光的基础知识

合集下载

物理光的必备知识点大全

物理光的必备知识点大全

物理光的必备知识点大全物理对我们来说并不陌生。

在我们的周围,大至整个宇宙,小至我们身边,无时无刻不在发生种.种的物理现象。

接下来在这里给大家分享一些关于物理光的知识点,供大家学习和参考,希望对大家有所帮助。

物理光的知识点一、光的反射1、光源:能够发光的物体叫光源2、光在均匀介质中是沿直线传播的大气层是不均匀的,当光从大气层外射到地面时,光线发了了弯折3、光速光在不同物质中传播的速度一般不同,真空中最快,光在真空中的传播速度:C = 3×108 m/s,在空气中的速度接近于这个速度,水中的速度为3/4C,玻璃中为2/3C4、光直线传播的应用可解释许多光学现象:激光准直,影子的形成,月食、日食的形成、小孔成像等5、光线光线:表示光传播方向的直线,即沿光的传播路线画一直线,并在直线上画上箭头表示光的传播方向(光线是假想的,实际并不存在)6、光的反射光从一种介质射向另一种介质的交界面时,一部分光返回原来介质中,使光的传播方向发生了改变,这种现象称为光的反射7、光的反射定律反射光线与入射光线、法线在同一平面上;反射光线和入射光线分居在法线的两侧;反射角等于入射角可归纳为:“三线一面,两线分居,两角相等”理解:(1) 由入射光线决定反射光线,叙述时要“反”字当头(2) 发生反射的条件:两种介质的交界处;发生处:入射点;结果:返回原介质中(3) 反射角随入射角的增大而增大,减小而减小,当入射角为零时,反射角也变为零度8、两种反射现象(1) 镜面反射:平行光线经界面反射后沿某一方向平行射出,只能在某一方向接收到反射光线(2) 漫反射:平行光经界面反射后向各个不同的方向反射出去,即在各个不同的方向都能接收到反射光线注意:无论是镜面反射,还是漫反射都遵循光的反射定律光的颜色与色散知识点我们平时常见的白色太阳光,实际上是由红、橙、黄、绿、蓝、靛、紧七种单色光组成的,下面是光的颜色与色散知识点,希望对考生报考有帮助。

光的基础知识

光的基础知识

一、光的基础知识⒈可见光的光谱特性(1)可见光的定义光是一种具有能量的物质,是一种频率很高的电磁波,它以电磁辐射的方式将其能量向外传播。

对整个电磁波而言,包括:无线电波、红外线、可见光、紫外线、X 射线、宇宙射线等。

其频率范围大约在10 5 -10 25 (波长为3×10 3 --3×10 -17 m)。

波长在380—780mm 范围内的电磁波,人眼可以直接看到,所以称为可见光。

对整个电磁波而言,可见光所占的频带(也称波谱)是很窄的,如图1-24所示。

图1-24电磁波波谱及可见光光谱(2)可见光的光谱特性①光谱由光学原理知,当光(波)从一种媒质进入另一种媒质时,2 传播的方向将发生变化。

这种现象叫做光的折射。

而光折射的角度与其波长有关,即波长越短折射角度越大。

若将一束白光(太阳光)投射到一块玻璃三棱镜上,就会分解出红橙黄绿青蓝紫七种彩色光。

把这七种彩色光所排成的光带叫光谱,如图1-25 所示。

图1-25 太阳光的棱镜分解出现上述现象的原因就是不同波长的光通过同一媒质时,其折射率不同所致。

即换句话说,不同波长的光表现为不同颜色。

②单色光:只含单一波长的光称为单色光,也叫谱色光。

③复合光:包含两种或两种以上单色光混合的光称为复合光,也叫非谱色光。

综上所述,白光可分解为不同波长的单色光,反过来单色光也可以复合给人以白色光的感觉。

2.光源与色温(1)光源①光源的定义:通常把自身能够发光的物体叫做发光体。

在物理学中叫光源。

3 ②光源分类A.天然光源如太阳、恒星等。

B.人造光源如白炽灯、钨丝灯、日光灯等(2)光源的色温①绝对黑体:是指既不反射,也不透射,而完全吸收入射光的理想物体叫绝对黑体。

绝对黑体不仅能全部吸收外来的入射光,而且在黑体温度升高后能以电磁波的形式向外辐射能量,这种现象称为黑体辐射。

它较之在相同温度下的任何其它物体的辐射能力都强,故大功率的散热片上都涂上黑色,以利散热。

②绝对黑体的辐射功率分布绝对黑体随着温度的升高,辐射功率显著增加,并向波长变短的方向移动。

初中物理光学知识点

初中物理光学知识点

初中物理光学知识点一、光的基础知识1. 光的来源:自然光源(太阳、萤火虫)和人造光源(灯泡、荧光灯)。

2. 光的传播:光在均匀介质中沿直线传播,例如激光束在空气中的直线传播。

3. 光速:在真空中,光速约为每秒299,792,458米,是宇宙中最快的速度。

二、光的反射1. 反射定律:入射光线、反射光线和法线都在同一平面内,且入射角等于反射角。

2. 平面镜成像:平面镜能形成正立、等大的虚像。

3. 镜面反射与漫反射:镜面反射指光线在光滑表面上反射,而漫反射指光线在粗糙表面上向各个方向散射。

三、光的折射1. 折射现象:光线从一种介质进入另一种介质时,其传播方向会发生改变。

2. 折射定律:入射光线、折射光线和法线都在同一平面内,且入射角和折射角的正弦值之比为常数(介质的折射率)。

3. 透镜成像:凸透镜能形成实像或虚像,凹透镜只能形成缩小的或放大的虚像。

四、光的色散1. 色散原理:不同颜色的光在通过介质时,由于折射率不同,传播速度不同,导致光线分离成不同颜色的现象。

2. 光谱:通过棱镜可以将白光分解成红、橙、黄、绿、蓝、靛、紫七种颜色的光谱。

3. 物体的颜色:物体的颜色由其反射或透过的光的颜色决定。

五、光的干涉和衍射1. 干涉现象:两个或多个相干光波相遇时,光强的增强或减弱现象。

2. 双缝干涉:通过两个相距很近的狭缝的光波相遇时,会在屏幕上形成明暗相间的干涉条纹。

3. 衍射现象:光波通过狭缝或绕过障碍物时发生的方向改变现象。

六、光的偏振1. 偏振光:只在一个方向上振动的光波称为偏振光。

2. 偏振片:只允许特定方向振动的光通过的光学元件。

3. 马吕斯定律:描述偏振光通过两个偏振片后光强变化的定律。

七、光的应用1. 光纤通信:利用光的全反射原理传输信息。

2. 激光技术:利用激光的高亮度、高单色性和高方向性的特点,在医疗、工业和科研等领域有广泛应用。

3. 光学仪器:如显微镜、望远镜等,利用光学原理放大或观察微小或远距离的物体。

光学基础知识详细版

光学基础知识详细版

光学基础知识详细版一、光的本质光是一种电磁波,是自然界中的一种能量传递形式。

光的本质可以通过波动理论和粒子理论来解释。

波动理论认为光是一种波动现象,具有波长、频率、振幅等特性;粒子理论则认为光是由光子组成的,光子是光的能量载体。

二、光的传播光在真空中的传播速度是恒定的,约为299,792,458米/秒。

光在不同介质中的传播速度不同,这是由于介质的折射率不同所致。

当光从一种介质传播到另一种介质时,会发生折射现象,即光线方向发生改变。

三、光的反射和折射光的反射是指光线在遇到界面时,按照一定规律返回原介质的现象。

光的折射是指光线在通过两种不同介质的界面时,传播方向发生改变的现象。

光的反射和折射遵循斯涅尔定律,即入射角和折射角满足一定的关系。

四、光的干涉和衍射光的干涉是指两束或多束相干光波相遇时,由于光波的叠加,形成新的光强分布的现象。

光的衍射是指光波在遇到障碍物或通过狭缝时,发生弯曲并绕过障碍物传播的现象。

五、光的偏振光的偏振是指光波的振动方向具有一定的规律性。

自然光是由无数个振动方向不同的光波组成的,因此不具有偏振性。

当光波通过某些特殊材料或经过反射、折射等过程后,可以形成具有一定偏振性的光波。

六、光的吸收和发射光的吸收是指光波在传播过程中,能量被物质吸收的现象。

光的发射是指物质在吸收光能后,以光波的形式释放能量的现象。

光的吸收和发射遵循一定的规律,如光的吸收强度与光的频率有关,光的发射强度与物质的性质有关。

七、光的成像光的成像是指利用光学系统(如透镜、反射镜等)使物体发出的光波或反射的光波在另一位置形成实像或虚像的过程。

光的成像原理是光的折射和反射现象,通过光学系统可以实现对物体形状、大小、位置的观察和研究。

八、光的测量光的测量是光学研究中的重要内容,主要包括光强、光强分布、波长、频率、相位等参数的测量。

光的测量方法有直接测量和间接测量两种,直接测量是通过光学仪器直接测量光波参数,间接测量是通过测量光波与物质相互作用的结果来推算光波参数。

光学基础知识点总结

光学基础知识点总结

光学基础知识点总结一、光的基本特性光是电磁波的一种,具有波粒二象性,既具有波动性,也具有粒子性。

光的波长决定了它的颜色,波长越短,频率越高,颜色就越偏向紫色;波长越长,频率越低,颜色就越偏向红色。

媒质对光的传播起到了阻碍的作用,阻碍的程度由折射率决定。

在真空中,光速是最高的,为3.0×10^8m/s。

二、光的传播光在真空中的传播速度是最快的,当光通过不同介质时,光速会减慢,并且折射。

光的折射是由于光速在不同介质中的差异导致的,根据折射定律,入射角和折射角之比等于两种介质的折射率之比。

当光从光密介质射向光疏介质时,入射角大于折射角;反之,当光从光疏介质射向光密介质时,入射角小于折射角。

这就是为什么水池里的东西看上去都有些歪的原因。

三、光的反射和折射光的反射是指光线从一种介质透过到另一种介质时,遇到界面时发生的现象。

根据反射定律,光线的入射角等于反射角,反射定律表明入射角和反射角是相等的。

光的折射是指光在通过两种介质的分界面时,由于介质折射率的不同,在两种介质中的传播方向发生改变的现象。

四、光的干涉和衍射光的干涉是光波相互叠加,在波峰与波谷相遇时叠加会增强,而在波峰与波峰相遇时叠加会减弱。

光的干涉现象有两种:一种是菲涅尔干涉,一种是朗伯干涉。

光的衍射是指光波通过一道障碍物,由于波的直线传播受到限制,在障碍物边缘处波前发生变形,这种现象就是衍射。

光的干涉和衍射是光学中非常重要的现象,也是很多光学仪器(如干涉仪、衍射光栅等)的原理基础。

五、光学成像光学成像是指通过光学器件将物体的形象投射到屏幕或者成像器件上的过程。

根据成像光学器件的不同,光学成像可以分为透镜成像和反射镜成像。

在透镜成像中,成像的原理是由于透镜对光的折射性质,使得光线汇聚或发散从而产生物体的形象。

在反射镜成像中,成像的原理是由于反射镜对光的反射性质,使得光线经过反射后,同样能够形成物体的形象。

光学成像技术在医学、军事、天文学、摄影等领域都有着非常重要的应用。

初中物理光学知识点总结

初中物理光学知识点总结

初中物理光学知识点总结一、光的基础知识1. 光的传播- 光在同种均匀介质中沿直线传播。

- 光速在真空中约为3×10^8 m/s,在其他介质中速度会减小。

2. 光的反射- 反射定律:入射光线、反射光线和法线在同一平面内,且入射角等于反射角。

- 镜面反射:光滑表面反射光线规律性强,反射光线与入射光线平行。

- 漫反射:粗糙表面反射光线规律性弱,反射光线向各个方向散射。

3. 光的折射- 折射现象:光线从一种介质进入另一种介质时,传播方向发生改变。

- 折射定律:斯涅尔定律,n1sinθ1 = n2sinθ2,其中n1和n2分别为两种介质的折射率,θ1和θ2分别为入射角和折射角。

- 折射率:表示光在介质中传播速度相对于真空中速度的比值。

4. 光的颜色- 可见光是电磁波谱中的一部分,波长大约在380 nm到750 nm之间。

- 颜色由光的波长决定,不同波长的光对应不同的颜色。

- 光谱:通过棱镜可以将白光分解为不同颜色的光,形成彩虹般的光谱。

二、透镜及其成像1. 透镜的类型- 凸透镜:两侧向外凸起,能使平行光线汇聚于一点。

- 凹透镜:两侧向内凹陷,能使平行光线发散。

2. 透镜成像规律- 凸透镜成像:- 当物体位于焦点之内,成正立、放大的虚像。

- 当物体位于焦点之外,成倒立、缩小的实像。

- 凹透镜成像:- 成正立、缩小的虚像。

3. 透镜的光学参数- 焦距:透镜中心到焦点的距离。

- 视距:透镜中心到成像位置的距离。

- 放大倍数:成像与物体大小的比值。

三、光的干涉和衍射1. 光的干涉- 干涉现象:两束或多束相干光波相遇时,光强增强或减弱的现象。

- 干涉条件:两束光波的频率相同,相位差恒定。

2. 光的衍射- 衍射现象:光波遇到障碍物或通过狭缝时,传播方向发生偏离直线的现象。

- 单缝衍射:光波通过一个狭缝时产生的衍射图样。

四、光的偏振1. 偏振光- 偏振光是振动方向受到限制的光波。

- 通过偏振片可以获得只在一个方向上振动的线偏振光。

光现象知识点总结简单

光现象知识点总结简单

光现象知识点总结简单1. 光的传播光是一种电磁波,在真空中传播时速度为光速,约为300000km/s。

在不同介质中传播时,光速会发生变化,这就是光的折射现象。

光的传播遵循直线传播的原则,可以通过光学器材或者在介质中进行传播。

2. 光的折射当光从一种介质射入另一种介质时,光线的传播方向会发生改变,这就是光的折射现象。

根据折射定律,入射角、折射角和介质折射率之间有一定的关系,即$n_1sinθ_1=n_2sinθ_2$。

这一定律和关系可以用来解释光的折射现象,也可应用到实际问题中进行计算。

3. 光的反射当光从一种介质射入另一种介质时,若表面是光滑的,光线会产生反射,并且遵循反射定律。

反射定律规定入射角等于反射角,即入射光线和反射光线在反射面上的夹角相等。

反射现象在实际生活中得到广泛应用,如反光镜、平面镜等。

4. 光的色散光的色散是指当光通过不同介质的时候,不同波长的光被折射的程度不同,从而产生不同颜色的现象。

这一现象可以观察到彩虹、棱镜分光等现象。

光的色散也是分光仪、光谱仪等器材的基础原理。

5. 光的衍射当光线通过一个孔径或者通过物体的边缘时,光线会发生折射和衍射现象。

这种现象称为光的衍射,可以用来解释物体的阴影、光的干涉等现象。

光的衍射也是实验室中研究光学特性的重要方法。

6. 光的干涉光的干涉是指两束或者多束相干光叠加后产生的干涉现象。

根据光的波动性质,光的干涉可以用来解释反射膜、干涉仪、雨刷等现象。

光的干涉在光学测量、光学仪器等方面具有广泛的应用。

7. 光的偏振光是一种横波,它在传播时会振动方向,这种特点称为光的偏振。

偏振现象可以用来解释偏振片、偏振光等现象,也可以应用到光学调制、信息传输等领域。

8. 光的吸收和发射介质对光的吸收和发射是光学研究的重要方面。

吸收和发射现象可以用来解释物质的电子结构、激发态、荧光、磷光、光谱特性等现象,也可以应用到激光、半导体器件、光电子器件等领域。

总之,光现象是光学研究的重要内容之一,在生活和科研中都具有广泛的应用。

光现象 知识梳理+基础练习

光现象 知识梳理+基础练习

光现象知识梳理+基础练习知识点1:三种光现象1.光源、光线和光速(1)光源:自身能够发光的物体,分为自然光源(如太阳、萤火虫)和人造光源(如LED灯)两种。

(2)光线:用一条带有箭头的直线表示光传播的径迹和方向,这样的直线叫作光线。

光线是不存在的,而光是客观存在的。

(3)光速A.光既可以在空气、水、玻璃等透明介质中传播,也可以在真空中传播。

光在各种介质中的传播速度:v空气>v水>v玻璃。

B.光在真空中的传播速度最大,用字母c表示。

c≈ __________ m/s=__________km/s。

示意图举例镜面、平静的水面、黑板反光、光污染电影屏幕、看书上的字例1:如图所示,小孔成像的原理是____________________,所成的像是_______ (选填“正立”或“倒立”)的_______(选填“实”或“虚”)像。

若光源是条形的,小孔是三角形的,则成的像是_________ 的。

2.如图所示,起初杯子看起来是空的,当慢慢往杯中倒水后,就会发现杯中还藏着一枚硬币。

前者是硬币反射的光沿________,光被杯壁挡住了;后者看到硬币,是因为光从______中斜射入 _______ 中发生了_________ ,进入人的眼睛。

知识点2:光的反射定律、折射规律1.光的反射定律(1)三线共面:______光线、______ 光线和 ______在同一平面内。

(2)两线分居:______光线和______光线分别居于法线两侧。

(3)两角相等:______角等于______角。

2.光的折射规律(1)三线共面:______光线、______光线和______在同一平面内。

(2)两线分居:______光线和______光线分别居于法线两侧。

(3)空气中角大:当光从空气斜射入水或玻璃等透明物质时,折射光线向法线方向偏折,折射角____入射角;当光从水或玻璃等透明物质斜射入空气时,折射角____入射角。

光学基础知识

光学基础知识
色像差分成轴向色像差和倍率色像差两种。
轴向色像差:指的是光轴上的位置,因波长不同产生不同颜色有不同焦点的现象。由于不同色光焦距 不同,物点不能很好的聚焦成一个完美的像点,所以成像模糊。
倍率色像差:指由于不同色光焦距不同,所以放大率不同,引起的映像倍率改变,画面边缘部分明暗交 界处会有彩虹的边缘。
人眼的视网膜上有两种光感受器:视杆细胞和视锥细胞。 视杆细胞的非常灵敏,在很暗的光照下还能工作,但不能区别颜色,在较暗的环境亮度下主要是视杆细胞的 活动,称暗视觉; 视锥细胞不够灵敏,只有在较强的光照下才能工作,能区别颜色。在明亮的环境中主要是视锥细胞的活动,称 明视觉; 在中等亮度范围,两种感光细胞均参与视觉称间视觉。 正常眼睛的明视距离是250毫米。
视觉系统的空间分辨能力常用视敏度来表示,其定义为眼能够分辨的最小细节所对应的视角(以分为单位)的倒 数。
正常人眼的视敏度约对应视角1‘~30“。 物体两端对眼睛光心所张的角(即视角)不能小于1‘角度,否则人眼无法分辨该物体。
谢谢观赏
教学资料整理
•Байду номын сангаас仅供参考,
(2)、镜头焦距 镜头焦距越长,景深越小;焦距越短,景深越大;
(3)、拍摄距离 距离越远,景深越大;距离越近,景深越小。
光圈越大,景深越小;光圈越小,景深越大;
景深的实际拍摄照片 ---------- 只改变镜头光圈和快门速度
光圈f/2.8 曝光时间1/125 s
光圈f/5.6 曝光时间1/30 s
场曲在望远镜中表现比较明显,但是害处较小,我们使用望远镜很明显可以看到边缘成像不如中心,这种边 缘模糊就主要是场曲和彗差的综合作用,其中场曲是主要的。
场曲和彗差都与视场大小有关,视场越大则越严重,所以现代望远镜不是很追求广角设计。在视场较小的天 文望远镜中,场曲和彗差就要轻微得多。

光学基础知识

光学基础知识

光学基础知识光学,作为物理学的一个分支,研究光线的传播、反射、折射以及与物质的相互作用等现象。

它是现代科技与生活中不可或缺的一部分。

本文将从光的特性、光的传播、光的反射与折射以及光的色散等方面,对光学基础知识进行探讨和介绍。

一、光的特性光是一种电磁波,具有无质量、无电荷、无形状、无味道和无颜色等特性。

光的波动性和粒子性共同组成了光的本质。

根据波粒二象性理论,光既可被看作是一种电磁波,也可被看作是由光子组成的一种粒子。

光具有波长、频率、速度和能量等基本性质。

二、光的传播光在真空中的传播速度是一个常数,即光速。

根据实验测量,光速的数值约为每秒299,792,458米。

光在介质中的传播速度则会因介质的不同而有所变化。

光的传播满足直线传播的几何光学原理,光线在相同介质中的传播路径是沿着最短时间的路径传播,而在不同介质中会发生折射。

三、光的反射与折射当光线遇到一个光滑的表面时,一部分光线返回原来的介质中,这种现象称为光的反射。

光的反射符合反射定律,即入射角等于反射角。

根据反射定律可以解释镜子的成像原理以及光的反射现象。

光在从一种介质传播到另一种介质时,会发生偏转的现象,这种现象称为光的折射。

光的折射符合折射定律,即入射角的正弦与折射角的正弦之比等于两种介质的折射率之比。

不同介质的折射率不同,所以光在不同介质中的传播路径也不同。

四、光的色散光的色散是指光在透明介质中不同波长的光具有不同的折射率,因此沿着不同的路径传播,导致光的分离现象。

这是由介质的折射率与波长的关系所决定的。

对于自然光,其颜色是由不同波长的光波组成的。

当自然光经过介质时,不同波长的光波会发生不同程度的折射,造成光的分离。

这就是我们所熟知的光的折射现象,如光的折射在水中出现的折射率较大,使得看到的物体发生畸变。

五、光学应用光学作为一门应用广泛的科学,其在日常生活和科技领域中有着重要的应用。

在光学领域,光的折射原理被广泛用于镜片、透镜、眼镜等光学器件的设计与制造上。

光的基础必学知识点

光的基础必学知识点

光的基础必学知识点
1. 光的本质:光是一种电磁波,它是由一种特定频率的电磁辐射所组
成的。

2. 光的传播方式:光是以直线传播的,也即光线是直线的,除非被物
体所阻挡或发生其他折射、反射等现象。

3. 光的速度:光在真空中的速度约为每秒3万公里,是最快的速度。

4. 光的波长与频率:波长是光的一种性质,表示相邻两个波峰(或波谷)之间的距离。

频率则表示单位时间内波峰(或波谷)通过某一点
的次数。

5. 光的传播和反射:当光遇到材料的边界时,根据入射角度和材料的
折射率,会发生反射和折射现象。

折射是指光在边界上发生了偏移;
而反射是指光从边界上弹回。

6. 光的折射率:折射率是用来衡量材料对光的折射程度的物理量,表
示入射角和折射角的比值。

7. 光的散射:当光与物体表面上的微粒或不均匀的纹理等碰撞时,会
发生光的散射现象。

散射会使光沿各个方向传播,从而使物体看起来
发光或发亮。

8. 光的色散:光在经过某些材料时,不同波长的光会以不同的速度传播,导致光分解为不同颜色的现象,称为光的色散。

9. 光的干涉和衍射:干涉是指两束或多束光波相遇时相互作用的结果,产生了明暗交替的干涉条纹;衍射则是指光通过开口或障碍物之后发
生的扩散现象。

10. 光的偏振:光波的振动方向与光传播方向的关系称为光的偏振。

偏振可以通过透过滤波片或反射光线等方式进行调整。

以上是光的基础必学知识点的概述,深入学习光学领域还有更多的知
识点和理论。

光源基础必学知识点

光源基础必学知识点

光源基础必学知识点
1. 光的本质:光是一种电磁波,具有波粒二象性。

当光以粒子的形式传播时,称为光子。

2. 光的传播:光在真空中传播速度为光速,约为每秒30万公里。

光在介质中传播时,会发生折射和反射。

3. 光的产生:光可以由各种物质的激发、电场激励、热辐射等方式产生。

最常见的光源是太阳、电灯等。

4. 光的颜色:光的颜色是由光的频率决定的,频率越高的光色偏蓝,频率越低的光色偏红。

5. 光的强度:光的强度指光的功率在单位立体角内的分布,单位是瓦特/立体弧度(W/sr)。

光的强度跟光源的功率、发光面积以及发光方向有关。

6. 光的亮度:光的亮度是人眼对光的感知强度,单位是坎德拉(Cd)。

亮度与强度有关,但还受到视觉系统的影响。

7. 光的色温:光的色温是指光源发出的光的颜色偏冷或偏热的程度。

色温用开尔文(K)表示,常见的白炽灯色温约为2700K,日光色为5000-6500K。

8. 光的辐射特性:光源的辐射特性描述了光阴影的变化规律。

常用的描述方法有球面照度、光照度曲线等。

9. 光的色彩效果:光源可以通过色彩滤光片或补光色调来实现不同的
色彩效果,如冷暖色调、鲜艳色彩等。

10. 光的能效:光源的能效是指光源发出的光能与其耗电量之间的比值。

能效越高,光源的发光效果越好。

第3章光基础知识

第3章光基础知识

第3章光基础知识第三章光学基础知识光是客观存在的⼀种辐射能,以电磁波形式传播,波长范围为380~780nm,能为⼈们眼睛所感觉到。

⽽长于780nm的红外线、⽆线电波等,短于380nm的紫外线、ⅹ射线等,这些幅射波均不能为⼈眼所感觉。

第⼀节光的传播性质⼀、光的直线传播1、光源我们把发光的物体叫做光源,太阳、电灯、放映机内的氙灯等,都是光源,光源发出的光,可以使物体发热,使电影胶⽚⽚感光,还能使光电池供电。

这些现象说明:光是有能量的;光能可以转化为内能、化学能、电能等其他形式的能。

光源⾃⼰在发光的时候,也在进⾏着能的转化,即把其他形式的能转化为光能。

例如,电灯把电能转化为光能,太阳把原⼦核⾥⾯的能转化为光能,等等。

2、光的直线传播能够传播光的物质叫做介质。

从光源发出的光,在介质⾥总是沿着直线传播的。

如果我们在暗室的窗上开⼀个⼩孔,让⼀束阳光从⼩孔射⼊,由于室内的尘埃微粒对阳光的反射,可以清楚地看出这束阳光的传播路线是笔直的。

这就是光沿直线传播的直接证据。

由于光的直线传播,我们不能看到墙壁后⾯发⽣的事情,也不能从弯管中看到周围的情景。

光的直线传播性质可以⽤⼀条表⽰光束传播⽅向的直线来代表,这样的直线就叫做光线。

3、光速声⾳在20℃的空⽓中的传播速度约为340⽶/秒,光在真空中的传播速度为3×108⽶/秒(即每秒30万公⾥),光在空⽓中的传播速度略⼩于真空中的传播速度,但相差甚微,可以忽略不计。

光在不同的介质中的传播速度是不同的。

⼆、光的反射1、反射定律不论是透明物体还是不透明物体,都要反射⼀部分到它表⾯上的光。

实验证明,光在反射时遵循如下的规律:1)反射光线跟⼊射光线和法线在同⼀平⾯上,反射光线和⼊射光线分别位于法线两侧。

2)反射⾓等于⼊射⾓。

(图1-3-1)根据这个定律可以知道,如果光线逆着原来反射光线的⽅向射到反射⾯上,它就要逆着原来⼊射光线的⽅向反射出去。

所以,在反射现象⾥,光路是可逆的。

高中物理光学知识点

高中物理光学知识点

高中物理光学知识点一、光的基础知识1. 光的描述- 光波:光作为电磁波的一种,具有波长和频率。

- 光谱:通过棱镜分解白光,显示为红、橙、黄、绿、蓝、靛、紫七种颜色的光谱。

2. 光的波长和频率- 波长:连续波上相位相同的相邻两个点之间的最短距离。

- 频率:单位时间内波峰或波谷出现的次数。

3. 光的速度- 在真空中,光速约为 $3 \times 10^8$ 米/秒。

二、光的反射1. 反射定律- 入射角等于反射角。

- 入射光线、反射光线和法线都在同一平面上。

2. 镜面反射和漫反射- 镜面反射:光滑表面上发生的反射,反射光线保持集中。

- 漫反射:粗糙表面上发生的反射,反射光线分散各个方向。

3. 反射镜的应用- 凹面镜和凸面镜:用于聚焦或散焦光线。

- 望远镜和显微镜:利用反射镜观察远距离或微小物体。

三、光的折射1. 折射现象- 当光从一种介质进入另一种介质时,其速度和传播方向会发生变化。

2. 折射定律(Snell定律)- $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$,其中 $n_1$ 和$n_2$ 分别是入射介质和折射介质的折射率。

3. 透镜- 凸透镜:使光线汇聚。

- 凹透镜:使光线发散。

四、光的干涉和衍射1. 干涉- 两个或多个相干光波叠加时,光强增强或减弱的现象。

- 双缝干涉实验:展示了光的波动性质。

2. 衍射- 光波遇到障碍物或通过狭缝时发生弯曲和展开的现象。

- 单缝衍射和双缝衍射:通过实验观察光波的传播特性。

五、光的偏振1. 偏振光- 只在一个平面内振动的光波称为偏振光。

- 通过偏振片可以控制光的振动方向。

2. 马吕斯定律- 描述偏振光通过偏振片时光强变化的定律。

六、光的颜色和色散1. 颜色的三原色- 红、绿、蓝:通过不同比例的混合可以产生其他颜色。

2. 色散- 不同波长的光在介质中传播速度不同,导致折射率不同,从而产生色散现象。

七、光的量子性1. 光电效应- 光照射到金属表面时,能使金属发射电子的现象。

光现象知识点总结

光现象知识点总结

一、光的传播光的传播是指光在空间中的传播过程。

光在真空中的传播速度为3×10^8m/s,光在介质中的传播速度小于在真空中的传播速度。

光的传播具有直线传播的特性,但在遇到障碍物时会发生折射、反射等现象。

二、光的反射光的反射是指光在遇到两种介质的分界面时,光线改变方向返回原介质的现象。

光的反射分为镜面反射和漫反射两种。

镜面反射是指光线入射到光滑表面时,反射光线与入射光线在同一平面内,且反射角等于入射角。

漫反射是指光线入射到粗糙表面时,反射光线向各个方向散射。

三、光的折射光的折射是指光从一种介质进入另一种介质时,光线改变方向的现象。

光的折射遵循斯涅尔定律,即入射角和折射角的正弦值之比等于两种介质的折射率之比。

光的折射现象在生活中很常见,如水中的物体看起来比实际位置浅、眼镜的度数等。

四、光的干涉光的干涉是指两束或多束光波相遇时,由于波的叠加,产生明暗相间的条纹现象。

光的干涉现象可以分为相干干涉和非相干干涉。

相干干涉是指两束或多束光波的相位差保持不变,产生稳定的干涉条纹。

非相干干涉是指两束或多束光波的相位差不断变化,产生不稳定的干涉条纹。

五、光的衍射光的衍射是指光在遇到障碍物或通过狭缝时,光波发生弯曲的现象。

光的衍射现象可以分为绕射和散射。

绕射是指光波绕过障碍物传播,散射是指光波在遇到不均匀介质时,向各个方向传播。

六、光的偏振光的偏振是指光波在传播过程中,其振动方向具有特定方向的现象。

光的偏振现象可以分为自然光、线偏振光、圆偏振光和椭圆偏振光。

自然光是指光波的振动方向在各个方向上均匀分布。

线偏振光是指光波的振动方向在一个平面上。

圆偏振光是指光波的振动方向在垂直于传播方向的平面上旋转。

椭圆偏振光是指光波的振动方向在垂直于传播方向的平面上呈椭圆形。

七、光的色散光的色散是指白光通过棱镜或其他介质时,由于不同颜色的光波在介质中的折射率不同,导致光波分开,形成彩虹色带的现象。

这种现象是由于光的波长不同,而不同波长的光在介质中的折射率不同所引起的。

工程光学知识点总结

工程光学知识点总结

工程光学知识点总结一、光学基础知识1. 光的特性光是一种电磁波,具有波粒二象性。

光的波长和频率决定了它的颜色和能量。

光在介质中传播时会发生折射和反射现象,这些现象是光学设计和应用的基础。

2. 光的干涉和衍射干涉和衍射是光学中重要的现象,它们是光波相互作用的结果。

干涉是两个或多个光波叠加产生的明暗条纹,衍射是光波在通过孔隙或障碍物时发生弯曲和扩散。

这些现象在光学测量和成像中有重要应用。

3. 光的偏振偏振是光振动方向的限定,通常的光是未偏振的。

偏振光在一些光学应用中有特殊用途,比如偏振片、液晶显示器等。

4. 光的传播光的传播受其波长和介质的影响,光在不同介质中传播时会有折射和反射。

此外,介质散射、吸收等也会对光的传播产生影响。

5. 光学材料光学材料是指在光学器件中用于传播、调制或控制光的材料,包括透明材料、半透明材料、非线性光学材料等。

光学材料的性能对光学器件的设计和性能有重要影响。

二、光学元件的设计和应用1. 透镜透镜是用于聚焦和成像的光学元件。

透镜分为凸透镜和凹透镜,它们分别用于成像、矫正等不同的应用。

常见的透镜设计包括单透镜、复合透镜、非球面透镜等。

2. 棱镜棱镜是由两个或多个平面或曲面构成的光学元件,用于折射和分离光线。

棱镜广泛应用于光谱分析、成像和激光技术中。

3. 波片波片是一种具有特定光学性能的光学元件,用于调节光的偏振和相位。

波片广泛应用于激光器、光学通信、显微镜等领域。

4. 光栅光栅是一种具有周期性结构的光学元件,用于光的衍射和色散。

光栅可以用于光谱分析、光学测量、激光调制等应用。

5. 光纤光纤是一种用于传输光信号的光学元件,具有良好的光学性能和传输性能。

光纤广泛应用于通信、传感、医疗等领域。

6. 光学薄膜光学薄膜是一种具有特定光学性能的薄膜材料,用于增强、减弱或调节光的透射、反射、吸收等特性。

光学薄膜广泛应用于激光器、光学镜头、太阳能电池等领域。

三、光学成像1. 光学成像原理光学成像是利用透镜、镜片等光学元件将物体投射成像到感光介质上的技术。

灯光基础必学知识点

灯光基础必学知识点

灯光基础必学知识点
1. 光的基本特性:光的速度、波长、频率和光子等基本概念。

2. 光的透射、反射和折射:光在不同介质中的传播规律和行为。

3. 光的色散:不同波长的光在介质中的传播速度不同,导致光的折射
角度不同。

4. 光的干涉和衍射:光波相遇时的相干和相消干涉现象,以及光在物
体边缘或孔径上的衍射现象。

5. 光的偏振:光的振动方向在垂直于传播方向的平面上的特性。

6. 光的吸收和发射:物质对光的吸收和发射现象。

7. 光的能量和光强:光的能量单位和描述光强度的概念。

8. 光的入射角和反射角:光束入射到界面上时的角度和从界面反射出
的角度。

9. 光的衰减和散射:光在介质中传播时受到的能量损失和方向改变的
现象。

10. 光的波导和光纤:利用全反射原理实现光信号传输的器件和技术。

11. 光的成像和光学仪器:光的聚焦和形成图像的原理和应用。

12. 光的色彩和色温:不同波长和频率的光所表现出的色彩和热量特性。

13. 光的光谱和色度:将光波按照波长和频率的不同分解和分类。

14. 环境光和光源:环境中存在的自然光和人工光源的特性和使用。

15. 光的阵列和点光源:多个光源形成的光源阵列和单个光源的特性
和使用。

16. 光的亮度和色彩渲染:光的亮度和色彩对物体视觉感知的影响和
应用。

17. 光的照明设计与布光:利用光源和灯具进行照明设计和灯光布光
的原则和技巧。

18. 光的安全与环保:灯光使用过程中的安全和环保问题的关注和解
决方法。

光学基础知识详细版

光学基础知识详细版

光学基础知识详细版光学是一门研究光及其与物质相互作用的科学。

它不仅对科学研究和技术发展具有重要意义,而且在我们日常生活中也随处可见。

光学基础知识包括光的传播、光的反射、光的折射、光的干涉、光的衍射和光的偏振等方面。

1. 光的传播光是一种电磁波,它在真空中的传播速度约为每秒30万千米。

光在同一种均匀介质中沿直线传播,这是光学中的基本原理之一。

当光从一种介质传播到另一种介质时,会发生折射现象。

2. 光的反射光的反射是指光线遇到界面时改变传播方向的现象。

根据反射定律,入射角等于反射角。

光的反射可以分为镜面反射和漫反射两种。

镜面反射是指光线在光滑表面上的反射,反射光线方向明确;漫反射是指光线在粗糙表面上的反射,反射光线方向杂乱无章。

3. 光的折射光的折射是指光线从一种介质传播到另一种介质时,传播方向发生改变的现象。

根据折射定律,入射角、折射角和两种介质的折射率之间存在一定的关系。

光的折射现象在生活中非常普遍,如眼镜、放大镜、显微镜等光学仪器都是基于光的折射原理制成的。

4. 光的干涉光的干涉是指两束或多束光线相遇时产生的光强分布现象。

光的干涉可以分为相干干涉和非相干干涉两种。

相干干涉是指频率相同、相位差恒定的光线相遇时产生的干涉现象;非相干干涉是指频率不同或相位差不恒定的光线相遇时产生的干涉现象。

光的干涉现象在光学测量、光学成像等领域有着广泛的应用。

5. 光的衍射光的衍射是指光线通过狭缝或障碍物时,发生偏离直线传播的现象。

光的衍射现象在光学成像、光学检测等领域有着重要的应用。

6. 光的偏振光的偏振是指光波的电场矢量在某一特定方向上振动的现象。

光的偏振可以分为自然光、线偏振光、圆偏振光和椭圆偏振光等。

光的偏振现象在光学通信、光学测量等领域有着重要的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光的基础知识
光的基础知识
1、光的本质:
光的本质是电磁波,是整个电磁波谱中极小范围的一部分光是能量的一种形态;
可见光是电磁辐射谱中能够引起人眼视觉的部分。

可见光组成了所谓电磁光谱的一部分,电磁光谱存在于收音机和电视信号中,包括红外和紫外辐射,x射线,核辐射和宇宙辐射。

在这些电磁辐射中,只有光波是动物和人眼可见的。

该光谱也包括标准的50赫兹交流电(波长6000千米)和波长380-780纳米(=10-9米)的可见光部分。

不同的波长给人眼造成不同的颜色感觉,从红、橙、黄、绿、蓝、靛(即蓝紫)到紫。

2、光通量(光束):
为光源所发出的光线(条数),单位为流明(lm),例如一节能灯的发出780(条)光线,则总光通量(光束)为780流明。

3、照度:
为每一单位面积所通过的光线,单位为lx.(lm/m2)
4、亮度:
与照度定义几乎相同,如果我们把每一物体都视为光源的话,那么亮度就是描述光源光亮的程度,而照度正好是把每一物体都作为被照物体,用一块木板来举例说明,当一定光束照到木板时我们讲木板有多少照度,然后木板将多少光束反射到人眼,就称为木板的多少亮度,那么有如下式子:亮度等于照度乘以反射率。

在同一房间同一位置一块白布和一块黑布的照度是相同的,而亮度是不同的。

5、光强:
为通过1立体角的光线条数,(通光束的密度)。

光强的单位是光度测定的基本单位,也是国际单位制的基本单位之一。

为了复现光强度的单位,光的基准器最初为蜡烛,所以光强度单位早称为(烛光)。

后来随着科技发展,光基准器改为钨丝灯,又改为黑体,1948年后,光强度单位正式定名为坎德拉(cd)。

6、眩光、怎样控制眩光:
视野内有亮度极亮的物体或强烈的亮度对比,则可引起不舒适或造成视觉降低的现象,称为眩光。

造成人眼视力降低的眩光称失能眩光;使人有不快之感的眩光称为不舒适眩光。

一般有两种控制眩光的方法:1、直接控制光源的亮度或采用透光材料减弱眩光;2、用灯具保护角控制眩光。

7、光源的色表(色温),色温与心理:
由于人们是用与光源的色度相等或近似的完全辐射体的绝对温度来描述光源的色表,因此光源的色表又称为光源的色温。

色温:光源发射光的颜色与黑体在某一温度下辐射光色相同时,黑体的温度称为该光源的色温。

色温在3300K以下有稳重的气氛,温暖的感觉;色温在3000--5000K为中间色温,有爽快的感觉;色温在5000K以上有冷的感觉。

高色温光源照射下,如亮度不高则给人们有一种阴气的气氛;低色温光源照射下,亮度过高会给人们有一种闷热感觉。

在同一空间使用两种光色差很大的光源,其对比将会出现层次效果,光色对比大时,在获得亮度层次的同时,又可获得光色的层次。

显色性是指光源的光照射到物体上所产生的客观效果。

如果各色物体受照的效果和标准
光源(黑体或重组日光)照射时一样,则认为该光源的显色性好(显色指数高);反之,如果物体在受照后颜色失真,则该光源的显色性就差(显色指数低)。

显色性也称演色性或传色性。

8、色觉的生理基础:
物体发出的光线通过角膜、房水、晶体及玻璃体,使物象聚焦于视网膜,由视网膜的感光细胞转化为神经冲动,再传导到大脑的高级视觉中枢,产生视觉。

人类视网膜上的感光细胞有两种:杆状细胞和锥状细胞。

杆状细胞对光的感受性很高,锥状细胞对光的感受性很低。

因此在微弱的照度下只有杆状细胞工作,随着亮度不断增加,锥状细胞的作用出不断增大,最后锥状细胞起主导作用。

杆状细胞不能分辨颜色,只要锥状细胞才有色觉。

9、效率
a)、光源发光效率
是指一个光源所发出的光通量φ与该光源所消耗的电功率P之比。

b)、灯具效率
灯具效率是指在规定条件下测得的灯具所发射的光通量值与灯具内所有光源发出的光通量测定值之和的比值。

10、制造厂家一般会给出哪些参数说明电光源的特性:
a) 额定电压和额定电流:按光源预定要求进行工作所需要的电压和电流。

在额定电压和额定电流运行时具有电好的功率
b) 额定功率:电光源在额定工作条件下所消耗的有功功率
c) 额定光通量和发光效率:额定光通量是反映电光源在额定工作条件下发出的光通量,平时简称光通量;发光效率是指电光源每消耗1W电功率所发出的光通量。

在产品目录中提出的光通量和发光效率会随着时间的延长而下降。

d) 寿命:电光源的寿命有全寿命、有效寿命(指电光源的发光效率下降到初始值的70%时为止的使用时间)、平均寿命
e) 光谱能量的分布曲线:光谱能量分布曲线表示电光源所辐射各波长的光的成分和相对强度的分布状况,这种按不同波长所对应的相对强度绘制的曲线称为电光源相对光谱能量分布曲线。

f) 色温
g) 显色性
h) 频闪效应:电光源采用交流电源供电时,由于交流电作周期性的变化,因而电光源所发出的光通量也随之作周期性的变化,这会使人眼产生闪煤油的感觉。

热辐射光源的发光体的热惰性大,所以闪烁感觉不明显,但气体放电灯较为明显。

关于色温的知识
关于色温的知识
色温:光源发射光的颜色与黑体在某一温度下辐射光色相同时,黑体的温度称为该光源的色温。

因为大部分光源所发出的光皆通称为白光,故光源的色表温度或相关色温度即用以指称其光色相对白的程度,以量化光源的光色表现。

根据Max Planck的理论,将一具完全吸收
与放射能力的标准黑体加热,温度逐渐升高光度亦随之改变;CIE色座标上的黑体曲线(Black body locus)显示黑体由红——橙红——黄——黄白——白——蓝白的过程。

黑体加温到出现与光源相同或接近光色时的温度,定义为该光源的相关色温度,称色温,以绝对温K(Kelvin,或称开氏温度)为单位(K=℃+273.15)。

因此,黑体加热至呈红色时温度约527℃即800K,其他温度影响光色变化。

光色愈偏蓝,色温愈高;偏红则色温愈低。

一天当中画光的光色亦随时间变化:日出后40分钟光色较黄,色温3,000K;正午阳光雪白,上升至4,800-5,800K,阴天正午时分则约6,500K;日落前光色偏红,色温又降至纸2,200K。

其他光源的相关色温度。

因相关色温度事实上是以黑体辐射接近光源光色时,对该光源光色表现的评价值,并非一种精确的颜色对比,故具相同色温值的二光源,可能在光色外观上仍有些许差异。

仅凭色温无法了解光源对物体的显色能力,或在该光源下物体颜色的再现如何。

不同光源环境的相关色温度
光源------------------色温
北方晴空8000-8500k
阴天…………………6500-7500
夏日正午阳光………5500k
金属卤化物灯………4000-4600k
下午日光……………4000k
冷色营光灯…………4000-5000k
高压汞灯…………3450-3750k
暖色营光灯………2500-3000k
卤素灯………………3000k
钨丝灯………………2700k
高压钠灯…………1950-2250k .
蜡烛光……………2000k
光源色温不同,光色也不同,色温在3300K以下有稳重的气氛,温暖的感觉;色温在3000--5000K为中间色温,有爽快的感觉;色温在5000K以上有冷的感觉。

不同光源的不同光色组成最佳环境,如表:
色温……光色……气氛效果
>5000K…清凉…(带蓝的白色) 冷的气氛
3300-5000K…中间…(白) 爽快的气氛
<3300K…温暖…(带红的白色) 稳重的气氛
a. 色温与亮度高色温光源照射下,如亮度不高则给人们有一种阴气的气氛;低色温光源照射下,亮度过高会给人们有一种闷热感觉。

b. 光色的对比在同一空间使用两种光色差很大的光源,其对比将会出现层次效果,光色对比大时,在获得亮度层次的同时,又可获得光色的层次。

相关文档
最新文档