七年级上册数学期末模拟试卷(含答案)
七年级数学(上册)期末试卷及答案(完美版)
七年级数学(上册)期末试卷及答案(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B .在同一平面内两条不相交的直线是平行线C .在同一平面内,过直线外一点只能画一条直线与已知直线垂直D .直线外一点与直线上各点连接的所有线段中,垂线段最短3.下列图形中,是轴对称图形的是( )A .B .C .D .4.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85°5.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b< 6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°8.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°9.设42a ,小数部分为b ,则1a b-的值为( ) A .2- B 2C .21+ D .21 10.把代数式244ax ax a -+分解因式,下列结果中正确的是( ).A .()22a x -B .()22a x +C .()24a x -D .()()22a x x +-二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.3.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________.4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.5.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.6.近似数2.30万精确到________位.三、解答题(本大题共6小题,共72分)1.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩ (2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D ,(1)求证:AB=CD ;(2)若AB=CF ,∠B=30°,求∠D 的度数.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.5.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、C5、D6、C7、A8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、12、a+c3、(4,0)或(﹣4,0)4、40或805、76、百三、解答题(本大题共6小题,共72分)1、(1)12xy=⎧⎨=-⎩(2)2345xy⎧=-⎪⎪⎨⎪=⎪⎩2、(x﹣y)2;1.3、(1)略;(2)∠D=75°.4、(1)65°(2)证明略5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
2024年最新人教版七年级数学(上册)模拟试卷及答案(各版本)
2024年最新人教版七年级数学(上册)模拟试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的数学定义?()A. 两个数的和等于它们的差B. 两个数的积等于它们的商C. 两个数的商等于它们的和D. 两个数的差等于它们的积2. 在下列四个选项中,哪个是正确的数学公式?()A. a² + b² = c²B. a² b² = c²C. a² + c² = b²D. a² c² = b²3. 下列哪个选项是正确的数学定理?()A. 平行四边形的对角线相等B. 平行四边形的对边相等C. 平行四边形的对角线互相垂直D. 平行四边形的对边互相垂直4. 下列哪个选项是正确的数学概念?()A. 正数B. 负数C. 零D. 所有实数二、填空题(每题5分,共20分)1. 一个数的平方根是它自己的数是______。
2. 一个数的立方根是它自己的数是______。
3. 一个数的倒数是它自己的数是______。
4. 一个数的相反数是它自己的数是______。
三、解答题(每题10分,共30分)1. 解答:求出下列方程的解。
x² 5x + 6 = 02. 解答:求出下列不等式的解集。
2x 3 < 73. 解答:求出下列方程组的解。
2x + 3y = 83x 2y = 5四、证明题(每题10分,共20分)1. 证明:两个角的和等于它们的补角的和。
2. 证明:两个直角三角形的斜边相等,则它们是全等的。
五、应用题(每题10分,共20分)1. 应用:小明从家出发,向东走了10米,然后向北走了5米,又向西走了3米。
问小明现在距离家有多远?2. 应用:一个长方形的长是8厘米,宽是5厘米。
求这个长方形的面积和周长。
六、附加题(每题10分,共20分)1. 附加:求出下列方程的解。
x³ 6x² + 11x 6 = 02. 附加:求出下列不等式的解集。
2023年人教版七年级数学上册期末试卷(及答案)
2023 年人教版七年级数学上册期末试卷(考试时间:90分钟,满分:100分)一、选择题(每题2分,共10题,计20分)1. 若a、b是实数,且a > b,则下列哪个不等式成立?A. a + b > 2aB. a b < 0C. a^2 > b^2D. a/b > 12. 若一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长是多少?A. 16cmB. 18cmC. 20cmD. 22cm3. 若一个长方体的长、宽、高分别为3cm、4cm、5cm,则它的体积是多少?A. 60cm^3B. 80cm^3C. 120cm^3D. 150cm^34. 若一个数列的前三项分别是2、4、6,则这个数列的通项公式是?A. an = 2nB. an = 2n + 1C. an = 2n 1D. an = 2n + 25. 若一个圆的半径为5cm,则它的面积是多少?A. 25πcm^2B. 50πcm^2C. 100πcm^2D. 200πcm^26. 若一个平行四边形的底边长为8cm,高为5cm,则它的面积是多少?A. 40cm^2B. 48cm^2C. 56cm^2D. 64cm^27. 若一个直角三角形的两条直角边长分别为3cm、4cm,则它的斜边长是多少?A. 5cmB. 6cmC. 7cmD. 8cm8. 若一个正方形的边长为6cm,则它的面积是多少?A. 36cm^2B. 48cm^2C. 60cm^2D. 72cm^29. 若一个等差数列的首项为3,公差为2,则它的第5项是多少?A. 9B. 11C. 13D. 1510. 若一个圆的直径为10cm,则它的半径是多少?A. 5cmB. 7cmC. 9cmD. 11cm二、填空题(每题2分,共10题,计20分)1. 若一个数的绝对值为5,则这个数可能是______或______。
2. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是______cm^3。
七年级数学上册期末考试模拟卷(附答案解析)
七年级数学上册期末考试模拟卷(附答案解析)一.选择题(共8小题,满分24分,每小题3分)1.﹣3的相反数是()A.3B.﹣3C.D.﹣2.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆3.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×1034.下列说法正确的是()A.绝对值最小的数是0B.若|a|=﹣a,则a<0C.﹣a一定是负数D.多项式3xy2﹣4x3y+12的次数为75.根据如图所示的流程图中的程序,当输入数据x=﹣2,y=1时,m值为()A.5B.3C.﹣2D.46.如图所示,点M,N是线段AB上的两个点,且M是AB的中点,N是MB的中点,若AB =a,NB=b,下列结论:①AM=a②AN=a﹣b③MN=a﹣b④MN=a.其中正确的有()A.1个B.2个C.3个D.4个7.超市正在热销某种商品,其标价为每件125元.若这种商品打8折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一方程为()A.125×0.8﹣x=15B.125﹣x×0.8=15C.(125﹣x)×0.8=15D.125﹣x=15×0.88.若a,b在数轴上的位置如图所示,则下列选项不正确的是()A.ab<0B.|a|>|b|C.a+b>0D.a<﹣b<b<﹣a二.填空题(共8小题,满分24分,每小题3分)9.﹣﹣(用>,<,=填空).10.关于m、n的单项式﹣2m a n b与3m2(a﹣1)n的和仍为单项式,则这两个单项式的和为.11.如图是一、二两组同学将本组最近5次数学平均成绩分别绘制成的折线统计图,由统计图可知组进步较大(填“一”或“二”).12.某校下午第一节2:30下课,这时钟面上时针与分针的夹角是度.13.如图,已知O是直线AB上一点,OC平分∠BOD,OE平分∠AOD,则与∠DOE互余的角有个.14.在一个边长为a的正方形地块上,辟出一部分作为花坛,小明设计一种方案,请你写出花坛(图中阴影部分,其中中间阴影部分为一小正方形)面积S的表达式.15.如图所示的图形都是由大小相同的黑点按照一定规律所组成的,其中第①个图形中一共有1个黑点,第②个图形中共有5个黑点,第③个图形中一共有13个黑点,…,按此规律排列下去,第n个图形中黑点的个数为.(用含n的代数式表示)16.数轴上点M表示﹣1,将它先向右移动5个单位长度,再向左移动3个单位长度到达点N,则点N表示的数是,点M,N的距离是.三.解答题(共8小题,满分72分)17.如图,从正面、左面、上面观察此几何体,分别画出你所看到的几何体的形状.18.(18分)计算:(1)[1﹣(+﹣)×24]÷(﹣5);(2)﹣14+(﹣5)×[(﹣1)3+2]﹣(﹣3)2÷(﹣);(3)先化简,再求值.①5(a2b﹣ab2)﹣(ab2+3a2b),其中|a+1|+(b﹣)2=0;②﹣(3x2﹣4xy)﹣[x2﹣2(4x﹣4xy)],其中x=﹣2.19.解方程:(1)2(x﹣1)=2﹣5(x+2);(2).20.《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;(2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.21.如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)[发现]:当正方形AEFG绕点A旋转,如图2,线段DG与BE之间的数量关系是;位置关系是;(2)[探究]:如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,猜想DG与BE的数量关系与位置关系,并说明理由;(3)[应用]:在(2)情况下,连接GE(点E在AB上方),若GE∥AB,且AB=,AE=1,求线段DG的长.22.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?23.观察下列等式:=1﹣,=﹣,=将以上三个等式两边分别相加得:++=1﹣+=1﹣=.(1)猜想并写出:=;(2)直接写出下列各式的计算结果:①=;②+++…+=;(3)探究并计算:.24.(12分)【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a ﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数.(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B两点重合,则中点M也与A,B两点重合).参考答案与解析一.选择题1.【解答】解:﹣3的相反数是3.故选:A.2.【解答】解:由题意得:只有D选项符合题意.故选:D.3.【解答】解:数字2034000科学记数法可表示为2.034×106.故选:A.4.【解答】解:A、绝对值最小的数是0,原说法正确,故此选项符合题意;B、若|a|=﹣a,则a≤0,原说法错误,故此选项不符合题意;C、﹣a不一定是负数,原说法错误,故此选项不符合题意;D、多项式3xy2﹣4x3y+12的次数为4,原说法错误,故此选项不符合题意;故选:A.5.【解答】解:∵当x=﹣2,y=1时;xy=﹣2×1=﹣2<0;∴m=x2﹣y2=(﹣2)2﹣12=3;故选:B.6.【解答】解:∵M是线段AB的中点;∴AM=MB=AB=a,故①正确;AN=AB﹣BN=a﹣b,故②正确;MN=MB﹣NB=AB﹣BN=a﹣b,故③正确;∵M是线段AB的中点,N是AM的中点;∴AM=BM=AB=a,MN=MB=×a=a,故④正确;故选:D.7.【解答】解:设该商品每件的进价为x元;依题意,得:125×0.8﹣x=15.故选:A.8.【解答】解:根据图示,可得a<0<b,且|a|>|b|;∴ab<0,a+b<0,a<﹣b<b<﹣a;∴选项A、B、D不符合题意;选项C符合题意.故选:C.二.填空题9.【解答】解:|﹣|=,|﹣|=;∵>;∴﹣<﹣.故答案为:<.10.【解答】解:∵﹣2m a n b与3m2(a﹣1)n的和仍为单项式;∴﹣2m a n b与3m2(a﹣1)n是同类项;∴a=2(a﹣1),b=1;∴a=2a﹣2,b=1;∴a=2,b=1;∴﹣2m a n b+3m2(a﹣1)n=﹣2m2n+3m2n=m2n.故答案为:m2n.11.【解答】解:一组的成绩变化从70到85,二组的成绩变化是从70到90,所以二组进步更大.故答案为:二.12.【解答】解:2点30分相距3+=份;2点30分,此时钟面上的时针与分针的夹角是30×=105°;故答案为:105.13.【解答】解:∵∠AOD+∠BOD=180°,OC、OE分别平分∠BOD和∠AOD;∴∠AOE=∠DOE=∠AOD,∠BOC=∠DOC=∠BOD;∴∠DOC+∠DOE=90°,∠BOC+∠DOE=90°;∴与∠DOE互余的角有∠DOC和∠BOC;故答案为:2.14.【解答】解:S阴影=(a﹣)(a﹣)﹣(﹣)()=(a﹣)2﹣(﹣)2=a2﹣+﹣(﹣+)=a2﹣+﹣+﹣=;故答案为:.15.【解答】解:∵①1=1;②5=2+1+2;③13=3+2+3+2+3;④25=4+3+4+3+4+3+4;…;∴第n个图的黑点的个数为:n+n﹣1+n+n﹣1+…+n﹣1+n,其中有n个n,(n﹣1)个(n﹣1).即第n个图的黑点的个数为n2+(n﹣1)2=2n2﹣2n+1.故答案为:2n2﹣2n+1.16.【解答】解:由题意得:点N表示的数是﹣1+5﹣3=1,点M,N的距离是1﹣(﹣1)=2.故答案为:1,2.三.解答题17.【解答】解:如图所示:18.(18分)计算:(1)[1﹣(+﹣)×24]÷(﹣5);(2)﹣14+(﹣5)×[(﹣1)3+2]﹣(﹣3)2÷(﹣);(3)先化简,再求值.①5(a2b﹣ab2)﹣(ab2+3a2b),其中|a+1|+(b﹣)2=0;②﹣(3x2﹣4xy)﹣[x2﹣2(4x﹣4xy)],其中x=﹣2.【解答】解:(1)[1﹣(+﹣)×24]÷(﹣5)=(1﹣×24﹣×24+×24)×(﹣)=(1﹣9﹣4+18)×(﹣)=(+5)×(﹣)=×(﹣)+5×(﹣)=﹣﹣1=﹣;(2)﹣14+(﹣5)×[(﹣1)3+2]﹣(﹣3)2÷(﹣)=﹣1+(﹣5)×(﹣1+2)﹣9×(﹣2)=﹣1+(﹣5)+18=12;(3)①5(a2b﹣ab2)﹣(ab2+3a2b)=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2;∵|a+1|+(b﹣)2=0;∴a+1=0,b﹣=0;解得:a=﹣1,b=;当a=﹣1,b=时,原式=2×(﹣1)2×﹣6×(﹣1)×()2=1+=;②﹣(3x2﹣4xy)﹣[x2﹣2(4x﹣4xy)]=﹣3x2+4xy﹣x2+4x﹣4xy=﹣x2+4x;当x=﹣2时,原式=﹣×(﹣2)2+4×(﹣2)=﹣14﹣8=﹣22.19.解方程:(1)2(x﹣1)=2﹣5(x+2);(2).【解答】解:(1)去括号得:2x﹣2=2﹣5x﹣10;移项得:2x+5x=2﹣10+2;合并得:7x=﹣6;解得:x=﹣;(2)去分母得:2(5x+1)﹣(7x+2)=4;去括号得:10x+2﹣7x﹣2=4;移项得:10x﹣7x=4﹣2+2;合并得:3x=4;解得:x=.20.【解答】解:(1)根据题意得:1﹣(40%+18%+7%)=35%;则“玩游戏”对应的圆心角度数是360°×35%=126°;故答案为:35%,126;(2)根据题意得:40÷40%=100(人);∴3小时以上的人数为100﹣(2+16+18+32)=32(人);补全图形如下:;(3)根据题意得:2100×=1344(人);则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.21.【解答】解:(1)DG=BE,DG⊥BE,理由如下:∵四边形ABCD和四边形AEFG是正方形;∴AE=AG,AB=AD,∠BAD=∠EAG=90°;∴∠BAE=∠DAG;∴△ABE≌△ADG(SAS);∴BE=DG;如图2,延长BE交AD于Q,交DG于H;∵△ABE≌△DAG;∴∠ABE=∠ADG;∵∠AQB+∠ABE=90°;∴∠AQB+∠ADG=90°;∵∠AQB=∠DQH;∴∠DQH+∠ADG=90°;∴∠DHB=90°;∴BE⊥DG;故答案为:DG=BE,DG⊥BE;(2)DG=2BE,BE⊥DG,理由如下:如图3,延长BE交AD于K,交DG于H;∵四边形ABCD与四边形AEFG都为矩形;∴∠BAD=∠EAG;∴∠BAE=∠DAG;∵AD=2AB,AG=2AE;∴==;∴△ABE∽△ADG;∴==,∠ABE=∠ADG;∴DG=2BE;∵∠AKB+∠ABE=90°;∴∠AKB+∠ADG=90°;∵∠AKB=∠DKH;∴∠DKH+∠ADG=90°;∴∠DHB=90°;∴BE⊥DG;(3)如图4,(为了说明点B,E,F在同一条线上,特意画的图形)设EG与AD的交点为M;∵EG∥AB;∴∠DME=∠DAB=90°;在Rt△AEG中,AE=1;∴AG=2AE=2;根据勾股定理得:EG==;∵AB=;∴EG=AB;∵EG∥AB;∴四边形ABEG是平行四边形;∴AG∥BE;∵AG∥EF;∴点B,E,F在同一条直线上,如图5;∴∠AEB=90°;在Rt△ABE中,根据勾股定理得,BE===2;由(2)知,△ABE∽△ADG;∴==;即=;∴DG=4.22.【解答】解:(1)设该班购买乒乓球x盒,则甲:100×5+(x﹣5)×25=25x+375;乙:0.9×100×5+0.9x×25=22.5x+450;当甲=乙,25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样;(2)买20盒时:甲25×20+375=875元,乙22.5×20+450=900元,选甲;买40盒时:甲25×40+375=1375元,乙22.5×40+450=1350元,选乙.23.观察下列等式:=1﹣,=﹣,=将以上三个等式两边分别相加得:++=1﹣+=1﹣=.(1)猜想并写出:=﹣;(2)直接写出下列各式的计算结果:①=;②+++…+=;(3)探究并计算:.【解答】解:(1)=﹣;故答案为:﹣;(2)①=1﹣+﹣+﹣+…+﹣=1﹣=;故答案为:;②+++…+=1﹣+﹣+﹣+…+﹣=1﹣=;故答案为:;(3)=×(1﹣+﹣+﹣+…+﹣)=×(1﹣)=×=.24.【解答】解:(1)A、B两点的距离为:8﹣(﹣10)=18;线段AB的中点M所表示的数为﹣1.故答案为:18;﹣1;(2)由题意可得点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;故答案为:﹣10+3t;8﹣2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度;当点A在点B左侧时;依题意列式,得3t+2t=18﹣4;解得t=2.8;当点A在点B右侧时;3t+2t=18+4;解得t=4.4;答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)能.设A,B按上述方式继续运动k秒线段的中点M能与原点重合;根据题意列方程,可得=0;解得k=2.运动开始前M点的位置是﹣1,运动2秒后到达原点;由此得M点的运动方向向右,其速度为:|﹣1÷2|=个单位长度.答:运动时间为2秒,中点M点的运动方向向右,其运动速度为每秒个单位长度.。
七年级上册数学期末模拟试卷(含答案)
七年级上册数学期末模拟试卷(含答案)一、选择题1.已知如图,数轴上的A 、B 两点分别表示数a 、b ,则下列说法正确的是( ).A .a b >-B .22a b <C .0ab >D .a b b a -=-2.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快3.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .44.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有( ) A .2种B .3种C .4种D .5种5.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.66.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C.D.7.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n ( )A .9B .11C .13D .158.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .()130%90%85x x +⋅=- B .()130%90%85x x +⋅=+ C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+9.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( )A .49B .32 C .54 D .9410.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( )A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b ><11.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )A .21B .89C .261D .36112.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是( )A .500个B .501个C .602个D .603个二、填空题13.把我国夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,它的每行、每列、每条对角线上三个数之和均相等.则图1的三阶幻方中,字母a 所表示的数是______,根据图2的三阶幻方中的数字规律计算代数式3m n -+的值为______.14.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为_____.15.已知:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则22019的个位数是____.16.如图,点D 为线段AB 上一点,C 为AB 的中点,且AB =8m ,BD =2cm ,则CD 的长度为_____cm .17.已知线段8cm AB =,在直线AB 上画线段5cm AC =,则BC 的长是______cm . 18.我们知道,分数可以转化为有限小数或无限循环小数,无限循环小数也可以转化为分数.例如:将0.3转化为分数时,可设0.3x =,则x 10x 3-=,解得13x =.仿照这样的方法,将0.16化成分数是________.19.一个角的补角是这个角的余角的3倍小20°,则这个角的度数是_______ 20.已知0a >,11S a =,211S S =--,321S S =,431S S =--,541S S =……(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S =____________.21.已知关于x 的一元一次方程520202020xx m +=+的解为2019x =,那么关于y 的一元一次方程552020(5)2020yy m --=--的解为________. 22.如图,对面积为1的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连按A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;按此规律继续下去,可得到△A 2019B 2019C 2019,则其面积S 2019=_____.三、解答题23.先化简,再求值:22113122323a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中22203a b ⎛⎫-++= ⎪⎝⎭. 24.“中国梦”是中华民族每个人的梦,也是每个中小学生的梦.各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符.某中学在全校600名学生中随机抽取部分学生进行调查,调查内容分为四种:A :非常喜欢,B :喜欢,C :一般,D :不喜欢,被调查的同学只能选取其中的一种.根据调查结果,绘制出两个不完整的统计图(图形如下),并根据图中信息,回答下列问题:()1本次调查中,一共调查了 名学生; ()2条形统计图中,m = ,n = ;()3求在扇形统计图中,“B :喜欢”所在扇形的圆心角的度数;()4请估计该学校600名学生中“A :非常喜欢”和“B :喜欢”经典诵读的学生共有多少人.25.(1)已知:2(2)30m n -++=.线段AB=4()m n -cm ,则线段AB= cm .(此空直接填答案,不必写过程.)(2)如图,线段AB 的长度为(1)中所求的值,点P 沿线段AB 自点A 向点B 以2cm/s 的速度运动,同时点Q 沿线段BA 自点B 向点A 以3cm/s 的速度运动.①当P 、Q 两点相遇时,点P 到点B 的距离是多少? ②经过多长时间,P 、Q 两点相距5cm ?26.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒.(1)当t=2时,求∠POQ的度数;(2)当∠POQ=40°时,求t的值;(3)在旋转过程中,是否存在t的值,使得∠POQ=12∠AOQ?若存在,求出t的值;若不存在,请说明理由.27.如图,数轴上点A表示的数为6,点B位于A点的左侧,10AB=,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左运动,动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右运动.(1)点B表示的数是多少?(2)若点P,Q同时出发,求:①当点P与Q相遇时,它们运动了多少秒?相遇点对应的数是多少?②当8PQ=个单位长度时,它们运动了多少秒?28.如图,线段AB上有一点O,AO=6㎝,BO=8㎝,圆O的半径为1.5㎝,P点在圆周上,且∠POB=30°.点C从A出发以m cm/s的速度向B运动,点D从B出发以n cm/s的速度向A运动,点E从P点出发绕O逆时针方向在圆周上旋转一周,每秒旋转角度为60°,C、D、E三点同时开始运动.(1)若m=2,n=3,则经过多少时间点C、D相遇;(2)在(1)的条件下,求OE与AB垂直时,点C、D之间的距离;(3)能否出现C、D、E三点重合的情形?若能,求出m、n的值;若不能,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D【解析】 【分析】根据有理数a 、b 在数轴上的位置可得0,0,a b a b <>>,进一步即可根据绝对值的意义、乘方的意义对各选项进行判断. 【详解】解:由题意得:0,0,a b a b <>>,所以a b <-,22a b >,0ab <,a b b a -=-;所以选项A 、B 、C 的说法是错误的,选项D 的说法是正确的; 故选:D . 【点睛】本题考查了数轴、绝对值以及有理数的乘方等知识,属于基础题型,熟练掌握基本知识是解题的关键.2.C解析:C 【解析】 【分析】男女生5月份的平均成绩均为8.9,据此判断A 选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B 选项;根据增长率的概念,结合折线图的数据计算,从而判断C 选项;根据女生平均成绩两端折线的上升趋势可判断D 选项. 【详解】解:A .男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意; B .4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C .4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D .5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意; 故选:C . 【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.3.D解析:D 【解析】 【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y .解:由已知计算程序可得到代数式:2x2﹣4,当x=1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x=﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y=4,故选D.【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.4.D解析:D【解析】【分析】根据题意可以用列举法把符合要求的方案写出来,从而得到问题的答案.【详解】解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→-1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3;共计5种.故选:D.【点睛】本题考查数轴,解题的关键是可以根据题目中的信息,把符合要求的方案列举出来.5.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.6.D【解析】【分析】做出点A关于OB和OC的对称点A′和A″,连接A′A″,与OB、OC分别交与点M,N,则沿AM-MN-NA的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A点的对称点A',连接A'N与河流相交于M点,再连接AM,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:故选D.【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.7.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.8.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x元,则提高30%后的标价为+,列出方程即可.x+元;打9折出售,则售价为(130%)90%(130%)x由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+ 故选B 【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.9.D解析:D 【解析】 【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案. 【详解】解:∵式子2mx 2-2x+8-(3x 2-nx )的值与x 无关, ∴2m-3=0,-2+n=0, 解得:m=32,n=2, 故m n =(32)2= 94. 故选D . 【点睛】此题主要考查了合并同类项,去括号,正确得出m ,n 的值是解题关键.10.C解析:C 【解析】 【分析】此题首先利用同号两数相乘得正判定a ,b 同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a ,b 的符号. 【详解】 解:∵ab >0, ∴a ,b 同号, ∵a+b <0, ∴a <0,b <0. 故选:C . 【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.11.D解析:D【解析】【分析】首先把输入的x 的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止.【详解】解:4×4+5=16+5=21,21<100,21×4+5=84+5=89,89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D .【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.12.B解析:B【解析】【分析】观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有21351n n n ++=+个小圆圈.【详解】解:∵第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,…∴第n 个图形有21351n n n ++=+个小圆圈.∴第100个图形中小圆圈的个数是:51001501⨯+=.故选:B .【点睛】本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.二、填空题13.﹣2【解析】【分析】在图1中,设中心数为x ,根据每行、每列的三个数之和相等可得关于a 、x 的方程,解方程即可求出a ,在图2中,根据每列、每条对角线上三个数之和相等可得关于m 、n 的等式,整解析:﹣2【解析】【分析】在图1中,设中心数为x ,根据每行、每列的三个数之和相等可得关于a 、x 的方程,解方程即可求出a ,在图2中,根据每列、每条对角线上三个数之和相等可得关于m 、n 的等式,整理变形即得答案.【详解】解:在图1中,设中心数为x ,根据题意得:2104x a x ++=++,解得:8a =; 在图2中,根据题意得:2020m n n -+=++,整理得:32m n -+=-;故答案为:8,﹣2.【点睛】本题以三阶幻方为载体,主要考查了一元一次方程的应用和代数式求值,正确理解题意、掌握解答的方法是关键.14.75【解析】【分析】由前几个图可发现规律:上面的数是连续的奇数1,3,5,7···2n -1,左下角的数是2,22,23,24,····,2n 可得b 值,右下角的数等于前两个数之和,即可求得a 值.解析:75【解析】【分析】由前几个图可发现规律:上面的数是连续的奇数1,3,5,7···2n-1,左下角的数是2,22,23,24,····,2n 可得b 值,右下角的数等于前两个数之和,即可求得a 值.【详解】解:观察每个图形最上边正方形中数字规律为1,3,5,7,9,11.左下角数字变化规律依次乘2为:2,22,23,24,25,26.所以,b =26观察数字关系可以发现,.右下角数字等于前同图形两个数字之和.所以a =26+11=75,故答案为:75.【点睛】本题考查数字变化规律,观察出左下角的数的变化规律及上边的数与左下角的数的和刚好等于右下角的数是解答的规律.15.8【解析】【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2015÷4=503…3,得出22015的个位数字与23的个位数字相同,是8.【详解】解:2n的个位数字是解析:8【解析】【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2015÷4=503…3,得出22015的个位数字与23的个位数字相同,是8.【详解】解:2n的个位数字是2,4,8,6四个一循环,所以2015÷4=503…3,则22015的末位数字是8.故答案为8.【点睛】题考查学生分析数据,总结、归纳数据规律的能力,要求学生有一定的解题技巧.解题关键是知道个位数字为2,4,8,6顺次循环.16.【解析】【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=AB=×8=4cm,解析:【解析】【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=12AB=12×8=4cm,∵BD=2cm,∴CD=BC﹣BD=4﹣2=2cm.故答案为2.【点睛】本题考查的是线段,比较简单,需要熟练掌握线段的基本性质.17.13或3【解析】【分析】根据线段的和与差运算法则,若点在延长线上时,即得;若点在之间,即得.【详解】当点在延长线上线段,当点在之间线段,综上所述:或故答案为:13或3【点解析:13或3【解析】【分析】根据线段的和与差运算法则,若点C 在BA 延长线上时,=+BC AB AC 即得;若点C 在AB 之间,=BC AB AC -即得.【详解】当点C 在BA 延长线上线段8cm AB =,5cm AC =∴==8+5=13cm +BC AB AC当点C 在AB 之间线段8cm AB =,5cm AC =∴==853cm --=BC AB AC综上所述:=13cm BC 或=3cm BC故答案为:13或3【点睛】本题考查线段的和与差,分类讨论确定点C 的位置是易错点,正确理解线段的无方向的性质是正确进行分类讨论的关键.18.【解析】【分析】根据无限循环小数都可以转化为分数的方法,先设=x①,得到=100x②,由②-①得16=99x,进而解得x=,即可得到=.【详解】解:设=x①,则=100x②,,②-①得1解析:16 99【解析】【分析】根据无限循环小数都可以转化为分数的方法,先设0.16=x①,得到16.16=100x②,由②-①得16=99x,进而解得x=1699,即可得到0.16=1699.【详解】解:设0.16=x①,则16.16=100x②,,②-①得16=99x,解得x=16 99,即0.16=16 99,故答案为:16 99.【点睛】本题主要考查了解一元一次方程的应用,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.19.【解析】【分析】设这个角的度数为x,分别表示出这个角的补角和余角,即可列出方程解答. 【详解】设这个角的度数为x,,.故答案为: .【点睛】此题考查角的余角和补角定义及计算,设出所解析:35【解析】【分析】设这个角的度数为x ,分别表示出这个角的补角和余角,即可列出方程解答.【详解】设这个角的度数为x ,1803(90)20x x ︒-=︒--︒,35x =︒.故答案为: 35︒.【点睛】此题考查角的余角和补角定义及计算,设出所求的角,表示出其补角和余角,才好列式进行计算.20.-【解析】【分析】根据Sn 数的变化找出Sn 的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.【详解】解:S1=,S2=-S1-1=--1=-,S3==-,解析:-1a a+ 【解析】【分析】 根据S n 数的变化找出S n 的值每6个一循环,结合2018=336×6+2,即可得出S 2018=S 2,此题得解.【详解】解:S 1=1a ,S 2=-S 1-1=-1a -1=-1a a +,S 3=21S =-1a a +,S 4=-S 3-1=1111a a a -=-++ ,541S S ==-(a+1),S 6=-S 5-1=(a+1)-1=a ,S 7=611S a = ,…, ∴S n 的值每6个一循环.∵2018=336×6+2,∴S 2018=S 2=-1a a+. 故答案为:-1a a +. 【点睛】此题考查规律型中数字的变化类,根据数值的变化找出S n 的值,每6个一循环是解题的关键.21.2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】∵的解为,∴,解得:,∴方程可化为,∴,∴,∴,解析:2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】 ∵520202020x x m +=+的解为2019x =, ∴52020120201920290m +=⨯+, 解得:52020201920202019m =+-⨯, ∴方程552020(5)2020y y m --=--可化为 25052020(5)5202020192020202019y y --=---+⨯, ∴52020(5)20192020201920202020y y ---=-+⨯, ∴(2020)(5)2019(2020)2020202011y --=-⨯-, ∴52019y -=-, ∴2024y =,故答案为:2024.【点睛】本题考查了已知一元一次方程的解求参数,整体代换解一元一次方程,掌握整体代换的思想是解题的关键.22.192019【解析】【分析】首先根据题意,求得=2,同理求得=19,则可求得面积S1的值;根据题意发现规律:Sn=19nS△ABC 即可求得答案.【详解】解:连接BC1,∵C1A=2CA ,解析:192019【解析】【分析】首先根据题意,求得1ABC S △=2ABC S,同理求得111A B C △S =19ABC S ,则可求得面积S 1的值;根据题意发现规律:S n =19n S △ABC 即可求得答案.【详解】解:连接BC 1,∵C 1A =2CA ,∴1ABC S △=2S △ABC ,同理:111A B C △S =21ABC S △=4S △ABC ,∴11A AC S △=6S △ABC ,同理:11A BB S △=11CB C S △=6S △ABC ,∴111A B C △S =19S △ABC ,即S 1=19S △ABC ,∵S △ABC =1,∴S 1=19;同理:S 2=19S 1=192S △ABC ,S 3=193S △ABC ,∴S 2019=192019S △ABC =192019.故答案是:192019.【点睛】此题考查了三角形面积之间的关系.注意找到规律:S n =19n S △ABC 是解此题的关键.三、解答题23.-3a+b 2,559-【解析】【分析】先对整式进行化简,然后代值求解即可.【详解】解:原式=2221231232323a ab a b a b -+-+=-+, 又22203a b ⎛⎫-++= ⎪⎝⎭,∴22,3a b ==-, 把22,3a b ==-代入求解得:原式=22453265399⎛⎫-⨯+-=-+=- ⎪⎝⎭. 【点睛】本题主要考查整式的化简求值及非负性,熟练掌握整式的运算及绝对值和偶次幂的非负性是解题的关键.24.(1)80;(2)16,24;(3)72°;(4)390人【解析】【分析】(1)由A 类人数及其所占百分比可得调查的总人数;(2)由C 类人数所占百分比乘(1)求得的总人数可得n 的值,再用调查的总人数减去A 、C 、D 类人数可以得到B 类总人数;(3)算出B 类人数所占百分比,再乘以360度可以得到答案;(4)用“A :非常喜欢”和“B :喜欢”经典诵读的学生人数和占调查人数的比例乘以学校总人数可得解答.【详解】解:()13645%80÷=,∴本次调查中,一共调查了80名学生;()()28030%24803624416n m =⨯==-++=;()3解:163607280⨯︒=︒ 答:“B :喜欢”所在扇形的圆心角的度数是72.()4解: 361660039080+⨯= (人) 答:该学校“A :非常喜欢”和“B :喜欢”经典诵读的学生大约有390人.【点睛】本题考查数据的整理和分析,熟练掌握条形统计图和扇形统计图的关联及用样本估计总体的方法是解题关键.25.(1)20;(2)①P 、Q 两点相遇时,点P 到点B 的距离是12cm ;②经过3s 或5s ,P 、Q 两点相距5cm .【解析】【分析】(1)根据绝对值和平方的非负数求出m 、n 的值,即可求解;(2)①根据相遇问题求出P 、Q 两点的相遇时间,就可以求出结论;②设经过xs ,P 、Q 两点相距5cm ,分相遇前和相遇后两种情况建立方程求出其解即可.【详解】解:(1)因为2(2)30m n -++=,所以m-2=0,n+3=0,解得:m=2,n=-3,所以AB=4()m n -=4×[2-(-3)]=20,即20AB =cm ,故答案为:20(2)①设经过t 秒时,P 、Q 两点相遇,根据题意得, 2320t t +=4t =∴P 、Q 两点相遇时,点P 到点B 的距离是:4×3=12cm ;②设经过x 秒,P 、Q 两点相距5cm ,由题意得2x+3x+5=20,解得:x=3或2x+3x-5=20,解得:x=5答:经过3s 或5s ,P 、Q 两点相距5cm .【点睛】本题考查平方和绝对值的非负性以及相遇问题的数量关系在实际问题中的运用,行程问题的数量关系的运用,分类讨论思想的运用,解答时根据行程问题的数量关系建立方程是解题关键.26.(1)∠POQ =104°;(2)当∠POQ =40°时,t 的值为10或20;(3)存在,t =12或18011或1807,使得∠POQ =12∠AOQ . 【解析】【分析】当OQ ,OP 第一次相遇时,t =15;当OQ 刚到达OA 时,t =20;当OQ ,OP 第二次相遇时,t =30;(1)当t =2时,得到∠AOP =2t =4°,∠BOQ =6t =12°,利用∠POQ =∠AOB -∠AOP-∠BOQ 求出结果即可;(2)分三种情况:当0≤t ≤15时,当15<t ≤20时,当20<t ≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t ≤15时,当15<t ≤20时,当20<t ≤30时,分别列出等量关系式求解即可.【详解】解:当OQ ,OP 第一次相遇时,2t +6t =120,t =15;当OQ 刚到达OA 时,6t =120,t =20;当OQ ,OP 第二次相遇时,2t 6t =120+2t ,t =30;(1)当t =2时,∠AOP =2t =4°,∠BOQ =6t =12°,∴∠POQ =∠AOB -∠AOP-∠BOQ=120°-4°-12°=104°.(2)当0≤t ≤15时,2t +40+6t=120, t =10;当15<t ≤20时,2t +6t=120+40, t =20;当20<t ≤30时,2t =6t -120+40, t =20(舍去);答:当∠POQ =40°时,t 的值为10或20.(3)当0≤t ≤15时,120-8t=12(120-6t ),120-8t=60-3t ,t =12; 当15<t ≤20时,2t –(120-6t )=12(120 -6t ),t=18011. 当20<t ≤30时,2t –(6t -120)=12(6t -120),t=1807. 答:存在t =12或18011或1807,使得∠POQ =12∠AOQ . 【分析】 本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.27.(1)点B 表示的数为4;- (2)①点P 与点Q 相遇,它们运动了2秒,相遇时对应的有理数是0.②当点P 运动25秒或185秒时,8PQ =个单位长度. 【解析】【分析】(1)由点B 表示的数=点A 表示的数-线段AB 的长,可求出点B 表示的数;(2)设运动的时间为t 秒,则此时点P 表示的数为6-3t ,点Q 表示的数为2t-4. ①由点P ,Q 重合,可得出关于t 的一元一次方程,解之即可得出结论;②分点P ,Q 相遇前及相遇后两种情况,由PQ=8,可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:(1)点A 表示的数为6,10AB =,且点B 在点A 的左侧, ∴点B 表示的数为6104-=-.(2)设运动的时间为t 秒,则此时点P 表示的数为63t -,点Q 表示的数为24t -.①依题意,得:6324t t -=-,解得:2t =,240t ∴-=,答:点P 与点Q 相遇,它们运动了2秒,相遇时对应的有理数是0.②点P ,Q 相遇前,63(24)8t t ---=, 解得:25t =; 当P ,Q 相遇后,24(63)8t t ---=, 解得:185t =. 答:当点P 运动25秒或185秒时,8PQ =个单位长度. 【点睛】本题考查了一元一次方程的应用以及数轴,找准等量关系,正确列出一元一次方程是解题的关键.28.(1)145;(2)9cm 或6cm ;(3)能出现三点重合的情形,95m =,195n =或1511m =,1311n = 【解析】【分析】(1)设经过x 秒C 、D 相遇,根据14AC BD AO BO +=+=列方程求解即可; (2)分OE 在线段AB 上方且垂直于AB 时和OE 在线段AB 下方且垂直于AB 时两种情况,分别运动了1秒和4秒,分别计算即可;(3)能出现三点重合的现象,分点E 运动到AB 上且在点O 左侧和点E 运动到AB 上且在点O 右侧两种情况讨论计算即可.【详解】解:(1)设经过x 秒C 、D 相遇,则有,23=14x x +, 解得:14=5x ; 答:经过145秒C 、D 相遇; (2)①当OE 在线段AB 上方且垂直于AB 时,运动了1秒, 此时,1421319CD cm =-⨯-⨯=,②当OE 在线段AB 下方且垂直于AB 时,运动了4秒, 此时,1424346CD cm =-⨯-⨯=;(3)能出现三点重合的情形;①当点E 运动到AB 上且在点O 左侧时,点E 运动的时间18030 2.560t -==,∴6 1.592.55m-==,8 1.5192.55n+==;②当点E运动到AB上且在点O右侧时,点E运动时间360305.560t-==,∴6 1.5155.511m+==,8 1.5135.511n-==.【点睛】本题考查的知识点是一元一次方程的应用,读懂题意,找出题目中的已知量和未知量,明确各数量间的关系是解此题的关键.。
2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。
初中七年级数学上册期末考试卷及答案【完整版】
初中七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30° 10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc +++结果是________. 2.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个. 3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE(1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、A2、C3、D4、A5、C6、D7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、23、4332a ≤≤ 4、50°5、246、7三、解答题(本大题共6小题,共72分)1、(1)711=y (2)x=0 2、353、(1)证明见解析;(2)∠FAE=135°;4、(1)OF ⊥OD ,证明详略;(2)∠EOF =60°.5、(1)作图见解析;(2)120.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。
2024-2025学年人教版七年级数学上册期末质量检测复习试题(二)(含答案)
2024—2025年度第一学期人教版七年级数学期末质量检测复习试题(二)(考试时间:120分钟 试卷满分:150分)1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.(本题3分)的相反数是( )A .2024B .C.D .2.(本题3分)点A 在数轴上的位置如图所示,若将点A 向左移动4个单位长度得到点B ,则点B 表示的数是( )A .5B .4C .D .3.(本题3分)2024年6月6日,嫦娥六号在距离地球约384000000米外上演“太空牵手”,完成月球轨道的交会对接,数据384000000用科学记数法表示为( ).A .B .C .D .4.(本题3分)当时,代数式的值为( )A .1B .C .D .5.(本题3分)已知单项式与的和是单项式,那么的值是( )A .B .C .D .6.(本题3分)已知关于x 的方程的解是,则a 的值为( )A .6B .7C .8D .97.(本题3分)如图,,,若平分,则( )A .B .C .30°D .8.(本题3分)把,,,0用“”号连接,正确的是( )A .B .C .D .9.(本题3分)我国古代流传这样一个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何,意思是:今有若干人乘车,每4人共乘一车,恰好剩余1辆车无人坐;若每2人共乘一车,最终剩余8个人无车乘,问有多少人、多少辆车.如果设有辆车,那么总人数可表示为( )A .B .C .D .10.(本题3分)如图,点C 是线段上的点,点M 、N 分别是的中点,若,则线段的长度是( )A .B .C .D .11.(本题3分)已知,,若的值与a 的取值无关,则b 的值为20242024-1202412024-3-4-73.8410⨯83.8410⨯93.8410⨯838.410⨯5m =6m -1-1111-22m x y -335n x y ()n m -99-66-250x a -+=2x =75AOD ∠=︒30COD ∠=︒OB AOC ∠AOB ∠=22.5︒25︒ 3.5︒()1--23-45-->()420531--->>->-()240351->>-->--()240351->>---->()420531>>-->---x ()41x -()41x +28x -()28x +AB AC BC 、5cm MN =AB 6cm 7cm 8cm 10cm2231A a ab a =+--235B a ab =--+2A B +( )A .B .C .D .12.(本题3分)如图:第1个图案中,内部“△”的个数为1个,外侧边上“●”的个数为3个;第2个图案中,内部“△”的个数为3个,外侧边上“●”的个数为6个;第3个图案中,内部“△”的个数为6个,外侧边上“●”的个数为9个;依此类推,当内部“△”的个数是外侧边上“●”的个数的3倍时,的值为( )A .16B .17C .18D .19二、填空题(本大题共4小题,每小题4分,满分16分)13.(本题4分)若,且,则 .14.(本题4分)计算: .15.(本题4分)若多项式是关于的五次三项式,则的值为 .16.(本题4分)如图是一个正方体的表面展开图,在正方形、、内分别填入适当的数,,,使其折叠成正方体后,相对面上的两个数互为倒数,则 .三、解答题(本大题共9小题,满分98分.解答应写出文字说明,证明过程或演算步骤)17.(本题10分)把下列各数分别填在相应的集合内.2024,,,,3.1415926,0,,,,(1)正有理数集合:{ …};(2)负分数集合:{ …};(3)整数集合:{ …}.18.(本题10分)计算:(1); (2)19.(本题10分)计算(1)(2)20.(本题10分)先化简,再求值;(1),其中; (2),其中34-14-35-15-n 0a <2=a a =20239920242024⨯=||328(2)m x x m x +-+-x m A B C a b c 23a b c -+=1- 2.3-1634-5%90-0.3- ()()3233524-+⨯--÷525203333⎛⎫⎛⎫⎛⎫⎛⎫-⨯-+-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()3126x --=123123x x ---=22225432a a a a a -++--12a =()()22222432314x y xy xy x y x y ----112,x y ==-21.(本题10分)如图,已知轮船在灯塔的北偏西的方向上,轮船在灯塔的南偏东的方向上.(1)求从灯塔看两轮船的视角(即)的度数;(2)轮船在的平分线上,则轮船在灯塔的什么方向上?22.(本题12分)王老师购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位:),解答下列问题:(1)写出用含、的整式表示的地面总面积;(2)若,,铺地砖的平均费用为元,求铺地砖的总费用为多少元?23.(本题12分)甲班分两次共购买苹果80千克(第二次多于第一次),共付185元,乙班则一次性购买苹果80千克.购买苹果数不超过30千克30千克以上但不超过50千克50千克以上每千克价格3元2.5元2元(1)乙班比甲班少付多少元?(2)甲班第一次、第二次分别购买苹果多少千克?A P 20︒B P 80︒P APB ∠C APB ∠C P m x y 4m x = 1.5m y =21m 8024.(本题12分)某学校有一块长方形花园,长12米、宽10米.花园中间欲铺设横纵各一条道路(图①空白部分),且它们互相垂直.若横向道路的宽是纵向道路的宽的2倍,设纵向道路的宽是米.(提示:)(1)如图①,横向道路的宽是_____米,花园道路的面积为_____平方米;(用含的代数式表示)(2)若把纵向道路的宽改为原来的2倍,横向道路的宽改为原来的(如图②所示).设图①与图②中花园的面积(阴影部分)分别为,,试比较与的大小.25.(本题12分)综合与实践问题情境在一次数学实践活动课上,同学们利用一张边长为的正方形纸板开展了“长方体纸盒的制作”实践活动.如图1,勤学小组的同学先在纸板四角剪去四个同样大小边长为的小正方形,再沿虚线折合起来,制成了一个无盖的长方体纸盒.如图2,善思小组的同学先在纸板四角剪去两个同样大小边长为的小正方形和两个同样大小的小长方形,再沿虚线折合起来,制成了一个有盖的长方体纸盒.问题解决(1)图1中的长方体纸盒的底面积为 ;(2)图2中的长方体纸盒的长为 :拓展延伸(3)现有两张边长均为的正方形纸板,分别按勤学小组和善思小组的方法制作成无盖和有盖的两个长方体纸盒,若剪去部分的小正方形边长为,求无盖纸盒的体积是有盖纸盒体积的多少倍.x 2x x x ⋅=x 121S 2S 1S 2S 20cm 5cm 3cm 2cm cm 30cm 5cm2024—2025年度第一学期人教版七年级数学期末质量检测复习题(二)参考答案一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项符合题目要求的)题号12345678910答案B C B B A D A C A D 题号1112 答案CB二、填空题(本大题共4小题,每小题4分,满分16分)13.―214.15.16.三、解答题(本大题共9小题,满分98分.解答应写出文字说明,证明过程或演算步骤)17.(1)解:正有理数:2024,,3.1415926,,故答案为:2024,,3.1415926,;(2)解:负分数:,故答案为:;(3)解:整数:.故答案为:.18.(1)解:;(2).19.(1)解:,去括号得:,移项,合并同类项得:,系数化为1得:;(2)解:,去分母得:,去括号得:,移项,合并同类项得:,系数化为1得:.20.解:(1)2023992-16165%165%332.3,,40.--- 332.3,,40.--- 2024,1,0,90--2024,1,0,90--()()3233524-+⨯--÷()()393524=-+⨯--÷()6584=-⨯--÷()302=---302=-+=28-525203333⎛⎫⎛⎫⎛⎫⎛⎫-⨯-+-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭5220333⎛⎫=-⨯-+ ⎪⎝⎭563=-⨯10=-()3126x --=3126x -+=2631x =-+2x =123123x x ---=()()312236x x ---=33466x x --+=3x -=3x =-22225432a a a a a -++--,当时,原式.(2),当时,原式.21.(1)解:如图所示,因为轮船在灯塔的北偏西的方向上,轮船在灯塔的南偏东的方向上,所以 .(2)解:因为平分,所以,所以,所以轮船在灯塔的北偏东方向上.22.(1)解:如图,由题意知,长方形的长为,宽为,长方形的长为,宽为,∴地面总面积,∴用含、的整式表示地面总面积为;(2)解:当,时,,∵(元),()()22223542a a a a a =+-+-+-2a =--12a =15222=--=-()()22222432314x y xy xy x y x y----222221246214x y xy xy x y x y=--+-210xy =-112,x y ==-21510122⎛⎫=-⨯⨯-=- ⎪⎝⎭A P 20︒B P 80︒APB APM MPN BPN ∠=∠+∠+∠()20909080=︒+︒+︒-︒120=︒PC APB ∠111206022APC APB ∠=∠=⨯︒=︒CPM APC APM ∠=∠-∠602040=︒-︒=︒C P 40︒ABCD ()224m x x ++=+6m CEFG 2m ()633m y y --=-=()()()264231862m ABCD CEFG S S x y x y -=+--=++长方形长方形x y ()21862m x y ++4m x = 1.5m y =2186218642 1.545m x y ++=+⨯+⨯=4580360⨯=∴铺地砖的总费用为元.23.(1)解: (元).答:乙班比甲班少付25元.(2)解:设甲班第一次购买了千克苹果,则第二次购买了千克苹果.①若两次购买量都在30千克与50千克之间,则,无解;②若第一次购买量在0千克与30千克之间,第二次购买量在30千克与50千克之间,则,解得,不合题意,舍去;③若第一次购买量在0千克与30千克之间,第二次购买量在50千克以上,则,解得,符合题意,此时.答:甲班第一次购买了25千克苹果,第二次购买了55千克苹果.24.(1)解:横向道路的宽是x 米,且纵向道路的宽是横向道路的宽的2倍,纵向道路的宽是米,由题意,图①中花园道路的面积为:平方米;(2)解:由题意得,题图①中花园的面积平方米,题图②中花园的面积.平方米,则.因为,所以,所以.25.解:(1)图1中的长方体纸盒的底面积为;故答案为:(2)图2中的长方体纸盒的长为,故答案为:14(3)无盖纸盒的体积为:,有盖纸盒体积为:∵,∴无盖纸盒的体积是有盖纸盒体积的2倍36018528025-⨯=x ()80x -2.5 2.5(80)185x x +-=3 2.5(80)185x x +-=30x =-32(80)185x x +-=25x =8055x -=∴2x ()2101222342x x x x x +⨯-⋅=-)()2211210(342120342S x xx x =⨯--=-+21210(12102S x x x =⨯-+⨯-()22)120322x x x =-+()()22121203421203222S S x x x x x -=-+--+=-0x >20x -<12S S <()()()22052205c 0m 210-⨯⨯-⨯=100()203214cm -⨯=()()()3305230525202052000cm -⨯⨯-⨯⨯=⨯⨯=()()3305230525201051000cm 2-⨯⎛⎫-⨯⨯⨯=⨯⨯= ⎪⎝⎭200010002÷=。
2024—2025学年人教版七年级上册期末模拟考试数学试卷[含答案]
七年级上学期数学期末模拟考试试卷人教版2024—2025学年七年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.2022年2月13日,我国自营勘探开发的首个1500米超深水大气田“深海一号”在海南岛东南陵水海域正式投产,每年将向粤港琼等地稳定供气30亿立方米,可满足粤港澳大湾区四分之一的民生用气需求.将数据30亿用科学记数法表示应为310n ´,则n 的值为( )A .7B .8C .9D .102.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.圆周率 3.1415926p »按照四舍五入法对p 精确到百分位是( )A .3.15B .3.141C .3.14D .3.1423.下列计算正确的是( )A .330y y --=B .54mn nm mn -=C .243a a a -=D .22223a b ab a b+=4.如果式子53x +与2x 的值互为相反数,则x 的值为( )A .73B .73-C .37D .37-5.小刚做了一道数学题:“已知两个多项式为A ,B ,求A B +的值,”他误将“A B +”看成了“A B -”,结果求出的答案是x y -,若已知B 3x 2y =-,那么原来A B +的值应该是( )A .4x+3y B .2x-y C .-2x+y D .7x-5y 6.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的34.若设甲一共做了x 天,则所列方程为( )A .13584x x ++=B .-13584x x +=C .13-584x x +=D .-13-584x x =7.若122m x y +-与13n xy -是同类项,则m n -的值为( )A .4-B .3-C .3D .48.根据等式的性质,下列变形正确的是( )A .如果23x =,那么23x a a =B .如果x y =,那么55x y-=-C .如果x y =,那么22x y -=-D .如果162x =,那么3x =9.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB =2ACB .AC +CD +DB =ABC .CD =AD -12AB D .AD =12(CD +AB )10.解方程21132x x a -+=-时,小刚在去分母的过程中,右边的“1-”漏乘了公分母6,因而求得方程的解为4x =,则方程正确的解是( )A .0x =B .1x =C .4x =-D .=1x -二、填空题(每小题3分,满分18分)11.比较大小(用“<”“=”或“>”填空):59- 35-.12.若数轴上A 点表示数3-,则与A 点相距5个单位长度的点表示的数为 .13.若73x y ==,,且x y >,则y x -等于 .14.如果3x =-,式子31px qx --的值为2023,则当3x =时,式子31px qx --的值是 .15.有理数a ,b ,c 在数轴上的位置如图所示,化简|a+b ﹣c|﹣|c ﹣b|+2|a+c|= .16.观察图形和所给表中的数据后回答问题.梯形个数12345……图形周长58111417……当图形的周长为167时,梯形的个数为 .三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算:()()241110.5232éù---´´--ëû.18.先化简,再求值:已知210a -=,求()()225212a a a a +--+的值.19.一个角的补角加上20°后等于这个角的余角的3倍,求这个角.20.已知代数式2342A x x =-+.(1)若221B x x =--,求2A B -;(2)若21B ax x =--(a 为常数),且A 与B 的和不含2x 页,求整式2452a a +-的值.21.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米).14+,9-,8+,7-,13+,6-,12+,5-,2+.(1)请你帮忙确定B 地位于A 地的什么方向,距离A 地有多少千米?(2)救灾过程中,冲锋舟离出发点A 最远处有_____千米.(3)若冲锋舟每千米耗油0.5升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?22.某商场开展优惠促销活动,将甲种商品六折出存,乙种商品八折出售,已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,问:商场销售甲、乙两种商品各一件时是盈利还是亏损了?具体金额是多少?23.如图,已知点C 为线段AB 上一点,12cm AC =,8cm CB =,D 、E 分别是AC AB 、的中点.求:(1)求AD 的长度;(2)求DE 的长度;(3)若M 在直线AB 上,且6cm MB =,求AM 的长度.24.已知 AOB Ð与COD Ð互补,将COD Ð绕点O 逆时针旋转.(1)若110,70AOB COD °°Ð=Ð=①如图1,当30COB Ð=°时,AOD Ð= °;②将COD Ð绕点O 逆时针旋转至3AOC BOD Ð=Ð,求COB Ð与AOD Ð的度数;(2)将COD Ð绕点O 逆时针旋转(0180)a a °<<,在旋转过程中,AOD COB Ð+Ð的度数是否随之的改变而改变?若不改变,请求出这个度数;若改变,请说明理由.25.已知b 是最小的正整数,且,,a b c 满足()250c a b -++=.(1)填空:a =_________,b =_________,c =_________;(2)数,,a b c 在数轴上对应的点分别是,,A B C ,点P 为数轴上一动点,其对应的数为x ,点P 在1到2之间运动时(即12x ££),请化简式子:1125x x x +--+-;(3)在(2)的条件下,点,,A B C 在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒(5)m m <个单位长度和5个单位长度的速度向右运动.点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .若在运动过程中BC AB -的值保持不变,求m 的值.【分析】此题主要考查了用科学记数法表示较大的数,一般形式为10n a ´,其中£<110a ,确定a 与n 的值是解题的关键.用科学记数法表示较大的数时,一般形式为10n a ´,其中£<110a ,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:30亿93000000000310==´.即9n =.故选:C .2.C【分析】本题考查取近似数,涉及四舍五入法,找准小数的百分位,根据千分位的数四舍五入是解决问题的关键.【详解】解: 3.1415926p »,将π按照四舍五入法精确到百分位是3.14,故选:C .3.B【分析】根据同类项的定义以及合并同类项得方法逐项分析即可.【详解】A.336y y y --=-,故不正确;B.54mn nm mn -= ,正确;C.24a 与3a 不是同类项,不能合并,故不正确;D.2a b 与22ab 不是同类项,不能合并,故不正确;故选B .【点睛】本题考查了同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.4.D【分析】本题考查了相反数的性质,解一元一次方程,根据题意列出方程,解方程即可求解.【详解】解:∵53x +与2x 的值互为相反数,∴5320x x ++=解得:37x =-故选:D .【分析】先根据A -B =x y -,32B x y =-,求出A 的值,然后再计算A +B 即可.【详解】由题意得,A =()x y -+(32x y -)=x -y +3x -2y=4x -3y .∴A +B =(4x -3y )+(32x y -)=4x -3y +32x y-= 7x -5y .故选D.【点睛】本题考查了整式的加减,仔细审题,根据题目中的数量关系求出A 的值是解题的关键.6.B【分析】题目默认总工程为1,设甲一共做x 天,由于甲先做了1天,所以和乙合作做了(x-1)天,根据甲的工作量+乙的工作量=总工作量的四分之三,代入即可.【详解】由题意得:甲的工作效率为15,乙的工作效率为18设甲一共做了x 天,乙做了(x-1)天∴列出方程:x x 13584-+=故选B【点睛】本题考查一元一次方程的应用,工程问题的关键在于利用公式:工程量=工作时间×工作效率.7.B【分析】根据同类项的定义解答即可.【详解】解:由题意得:1112m n +=-=,,解得:03m n ==,.∴033m n -=-=-.故选:B .【点睛】本题主要考查同类项,熟练掌握同类项的定义是解决本题的关键.同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【分析】根据等式的基本性质解决此题.【详解】解:A 、如果23x =,且a 0¹,那么23x a a=,故该选项不符合题意;B 、如果x y =,那么55x y -=-,故该选项不符合题意;C 、如果x y =,那么22x y -=-,故该选项符合题意;D 、如果162x =,那么12x =,故该选项不符合题意;故选:C .【点睛】本题主要考查等式的基本性质,熟练掌握等式的基本性质是解决本题的关键.性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.D【详解】A 、由点C 是线段AB 的中点,则AB =2AC ,正确,不符合题意;B 、AC +CD +DB =AB ,正确,不符合题意;C 、由点C 是线段AB 的中点,则AC =12AB ,CD =AD -AC =AD -12AB ,正确,不符合题意;D 、AD =AC +CD =12AB +CD ,不正确,符合题意.故选:D .10.D【分析】根据题意按照小刚的解方程步骤解方程,再根据解为4x =求出a 的值,再按照正确的步骤解方程即可.【详解】解:由题意得,小刚的解题过程如下:21132x x a -+=-去分母得:()()22131x x a -=+-,去括号得:42331x x a -=+-,移项得:43312x x a -=-+,合并同类项得:31x a =+,∵小刚的求解结果为4x =,∴314a +=,∴1a =,正确过程如下:21132x x a -+=-去分母得:()()221316x x -=+-,去括号得:42336x x -=+-,移项得:43362x x -=-+,合并同类项得:1x =-,故选D .【点睛】本题主要考查了解一元一次方程,正确理解题意还原小刚的解题过程从而求出a 的值是解题的关键.11.>【分析】两个负数比较大小,绝对值大的反而小,据此即可求解.【详解】解:∵5599-=,3355-=,又∵5395<,∴5395->-,故答案为:>.【点睛】此题主要考查了有理数大小比较的方法,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.2或8-【分析】本题主要考查了数轴上两点距离计算,有理数的加减计算,分该点在点A 右边和左边两种情况,根据数轴上两点距离计算公式求解即可.【详解】解:当该点在点A 右边时,则该点表示的数为352-+=,当该点在点A 左边时,则该点表示的数为358--=-,∴该点表示的数为2或8-,故答案为:2或8-.13.10-或4-【分析】本题主要考查了有理数的减法计算,求一个数的绝对值,有理数比较大小,先由绝对值的意义得到73x y =±=±,,再由x y >得到73x y ==±,,据此根据有理数减法计算法则求解即可.【详解】解:∵73x y ==,,∴73x y =±=±,,∵x y >,∴73x y ==±,,∴374-=-=-y x 或3710-=--=-y x ,故答案为:10-或4-.14.2025-【分析】本题考查了代数式的求值,解题的关键是运用整体思想代入求值.把3x =-代入求出2732024p q -=-,再把3x =代入,变形后即可求出答案.【详解】解:∵3x =-时,式子31px qx --的值为2023,∴27312023p q -+-=,即2732024p q -=-,当3x =时,313127202412025px qx p q ----==--=-,故答案为:2025-.15.﹣3a ﹣2c【分析】根据数轴,可得a <b <0<c ,且|a|>|c|,据此关系可得|a+b ﹣c|及|a+c|的化简结果,进而可得答案.【详解】根据题意得,a <b <0<c ,且|a|>|c|,∴a+b-c <0,a+c <0,∴|a+b ﹣c|﹣|c ﹣b|+2|a+c|=-(a+b-c )-(c-b)-2(a+c),=-a-b+c-c+b-2a-2c ,=﹣3a ﹣2c.故答案为﹣3a ﹣2c.【点睛】本题考查数轴的运用,要求学生掌握用数轴表示实数及实数间的大小关系.16.55【分析】根据表格得:当梯形的个数为n 时,图形的周长为32n +,根据题意列出方程,解方程即可求解.【详解】根据表格得:当梯形的个数为n 时,图形的周长为32n +,∴32167n +=,解得:55n =,故答案为:55.【点睛】本题考查了图形类规律题,找到规律列出一元一次方程是解题的关键.17.34【分析】本题主要考查了含乘方的有理数混合计算,按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可.【详解】解:()()241110.5232éù---´´--ëû()1112922=--´´-()1174=--´-714=-+34=.18.231a -;2【分析】先根据去括号法则去括号,再合并同类项,最后将21a =整体代入即可求解.【详解】解:()()225212a a a a +--+2252122a a a a =+---231a =-210a -=Q 21a \=\原式3112=´-=【点睛】本题考查了整式加减中的化简求值,掌握去括号法则是解题的关键.19.35°【分析】利用一个角的补角加上20°,等于这个角的余角的3倍作为相等关系列方程求解即可.【详解】解:设这个角为x °,则(180-x )+20=3(90-x ),解得x =35.所以,这个角为35°.【点睛】本题主要考查了一元一次方程的应用.解此题的关键是能准确的从题中找出各个量之间的数量关系,找出等量关系列方程,从而计算出结果.20.(1)24x +(2)19【分析】此题主要考查了整式的加减,正确合并同类项是解题关键.(1)直接利用整式的加减运算法则计算得出答案;(2)根据整式的加减运算法则化简,进而得出答案.【详解】(1)解:()()222342221-=-+---A B x x x x 22342242x x x x =-+-++24x =+;(2)解:2342A x x =-+Q ,21B ax x =--,()()223421\+=-++--A B x x ax x 223421x x ax x =-++--()2351a x x =+-+,A Q 与B 的和不含2x 项,30a \+=即3a =-,2452\+-a a ()24(3)532=´-+´--49152=´--36152=--19=.21.(1)B 地位于A 地东方,距离A 地有22千米(2)25(3)8升【分析】(1)根据有理数的加法,可得和,再根据向东为正,结合和的符号可判定方向及距离;(2)首先计算每次行程后与出发点的距离,再比较有理数的大小,可得答案;(3)首先计算当天航行的总里程,进而可得当天耗油量,再根据耗油量与已有的油量,可得答案.++-+++-+++-+++-++=+,【详解】(1)解:∵(14)(9)(8)(7)(13)(6)(12)(5)(2)22∴B地位于A地东方,距离A地有22千米;(2)路程记录中各点离出发点的距离分别为:(14)14+=千米,++-=+=千米,(14)(9)55++-++=+=千米,(14)(9)(8)1313(14)(9)(8)(7)66++-+++-=+=千米,++-+++-++=+=千米,(14)(9)(8)(7)(13)1919++-+++-+++-=+=千米,(14)(9)(8)(7)(13)(6)1313(14)(9)(8)(7)(13)(6)(12)2525++-+++-+++-++=+=千米,++-+++-+++-+++-=+=千米,(14)(9)(8)(7)(13)(6)(12)(5)2020++-+++-+++-+++-++=+=千米,(14)(9)(8)(7)(13)(6)(12)(5)(2)2222>>>>>>>,∵25222019141365∴救灾过程中,冲锋舟离出发点A最远处有25千米.故答案为:25;++-+++-+++-+++-++(3)149871361252=++++++++149871361252=千米,76´-=升,760.5308∴冲锋舟当天救灾过程中至少还需补充8升油.【点睛】本题主要考查了正负数的意义、化简绝对值、有理数比较大小、有理数混合运算的应用等知识,熟练掌握相关运算法则是解题关键.22.(1)甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)盈利,盈利了8元.【分析】(1)设甲商品原销售单价为x 元,则乙商品的原销售单价为(1400﹣x )元,根据优惠后购买甲、乙各一件共需1000元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)设甲商品的进价为a 元/件,乙商品的进价为b 元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a 、b 的一元一次方程,解之即可求出a 、b 的值,再代入1000﹣a ﹣b 中即可找出结论.【详解】(1)解:设甲商品原销售单价为x 元,则乙商品的原销售单价为(1400﹣x )元,根据题意得:0.6x +0.8(1400﹣x )=1000,解得:x =600,∴1400﹣x =800.答:甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)解:设甲商品的进价为a 元/件,乙商品的进价为b 元/件,根据题意得:(1﹣25%)a =60%×600,(1+25%)b =80%×800,解得:a =480,b =512,∴1000﹣a ﹣b =1000﹣480﹣512=8.答:商场在这次促销活动中盈利,盈利了8元.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.(1)6cm(2)4cm(3)26cm 或14cm【分析】本题考查了关于线段的中点的计算,线段的和与差的计算.(1)直接根据D 是AC 的中点可得答案;(2)先求出AB 的长,然后根据E 是AB 的中点求出AE ,AE ﹣AD 即为DE 的长;(3)分M 在点B 的右侧、M 在点B 的左侧两种情况进行计算即可.【详解】(1)解:由线段中点的性质,()11126cm 22AD AC ==´=;(2)解:由线段的和差,得()12820cm AB AC BC =+=+=,由线段中点的性质,得()112010cm 22AE AB ==´=,由线段的和差,得()1064cm DE AE AD =-=-=;(3)解:当M 在点B 的右侧时,()20626cm AM AB MB =+=+=,当M 在点B 的左侧时,()20614cm AM AB MB =-=-=,∴AM 的长度为26cm 或14cm .24.(1)①150;②20COB Ð=°,130AOD Ð=°或80COB Ð=°,100AOD Ð=°(2)不改变,其度数为180°【分析】(1)①先根据110,70AOB COD °°Ð=Ð=求出180AOB COD Ð+Ð=°,再根据O AOB C BO OD A D C ÐÐ+Ð+Ð=计算即可;②设AOC x Ð=°,分两种情况:(Ⅰ) OB 在COD Ð内部,(Ⅱ) COD Ð在AOB Ð内部,分别讨论即可;(2)设,,AOB COD AOC b q g °°°Ð=Ð=Ð=,求出所有情况后判断即可.【详解】(1)①∵110,70AOB COD °°Ð=Ð=,∴11108070AOB COD °+°=°Ð+Ð=,∵O AOB C BO OD A D C ÐÐ+Ð+Ð=,30COB Ð=°,∴18030150AOD Ð=°-°=°,故答案为150;②(Ⅰ)当OB 在COD Ð内部时(如图1),设AOC x Ð=°,则110COB x °°Ð=-,70(110)40BOD COD COB x x °°°°°Ð=Ð-Ð=--=-,由3AOC BOD Ð=Ð得,3(40)x x °=°-°,解得60x =,∴1101106050,40604020COB x BOD x °°°°°°°°°°Ð=-=-=Ð=-=-=,∴11020130AOD AOB BOD а=Ð+Ð=+°°=;(Ⅱ) 当COD Ð在AOB Ð内部时(如图2),设AOC x Ð=°,则1107040BOD AOB AOC COD x x Ð=Ð-Ð-Ð=-°-°=°-°°,由3AOC BOD Ð=Ð得,3(40)x x °=°-°,解得x =30,40403010BOD x Ð=-=°-°=°°°,701080COB COD BOD °°°Ð=Ð+Ð=+=,∴3070100AOD AOC COD °°°Ð=Ð+Ð=+=;(2)不改变,其度数为180°.设,,AOB COD AOC b q g °°°Ð=Ð=Ð=,由条件知180b q +=,分四种情况:ⅰ)当OB 在COD Ð内部时(如图3),COB AOB AOC b g аÐ-=°=Ð-,()BOD COD BOC q b g Ð=Ð-Ð=°-°-°,()AOD AOB BOD b q b g q g Ð=Ð+Ð=°+°-°-°=°+°,∴180AOD COB q g b g q b °°°°°°°Ð+Ð=++-=+=;ⅱ) 当COD Ð在AOB Ð内部时(如图4),COB AOB AOC b g аÐ-=°=Ð-,AOD AOC COD g q аÐ+=°=Ð+,∴180AOD COB q g b g q b °°°°°°°Ð+Ð=++-=+=;ⅲ)当OA 在COD Ð内部时(如图5),COB AOB AOC b g аÐ+=°=Ð+,AOD DOC COA q g Ð=Ð-Ð=°-°,∴180AOD COB b g q g q b °°°°°°°Ð+Ð=++-=+=;ⅳ)当COD Ð在AOB Ð外部时(如图6),360()AOD COB AOB COD Ð+Ð=°-Ð+Ð360180180=°-°=°;综上所述,在旋转过程中,AOD COB Ð+Ð的度数不改变,其度数为180°.【点睛】本题考查了角的和差,关键是运用角的和差正确表示所需要的角.25.(1)1-,1,5(2)212x -+(3)2【分析】本题考查了非负数的性质,数轴上的动点,化简绝对值,(1)根据最小的正整数、绝对值和平方的非负性质即可得到结论;(2)根据x 的取值范围,去绝对值进行计算即可得;(3)首先求出A ,B ,C 所在位置,然后计算出BC 和AB ,即可得到结论.【详解】(1)解:∵b 是最小的正整数,∴1b =,∵()250c a b -++=,∴0a b +=,50c -=,解得1,5a c =-=.(2)∵12x ££,∴10,10,50x x x +>->-<,∴原式()()()1125x x x =+--+--éùëû,()()()1125x x x =+----,11210x x x =+-+-+,21110x x x =--+++,212x =-+.(3)由题意知:t 秒后,,A B C 对应的数分别为1,1,55t mt t --++.所以,()()1112AB mt t m t =+---=++.()()55154BC t mt m t =+-+=-+,()()5412BC AB m t m t -=-+-++éùëû,()422m t =-+.∵BC AB -的值不变,∴420m -=.解得2m =.。
2024年最新人教版七年级数学(上册)期末考卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/25. 下列哪个数是负数?A. 3B. 0C. 2D. 1/26. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零7. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.58. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/29. 下列哪个数是负数?A. 3B. 0C. 2D. 1/210. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零二、填空题(每题3分,共30分)1. 5的绝对值是______。
2. 2的绝对值是______。
3. 3/4的绝对值是______。
4. 0的绝对值是______。
5. 1/2的绝对值是______。
6. 1/2的绝对值是______。
7. 3的绝对值是______。
8. 3的绝对值是______。
9. 2/3的绝对值是______。
10. 0.25的绝对值是______。
三、解答题(每题10分,共50分)1. 计算:| 5 | | 3 | + | 2 | | 1 |2. 计算:| 4 | + | 6 | | 2 | + | 3 |3. 计算:| 7 | | 5 | + | 3 | | 2 |4. 计算:| 8 | + | 7 | | 4 | + | 3 |5. 计算:| 9 | | 6 | + | 5 | | 4 |四、应用题(每题10分,共30分)1. 小明有5个苹果,小红有3个苹果,小刚有2个苹果。
小明比小红多几个苹果?小红比小刚多几个苹果?2. 一辆汽车从A地开往B地,速度是每小时60公里。
湖南省娄底市第二中学2024--2025学年七年级上学期期末数学模拟考试卷(含答案)
2024年下学期期末模拟考试七年级数学满分:120分 时量:100分钟 姓名: 得分:题号12345678910选项一、选择题:本题共10小题,每小题3分,共30分.1.中国是最早采用正负数表示相反意义的量的国家,如果将“收入60元”记作“+60元”,那么“支出40元”记作( )A .+40元B .−40元C .+20元D .−20元2.电影《志愿军:存亡之战》以7.61亿元票房领跑2024年国庆档电影票房.其中数据7.61亿用科学记数法表示为( )A .0.761×109B .7.61×108C .7.61×106D .761×1083.小明买了2支钢笔,3支圆珠笔,已知每支钢笔a 元,每支圆珠笔b 元,则小明一共用了( )元A .2a +3bB .3a +2bC .3a +2aD .3b +2b4.下列运用等式性质变形一定正确的是( )A .若a =b ,则a−c =b +c B .若a =b ,则2a =3b C .若a =b ,则ac =bc D .若ac =bc ,则a =b5.临近月考,学生总是有些焦虑,但请你相信“努力总会发光!”.如图是正方体的展开图,已知一个正方体展开图六个面依次书写“努”“力”“总”“会”“发”“光”,则折叠后与“力”相对的是( )A .总B .发C .努D .力6.已知整式x 2−5x 的值为3,则2x 2−10x +5的值为( )A .11B .12C .15D .187.中国古代数学著作《算法统宗》中记录了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个? 其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦果、甜果各有几个?设苦果有x 个,甜果有y 个,则可列方程组为( )A .{x +y =100047x +119y =999 B .{x +y =100074x +911y =99C .{x +y =10007x +9y =999D .{x +y =10004x +11y =998.一次式−x3的系数是( )A .13B .−3C .−13D .39.如图,周长为6个单位长度的圆上的六等分点分别为A ,B ,C ,D ,E ,F ,点A 落在1的位置.如果将圆在数轴上沿负方向连续滚动,那么落在数轴上−2024的点是点( )A .B B .C C .D D .E 10.定义:如图1,点C 在线段AB 上,图中共有三条线段AB ,AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“美点”.如图2,已知AB =24cm ,动点P ,Q 分别从点A ,B 同时出发沿AB 相向运动,速度分别为2cm/s ,1cm/s ,当点P 到达点B 时,运动停止.设点P 的运动时间为t s ,当点P 恰好是线段AQ 的“美点”时,t 最大值与最小值的差为( )A .185B .65C .247D .187二、填空题:本题共8小题,每小题3分,共24分.11.比较大小:−313 −314.(填“<”或“>”)12.写出代数式3xy 2的一个同类项: .13.多项式a 2+a 与多项式−a +1的差为 .14.若一个角的补角比这个角大20°,则这个角是 .15.在方程2x−3y =8中,用x 的代数式表示y ,得 .16.某校举行一次数学竞赛,赛后5名同学A ,B ,C ,D ,E 知道了自己的成绩,但这5名学生想尽快得知比赛的名次,得到如下信息:信息序号文字信息1D 的得分是E 得分的四分之一2E 的得分是B 得分的3倍3A 和D 的得分之和等于B 和C 的总分4A 与E 的得分之差是B 得分的四分之三则这5位同学中获得第三名的是 .17.已知代数式3x 2−ax +y +6−bx 2−3x +5y−1的值与x 的取值无关,则2a +3b 的值为 .18.电子跳蚤游戏盘(如图)为三角形ABC,AB=6,AC=7,BC=8,如果电子跳蚤开始时在BC边的P0点,BP0=3,第一步跳蚤从P0到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规则跳下去,第n次落点为P n,则P2025与C之间的距离为.三、解答题:本题共8小题,解答需写出必要的解答步骤或证明过程.19.(6分)计算:(1)7−(−6)+(−4)×(−3)(2)(−14+23+512)÷12420.(6分)阅读下面解方程的过程回答问题.解方程:2x−3=9x−7.解:移项,得2x+9x=−7−3.(A)合并同类项,得11x=−10.(B).(C)系数化为1,x=−1110(1)上述解方程的过程中,在哪一步骤有错误?请写出该步骤的代号:___________;(2)错误的原因:___________;(3)请写出正确的解题过程.21.(8分)化简并求值:6b2+(a2b−3b2)−2(2b2−a2b),其中a=−2,b=1.22.(8分)解方程组:(1){3x +4y =166x +9y =25;(2){2x−3y +5=06y−4x +37=2y +1.23.(9分)列方程解应用题:甲乙两车分别从相距210km 的A 、B 两地相向而行.(1)两车保持匀速行驶且甲车的速度是乙车速度的2倍,若甲车比乙车提前2h 出发,则甲车出发后3h 两车相遇.求甲、乙两车的速度分别是多少.(2)若甲、乙两车保持(1)中的速度,同时出发,相向而行,求经过多长时间两车相距30km .24.(9分)北京时间2024年4月26日5时04分,神舟十八号航天员乘组顺利进驻中国空间站与神舟十七号航天员乘组太空会师,载人飞船发射取得了圆满成功!小星和小红都是航天爱好者,他们计划购买甲、乙两种飞船模型收藏.下面是两位同学的对话:(1)求甲、乙两种飞船模型每件的售价分别为多少元?(2)若小星计划正好用200元零花钱购买以上两种飞船模型,且每种都有购买,请通过计算说明有多少种购买方案.25.(10分)阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“亚运数”,例如,自然数3157,其中5=3×2−1,7=3×2+1,所以3157是“亚运数”.(1)填空:①21______________是“亚运数”(在横线上填上两个数字);②最小的四位“亚运数”是______________.(2)若四位“亚运数”的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“冠军数”,求所有“冠军数”.(3)已知一个大于1的正整数m可以分解成m=pq+n4的形式(p≤q,n≤6,p,q,n均为正整数),在m的所有表示结果中,当nq−np取得最小时,称“m=pq+n4”是m的“最小分解”,此时规定:F(m)=q+np+n,例:18=1×2+24=1×17+14,因为1×17−1×1>2×2−2×1,所以F(18)=2+21+2=43,求所有“冠军数”的F(m)的最大值.26.(10分)探究与实践将一副三角板按如图方式拼接在一起,已知∠AOB=90°,∠COD=60°,按如图1所示摆放,将OA、OC边重合在直线MN上,OB、OD边在直线MN的两侧:【问题发现】(1)保持三角板AOB不动,将三角板COD绕点O旋转至如图2所示的位置,则①∠AOC+∠BOD=__________;②∠BOC−∠AOD=__________.【问题探究】(2)若三角板COD按每分钟6°的速度绕点O逆时针方向旋转,三角板AOB按每分钟4°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC−∠AOD(用含t的代数式表示).【问题解决】(3)保持三角板AOB不动,将三角板COD绕点O逆时针方向旋转n°(n≤360),若射线OE 平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.参考答案与解析一、选择题题号12345678910答案B B A C B A A C C D二、填空题11.<12.2xy2(答案不唯一)13.a2+2a−114.80°15.y =23x−8316.E 17.3 18.4三、解答题19.【详解】(1)解:7−(−6)+(−4)×(−3)=7+6+12=25;(2)解:(−14+23+512)÷124=(−14+23+512)×24=−14×24+23×24+512×24=−6+16+10=20.20.【详解】(1)解:观察解题过程,步骤A 移项时没有变号,步骤C 得数错误,故答案为:A ,C .(2)解:步骤A ,移项后9x 和−3都没有变号,步骤C 是系数化为1时,将等号右边分子与分母的位置颠倒了;故答案为:步骤A ,移项后9x 和−3都没有变号,步骤C 是系数化为1时,将等号右边分子与分母的位置颠倒了.(3)解:移项,得2x−9x =−7+3,合并同类项,得−7x =−4,系数化为1,得x =47.21.【详解】解:6b 2+(a 2b−3b 2)−2(2b 2−a 2b )=6b 2+a 2b−3b 2−4b 2+2a 2b =3a 2b−b 2,当a =−2,b =1时,原式=3×(−2)2×1−12=12−1=11.22.【详解】(1)解:{3x +4y =16①6x +9y =25②①×2−②,得−y =7,解得y =−7.将y =−7代入①,得3x−28=16,解得x =443.故原方程组的解为{x =443y =−7(2)解:{2x−3y +5=0①6y−4x +37=2y +1②①×2可得,4x−6y +10=0③将③整体代入②,可得10+37=2y +1,解得y =37,将y =37代入①可得2x−3×37+5=0,解得x =−137,所以原方程组的解为{x =−137y =3723.【详解】(1)解:设乙车的速度是x 千米/小时,则甲车的速度是2x 千米/小时,根据题意得:3×2x +(3−2)x =210,解得:x =30,∴2x =2×30=60(千米/小时).答:甲车的速度是60千米/小时,乙车的速度是30千米/小时;(2)解:设经过y 小时两车相距30千米,根据题意得: 60y +30y =210−30或60y +30y =210+30,解得:y =2或y =83,答:经过2小时或83小时两车相距30千米.24.【详解】(1)解:设甲种飞船模型每件的售价为x 元,乙种飞船模型每件的售价为y 元,根据题意得{x +y =402x +3y =95, 解得{x =25y =15 ,答:甲种飞船模型每件的售价为25元,乙种飞船模型每件售价为15元;(2)解:设购买a 件甲种飞船模型和b 件乙种飞船模型,根据题意得25a +15b =200,∴a =8−35b ,∵a ,b 均为正整数,∴当b =5时,a =5;当b =10时,a =2, ∴有2种购买方案如下:①购买5件甲种飞船模型和5件乙种飞船模型;②购买2件甲种飞船模型和10件乙种飞船模型.25.【详解】(1)解:①2×2−1=3,2×2+1=5,故2135是“亚运数”,故答案为:35;②由题意可知千位是1,百位是0,∴十位=2×1−0=2,个位=2×1+0=2,∴最小的四位依赖数是1022.故答案为:1022(2)解:设千位数字是x ,百位数字是y ,且x ≠0,2x >y ,则十位数字是2x−y ,个位数字是2x +y ,∵四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,∴100y +10(2x−y)+(2x +y)−3y =7k +3,(k 为非负整数),化简得88y +22x =3+7k ,∴21(4y +x)+(x +4y)=3+7k ,∴x +4y =3+7k ,∵x ,y ,为小于10正整数,k 为非负整数,2x +y 为<10的正整数,2x >y ,符合条件的x ,y 只有两组x =2,y =2或x =3,y =0,∴所有“冠军数”为2226或3066.(3)解:∵所有“冠军数”为2226或3066,2226的最小分解=31×30+64,F(m)=31+630+6=3736,3066的最小分解=61×50+24,F(m)=61+250+2=6352,∵6352>3736,故求所有“冠军数”的F(m)的最大值为6352.26.【详解】解:(1)①∠AOC +∠BOD =∠AOC +∠AOD +∠AOB =∠COD +∠AOB =60°+90°=150°,②∠BOC−∠AOD =(∠AOB−∠AOC)−(∠COD−∠AOC)=∠AOB−∠AOC−∠COD +∠AOC =∠AOB−∠COD =90°−60°=30°;(2)设旋转时间为t 秒,则0<t ≤30,∠MOC =(6t)°,当OD 与OA 相遇时,6t−4t =60,解得:t =30,如图,∠AOD =(60+4t−6t)°=(60−2t)°,∴∠MOC−∠AOD =(8t−60)°;(3)设△OCD 绕点O 逆时针旋转n°,①0<n°≤180°时,如图,∵∠AOB =90°,∠MOD =60°−n°,∴∠BOD =∠AOB +∠MOD =(150−n )°,∵OF 平分∠BOD ,∴∠BOF =12(150−n)°=75°−12n°,∵∠MOC =n°,OE 平分∠AOC ,∴∠MOE =12∠MOC =12n°∴∠BOE =(90−12n)°,∴∠EOF =∠BOE−∠BOF =15°;②180°<n°≤360°时,如图,∵∠AOB =90°,∠MOD =n°−60°,∴∠BOD =∠MOD−∠AOB =(n−150)°,∵OF 平分∠BOD ,∴∠BOF =∠DOF =12(n−150)°,∵∠MOC =360°−n°,OE 平分∠AOC ,∴∠MOE =∠COE =12∠MOC =180°−12n°,∴∠EOF =360°−∠BOE−∠BOF =360°−90°−(180°−12n°)−12(n−150°)=165°.综上,∠EOF =15°或165°.。
七年级上册数学期末模拟试卷(带答案)-百度文库
14.已知整数 、 、 、 、…满足下列条件: , , , ,…, ( 为正整数)依此类推,则 的值为()
A.-1009B.-2019C.-1010D.-2020
15.若数a,b在数轴上的位置如图示,则( )
A.a+b>0B.ab>0C.a﹣b>0D.﹣a﹣b>0
5.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是()
A.这栋居民楼共有居民 人
B.每周使用手机支付次数为 次的人数最多
C.有 人每周使用手机支付的次数在 次
D.每周使用手机支付不超过 次的有 人
6.下列说法中正确的是( )
A.0不是单项式B. 的系数为
A.男女生5月份的平均成绩一样
B.4月到6月,女生平均成绩一直在进步
C.4月到5月,女生平均成绩的增长率约为
D.5月到6月女生平均成绩比4月到5月的平均成绩增长快
24.已知关于x的方程 的解是 ,则m的值是()
A.2B.-2C.- D.
25.下列各式中运算正确的是()
A. B. C. D.
26.下列说法错误的是()
A. 的系数是 ,次数是 B.数字 是单项式
C. 是二次单项式D. 的系数是 ,次数是
27.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是()
A. B.
C. D.
22.一辆客车和一辆卡车同时从A地出发沿同一公路同向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车经过x小时到达B地,卡车比客车晚到1h.根据题意列出关于x的方程,正确的是( )
数学七年级上册数学期末模拟试卷(含答案)
数学七年级上册数学期末模拟试卷(含答案)一、选择题1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .122.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个3.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4 a b c ﹣2 3 …A .4B .3C .0D .﹣24.下列方程变形正确的是( )A .方程110.20.5x x --=化成1010101025x x --= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 5.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120206.观察下列算式,用你所发现的规律得出22015的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A .2B .4C .6D .87.方程312x -=的解是( )A .1x =B .1x =-C .13x =- D .13x = 8.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 9.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( )A .0mB .0.8mC .0.8m -D .0.5m -10.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=111.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒ 12.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯二、填空题13.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.14.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.15.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.16.5535______.17.化简:2xy xy +=__________.18.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.19.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.20.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)21.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).22.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.23.用度、分、秒表示24.29°=_____.24.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、解答题25.计算:(1)()7.532-⨯-(2(383+3233--26.先化简后求值:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣5xy ,其中x =﹣2,y =1.27.某水果店用500元购进甲、乙两种水果共50kg ,这两种水果的进价、售价如下表所示 品名甲种 乙种 进价(元/kg)7 12 售价(元/kg) 10 16 ()1求这两种水果各购进多少千克?()2如果这批水果当天售完,水果店除进货成本外,还需其它成本0.1元/kg ,那么水果店销售完这批水果获得的利润是多少元?(利润=售价-成本)28.解方程:2112233x x -+=. 29.已知A =3x 2+x+2,B =﹣3x 2+9x+6. (1)求2A ﹣13B ;(2)若2A﹣13B与32C互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.30.根据语句画出图形:如图,已知、、A B C三点.(1)画线段AB;(2)画射线AC;(3)画直线BC;(4)取AB的中点P,连接PC.四、压轴题31.如图,在数轴上的A1,A2,A3,A4,……A20,这20个点所表示的数分别是a1,a2,a3,a4,……a20.若A1A2=A2A3=……=A19A20,且a3=20,|a1﹣a4|=12.(1)线段A3A4的长度=;a2=;(2)若|a1﹣x|=a2+a4,求x的值;(3)线段MN从O点出发向右运动,当线段MN与线段A1A20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN=5,求线段MN的运动速度.32.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.33.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQ AB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MN AB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.【详解】解:根据题意可得:设BC x =,则可列出:()223x x +⨯=解得:4x =,12BC AB =, 28AB x ∴==.故答案为:C.【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.2.D解析:D【解析】【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断;③假如x=y,得到a 无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩解得155x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x代入方程组得3+52+25x x a x x a =⎧⎨=-⎩解得:a=20,本选项正确③若x=y,则有-225x a x a =⎧⎨-=-⎩ ,可得a=a-5,矛盾,故不存在一个实数a 使得x=y,本选项正确 ④方程组解得25-15x a y a =⎧⎨=-⎩由题意得:x-3a=5把25-15x a y a=⎧⎨=-⎩代入得 25-a-3a=5解得a=5本选项正确则正确的选项有四个故选D【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键3.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a 、c 的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b、4、-2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.4.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A、方程x1x10.20.5--=化成10x1010x25--=1,错误;B、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D、方程23t32=,系数化为1,得:t=94,错误;所以答案选C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.5.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是12020-, 故选:B .【点睛】 本题考查了倒数的概念,熟练掌握是解题的关键.6.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D .【点睛】本题考查数字类的规律探索.7.A解析:A【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A .考点:解一元一次方程.8.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 9.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】解∵水位升高0.6m 时水位变化记作0.6m +,∴水位下降0.8m 时水位变化记作0.8m -,故选:C .【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.A解析:A【解析】解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .11.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A 的补角=180°-105°=75°.故选:B .【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.12.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.二、填空题13.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元解析:(23)a b +【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.14.伟【解析】【分析】根据在正方体的表面展开图中 ,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中 ,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.15.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 17..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.18.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 19.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.20.270°-3α【分析】设∠DOE=x ,根据OC 平分∠AOD ,∠COE =α,可得∠COD=α-x ,由∠BOD =4∠DOE ,可得∠BOD=4x ,由平角∠AOB=180°列出关于x 的一次方程解析:270°-3α【解析】【分析】设∠DOE=x ,根据OC 平分∠AOD ,∠COE =α,可得∠COD=α-x ,由∠BOD =4∠DOE ,可得∠BOD=4x ,由平角∠AOB=180°列出关于x 的一次方程式,求解即可.【详解】设∠DOE=x ,根据OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,∴∠BOD=4x ,∠AOC=∠COD=α-x ,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.21.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.22.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n 个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n 个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n 个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n 个图案中的基础图形个数表达式是解题的关键.23.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″. 故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.24.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.三、解答题25.(1)13.5;(2)9.【解析】【分析】(1)根据有理数的四则混合运算解答;(2)根号二次根式的四则运算进行解答.【详解】解:(1) ()7.532-⨯-=7.56+=13.5;(3--=()23+3233⨯-+=6+23233-+=9.【点睛】本题考查的是有理数以及二次根式的计算问题,解题关键按照四则运算去计算即可.26.﹣x 2y ,﹣4.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣5xy=2x 2y +2xy ﹣3x 2y +3xy ﹣5xy=﹣x 2y ,当x =﹣2,y =1时,原式=﹣(-2)2×1=﹣4.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.(1) 购进甲种水果20千克,乙种水果30千克;(2) 175元.【解析】【分析】(1)设甲种水果购进了x 千克,则乙种水果购进了()50x -千克,根据总价格甲种水果单价×购进甲种水果质量+乙种水果单价×购进乙种水果质量即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据总利润=每千克甲种水果利润×购进甲种水果质量+每千克乙种水果利润×购进乙种水果质量,净利润=总利润-其它销售费用,代入数据即可得出结论.【详解】解:()1设甲种水果购进了x 千克,则乙种水果购进了()50x -千克,根据题意得:()7x 1250x 500+-=,解得:x 20=,则50x 30-=.答:购进甲种水果20千克,乙种水果30千克; ()()()210720*********(-⨯+-⨯=元).1800.150175(-⨯=元).答:水果店销售完这批水果获得的利润是175元.【点睛】本题考查一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题关键.28.12x =. 【解析】【分析】 根据解一元一次方程的步骤依次计算可得.【详解】解:去分母,得:3(21)24x x -+=,去括号,得:6324x x -+=,移项,得:6432x x -=-,合并同类项,得:21x =,系数化为1,得:12x =. 【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.29.(1)7x 2﹣x+2;(2)﹣14x 2+2x ﹣1;(3)﹣577 【解析】【分析】(1)根据题意列出算式2(3x 2+x+2)﹣13(﹣3x 2+9x+6),再去括号、合并即可求解; (2)由已知等式知2A ﹣13B+32C -=0,将多项式代入,依此即可求解; (3)由题意得出x =2是方程C =2x+7a 的解,从而得出关于a 的方程,解之可得.【详解】解:(1)2A ﹣13B =2(3x 2+x+2)﹣13(﹣3x 2+9x+6) =6x 2+2x+4+x 2﹣3x ﹣2 =7x 2﹣x+2;(2)依题意有:7x 2﹣x+2+32C -=0, 14x 2﹣2x+4+C ﹣3=0,C =﹣14x 2+2x ﹣1;(3)∵x =2是C =2x+7a 的解,∴﹣56+4﹣1=4+7a ,解得:a=﹣577.故a的值是﹣577.【点睛】本题考查了整式的加减、相反数和一元一次方程的解法,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.30.(1)见解析;(2)见解析;(3)见解析;(4)见解析.【解析】【分析】(1)由题意根据线段的画法连接AB即可;(2)由题意根据射线的画法以A为端点画射线AC即可;(3)由题意根据直线的定义画出直线BC即可;(4)由题意测量出AB的长度,取AB的中点为P点,并连接PC即可.【详解】解:(1)如图所示AB是所求线段;(2)如图所示AC是所求射线;(3)如图所示直线BC是所求直线;(4)如图所示P为AB中点,PC为所连接线段.【点睛】本题考查直线、射线、线段,正确区分直线、线段、射线是解题关键.四、压轴题31.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.32.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.33.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB=(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.。
2023-2024学年全国初中七年级上数学人教版期末试卷(含答案解析)
20232024学年全国初中七年级上数学人教版期末试卷一、选择题(每题3分,共30分)1. 下列数中,最小的数是()A. 0B. 2C. 3D. 1/22. 下列四个数中,最大的数是()A. 1B. 0C. 1/2D. 3/43. 若a > b,则下列不等式中正确的是()A. a + 3 > b + 3B. a 3 > b 3C. a/3 > b/3D. 3a > 3b4. 下列等式中,正确的是()A. 2x + 3 = 5x 7B. 3x 4 = 2x + 4C. 4x + 5 = 6x 1D. 5x 6 = 7x + 25. 下列函数中,y随x的增大而增大的是()A. y = 2x + 1B. y = 3x 2C. y = x + 3D. y = 4 2x6. 下列图形中,是轴对称图形的是()A. 矩形B. 梯形C. 圆D. 正方形7. 下列关于角的说法,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度8. 下列关于三角形的说法,正确的是()边 C. 三角形的任意两边之差小于第三边 D. 三角形的任意两边之和等于第三边9. 下列关于平行线的说法,正确的是()A. 平行线在同一平面内,永不相交B. 平行线可以在同一平面内相交C. 平行线不在同一平面内,也可以相交D. 平行线不在同一平面内,一定不相交10. 下列关于四边形的说法,正确的是()A. 四边形的内角和是360度B. 四边形的任意两边之和大于第三边C. 四边形的任意两边之差小于第三边D. 四边形的任意两边之和等于第三边二、填空题(每题3分,共30分)1. 若a = 2,b = 3,则a + b = _______。
2. 若a = 5,b = 7,则a b = _______。
3. 若a = 4,b = 3,则a b = _______。
4. 若a = 6,b = 2,则a / b = _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学期末模拟试卷(含答案)一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q2.4 =( ) A .1B .2C .3D .43.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒4.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π5.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .2B .2﹣1C .2+1D .17.将图中的叶子平移后,可以得到的图案是()A .B .C .D .8.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm9.当x=3,y=2时,代数式23x y-的值是( ) A .43B .2C .0D .310.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .2123x -=,变形为232x -= D .21x =,变形为2x =11.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<012.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____. 14.一个角的余角等于这个角的13,这个角的度数为________. 15.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.16.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.17.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.支付宝帐单日期交易明细10.16乘坐公交¥ 4.00-10.17转帐收入¥200.00+10.18体育用品¥64.00-10.19零食¥82.00-10.20餐费¥100.00-18.如图甲所示,格边长为cma的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.19.单项式﹣22πa b的系数是_____,次数是_____.20.﹣30×(1223-+45)=_____. 21.若方程11222m x x --=++有增根,则m 的值为____. 22.16的算术平方根是 . 23.计算:3+2×(﹣4)=_____.24.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、压轴题25.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯.()1观察发现()1n n 1=+______;()1111122334n n1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记2个数的和为1a;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.27.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF,然后将一副三角板拼接在一起,其中45角(AOB∠)的顶点与60角(COD∠)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 28.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?29.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积; (3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.30.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2. ①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.31.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.32.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q , ∴原点在点P 与N 之间,∴这四个数中绝对值最小的数对应的点是点N . 故选B .2.B解析:B 【解析】 【分析】根据算术平方根的概念可得出答案. 【详解】解:根据题意可得:4=2,故答案为:B. 【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.3.D解析:D 【解析】 【分析】由题意分两种情况过点O 作OE AB ⊥,利用垂直定义以及对顶角相等进行分析计算得出选项. 【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D. 【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.4.D解析:D 【解析】 【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94aπ,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.5.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【详解】解:A、213+x=5x符合一元一次方程的定义;B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.6.D解析:D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:∵A,B﹣1,∴A,B﹣1)=1;故选:D.【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.7.A解析:A【解析】【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.8.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.9.A解析:A【解析】【分析】当x=3,y=2时,直接代入代数式即可得到结果.【详解】23x y -=2323⨯-=43, 故选A【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.10.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 11.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a 、b 、c 的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a <b <0<c ,且|a |>|c |>|b |则A. a +b <0正确,不符合题意;B. a +c <0正确,不符合题意;C.a-b>0错误,符合题意;D. b-c<0正确,不符合题意;故选C.【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.12.C解析:C【解析】试题解析:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.15.14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.16.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.17.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 18.【解析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.19.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3.本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.20.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45)=﹣30×12+(﹣30)×(23-)+(﹣30)×45=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键.21.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键22.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 23.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 24.46°【解析】【分析】根据∠2=180°-∠COE -∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】解析:46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB 是平角且它等于∠1、∠2和∠COE 三个角之和是解题关键.三、压轴题25.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可. 【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒ 40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON ═12(360°-∠AOB )═12×240°=120°, ∵∠MOI=3∠POI ,∴180°-3t=3(60°-61202t -)或180°-3t=3(61202t --60°), 解得t=30或45,综上所述,满足条件的t 的值为152s 或15s 或30s 或45s . 【点睛】 此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.26.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数,对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦ 31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 27.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-.解得α125=. 综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.28.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A ,然后根据B 在A 的左侧和它们之间的距离确定点B ,由点P 从点A 出发向左以每秒5个单位长度匀速运动,表示出点P 即可;(2)①由于点P 和Q 都是向左运动,故当P 追上Q 时相遇,根据P 比Q 多走了10个单位长度列出等式,根据等式求出t 的值即可得出答案;②要分两种情况计算:第一种是点P 追上点Q 之前,第二种是点P 追上点Q 之后.【详解】解:(1)∵数轴上点A 表示的数为6,∴OA =6,则OB =AB ﹣OA =4,点B 在原点左边,∴数轴上点B 所表示的数为﹣4;点P 运动t 秒的长度为5t ,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P 所表示的数为:6﹣5t ,故答案为﹣4,6﹣5t ;(2)①点P 运动t 秒时追上点Q ,根据题意得5t =10+3t ,解得t =5,答:当点P 运动5秒时,点P 与点Q 相遇;②设当点P 运动a 秒时,点P 与点Q 间的距离为8个单位长度,当P 不超过Q ,则10+3a ﹣5a =8,解得a =1;当P 超过Q ,则10+3a+8=5a ,解得a =9;答:当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.29.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6) 【解析】 【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.30.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC 第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC =∠AOC -∠AON =90°-∠MOC 即可得到结论;(3)分别根据转动速度关系和OC 平分∠MON 列方程求解即可.【详解】(1)①∵∠AOC =30°,OM 平分∠BOC ,∴∠BOC =2∠COM =2∠BOM =150°,∴∠COM =∠BOM =75°.∵∠MON =90°,∴∠CON =15°,∠AON +∠BOM =90°,∴∠AON =∠AOC ﹣∠CON =30°﹣15°=15°,∴∠AON =∠CON ,∴t =15°÷3°=5秒;②∵∠CON =15°,∠AON =15°,∴ON 平分∠AOC .(2)∵∠AOC =30°,∴∠NOC =∠AOC -∠AON =90°-∠MOC ,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t 秒,∠AON =5t ,∠AOC =30°+8t ,∠CON =45°,∴30°+8t =5t +45°,∴t =5.即t =5时,射线OC 第一次平分∠MON .【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.31.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解. 32.(1)1;(2)点P 运动5秒时,追上点R ;(3)线段MN 的长度不发生变化,其长度为5.【解析】试题分析:(1)由已知条件得到AB=10,由PA=PB ,于是得到结论;(2)设点P 运动x 秒时,在点C 处追上点R ,于是得到AC=6x BC=4x ,AB=10,根据AC-BC=AB ,列方程即可得到结论;(3)线段MN 的长度不发生变化,理由如下分两种情况:①当点P 在A 、B 之间运动时②当点P 运动到点B 左侧时,求得线段MN 的长度不发生变化.试题解析:解:(1)(1)∵A ,B 表示的数分别为6,-4,∴AB=10,∵PA=PB ,∴点P 表示的数是1,(2)设点P 运动x 秒时,在点C 处追上点R (如图)则:AC =6x BC =4x AB =10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R.(3)线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。