第二章单自由度系统自由振动)
机械振动学_第二章单自由度振动系统
第二章单自由度系统振动§1-1 概述单自由度系统的振动理论是振动理论的理论基础。
(1)尽管实际的机械都是弹性体或多自由度系统,然而要掌握多自由度振动的基本规律,就必须先掌握单自由度系统的振动理论。
此外,(2)许多工程技术上的具体振动系统在一定条件下,也可以简化为单自由度振动系统来研究。
[举例如下:]例如:(1)悬臂锤削镗杆;(2)外圆磨床的砂轮主轴;(3)安装在地上的床身等。
[力学模型的简化方法]若忽略这些零部件中的镗杆、主轴和转轴的质量,只考虑它们的弹性。
忽略那些支承在弹性元件上的镗刀头、砂轮、床身等惯性元件的弹性,只考虑它们的惯性。
把它们看成是只有惯性而无弹性的集中质点。
于是,实际的机械系统近似地简化为单自由度线性振动系统的动力学模型。
在实际的振动系统中必然存在着各种阻尼,故模型中用一个阻尼器来表示。
阻尼器由一个油缸和活塞、油液组成。
汽车轮悬置系统等等。
[以上为工程实际中的振动系统]单自由度振动系统——指用一个独立参量便可确定系统位置的振动系统。
所有的单自由度振动系统经过简化,都可以抽象成单振子,即将系统中全部起作用的质量都认为集中到质点上,这个质点的质量m 称为当量质量,所有的弹性都集中到弹簧中,这个弹簧刚度k称为当量弹簧刚度。
以后讨论中,质量就是指当量质量,刚度就是指当量弹簧刚度。
在单自由度振动系统中,质量m、弹簧刚度k、阻尼系数C是振动系统的三个基本要素。
有时在振动系统中还作用有一个持续作用的激振力P。
应用牛顿运动定律,作用于一个质点上所有力的合力等于该质点的质量和该合力方向的加速度的乘积。
(牛顿运动定律)(达伦培尔原理)现取所有与坐标x 方向一致的力、速度和加速度为正,则:kx x C t P xm --= ωsin 0 (牛顿运动定律) (达伦培尔原理:在一个振动体上的所有各力的合力必等于零) (动静法分析:作用在振动体上的外力与设想加在此振动体上的惯性力组成平衡力系)上式经整理得,t P kx x C xm ωsin 0=++ (2.1) 该式就是单自由度线性振动系统的运动微分方程式的普遍式。
2-单自由度自由振动
第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
31
给出初始条件:t=0时 x x0 , x v0
则可确定系数B和D B v0 ( 2 1)n x0 2n 2 1
D v0 ( 2 1)n x0 2n 2 1
第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
不大,特别是当阻尼很小(<<1)时,可
以忽略阻尼对振动频率和周期的影响。
第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
40
2.6 对数衰减率
振幅衰减的快慢程度可用相邻振幅 的比值来表示,称为衰减率或减幅率或 减缩率;也可以用衰减率的自然对数来 表示,称为对数衰减率。
第2章 单自由度系统自由振动
第2章 单自由度系统自由振动
2.3 能量法
22
P15例2-3-2 利用能量法求纯滚动圆盘 系统作微幅振动的固有频率。
第2章 单自由度系统自由振动
2.3 能量法
23
2.4 瑞利法
一般不考虑弹性元件的质量对振动系统的 影响,若这些质量不可忽略的时候,“瑞利法” 的思想,是将这些弹性元件所具有的多个集中 质量或分布质量简化到系统的集中质量上去, 从而变成典型的单自由度振动系统。
T 2 n
周期是系统振动一次所需要的时间,单位 为秒(s)。
周期的倒数称为频率,是系统每秒钟振动 的次数,单位为1/秒(1/s)或赫兹(Hz)。记作 f
f 1 n T 2
第2章 单自由度系统自由振动
2.2 自由振动系统
13
固有频率n和频率 f 只相差常数2,因
此经常通称为固有频率。是振动分析中极
已知质量为m,弹簧的刚 度系数为k。取质量的静平衡 位置为坐标原点,当重物偏离 x 时,利用牛顿定律可得到运 动微分方程:
单自由度系统(自由振动)
第二章 单自由度系统的自由振动本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。
§2-1 无阻尼系统的自由振动无阻尼单自由度系统的动力学模型如图1.1所示。
设质量为m ,单位是kg 。
弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。
弹簧在自由状态位置如图中虚线所示。
当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形∆:,同时也产生弹簧恢复力K ∆,当其等于重力W 时,则处于静平衡位置,即 W=K ⋅∆若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。
首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。
现设质量m 向下运动到x ,此时弹簧恢复力为K(∆+x),显然大于重力W ,由于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx xm (1-1-1 令mkp =2(1-1-2)单自由度无阻尼系统自由振动运动方程为02=+x p x(1-1-3)设方程的特解为 ste x =将上式代入(1-1-3)处特征方程及特征根为ips p s ±==+2,1220则(1-1-3)的通解为ptD pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4)C 、D 为任意积分常数,由运动的初始条件确定,设t=0时00,x xx x == (1-1-5)()x m x k W F=+∆-=∑量位静平衡位置 一自由度弹簧—质量系统 ∆==k mgW xx)则pt pxpt x x sin cos 00 += (1-1-6)经三角变换,又可表示为)sin(α+=pt A x(1-1-7)其中 001220,x px tg p x x A -=⎪⎪⎭⎫ ⎝⎛+=α (1-1-8) 自由振动的振幅A 和初相位角α与系统的参数和初始条件有关。
第二章 单自由度系统的自由振动
k
I
在圆盘的静平衡位置上任意选一根半径作 为角位移的起点位置
由牛顿第二定律:
I&& k 0
&& 02 0
扭振固有频率
0
k I
第二章 单自由度系统的自由振动
由上例可看出,除了选择了坐标不同之外,角振动与直线振动的数学描述 完全相同。如果在弹簧质量系统中将 m、k 称为广义质量及广义刚度,则弹 簧质量系统的有关结论完全适用于角振动。以后不加特别声明时,弹簧质 量系统是广义的 。
对时间求导 取平衡位置为势能零点,根据自由振动的特点,系统在平衡位置时,系统的势能 为零,其动能的极大值就是全部机械能;而在振动系统的极端位置时,系统的动 能为零,其势能的极大值等于全部的机械能,即有:
例题讲解3 均匀悬臂梁长为 l, 弯曲刚度为EJ,重量不计, 自由端附有重为P=mg的物体,如图所示。试 写出物体的振动微分方程,并求出频率。 梁的自由端将有静挠度: 物体的振动微分方程为:
8
第二章 单自由度系统的自由振动
例题讲解3 重物落下,与简支梁做完全非弹性碰撞
梁长 L,抗弯刚度 EJ m
h
第二章 单自由度系统的自由振动
2.1 简谐振动
由牛顿定律,有 设系统固有频率为 二阶常系数线性齐次常微分方程
通解形式为
1
第二章 单自由度系统的自由振动
根据三角关系式
改 写
由此可以知道:该系统以 固有频率作简谐振动。
振动周期:
振动频率:
2
第二章 单自由度系统的自由振动
设在初始时刻t=0,物体有初位移
弹簧原长位置
m&x& kx 0
振动理论及工程应用2 第二章 单自由度系统的振动
刚度系数k。
先将刚度系数k2换算至质量m所在处C的等效刚度系数k。
设在C处作用一力F,按静力平衡的
关系,作用在B处的力为 Fa
C
b
此力使B 弹簧 k2 产生 变形,
而此变形使C点发生的变形为
c
a Fa 2 b k2b2
得到作用在C处而与k2弹簧等效的刚度系数
k F
c
k2
C1 x0
C2
v0 pn
x
x0
cos
pnt
v0 pn
sin
pnt
另一种形式
x Asin( pnt )
初
振幅
相 两种形式描述的物
A
x02
(
v0 pn
)2
位 块振动,称为无阻 角 尼自由振动,简称
自由振动。
arctg(
pn x0 v0
)
无阻尼的自由振动是以其静平衡位置为振动中心的 简谐振动
b2 a2
k F
c
k2
b2 a2
与弹簧k1串联
C
得系统的等效刚度系数
k
k1k 2
b2 a2
k1k 2 b 2
k1
k2
b2 a2
a 2k1 b2k2
物块的自由振动频率为
pn
k b
k1k2
m
m(a2k1 b2k2 )
弹性梁的等效刚度
例 一个质量为m的物块从 h 的高 处自由落下,与一根抗弯刚度为EI、 长为的简支梁作塑性碰撞,不计梁 的质量,求该系统自由振动的频率、 振幅和最大挠度。
系统振动的周期 T 2π 2π m
第二讲单自由度系统自由振动
m
k/2
k/2
l a
单自由度系统自由振动
解法1:
广义坐标
平衡位置1
零平衡位置1
m
k/2
k/2
动能 势能
T 1 I2 1 ml22
2
2
V 2 1 1 k a2 mgl 1 cos
22
1 ka2 2 1 mgl 2 sin 2
静平衡位置
W
W
振动解:
x(t)
x0
cos(0t)
x0
0
sin(
0t)
x
x(t)
v
0
s in(0t )
1.28
sin(19.6t)
(cm)
单自由度系统自由振动
振动解:
x(t)
v
0
s in(0t )
1.28
sin(19.6t)
( cm)
v
绳中的最大张力等于静张力与因振动引起
(t
)
0
c
os0t
0 0
sin
0t
单自由度系统自由振动
由上例可看出,除了选择了坐标不同之外,角振动与直线
振动的数学描述是完全相同的。如果在弹簧质量系统中将 m 、k 称为广义质量及广义刚度,则弹簧质量系统的有关结论
完全适用于角振动。以后不加特别声明时,弹簧质量系统是
广义的 。
弹簧原长位置
x
k xdx
0
mgx 1 kx2
k
2
0
静平衡位置
x
mxx mgx kxx 0
mx kx mg
振动理论-第2章 单自由度系统的自由振动
c
l
解:梁重物处的静变形为
st
Wc2 (l c)2 3lEI
则:
3lEI k c2 (l c)2
1g f
2 st
例3. 已知:升降机吊笼,以等速 v0 下降,钢丝绳视为弹簧,
若A端突然停止,求钢绳所受到的最大应力。
W 10000lbf l 62 ft A 2.5in2 E 15106lbf / in2
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
平行串联、并联弹簧的等效刚度
4 等效质量和等效刚度
平行串联、并联弹簧的等效刚度
4 等效质量和等效刚度
例1 A suspension system of a freight truck with a parallel-spring arrangement. Find the equivalent spring constant of the suspension if each of the three helical springs is made of G 80109 N / m2
(boom) to deform by an amount x2 x cos 45 and the spring k1
Eat 3 4b3
kr
AE l
d2E
4l
1 keq
1 kb
1 kr
4b3 Eat 3
4l d2
E
keq
E 4
at3d 2
d 2b3 lat3
4 等效质量和等效刚度
斜拉弹簧在某个位移方向上的等效弹簧刚度
Fx F cos F 为弹簧的伸长量
第2章 单自由度系统的自由振动
25第2章 单自由度系统的自由振动2.1 无阻尼系统的自由振动设有质量为m 的物块(可视为质点)挂在弹簧的下端,弹簧的自然长度为l 0,弹簧刚度为k ,如不计弹簧的质量,这就构成典型的单自由度系统,称之为弹簧质量系统如图2-1所示。
工程中许多振动问题都可简化成这种力学模型。
例如,梁上固定一台电动机,当电机沿铅直方向振动时,梁和电机组成一个振动系统,如不计梁的质量,则它在该系统中的作用相当于一根无重弹簧,而电机可视为集中质量。
于是这个系统可简化成如图2-1所示的弹簧质量系统。
2.1.1自由振动方程以图2-1所示的弹簧质量系统为研究对象。
取物块的静平衡位置为坐标原点O ,x 轴顺弹簧变形方向铅直向下为正。
当物块在静平衡位置时,由平衡条件∑F x = 0,得到st δk mg = (A )st δ称为弹簧的静变形。
当物块偏离平衡位置为x 距离时,物块的运动微分方程为mxkx &&=− (2-1) 将式(2-1)两边除以m ,并令mkp =n (2-2) 则式(2-1)可写成02n =+x p x && (2-3)这就是弹簧质量系统置之只在线弹性力-kx 的作用下所具有的振动微分方程,称之为无阻尼自由振动的微分方程,是二阶常系数线性齐次方程。
由微分方程理论可知,式(2-3)的通解为t p C t p C x n 2n 1sin cos +=其中C 1和C 2为积分常数,由物块运动的起始条件确定。
设0=t 时,x x xx ==00,&&。
可解得 C x 10= n02p xC &=t p p xt p x x n n0n 0sin cos &+= (2-4) 式(2-4)亦可写成下述形式)sin(n α+=t p A x (2-5)26 其中⎪⎪⎩⎪⎪⎨⎧=+=)arctan()(00n 2n020x x p p x x A &&α (2-6) 式(2-4)、(2-5)是物块振动方程的两种形式,称为无阻尼自由振动,简称自由振动。
第二章-(第1节)单自由度系统的自由振动
tan 1
ωn x0 x 0
(2.1-11)
2.1 简谐振动
弹簧悬挂的物体沿铅锤方向的振动
当振动系统为静平衡时弹簧在 重力mg的作用下将有静伸长
s
mg k
(2.1-12)
在重力与弹簧力的作用下,
物体的运动微分方程为
mx mg k(s x) (2.1-13)
因为mg=ks,上式仍可简化为
mx kx
波变化。
2.1 简谐振动
振动周期
振动重复一次所需要的时间间隔,称之为振
动周期。 在简谐振动的情况下,每经过一个周期,相
位就增加2,因此
[n(t+T)+]-(nt+)=2
故有
T 2 n
(2.1-9)
实际上T代表发生一次完整运动所需要的时间
,周期通常以秒(s)计。
2.1 简谐振动
振动频率
在单位秒时间内振动重复的次数,称为振动 频率,一般用f 表示。
解:取偏角为坐标。从平衡位
置出发,以逆时针方向为正,锤的
切向加速度为 ,l故 有运动微分方
程为
ml2 mgl sin
假定角不大,可令sin,则
上式简化为 g 0
l
图 2.1-5
2.1 简谐振动
例题:列写振动微分方程求系统的周期(例2.1-2)
故
n2
g l
则振动周期为
T 2 2 l
n
g
2.1 简谐振动
或
② x(t) Asin(nt )
(2.1-7)
式中常数A和(=/2-)分别称为振幅和相角。方程(2.1-
7)说明该系统以固有频率n作简谐振动。
2.1 简谐振动 简谐振动的定义及矢量表示
第二章-单自由度系统的自由振动-yyt
x(t ) A sin(nt )
振幅: A
arctan 初相位:
固有频率
x 0 x n n x0
2 0
2
x 0
n
k m
21
2.3 单自由度无阻尼自由振动—实例
例2 提升机系统。重物W=1.47x105N,钢丝刚度k=5.78x104N/cm。重物以 v=15m/min的速度匀速下降,求绳的上端突然卡住时, (1)重物的振动频率;(2)绳中最大张力。 gk 解:振动(自然)频率 n 19.6 rad / s W
证明:动能 T 1 mx 2
2
势能 V mgx k ( x )dx mgx k x
0
x
1 2 1 2 kx kx 2 2
T V const
2 kx2 const mx
两边求导并整理: (m kx) x 0 x
不恒等于0: x
Tmax Vmax
29
零平衡位置
能量方法:
解:广义坐标θ,平衡位置设置零坐标如图
显然,系统的振动方程为: (t ) cos(nt ) θ
(t ) sin( t ) 则,角速度为: n n
有 max 最大动能 Tmax
max n
弹簧-质量-阻尼系统
4
2.1 基本概念(实际结构简化)
m
m
5
2.1 基本概念
振动方式:自由振动
系统在初始时只受到一个外界扰动,此后并不受其他 力的作用而发生的振动。
O
θ l
mg
6
7
2.1 单自由度系统的自由振动
第二章单自由度系统的自由振动
瑞利法计算系统的固有频率时, 必须先假定 瑞利法计算系统的固有频率时 , 必须先 假定 系统弹性元件的振型 振型. 系统弹性元件的振型. 假定的振型通常与真实振型存在着差异, 假定的振型通常与真实振型存在着差异 , 这相 当于对系统附加了某些约束 附加了某些约束, 当于对系统附加了某些约束,因而增加了系统的刚 使得求出的固有频率略高出精确值. 度,使得求出的固有频率略高出精确值. 假定的振型越接近于真实振型, 假定的振型越接近于真实振型 , 瑞利法算出 的固有频率就越精确. 的固有频率就越精确. 实践证明, 实践证明 , 以系统的静变形曲线作为假设振 所得结果精度较高. 型,所得结果精度较高.
由平行轴定理
2
复摆的振动
2
gT I c = I 0 ma = ma 1 2 4aπ
2
2
测振仪, 例2-4 测振仪,已知
试建立该系统的运动微分方程, 试建立该系统的运动微分方程, 并求系统的固有频率. 并求系统的固有频率. 解:单自由度系统 取 θ 为广义坐标
m, I , k1 , k 2 , a, b
= C1 cos ω n t + C 2 sin ω n t
x = A sin(ω n t + ) 简谐振动
2 1 2 2
A= C +C
C1 , = arctg C2
初相位: 初相位:
质量弹簧系统
为任意常数,由初始条件确定. 式中 C1 , C 2 或A, 为任意常数,由初始条件确定. 相位: 相位: (ω n t 振幅: 振幅:A
1 1 2 1 1 2 2 2 2 2 2 L = ma θ + Iθ k1a θ k 2 b θ 2 2 2 2
§2.3 固有频率的计算
第二章 振动结构模态分析
2.2 单自由度系统自由振动 ——有阻尼
m x(t) c x(t) k x(t) f (t)
mx cx kx 0
x Aet
m2 c k 0
2 2 2 0
1,2 2 1
2 k
m
c 2
m
2.2 单自由度系统自由振动——有阻尼
n
x(t) qi (t)i q(t) i1 T M q(t) T Cq(t) T Kq(t) T f (t)
miqi (t) ciqi (t) kiqi (t) iT f (t)
2.6 多自由度系统振动响应
频响函数:
Mx(t) Cx(t) K x(t) f (t)
x(t) Xeit
m x(t) c x(t) k x(t) f (t)
t
x(t) 0 f (t )h( )d
2.3 单自由度系统强迫振动——频响函数与单位脉冲函数
m x(t) c x(t) k x(t) f (t)
定义:
(1)简谐激励时,稳态输出相量与输入相量之比。
(2)瞬态激励时,输出的傅里叶变换与输入的傅里叶变换之比。
表示体系可能存在的n个振型
对应的频率。具有最低频率的阵型称之为第一阶振型,第二低频率
对应的振型为第二阶振型。
2.5 多自由度无阻尼系统自由振动
振型分析:Mx(t) K x(t) 0
x(t) Xsin( t )
1
(K 2M)X 0 1.特征向量,或振型,
一般用i来表示;
(K i2M)Xi 0
/
2.3 单自由度系统强迫振动——简谐激励
x(t) 2 x(t) 2 x(t) F0 sin t
m
通解: xc (t) A1 cosdt A2 sin dtexp(t)
第2章-单自由度系统振动
1
1
2
2
当摇杆摆至最大角移位处时,速度为零,此时系统动能为零而势能最大。它包括以下两
个部分:
1) 弹簧变形后储存的弹性势能
1 2·
2 2) 质量块 m 的重心下降后的重力势能
因摆角很小,
1
cos
1
⁄2
故,
因,
所以,
2
得,
.. . .
0.77
例 4:如图 2.10 为一齿轮传动机构。小齿轮齿数为 ,大齿轮齿数为 ,传动比i 小齿轮和大齿轮对各自轴线的转动惯量分别为 和 轴 1 和轴 2 的扭转刚度分别为 求该机构的固有频率。
单自由度无阻尼系统的动力模型如图 2.4 所示,称为质量一弹簧系统,或 m-k 系统。设 质量块的质量 ,它所受到的重力为 。弹簧的刚度为 ,它表示弹簧每伸长或压缩—个单 位长度所需施加的力。弹簧未受力时的原长为 ,如图 2.4(a)中虚线所示。当质量块挂到弹簧 上以后,弹簧在质量块的重力作用下产生静伸长为 此时系统处于新的静平衡状态,其平衡 位置为O O,由平衡条件得
⁄, 和
图 2.10 齿轮传动 解:该机构为单自由度,选取轴 2 的转角如为广义坐标,系统的动能为
1
1
1
2
2
2
则,
系统的势能为
1
1
2
2
1
1
1
1
2
2
2
2
1
1
2
2
故,
所以,系统的固有频率为
4.瑞利法 (Rayleigh Method)
前面所讨论的振动系统,都是假设弹性元件只有弹性没有质量,这是理想化的模型。而
(2.6)
由欧拉公式,
第二章 单自由度系统的振动11
其中 -柔度系数(单位力作用下相应的位移) k –刚度系数(单位位移作用下所需加的力) g –重力加速度
W
–重力 yst –重力引起的位移
例1) 、试建立图示结构的运动方程(考虑阻尼)并求自振频率 (不计阻尼)。设横梁刚度无限大, 柱 EI 4.5 106 Nm2 梁的质量 m=5000kg。h=3m 解:由于横梁刚度无穷大,结构只能产生水平 h EI 位移。设x坐标向右。二柱的侧移劲度系数为: 12 EI k k1 k2 3 = h 2 y P(t) m 又设横梁(质量m)位移为y,以它为隔离 体,受力如图所示。 F F cy
仅在P(t)作用下m的位移由位移计算得 因此在所示“外力”下,质量的位移为
f I my
f d cy
cy ) P y ( my
例5)、 试建立图示质量、弹簧、阻尼器 抽象化模型的运动方程。 解:设质量水平位移为u,向右为正。 以m为隔离体,加上惯性力fI、阻尼力 fd如图所示,此外还有弹簧的弹性恢复 力fe 。根据达朗泊尔原理和阻尼假定
F F 1 sin t = sin t 2 2 2 2 (1 2 ) m m k 1 2 m m k 又 则 m 1 2 y(t )
F sin t yst sin t k
故 振幅(振动的最大值)
ymax yst or ymax / yst
例2-5 结构参数如例1,若使m产生侧移25mm,然后突 然放开,刚架产生自由振动,振动5周后测得的侧移为 7.12mm,试求1)考虑阻尼时的自振频率,2)阻尼比 和阻尼系数,3)振动10周后的振幅。
解:由y0=25mm和y0+5Td=7.12mm,求阻尼比和阻尼系数。
单自由度系统的无阻尼自由振动
A——物块离开平衡位置的最大位移,称为振幅。
n t + ——相位,决定振体在某瞬时 t 的位置
——初相位,决定振体运动的起始位置。
T
——周期,每振动一次所经历的时间。T
2 n
f —— 频率,每秒钟振动的次数, f = 1 / T 。
n —— 固有频率,振体在2秒内振动的次数。 反映振动系统的动力学特性,只与系统本身的固有参数有关。
根据:
xx0const x 0 nsinnt
其振动规律为:
x (t) v nsin tn 1 1 .6 * 1 * 9 5 6s 0 0 1 i0 .n 6 t9 1 .2s8 1 i.n 6 t9 (c)m
17
x(t)1.2s8i1n.9 6t(cm )
绳中的最大张力等于静张力 与因振动引起的动张力之和
11
无阻尼自由振动的特点是: (1) 振动规律为简谐振动;
(2) 振幅A和初相位 取决于运动的初始条件(初位移和初速度); (3)周期T 和固有频率 n 仅决定于系统本身的固有参数(m,k,I )。
四、其它
1. 如果系统在振动方向上受到某个常力的作用,该常力 只影响静平衡点O的位置,而不影响系统的振动规律,如振动 频率、振幅和相位等。
2
单自由度系统的自由振动
以弹簧质量系统为力学模型
3
运动过程中,总指向物体平衡位置的力称为恢复力。
物体受到初干扰后,仅在系统的恢复力作用下在其平衡位 置附近的振动称为无阻尼自由振动。
质量—弹簧系统:
令x为位移,以质量块的静平衡位置 为坐标原点,当系统受干扰时,根据 牛顿第二定律,有:
m x m k g (s x )
由Tmax=Umax , 求出 n
结构振动理论2-单自由度系统自由振动
由 dE 0 1、求出运动方程: mx kx 0
dt
有常力作用的机械能: E 1 mx&2 1 k( x)2 Fx
2
2
dE mx&&x& k( x)x& Fx& x&(m&x& kx) 0
dt
由 Ek max E p max E 2、求固有频率
假设 x Asin( pt ) 则 x Apcos(pt )
2
l 0
/
2
y02{3(
x l
)
4(
x l
)3}2
dx
1 2
0.486
ly02
Ek
1 2
me
y02
me 0.486 l
n
ke me
00:03
单自由度系统自由振动
例 铰接式直升机旋翼挥舞振动分析
取微元做受力分析,微元
cos
R
L
2(R cos)d 离心力对铰链轴o的力矩为
θ
ξ
(2 (R cos )d )( sin )
则系统的自由振动方程为: me ke 0
固有频率为:
n
ke me
需要注意的是,me不是梁的总质量,它可以通过梁上各 点位移关系和动能等效的原则求得。
00:03
单自由度系统自由振动
y( x, t )
y0
(t
)[3x l
4(
x )3 ] l
(x 1) l2
Ek
1 2
l y2dm 1 2
0
由此可见,弹性元件并联将提高总刚度,串联将降低总刚
度。这与电学中电阻的并联、串联结论是相反的。阻尼器串联
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)等效刚度
通常用能量法求复杂系统的等效刚度,即按实际系统要转化的弹簧 的弹性势能与等效系统弹簧势能相等的原则来求系统的等效刚度。
1、单自由度系统及其振动微分方程建立 (1)单自由度振动系统
(2)单自由度系统振动方程的建立方法 ①牛顿第二定律或达朗贝尔原理
f m&x& f m&x& 0 M J&& M J&& 0
例题2-1 (教材例题2.10) 建立如图所示振动系统的振动微分方程。
ml&x&
若动能达到最大Tm ax时取势能为0,则动能为0时,势能必取得最大值U m ax
Tm
ax=U
m
,可由此得到固有频率
ax
例题:求圆轴圆盘扭振系统的振动固有频率
T 1 m(l)2
2
U 1 k(a)2
2
d [1 m(l)2 1 k(a)2 ] 0
dt 2
2
可得 + k ( a )2 0
例题2-3
meq J m1r 2 m2 R2 keq (k1 k3 )r 2 (k2 k4 )R2
例题2-4 (教材例题2.4)
例题2-5 (教材例题2.5)
me
m
L
3
mA
J
mvb2 a2
1 3
msb2
例题2-6 (教材例题2.3、2.6) 求轴向轴转化的单轴系的等效刚度和等效旋转质量
B、D由初始条件确定(t 0时,x x0
B x0 D x0 p
x
x0
cos
pt
x0 p
sin
pt
x x0 )
单自由度系统的无阻尼 自由振动是一种简谐振 动
固有频率是系统本身的 性质,与初始条件无关
速度、加速度也是简谐 振动
可将解写为 x Asin( pt )
法可以将系统传递函数从复域引到具有明显物理概念的频域来分析系统的特性。
将频率特性分析方法用于振动分析,成为频谱分析。 引入频谱分析的重要性在于:
①可将任意激励函数分解为叠加的谐波信号,即可将周期激励函数分解为叠加 的频谱离散的谐波信号,可将非周期激励函数分解为叠加的频谱连续的谐波信 号。 ②对于无法用分析法求得传递函数或微分方程的振动系统,可以通过实验求 出系统的频率特性,进而得到系统的传递函数或微分方程。
求固有频率
令 p2 k m
n c 2m
n
p
相对阻尼系数
x Be( 2 1) pt De ( 2 1) pt
x (B Dt )e pt
例题 质量m=2450kg的汽车用四个悬挂弹簧支承在 四个车轮上,四个弹簧由汽车重量引起的静压缩量均 为λst=15cm。为了能迅速地减少汽车上下振动,在四 个支承处均安装了减振器,由实验测得两次振动后振 幅减小到10%,即A1/A3=10,试求: 1)振动的减幅系数和对数衰减率 2)衰减系数和衰减振动的周期 3)若要汽车不振动,减振器的临界阻尼系数
振幅
A
x02
x0 p
2
初相位
arctan px0
x0
固有圆频率 p k m
(rad/s)
固有频率 f p 1 k
2 2 m
(HZ)
固有周期 T 1 2 m (s)元件为等截面悬臂梁,梁的质 量可忽略。在梁的自由端由磁铁吸住两个集中质量 m1、m2。梁在静止时,断电使m2突然释放,求随 后m1的振动。
二、单自由度系统的自由振动 1、无阻尼系统的自由振动 2、有阻尼系统的自由振动
三、单自由度系统在简谐激励作用下的受迫振动 1、简谐激励下的受迫振动响应及频谱分析 2、受迫振动的复数求解法--单位谐函数法 3、支座简谐激励(位移激励)引起的振动与被动隔振 4、偏心质量(力激励)引起的振动与主动隔振 5、测振传感器的原理
ml
圆频率 p a k lm
假定摆球的微幅振动为简谐振动 Asin( pt )
则max A, Apcos(pt ),max Ap
Tm a x
1 2
m(cm a x ) 2
1 2
mc2 A2 p2
U
1 2
k1(a )2
1 2
k2 (b )2
i(t )
Ae 2
&x& A2ei(t) A e2 i(t )
在简谐振动中,加速度的方向与位移的方向相反,大小与位移的大 小成正比,始终指向静平衡位置。
④简谐振动的合成
(2)周期振动的谐波分析
f (t) f (t nT) n 0, 1, 2,L
输出和输入的傅氏变换之比等于频率响应函数H (() 频响函数)
物理特性
模态特性
响应特性
力学模型: 质量、刚度、阻尼
模态模型: 固有频率、模态矢量 模态质量、刚度、阻尼
响应模型: 位移、速度、加速度
时域模型:微分方程描述
频域模型:传递函数描述 频率特性描述
汽车振动学
第二章 单自由度系统的振动
一、单自由度振动系统 1、振动微分方程的建立 2、振动等效系统及外界激励
3(R r)
2、等效振动系统及外界激励
在工程上为便于研究,常把一些较为复杂的振动系统进行简化,以便 当作运动坐标方向上只存在一个质量和弹簧来处理,经简化后得到的质量 和刚度,分别成为原系统的等效质量和等效刚度。
同样,实际振动系统不可避免地存在阻力,因而在一定时间内自由振 动会逐渐衰减,直至完全消失。振系中阻力有各种来源,如干摩擦、流体 阻力、电磁阻力、材料内阻力等,统称阻尼。
b2 l
cx&
a2 l
k1
d2 l
k2
x
0
②能量法
T+U=常数
d T U 0
dt
例题2-2 (教材例题2.11)
半径为r、重力为 mg的圆柱体在半径为R 的圆柱面内滚动而不滑 动,如图所示。试求圆 柱体绕其平衡位置作微 小振动的微分方程。
&& 2g 0
第一章 概论
一、振动及其研究的问题 1、振动 2、振动研究的问题 振动隔离 在线控制 工具开发 动态性能分析 模态分析
第一章 概论
二、振动分类及研究振动的一般方法 1、振动分类:振动分析、振动环境预测、系统识别 2、研究振动的一般方法 (1)理论分析方法
建立系统的力学模型、建立运动方程、求解方程得到响应 (2)实验研究方法 (3)理论与实验相结合的方法
拉压刚度 弯曲刚度 扭转刚度
kD
EA l3
3EI
kB l13
kC
GI p l2
弹簧的串、并联
ke k1 k2
1 11
ke k1 k2
串联弹簧的刚度 并联弹簧的刚度
1 1 1 L k k1 k2
k k1 k2 L
(2)等效质量
通常用能量法求复杂系统的等效质量,即按实际系统要转化的质量的 动能与等效系统质量动能相等的原则来求系统的等效质量。
mgc(1 cos )
1 2
k1 (a
)2
1 2
k2 (b )2
mgc2 sin2
2
U max
1 2
k1 (a m a x) 2
1 2
k2 (bmax)2
mgc
m
2 ax
2
1 2
(k1a 2
A2
k2b2
A2
mgcA2
)
由于 Tmax U max
可得
p
k1a2 k2b2 mgc mc2
三、 汽车上的振动问题 四、简谐振动、谐波分析及频谱分析
1、简谐振动 2、谐波分析 3、频谱分析
(1)简谐振动 ①函数表示法
x Asin(t ) Asin(2 t ) Asin(2ft )
x
A cos(t
)
T
A sin(t
)
2
x A 2 sin(t ) A 2 sin(t )
设解为x est,则x s2est,方程变为 s2 p2 0
解为s ip,其中i 1,方程的通解为
x c1eipt c2eipt c1(cos pt i sin pt) c2 (cos pt i sin pt) (c1 c2 ) cos pt (c1 c2 )i sin pt B cos pt D sin pt
2
c2 X 2 cos2 (t )dt c X 2
0
库仑阻尼
ceq
4mg X
流体阻尼
ceq
8 A 3
结构阻尼
ceq
a
(4)外界激励 单自由度系统的振动方程的一般形式
mx(t) cx(t) kx(t) F(t)
当外界激励为零(即 F(t) 0 )时,系统仅在开始时受到外界干 扰即初始干扰(如初始位移或速度),靠系统本身的固有特性而进行振 动,即自由振动。
=
a0 2
a j
j 1
cos(