒⇒=-⎨⎨-+=-=-⎪⎪⎩--⎩或.A 组1.解下列不等式: (1) 220x x +<(2) 23180x x --≤(3) 231x x x -+≥+(4) (9)3(3)x x x +>-2.解下列不等式:(1)101x x +≥- (2)31221x x +<-(3) 21x>-(4)221021x x x -+>+ 3.解下列不等式:(1) 22222x x x ->+(2)21110235x x -+≥ 4.已知不等式20x ax b -+<的解是23x <<,求,a b 的值. 5.解关于x 的不等式(2)1m x m ->-.6.已知关于x 的不等式22kx k k x -≤+的解是1x ≥,求k 的值.7.已知不等式220x px q ++<的解是21x -<<,求不等式220px qx ++>的解.B 组1.已知关于x 的不等式20mx x m -+<的解是一切实数,求m 的取值范围. 2.若不等式2231x x k k+->+的解是3x >,求k 的值. 3.解关于x 的不等式2256x ax a +<.4.a 取何值时,代数式2(1)2(2)2a a ++--的值不小于0?5.已知不等式20ax bx c ++>的解是x αβ<<,其中0βα>>,求不等式20cx bx a ++<的解.第四讲 不等式答案A 组1.1(1)0 (2)3 6 (3) 1 (4)32x x x x -<<-≤≤=-≠- 2.11(1)1 1 (2) 3 (3)20 (4)22x x x x x x x ≤-><><->>-或或或3.(1) 无解 (2) 全体实数 4.5,6a b ==. 5.(1)当2m >时,12m x m ->-;(2)当2m <时,12mx m -<-;(3) 当2m =时,x 取全体实数. 6.1k =-7.1x ≠B 组1.12m <- 2.5k =3.(1) 0a >时,78a a x -<<;(2) 0a =时,无解;(3) 0a <时,87a a x <<-. 4.51a a ≤-≥或. 5.11x x αβ<>或.。

相关文档
最新文档