第3章 搜索策略 - 1

合集下载

人工智能及其应用-状态空间的盲目搜索

人工智能及其应用-状态空间的盲目搜索
点设置指向父节点的指针,然后转第(2)步。
3
3.2.1 状态空间的盲目搜索
广度优先搜索(2/3)
例3.5 八数码难题。在3×3的方格棋盘上,分别放置了表有数字1、 2、3、4、5、6、7、8的八张牌,初始状态S0,目标状态Sg,如下图 所示。可以使用的操作有
空格左移,空格上移,空格右移,空格下移
即只允许把位于空格左、上、右、下方的牌移入空格。要求应用广度 优先搜索策略寻找从初始状态到目标状态的解路径。
23 4 18 765
27
28 14 3 765
283 14 5 76
283 64
1 75
12 3
12 3
8 7
6
4 5
Sg
78 4 65
283 1 64 75
283 16 754
5
3.2.1 状态空间的盲目搜索
深度优先搜索
深度优先搜索算法和广度优先搜索算法的步骤基本相同,它 们之间的主要差别在于Open表中的节点排序不同。在深度优先 搜索算法中,最后进人Open表的节点总是排在最前面,即后生 成的节点先扩展。
个子节点设置指向父节点的指针。按如下公式: g(ni)=g (n) +c (n , ni) i=1,2,...
计算各子结点的代价,并根据各子结点的代价对Open表中的全部结点按由小到大的 顺序排序。然后转第(2)步。
8
3.2.2 代价树的盲目搜索
代价树的代价及广度优先搜索(2/2)
例3.6 城市交通问题。设有5个城市,它们之间的交通线路如左图所示,图中的数 字表示两个城市之间的交通费用,即代价。用代价树的广度优先搜索,求从A市出 发到E市,费用最小的交通路线。
搜索算法 (1)把初始节点S0放入Open表中; (2)如果Open表为空,则问题无解,失败退出; (3)把Open表的第一个节点取出放入Closed表,并记该节点为n; (4)考察n是否为目标节点。若是,则得到问题的解,成功退出; (5)若节点n不可扩展,则转第(2)步; (6)扩展节点n,将其子节点放入Open表的尾部,并为每一个子节

第3章 搜索策略

第3章 搜索策略
小 ←─费用─→ 大
总费用 操作费用 控制费用
小 ←─── 启发式信息量 ───→ 大
搜索的费用
一般地,盲目搜索算法需要搜索的空间比较大, 因而,其操作的费用较高;而启发式搜索算法的控制 策略比较复杂,因而,其控制的费用较高。 一方面,启发式信息利用程度越高,问题的搜索 空间越小,操作的费用越低。另一方面,启发式信息 利用程度越高,控制策略越复杂,控制的费用越高。 操作费用与控制费用的这种辨证关系对于我们设 计或选择图搜索算法具有指导意义。
搜索的策略和算法
在状态图(树)中,寻找由起始节点通向目标节点的 路径可以有各种不同的搜索策略。不同的策略以不同的方 式控制着搜索的过程。因此,搜索策略又称控制策略。 与问题相关的信息往往能帮助我们进行更为有效的搜 索,当然,这取决于相关信息的质和量。依据控制策略利 用与问题相关信息的情形来对图搜索算法进行分类,可将 其分为: (1) 盲目搜索算法 (Blink Search) (2) 启发式搜索算法 (Heauristic Search)
搜索的相关定义
开节点(open node):未进行扩展操作的节点; 闭节点(closed node) :已进行扩展操作的节点;
扩展节点(expended node):已进行扩展操作,并生长 出子结点的节点;
死节点(dead node):闭节点,但不是扩展节点; 叶节点(leaf node):无子节点或未生成子节点的节点。
深,搜索图上的节点数将成几何级数地增长,这意
味着,对于大的问题,宽度优先搜索算法需要巨大 的记忆体或存储空间。
A
B
C
D
宽度优先搜索
K
E
F
G
H
I
J
L
M

人工智能之搜索策略介绍课件

人工智能之搜索策略介绍课件
基本概念:模拟生物进化过程, 通过选择、交叉、变异等操作,
实现搜索策略的优化
2
步骤:初始化种群、计算适应 度、选择、交叉、变异、迭代
3
优点:全局搜索能力强,能够 找到最优解
4
缺点:计算复杂度高,收敛速 度慢,容易陷入局部最优解
搜索策略的优化
优化目标
01 提高搜索效率:减少搜索 时间,提高搜索结果的准 确性
01
02
03
信息检索:搜索引擎、 路径规划:地图导航、 问题求解:数学问题、
学术论文检索等
物流配送等
逻辑问题等
04
05
06
游戏AI:棋类游戏、 电子游戏等
机器人控制:自主导 航、路径规划等
优化问题:生产调度、 资源分配等
搜索策略的实现
启发式搜索
概念:根据问题特点,选择 合适的搜索策略,提高搜索
效率
01
03
02
剪枝策略:提前 终止无效或低效 的搜索路径,提 高搜索效率
04
自适应搜索:根 据搜索过程中的 反馈信息,动态 调整搜索策略, 提高搜索效果
优化效果评估
准确率:衡量搜索 结果的准确性
召回率:衡量搜索 结果中相关结果的
比例
速度:衡量搜索算 法的执行效率
稳定性:衡量搜索 算法在不同数据集
上的表现一致性
演讲人
人工智能之搜索策略介 绍课件
目录
01. 搜索策略概述 02. 搜索策略的实现 03. 搜索策略的优化 04. 搜索策略的应用案例
搜索策略概述
搜索策略的定义
搜索策略是指在解
1 决一个问题时,如 何找到最优解或近 似最优解的方法。
搜索策略可以分
2 为两类:无信息 搜索和有信息搜 索。

第三章-搜索策略11.

第三章-搜索策略11.

5.3.1 回溯策略
end; 将CS加入PS;
end else
begin 将CS子状态(不包括PS、NPS和NSS中已有的) 加入NPS; CS:= NPS中第一个元素;
将CS加入到PS; end end; return FAIL; end.
5.3.1 回溯策略
回溯搜索示意图的回溯轨迹: 初值:PS=[A]; NPS=[A]; NSS=[ ]; CS=A。
为了保证找到解,应选择合适的深度限制值,或 采取不断加大深度限制值的办法,反复搜索,直 到找到解。
5.3.3 深度优先搜索策略
深度优先搜索过程:
Procedure depth_first_search
begin
open:=[start];closed:=[ ];d:=深度限制值
while open[ ] do
A BC
(a) 初始状态
积木问题
A B C
(b) 目的状态
5.3.2 宽度优先搜索策略
操作算子为MOVE(X,Y):把积木X搬到Y(积 木或桌面)上面。
MOVE(A,Table):“搬动积木A到桌 面上”。
操作算子可运用的先决条件:
(1)被搬动积木的顶部必须为空。 (2)如果 Y 是积木,则积木 Y 的顶部也必须为空。 (3)同一状态下,运用操作算子的次数不得多于一次。
第3章 搜索策略
第3章 搜索求解策略
3.1 搜索的概念 3.2 状态空间的搜索策略 3.3 盲目的图搜索策略 3.4 启发式图搜索策略 3.5 与/或图搜索策略
第3章 搜索求解策略
3.1 搜索的概念 3.2 状态空间知识表示方法 3.3 盲目的图搜索策略 3.4 启发式图搜索策略 3.5 与/或图搜索策略

人工智能 第三章 搜索策略

人工智能 第三章 搜索策略

动 作 b=0, c=c-1 b=0, m=m-1 b=0, m=m-1, c=c-1 b=0, c=c-2 b=0, m=m-2 b=1, c=c+1 b=1, m=m+1 b=1, m=m+1, c=c+1 b=1, c=c+2 13 b=1, m=m+2
3.1.2 状态空间问题求解方法
3. 状态空间的例子(11/14)
1
3.1.1 搜索的含义
概念: 依靠经验,利用已有知识,根据问题的实际情况,不断寻找可利用知识, 从而构造一条代价最小的推理路线,使问题得以解决的过程称为搜索 适用情况: 不良结构或非结构化问题;难以获得求解所需的全部信息;更没有现成的 算法可供求解使用。 搜索的类型 按是否使用启发式信息: 盲目搜索:按预定的控制策略进行搜索,在搜索过程中获得的中间信息并 不改变控制策略。 启发式搜索:在搜索中加入了与问题有关的启发性信息,用于指导搜索朝 着最有希望的方向前进,加速问题的求解过程并找到最优解。 按问题的表示方式: 状态空间搜索:用状态空间法来求解问题所进行的搜索 与或树搜索:用问题归约法来求解问题时所进行的搜索
3.1.2 状态空间问题求解方法
3. 状态空间的例子(5/14) 例3.2 修道士(Missionaries)和野人(Cannibals)问题(简称M-C问题)。 设在河的一岸有3个野人、3个修道士和1条船,修道士想用这条船把所有的 人运到河对岸,但受以下条件的约束: 第一,修道士和野人都会划船,但每次船上至多可载2个人; 第二,在河的任一岸,如果野人数目超过修道士数,修道士会被野人吃掉。 如果野人会服从任何一次过河安排,请规划一个确保修道士和野人都能过 河,且没有修道士被野人吃掉的安全过河计划。 解:先选取描述问题状态的方法。这里,需要考虑两岸的修道士人数和野 人数,还需要考虑船在左岸还是在右岸,故可用如下三元组来表示状态 S=(m, c, b) 其中,m表示左岸的修道士人数,c表示左岸的野人数,b表示左岸的船数。 而右岸的状态可由下式确定: 右岸修道士数 m'=3-m 右岸野人数 c'=3-c 右岸船数 b'=1-b 在这种表示方式下,m和c都可取0、1、2、3中之一,b可取0和1中之一。 9 因此,共有4×4×2=32种状态。

第3章(搜索推理技术1-图盲目搜索)

第3章(搜索推理技术1-图盲目搜索)

①、起 始节点 ( 即根
节点)的深度为0。
②、任何其它节点的
深度等于其父辈
节点深度加上1。
深度优先搜索的基本
思路:
先扩展最深的节点 。
当出现没有后继节点
时,换到旁边的次深
节点
后生成的节点画在左边
含有深度界限的深度优先搜索算法:
① 把起始节点 S 放到未扩展节点的 OPEN 表中。 如果此节点为一目标节点,则得到解 ② 如果 OPEN 为一空表,则无解、失败退出
状态:长度为9的一维数组
(q1 , q2 , … , q9 )
其中,qi 取 0 , 1 , … , 8 个数,0 表示空格,且取值
互不相同
如果记空格的位置为P,这时空格的移动规则是: 1 4 7 2 5 8 3 6 9 数字表示位置 1 2 3 4 5 6 7 8 9 P-3
P-1
P
P+1
P+3
起始节点的父节点标志和操作符:
不作记录或记录为负
搜索过程(按照程序运行方式)
① 起始节点放到OPEN表
2 8 3 1 0 4
2 8 3 1 4 7 6 5 7 6 5
② OPEN不为空,继续
③ 将第一个节点 n 从 OPEN 表中移出,并放到 CLOSED表中 OPEN表
CLOSED表 1 0 0 2 8
13
14
1
4
2
8
8
3
3
0
1
2
4
1
5
4
7
7
0
6
6
5
1 8
7
2
3 4
14 15 15
16 16
3 2 4

人工智能第三版课件第3章搜索的基本策略

人工智能第三版课件第3章搜索的基本策略

人工智能第三版课件第3章搜索的基本策略搜索引擎是当今互联网时代不可或缺的工具,而人工智能技术在搜索引擎中起着举足轻重的作用。

本文将介绍《人工智能第三版课件》中第3章的内容,讨论搜索的基本策略。

基于这些策略,搜索引擎能够更加高效、准确地满足用户的信息需求。

1. 初始搜索空间在进行搜索之前,需要建立一个初始的搜索空间,即包含可能相关信息的一组文档或网页。

这个搜索空间的建立可以通过爬虫程序和抓取技术来收集网络上的信息,并将其存储在搜索引擎的数据库中。

2. 关键词匹配搜索引擎通过用户输入的关键词与搜索空间中的文档进行匹配,以找到与用户需求相关的内容。

关键词匹配可以使用词频、倒排索引等算法来实现。

其中,词频是指对于一个给定的关键词,在搜索空间中出现的频率;倒排索引则是一种将关键词与对应的文档进行关联的索引结构。

3. 分析用户意图搜索引擎还需要通过分析用户的搜索历史、点击行为等数据来了解用户的真实意图。

这可以通过机器学习算法来实现,例如基于用户行为的推荐系统。

通过了解用户的意图,搜索引擎可以更加准确地推荐相关内容。

4. 搜索结果排序搜索引擎会对匹配到的文档进行排序,以便将最相关的结果显示在前面。

排序算法通常通过计算文档与用户查询的相似度来实现。

相似度计算可以使用向量空间模型、BM25等算法。

5. 反馈与迭代搜索引擎不断根据用户的反馈进行迭代,以提供更好的搜索结果。

用户的反馈可以包括点击率、停留时间等指标,这些指标可以通过机器学习算法来进行分析和预测。

搜索引擎可以根据用户的反馈来调整排序算法,从而不断改进搜索结果的准确性和相关性。

综上所述,搜索引擎的基本策略包括建立初始搜索空间、关键词匹配、分析用户意图、搜索结果排序以及反馈与迭代。

这些策略通过人工智能技术的应用,使得搜索引擎能够更加智能化地满足用户的信息需求。

未来随着人工智能技术的不断发展,搜索引擎将会变得更加准确、个性化,并为用户提供更多智能化的服务。

人工智能第三章_搜索策略-1

人工智能第三章_搜索策略-1
❖搜索什么
搜索什么通常指的就是目标。
❖在哪里搜索
在哪里搜索就是“搜索空间”。搜索空间通常 是指一系列状态的汇集,因此称为状态空间。
和通常的搜索空间不同,人工智能中大多数问题的状 态空间在问题求解之前不是全部知道的。
2020/10/31
6
所以,人工智能中的搜索可以分成两个 阶段:
状态空间的生成阶段 在该状态空间中对所求问题状态的搜索
(1)初始状态集合:定义了初始 的环境。
(2)操作符集合:把一个问题从 一个状态变换为另一个状态的 动作集合。
(3)目标检测函数:用来确定一 个状态是不是目标。
(4)路径费用函数:对每条路径 赋予一定费用的函数。
其中,初 始状态集 合和操作 符集合定 义了问题 的搜索空
间。
2020/10/31
5
➢ 在人工智能中,搜索问题一般包括两个重 要的问题:
分析:通过引入一个三维变量将问题表示出来。设 三维变量为:Q=[q1,q2,q3],式中qi (i=1,2,3)=1表 示钱币为正面,qi (i=1,2,3)=0表示钱币为反面。 则三个钱币可能出现的状态有8种组合: Q0=(0,0,0),Q1=(0,0,1),Q2=(0,1,0),Q3=(0,1,1),Q4= (1,0,0),Q5=(1,0,1), Q6=(1,1,0), Q7=(1,1,1)。 即初始状态为Q5,目标状态为Q0或Q7,要求步数为3。
2020/10/31
21
钱币问题的状态空间图
2020/10/31
22
状态空间搜索
——1.状态空间及其搜索的表示
(2)状态空间表示的经典例子“传教士和野人问题” ★
问题的描述:
N个传教士带领N个野人划船过河; 3个安全约束条件:

第3章搜索推理技术3与或树搜索

第3章搜索推理技术3与或树搜索
OPEN表的末端 5、无叶节点,转到3步
OPEN= { 2,3 } CLOSED= { 1 }
第二大循环(3、4、5步): 3、从OPEN表中取出节点2,并送到CLOSED表 4、扩展节点2,生成后继节点4、5,并送到OPEN
表的末端 5、无叶节点,转到3步
OPEN= { 3, 4, 5 } CLOSED= { 1, 2 }
1、没有后裔的非终叶节点是不可解节点
2、如果某一个非终叶节点含有“或”后继节点, 那么,只要当所有的后继节点都不可解时,这一 个非终叶节点才是不可解的
3、如果某一个非终叶节点含有“与”后继节点, 那么,只要有一个后继节点是不可解的,这一个 非终叶节点就是不可解的
可解标志过程与不可解标志过程:
根据可解与不可解节点的递归定义,用递归的方 式作用于某一个与或图,以标出所有的可解节点 与不可解节点
注意
由于深度限制,深度优先搜索算法有可能找不 到解
例: 深度界限为4

1


2
6

3
ⅩA 7 √ C

4

5

8
t√
ⅩB
t
t
t
t




注:后生成的节点画在左边
课堂练习:用宽度和深度优先搜索算法找出解树
提示:对于宽度优先搜索,先生成的节点画在左; 对于深度优先搜索,后生成的节点画在左
2 4
算法结束的条件:
➢ 若初始节点被标志为可解节点,算法成 功结束(有解)
➢ 若起始节点被标志为不可解节点,则搜 索失败结束(无解)
与或图的解图: 由最少的可解节点所构成的子图,这些节 点能够使问题的起始节点是可解的

人工智能第三版课件第3章 搜索的基本策略

人工智能第三版课件第3章 搜索的基本策略

2.3.1 启发式信息的表示
(2) 启发式函数应能够估计出可能加速 达到目标的程度
这可以帮助确定当扩展一个节点时,那些 节点应从搜索树中删除。
启发式函数对搜索树(图)的每一节点的真正 优点估计得愈精确,解题过程就愈少走弯路。
2.3.1 启发式信息的表示
例 2.8 八 皇 后 问 题 (8-Queens problem)
弱法主要包括: .最佳优先法 .生成测试法 .爬山法 .广度优先法 .问题归约法 .约束满足法 .手段目的分析法。
1.生成测试法(Generateand-test)
生成测试法的基本步骤为: 1. 生成一个可能的解,此解是状态空 间一个点,或一条始于S0的路径。 2. 用生成的“解”与目标比较。 3. 达到目标则停止,否则转第一步。
确定一个启发式函数f(n), n 为被搜索 的节点,它把问题状态的描述映射成问题 解决的程度,通常这种程度用数值来表示, 就是启发式函数的值。这个值的大小用来 决定最佳搜索路径。
2.3.1 启发式信息的表示
(2)表示成规则
如AM的一条启发式规则为: 如 果 存 在 一 个 有 趣 的 二 元 函 数 f(x,y) , 那 么看看两变元相同时会发生什么?
2.3.1 启发式信息的表示
如何构造启发式函数? (1)启发式函数能够根据问题的当前状态, 确定用于继续求解问题的信息。
这样的启发式函数能够有效地帮助决定 那些后继节点应被产生。
2.3.1 启发式信息的表示
例2.7 八数码问题。
S0
283 16 4
Sg
75
123 84 7 65
问题空间为:
a11 a12 a13 a21 a22 a23 a31 a32 a33

3.3-启发式搜索(2)

3.3-启发式搜索(2)

8
例1:水壶问题
给定4L和3L的水壶各一个,水壶上没有刻 度,可以向水壶中加水。如何在4L的壶中 准确地得到2L水?
这里:用(x,y)—4L壶里的水有xL,3L壶里的水 有yL,n表示搜索空间中的任一节点。 则给出下面的启发式函数:
人工智能 丁世飞
9
例1:水壶问题
h(n) = 2 =4 =8 =10 如果0< x < 4并且0< y < 3 如果0< x < 4或者0< y < 3 如果 x = 0并且 y = 3 或者 x =4 并且 y= 0 如果 x = 0 并且 y = 0 或者 x1 引言 3.2 盲目搜索 √3.3 启发式搜索(2) 启发式搜索(2)
人工智能 丁世飞 1
通用图搜索算法( 算法 算法) 3.3.3 通用图搜索算法(A算法)
图搜索算法只记录状态空间中那些被搜索 过的状态,它们组成一个搜索图 搜索图G 过的状态,它们组成一个搜索图G。 搜索图G由两种节点组成: 搜索图G由两种节点组成:
人工智能 丁世飞 17
A*算法 算法
有了g*(n) 和h*(n) 的定义,如果对最好优先的 的定义,如果对最好优先的 有了 启发式搜索算法中的 中的g(n)和h(n)做如下的限制: 做如下的限制: 启发式搜索算法中的 和 做如下的限制
人工智能 丁世飞
3
图搜索算法( 算法)(P78:算法3.8) 图搜索算法(A算法)(P78:算法3.8) 算法
Procedure Graph-Search Begin 建立一个只含有初始节点S 的搜索图 , 放入OPEN表;计算 0)=g(S0)+h(S0); 建立一个只含有初始节点 0的搜索图G,把S0放入 表 计算f(S 假定初始时CLOSED表为空。 表为空。 假定初始时 表为空 While OPEN 表不空 do Begin 表中取出f值最小的节点 第一节点),并放入 表中.假设该节点 从OPEN表中取出 值最小的节点 第一节点 并放入 表中取出 值最小的节点(第一节点 并放入CLOSED表中 假设该节点 表中 的编号为n。 的编号为 。 If n是目标 则停止 返回 并根据 的反向指针指出的从初始节点到 的路径。 是目标,则停止 返回n,并根据 的反向指针指出的从初始节点到n的路径 是目标 则停止;返回 并根据n的反向指针指出的从初始节点到 的路径。 Else do Begin (1) 生成 的子节点集合 i},把mI作为 的后继节点加入到 中,并计算 生成n的子节点集合 的子节点集合{m 把 作为n的后继节点加入到 的后继节点加入到G中 并计算 f(mi)。 。 (2) If mi未曾在 中出现过 即未曾在 未曾在G中出现过 即未曾在OPEN和CLOSED表中出现过 中出现过(即未曾在 表中出现过),then 将 和 表中出现过 它们配上刚计算过的f值 设置返回到 的指针,并把它们放入 设置返回到n的指针 并把它们放入OPEN表中。 表中。 它们配上刚计算过的 值,设置返回到 的指针 并把它们放入 表中

搜索策略

搜索策略

• var a:array[1..10] of integer;n:integer; • procedure find(k:integer);//找第k步的可能性 • var i,j:integer; flag:boolean;//标记当前值是否可用 • begin • if k>n then //当前n步都试完 • begin • for i:=1 to n-1 do write(a[i],' ');// 输出当前的序列 • writeln(a[n]); • exit; //结束当前这一步的探求 • end; • for i:=1 to n do //每一步的数字都有可能是1~n • begin • flag:=true; • for j:=1 to k-1 do • if i=a[j] then begin flag:=false;break;end; • if flag then //如果i的值跟a[1]~a[k-1]的值没有重复 • begin • a[k]:=i;//第k步的值为i • find(k+1);//探求下一步 • end; • end;
• 4.生成字符串(strs) • 【问题描述】 • 假设字符串由字符“O”,“1”,“*”组成,其中字符“*”表示该字符可由 字符“O”或“l”替代。 • 现有一些字符串,根据这些字符串生成所有可生成的字符串。如: • {10,*1,O*)可生成{10,01,11,OO} • {101,O01,*O1)可生成{101,O01} • 注意后一个例子中“*01”并没有生成新的字符串。 • 【输入格式】 • 第1行是两个整数m,n(1≤m≤15,1≤n≤2500)。m表示字符串的长度,n表示 字符串的个数。 • 以下n行每行各有一个字符串。文件中各行的行首、行末没有多余的空格。 • 【输出格式】 • 一个整数,表示所能生成的字符串的个数。 • 【输入样例】 • 23 • 10 • *1 • O* • 【输出样例】 • 4

人工智能之搜索策略介绍课件

人工智能之搜索策略介绍课件
1 划中用于寻找最短 路径,如Dijkstra 算法和A*算法。
游戏AI:启发式搜 索策略在游戏中用
3 于寻找最优策略, 如国际象棋、围棋 等棋类游戏的AI算 法。
任务调度:启发式 搜索策略在任务调
2 度中用于优化任务 分配,如最小化任 务完成时间和资源 消耗。
机器人控制:启发 式搜索策略在机器
4 人控制中用于规划 机器人运动路径, 如自主导航和避障。
务调度、资源分配等。
启发式搜索策略的分类
局部搜索策略:只考虑当前状态
01
附近的解空间 全局搜索策略:考虑整个解空间
02
的所有状态 启发式搜索策略:根据问题特点, 03 选择合适的搜索策略 自适应搜索策略:根据搜索过程
04
中的信息,动态调整搜索策略
启发式搜索策略的应用实例
路径规划:启发式 搜索策略在路径规
强化学习搜索 策略:将强化 学习和搜索策 略相结合,以 实现更优的决 策和行动
强化学习搜索策略的分类
01 基于模型的搜索策略:使
用模型来预测状态和动作 的价值,如Q-learning 和Deep Q-Networks。
02 基于策略的搜索策略:直
接优化策略,如Policy Gradients和ActorCritic方法。
游戏AI:游戏策略、游戏 角色行为等
机器人控制:机器人路径 规划、机器人行为控制等
启发式搜索策略的定义
1
启发式搜索策略是一种基于 启发式信息的搜索策略。
2
它通过使用启发式信息来指 导搜索过程,以减少搜索空
间,提高搜索效率。
3
启发式信息可以是问题领域 的知识、经验或启发式函数。
4
启发式搜索策略广泛应用于 各种问题,如路径规划、任

人工智能基础教学课件03搜索策略

人工智能基础教学课件03搜索策略
图3-7 与/或树
3.1 搜索策略概述
3.1.3 问题归约法
2.问题归约法的相关概念 为方便求解问题,问题归约法中引入以下几个基本的概念: (1)可解节点与不可解节点。在与/或树中,满足下列条件之一的节点称为可解节点:
①任何终止节点都是可解节点。
②对“与”节点,只有当其子节点全部为可 解节点时,该“与”节点才是可解节点。
3.1 搜索策略概述
3.1.2 状态空间法
状态空间法是人工智能中最基本的问题求解方法,它所采用的问题表示方法称为状态空间表示法。 状态空间法的基本思想是用“状态”和“算符”来表示和求解问题。从初始状态到目标状态所采用的 算符序列,称为问题的一个解。 1.状态
状态是指为了描述问题求解过程中不同时刻下状况(如初始状况、事实等叙述性知识)间的差异, 而引入的最少的一组变量的有序组合,常用矢量的形式表示。
03
搜索策略
3.1 搜索策略概述
3.1.1 搜索概述
1.搜索的概念
概 念
根据问题的实际情况,不断寻找可利用的 知识,从而构造一条代价最小的推理路线,使 问题得以解决的过程称为搜索。
3.1 搜索策略概述
3.1.1 搜索概述
2.搜索过程中需要解决的基本问题 搜索过程中需要解决的基本问题可以概括为以下几个方面:
3.1 搜索策略概述
3.1.3 问题归约法
【例3-3】三阶梵塔问题。
解 答
利用问题归约法,原始问题可分解为以下3个子问题: (1)把金片A和B移到2号钢针上的双金片移动问题,即
(1,1,1)→(1,2,2) (2)把金片C移到3号钢针上的单金片移动问题,即
(1,2,2)→(3,2,2) (3)把金片A和B移到3号钢针上的双金片移动问题,即

3.3-启发式搜索(1)

3.3-启发式搜索(1)
人工智能 丁世飞 9
8数码问题的评估函数
)=0, )=4, 对初始节点S0,由于d(S0)=0,w(S0)=4, )=4。 因此, 因此,f(S0)=4。 这里只是说明了评估函数的含义及如何选 择评估函数和计算评估函数值。 择评估函数和计算评估函数值。 在搜索过程中除了需要计算初始节点的评 估函数外, 估函数外,更多的是需要计算新生节点的 评估函数。 评估函数。
人工智能 丁世飞
12
最好优先的基本思想 注意: 注意:
这里是对所有的节点进行检测, 这里是对所有的节点进行检测,然后选择最有 希望的节点进行扩展, 希望的节点进行扩展,而不是仅仅从当前节点 所生成的子节点中进行选择。 所生成的子节点中进行选择。 因此,如果在早期选择了一个错误的节点, 因此,如果在早期选择了一个错误的节点,最 好优先搜索就提供了一个修改的余地。 好优先搜索就提供了一个修改的余地。
最好优先搜索的优缺点
鉴于最好优先搜索的不足, 鉴于最好优先搜索的不足,需要对启 发式函数等进行限制, 发式函数等进行限制,A*算法就是对 启发式函数加上限制后得到的一种启 发式搜索算法。 发式搜索算法。 在讨论A 算法之前, 在讨论A*算法之前,首先讨论通用的 图搜索算法。 图搜索算法。
人工智能 丁世飞 16
人工智能
第3章 搜索策略
3.1 引言 3.2 盲目搜索 √3.3 启发式搜索(1) 启发式搜索(1)
人工智能 丁世飞 1
启发式搜索(1) 3.3 启发式搜索(1)
前面讨论的各种搜索方法都是按事先规定的路线 进行搜索,没有用到问题本身的特征信息, 进行搜索,没有用到问题本身的特征信息,具有 较大的盲目性,产生的无用节点较多, 较大的盲目性,产生的无用节点较多,搜索空间 较大,效率不高。 较大,效率不高。 如果能够利用问题自身的一些特征信息来指导搜 索过程,则可以缩小搜索范围,提高搜索效率。 索过程,则可以缩小搜索范围,提高搜索效率。 像这样利用问题自身特征信息来引导搜索过程的 方法称为启发式方法 启发式方法。 方法称为启发式方法。

第三章搜索策略(ppt)-PracticalReaso

第三章搜索策略(ppt)-PracticalReaso

Searching: 27
© Graduate University , Chinese academy of Sciences.
Q Q
Artificial Intelligence
Searching: 25
© Graduate University , Chinese academy of Sciences.
Q () ((1,1)) ((1,1) (2,3)) ((1,1) (2,4)) ((1,1) (2,4) (3.2))
Artificial Intelligence
Searching: 11
© Graduate University , Chinese academy of Sciences.
状态空间表示法(5)
• 用状态空间表示,首先必须定义状态的描述形式,把问题的一切状态都表 示出来,其次定义算符,完成状态的转换
Q ()
((1,1))
Artificial Intelligence
Searching: 20
© Graduate University , Chinese academy of Sciences.
() ((1,1)) ((1,1) (2,3))
Q Q
Artificial Intelligence
Q Q
Q
Artificial Intelligence
Searching: 24
© Graduate University , Chinese academy of Sciences.
() ((1,1)) ((1,1) (2,3)) ((1,1) (2,4)) ((1,1) (2,4) (3.2))
Artificial Intelligence
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Computer
from Stanford in1958.不断寻找可利用的知识,构造出
旅行问题:如:考虑访问罗马尼亚地图中的每个城市至少
度假,假设他有张第二天飞离Bucharest
CLOSE
盲目搜索:也称为无信息搜索,即只按预定的控
在搜索过程中获得的中间信息不
是否有更好的搜索方法?
深度优先搜索
数码问题
是否有更好的搜索方法?
,当搜索深度达到了深度界限
进行搜索
对于有界深度搜索策略,有下面几点需要说明:
是一个很重要的参数
,然后按有界深度
搜索生成的节点数为:
目标:任何一个皇后都不会攻击到其他的皇后(皇后可以攻击和它在同一行、同一列或同一对角线上的皇后)
延伸:超立方拉丁采样问题
从节点i到它的后继节点j的连接弧线代价记为c(i,j);
从起始节点S到任一节点i的路径代价记为g(i)。

等代价搜索算法
传教士传教士
为船是否在左岸,要求M>=C )(均为左岸状态)
仍然以河的左岸为基点来考虑,把船从左岸划向右岸定义为Pij
P11,P02,P20,Q01,Q10,Q11,Q02,Q20}
P10if(ML,CL,BL=1)then(ML–1,CL,BL–1)
P01if(ML,CL,BL=1)then(ML,CL–1,BL–1)
P11if(ML,CL,BL=1)then(ML–1,CL–1,BL–1)
P20if(ML,CL,BL=1)then(ML–2,CL,BL–1)
P02if(ML,CL,BL=1)then(ML,CL–2,BL–1)
Q10if(ML,CL,BL=0)then(ML+1,CL,BL+1)
Q01if(ML,CL,BL=0)then(ML,CL+1,BL+1)
Q11if(ML,CL,BL=0)then(ML+1,CL+1,BL+1)
Q20if(ML,CL,BL=0)then(ML+2,CL+2,BL+1)
Q02if(ML,CL,BL=0)then(ML,CL+2,BL+1)。

相关文档
最新文档