信号与系统考试试题及答案

合集下载

信号及系统期末考试试题及答案

信号及系统期末考试试题及答案

信号及系统期末考试试题及答案一、选择题(每题2分,共20分)1. 信号x(t)=3cos(2π(5t+π/4))是一个:A. 周期信号B. 非周期信号C. 随机信号D. 确定性信号2. 系统分析中,若系统对单位阶跃函数的响应为u(t)+2,则该系统为:A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统3. 下列哪个是连续时间信号的傅里叶变换:A. X(k)B. X(n)C. X(f)D. X(z)4. 信号通过线性时不变系统后,其频谱:A. 仅发生相位变化B. 仅发生幅度变化C. 发生幅度和相位变化D. 不发生变化5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. e^(-st)D. 1/s二、简答题(每题5分,共10分)1. 解释什么是卷积,并给出卷积的数学表达式。

2. 说明傅里叶变换与拉普拉斯变换的区别。

三、计算题(每题15分,共30分)1. 给定连续时间信号x(t)=e^(-t)u(t),求其傅里叶变换X(f)。

2. 给定离散时间信号x[n]=u[n]-u[n-3],求其z变换X(z)。

四、分析题(每题15分,共30分)1. 分析信号x(t)=cos(ωt)+2cos(2ωt)通过理想低通滤波器后输出信号的表达式,其中滤波器的截止频率为ω/2。

2. 讨论线性时不变系统的稳定性,并给出判断系统稳定性的条件。

五、论述题(每题10分,共10分)1. 论述信号的采样定理及其在数字信号处理中的应用。

参考答案一、选择题1. A2. A3. C4. C5. A二、简答题1. 卷积是信号处理中的一种运算,它描述了信号x(t)通过系统h(t)时,输出信号y(t)的计算过程。

数学表达式为:y(t) = (x * h)(t) = ∫x(τ)h(t-τ)dτ。

2. 傅里叶变换用于连续时间信号的频域分析,而拉普拉斯变换则适用于连续时间信号,并且可以处理有初始条件的系统。

三、计算题1. X(f) = 3[δ(f-5) + δ(f+5)]。

信号与系统复习试题(含答案)

信号与系统复习试题(含答案)
D。激励与H(s)的极点
76.某二阶LTI系统的频率响应H (j)
A.y2y3y
B。y3y2yf2
D。y3y2yf
H(s)的共轭极点在虚轴上,则它的
2,-1,H ()1,则系统函数H(s)为(
C。(s1)(s2)
(t)的傅氏变换是(
B。j(
D。j(2
A.系统在(t)作用下的全响应
C.系统单位阶跃响应的导数
6。对于一个三阶常系数线性微分方程描述的连续时间系统进行系统的时域模拟时,所需积
分器数目最少是__3个_____个。
7。一线性时不变连续因果系统是稳定系统的充分且必要条件是系统函数的极点位于S平面
的___左半平面_______。
8.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为
其中x(0)是初始状态,
f(t)为激励,y(t)为全响应,试回答该系统是否是线性的?[答案:非线性]
2.y'(t)sinty(t)f(t)试判断该微分方程表示的系统是线性的还是非线性的,
是时变的还是非时变的?[答案:线性时变的]
3.已知有限频带信号f(t)的最高频率为100Hz,若对f(2t)*f(3t)进行时域取样,
B。f(t)f(t8)
12
C.f(t)f(t8)
D。f(t3)f(t1)
69.已知一连续系统在输入f(t)的作用下的零状态响应为yzs(t)f(4t),则该系统为()
70.已知f(t)是周期为T的函数,f(t)-f (t
T)的傅里叶级数中,只可能有(
71.一个线性时不变的连续时间系统,其在某激励信号作用下的自由响应为(e
h(t)=(1et)(t),则其系统函数
15.已知一信号f(t)的频谱F(j)的带宽为,则f(2t)的频谱的带宽为

信号与系统期末考试复习题及答案(共8套)

信号与系统期末考试复习题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

信号和系统试题及答案

信号和系统试题及答案

信号和系统试题及答案一、选择题(每题4分,共20分)1. 信号的频谱分析中,傅里叶变换的物理意义是什么?A. 信号的时域表示B. 信号的频域表示C. 信号的相位信息D. 信号的幅度信息答案:B2. 在线性时不变系统中,系统的输出与输入的关系是什么?A. 线性关系B. 非线性关系C. 时变关系D. 随机关系答案:A3. 下列哪个函数不是周期函数?A. sin(t)B. cos(2t)C. e^(-t)D. cos(2πt)答案:C4. 系统稳定性的判定可以通过什么方法?A. 奈奎斯特准则B. 伯德图C. 相位裕度D. 所有以上答案:D5. 系统函数H(s)的零点和极点分别代表什么?A. 系统输入和输出B. 系统稳定性和不稳定性C. 系统增益和衰减D. 系统频率响应答案:B二、填空题(每题4分,共20分)1. 连续时间信号的傅里叶变换定义为:X(jω) = ____________。

答案:∫x(t)e^(-jωt)dt2. 如果一个系统的冲激响应h(t)是因果的,则系统的零状态响应y(t)与输入x(t)的关系为:y(t) = ____________。

答案:∫h(t-τ)x(τ)dτ3. 一个线性时不变系统的特性可以用其系统函数H(s)来描述,其中s 是复频域变量,代表的是 ____________。

答案:拉普拉斯变换4. 如果一个系统的频率响应H(jω)在ω=ω0处有极点,则在时域中对应的响应h(t)将具有 ____________。

答案:振荡特性5. 系统的因果性意味着系统的输出不会在输入之前出现,这可以用系统的冲激响应h(t)满足的条件来表示:h(t) = ____________。

答案:0,t < 0三、简答题(每题10分,共30分)1. 请简述傅里叶级数与傅里叶变换的区别。

答案:傅里叶级数适用于周期信号,是将周期信号分解为正弦和余弦函数的和,而傅里叶变换适用于非周期信号,是将信号分解为复指数函数的积分。

(完整word版)信号与系统考试试题及答案,推荐文档

(完整word版)信号与系统考试试题及答案,推荐文档

长沙理工大学拟题纸课程编号 1拟题教研室(或老师)签名 教研室主任签名 符号说明:)sgn(t 为符号函数,)(t δ为单位冲击信号,)(k δ为单位脉冲序列,)(t ε为单位阶跃信号,)(k ε为单位阶跃序列。

一、填空(共30分,每小题3分)1. 已知)()4()(2t t t f ε+=,求_______)("=t f 。

)('4)(2)("t t t f δε+2. 已知}4,2,4,3{)(},1,2,2,1{)(=-=k h k f ,求______)()(=*k h k f 。

}4,6,8,3,4,10,3{)()(-=*k h k f3. 信号通过系统不失真的条件为系统函数_______)(=ωj H 。

0)(t j Kej H ωω-=4. 若)(t f 最高角频率为m ω,则对)4(t f 取样的最大间隔是______。

m T ωπωπ4max max ==5. 信号t t t f ππ30cos 220cos 4)(+=的平均功率为______。

101122222=+++==∑∞-∞=n n F P6. 已知一系统的输入输出关系为)3()(t f t y =,试判断该系统是否为线性时不变系统______。

故系统为线性时变系统。

7. 已知信号的拉式变换为)1)(1(1)(2-+=s s s F ,求该信号的傅立叶变换)(ωj F =______。

故傅立叶变换)(ωj F 不存在。

8. 已知一离散时间系统的系统函数2121)(---+=z z z H ,判断该系统是否稳定______。

故系统不稳定。

9. =+-+⎰∞∞-dt t t t )1()2(2δ______。

310. 已知一信号频谱可写为)(,)()(3ωωωωA e A j F j -=是一实偶函数,试问)(t f 有何种对称性______。

关于t=3的偶对称的实信号。

二、计算题(共50分,每小题10分)1. 已知连续时间系统的单位冲激响应)(t h 与激励信号)(t f 的波形如图A-1所示,试由时域求解该系 统的零状态响应)(t y ,画出)(t y 的波形。

信号与系统试题及答案(大学期末考试题)

信号与系统试题及答案(大学期末考试题)

信号与系统试题及答案(大学期末考试题)一、选择题(每题2分,共40分)1. 下列哪个信号是周期信号?A. 方波B. 单位冲激信号C. 随机信号D. 正弦信号答案:A2. 信号x(t)的拉普拉斯变换为X(s)。

若x(t)的区间平均功率为P,则X(s)的区间平均功率是多少?A. PB. 2πPC. P/2D. πP答案:D3. 系统的冲激响应为h(t)=e^(-2t)sin(3t)u(t)。

则该系统为什么类型的系统?A. 线性非时变系统B. 线性时不变系统C. 非线性非时变系统D. 非线性时不变系统答案:B4. 信号x(t)通过系统h(t)并得到输出信号y(t)。

若x(t)为周期为T的信号,则y(t)也是周期为T的信号。

A. 正确B. 错误答案:A5. 下列哪个信号不是能量有限信号?A. 常值信号B. 正弦信号C. 方波D. 三角波答案:B...二、填空题(每题4分,共40分)1. 离散傅里叶变换的计算复杂度为$O(NlogN)$。

答案:NlogN2. 系统函数$H(z) = \frac{1}{1-0.5z^{-1}}$的极点为0.5。

答案:0.5...三、简答题(每题10分,共20分)1. 请简要说明信号与系统的基本概念和关系。

答案:信号是波动的物理量的数学描述,而系统是对信号进行处理的方式。

信号与系统的关系在于信号作为系统的输入,经过系统处理后得到输出信号。

信号与系统的研究可以帮助我们理解和分析各种现实世界中的波动现象。

2. 请简要说明周期信号和非周期信号的区别。

答案:周期信号是在一定时间间隔内重复出现的信号,具有周期性。

非周期信号则不能被表示为简单的周期函数,不存在固定的重复模式。

...以上是关于信号与系统试题及答案的文档。

希望能对您的大学期末考试复习有所帮助。

祝您考试顺利!。

信号与系统试题库史上最全内含答案)

信号与系统试题库史上最全内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。

[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

《信号与系统》考试试题及参考答案

《信号与系统》考试试题及参考答案

《信号与系统》期末考试姓名 学号 班级 成绩一、选择及填空(20分 每题2分):1. 以下系统,哪个可进行无失真传输_B _ωωϕωωωδωωωωωωωω-6)( )1()(H )( )()(H )( 3)(H )( )1()1()(H )( 33=-===--=-且;;;D ej C e j B e j A j j j U答:(B)2. 下列哪一项是理想低通滤波器的系统函数_C _⎩⎨⎧<>=⎩⎨⎧><==--=-20 020 )(H )( 20 020 )(H )( 3)(H )( )1()1()(H )(3 33ωωωωωωωωωωωωωωj j j j e j D e j C e j B e j A ;;;U答:(C )3. 对于一个LTI ,如果激励f 1(t)对应响应是)(3t U e t -, 激励f 2(t)对应响应是t 3sin ,则激励f 1(t)+5f 2(t)对应响应是_tt U e t 3sin 5)(3+-__;则激励3f 1(t+1)+5f 2(t-3)对应响应是_)3 (3sin 5)1(33-++--t t U e t __。

4. 已知},2,2,2,2{01)( --=n f ,}32,8,4,2,1{)(2↑=n f ,则=+)2()1(21f f _10_,用)(n δ表示)3(32)2(8)1(4)(2)1()(2-+-+-+++=n n n n n n f δδδδδ________________________。

5. }2,8,4{}3,1,2,3{11----*=_{12,32,14,-8,-26,-6}-2__,}2,1,0{}5,3,6{00*=_{0,6,15,11,10}0__ 6. (课本P152 例4-17)已知)(t f 的象函数ss s s s F 5323)(23+++=,则)0(+f =__0_;)(∞f =_2/5__。

信号与系统考试题及答案(共8套)

信号与系统考试题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

信号与系统试题及答案

信号与系统试题及答案

信号与系统试题1第一部分 选择题(共32分)一、单项选择题(本大题共16小题,每小题2分,共32分。

在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内)1.积分e d t --∞⎰2τδττ()等于( )A .δ()tB .ε()tC .2ε()tD .δε()()t t +2.已知系统微分方程为dy t dt y t f t ()()()+=2,若y f t t t (),()sin ()012+==ε,解得全响应为y t e t t ()sin()=+-︒-54242452,t ≥0。

全响应中24245sin()t -︒为( ) A .零输入响应分量 B .零状态响应分量C .自由响应分量D .稳态响应分量3.系统结构框图如图示,该系统的单位冲激响应h(t)满足的方程式为( )A .dy t dt y t x t ()()()+= B .h t x t y t ()()()=- C .dh t dt h t t ()()()+=δ D .h t t y t ()()()=-δ4.信号f t f t 12(),()波形如图所示,设f t f t f t ()()*()=12,则f()0为( )A .1B .2C .3D .45.已知信号f t ()的傅里叶变换F j ()()ωδωω=-0,则f t ()为( )A .120πωe j t B .120πωe j t - C .120πεωe t j t () D .120πεωe t j t -()6.已知信号f t ()如图所示,则其傅里叶变换为( )A .τωττωτ2422Sa Sa ()()+B .τωττωτSa Sa ()()422+ C .τωττωτ242Sa Sa ()()+ D .τωττωτSa Sa ()()42+7.信号f t 1()和f t 2()分别如图(a )和图(b)所示,已知 [()]()f t F j 11=ω,则f t 2()的 傅里叶变换为( )A .F j e j t 10()--ωωB .F j e j t 10()ωω-C .F j e j t 10()-ωωD .F j e j t 10()ωω8.有一因果线性时不变系统,其频率响应H j j ()ωω=+12,对于某一输入x(t)所得输出信号的傅里叶变换为Y j j j ()()()ωωω=++123,则该输入x(t)为( ) A .--e t t 3ε()B .e t t -3ε()C .-e t t 3ε()D .e t t 3ε()9.f t e t t ()()=2ε的拉氏变换及收敛域为( )A .122s s +>-,Re{} B .122s s +<-,Re{} C .122s s ->,Re{} D .122s s -<,Re{} 10.f t t t ()()()=--εε1的拉氏变换为( ) A .11s e s ()--B .11s e s ()-C .s e s ()1--D .s e s ()1-11.F s s s s s ()Re{}=+++>-25622的拉氏反变换为( )A .[]()e e t t t --+322εB .[]()e e t t t ---322εC .δε()()t e t t +-3D .e t t -3ε()12.图(a )中ab 段电路是某复杂电路的一部分,其中电感L 和电容C 都含有初始状态,请在图(b )中选出该电路的复频域模型。

(完整版)信号与系统试题附答案

(完整版)信号与系统试题附答案

信科0801《信号与系统》复习参考练习题一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度(C ) A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是( D )15、已知信号)(tf如下图所示,其表达式是(B )16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是( D )A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( C )19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( B )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()2>-]Re[,651)(系统的系统函数LTI .已知202s s s s s H +++= 因果不稳定系统 非因果稳定系统C 、因果稳定系统 非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( B )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( A )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号 23. 积分⎰∞∞-dt t t f )()(δ的结果为( A )A )0(fB )(t f C.)()(t t f δD.)()0(t f δ 24. 卷积)()()(t t f t δδ**的结果为( C )A.)(t δB.)2(t δC. )(t fD.)2(t f 25. 零输入响应是( B )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差2A 、1-e 3e 、3-e、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( C )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( A )A 。

信号与系统试题库史上最全(内含答案)

信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。

[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

信号与系统试题库及答案

信号与系统试题库及答案

信号与系统试题库及答案信号与系统试题库及答案,共22页1.下列信号的分类办法不正确的是(A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2.下列说法正确的是(D ):A 、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。

B 、两个周期信号x(t),y(t)的周期分离为2和,则其和信号x(t)+y(t) 是周期信号。

C 、两个周期信号x(t),y(t)的周期分离为2和,其和信号x(t)+y(t)是周期信号。

D 、两个周期信号x(t),y(t)的周期分离为2和3,其和信号x(t)+y(t)是周期信号。

3.下列说法不正确的是(D )。

A 、普通周期信号为功率信号。

B 、时限信号(仅在有限时光区间不为零的非周期信号)为能量信号。

C 、ε(t)是功率信号;D 、et 为能量信号;一、填空(每空1分,共15分)1、离散信号基本运算有;;;四种。

2、拉氏变换中初值定理、终值定理分离表示为)(lim )0(S SF f S ∞→=,;)(l i m )(0S SF f S →=∞ 。

3、延续系统的分析办法有时域分析法;频域分析法和复频域分析法。

这三种分析办法,其输入与输出表达式分离是y(t)=h(t)*f(t); Y(jω)= H(jω)?. F(jω); Y(s)= H(s)?. F(s)集美高校2022—2022学年第2学期信号与系统试卷及答案一、推断题(共9分,每题1.5分,对的打“V ”,错的打“X ”)。

1、一个信号的脉冲持续时光越小,它的频带宽度也就越小。

(× )2、一个信号的脉冲幅度数值越大,它的频谱幅度也就越大。

(V )3、一个能量有限的延续时光信号,它一定是属于瞬态信号。

(V )4、一个功率有限的延续时光信号,它一定是属于周期信号。

(× )5、一个因果稳定的延续时光系统,它的零极点必定都位于S 左半平面。

信号与系统(含答案)试卷

信号与系统(含答案)试卷
2
课程测试试题(A 卷)
一、选择题 (本大题共 10 小题,20 分, 每题 2 分) 1.积分 ∫ (t − 3)δ (−2t + 4)dt 等于
−5 5
(A) -1 (B) -0.5 (C) 0 (D) 0.5 2.已知实信号 f (t ) 的傅里叶变换 F (= jω ) R(ω ) + jx(ω ) ,信号 1 ) (t ) [ f (t ) + f (−t )] 的傅里叶变换 Y ( jω ) 等于( y= 2 (A) R(ω ) (B) 2 R(ω ) (C) 2 R(2ω ) (D)
is
1Ω
iR
uc -
课程测试试题答卷()
一、
(1) C (9)D
选择题 (本大题共 10 小题,20 分, 每题 2 分)
(2) B (10)D (3) B (4) D (5) B (6) A (7) D (8) A
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分) 1.
g (t )
(B)
8.单边拉氏变换 F ( s ) =
e− s 的原函数为 s2 + 1 (A) sin(t − 1)u (t − 1) (B) sin(t − 1)u (t ) (C) cos(t − 1)u (t − 1) (D) cos(t − 1)u (t )
9. 为使 LT1 连续系统是稳定的,其系统函数 H ( s ) 的极点必须在 s 平面的 (A) 单位圆内 (B) 单位圆外 (C) 左半平面 (D) 右半平面 10.积分 ∫ (t 2 + 1)δ (t − 2)d (t ) 的值为
1 (1 − e −2t )δ (t ) ,则其冲激响应 h(t ) = 2

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题一、选择题(共10题,每题3分,共30分,每题给出四个答案,其中只有一个正确的)1、卷积f1(k+5)*f2(k—3) 等于。

(A)f1(k)*f2(k) (B)f1(k)*f2(k-8)(C)f1(k)*f2(k+8)(D)f1(k+3)*f2(k—3)2、积分等于。

(A)1。

25(B)2.5(C)3(D)53、序列f(k)=—u(-k)的z变换等于。

(A)(B)-(C)(D)4、若y(t)=f(t)*h(t),则f(2t)*h(2t)等于.(A)(B)(C)(D)5、已知一个线性时不变系统的阶跃相应g(t)=2e—2t u(t)+,当输入f(t)=3e—t u(t)时,系统的零状态响应y f(t)等于(A)(—9e—t+12e—2t)u(t) (B)(3-9e-t+12e-2t)u(t)(C)+(—6e—t+8e-2t)u(t) (D)3 +(—9e-t+12e-2t)u(t)6、连续周期信号的频谱具有(A)连续性、周期性(B)连续性、收敛性(C)离散性、周期性(D)离散性、收敛性7、周期序列2的周期N等于(A)1(B)2(C)3(D)48、序列和等于(A)1 (B) ∞(C) (D)9、单边拉普拉斯变换的愿函数等于10、信号的单边拉氏变换等于二、填空题(共9小题,每空3分,共30分)1、卷积和[(0。

5)k+1u(k+1)]*=________________________2、单边z变换F(z)=的原序列f(k)=______________________3、已知函数f(t)的单边拉普拉斯变换F(s)=,则函数y(t)=3e-2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j)=2u(1-)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换的原函数f(t)=__________________________6、已知某离散系统的差分方程为,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为该系统的冲激响应h(t)=9、写出拉氏变换的结果,三、(8分),求(1) (2)六、(10分)某LTI系统的系统函数,一、选择题(共10题,每题3分,共30分,1、D2、A3、C4、B5、D6、D7、D8、二、填空题(共9小题,每空3分,共30分)1、2、3、4、5、6、7、8、9、,22k!/S k+1四、(10分)解:1)2)六、(10分)解:由得微分方程为将代入上式得二、写出下列系统框图的系统方程,并求其冲激响应。

信号与系统考试题及答案

信号与系统考试题及答案

信号与系统考试题及答案一、选择题1. 在信号与系统中,周期信号的傅里叶级数展开中,系数\( a_n \)表示:A. 基频的振幅B. 谐波的振幅C. 直流分量D. 相位信息答案:B2. 下列哪个不是线性时不变系统的主要特性?A. 线性B. 时不变性C. 因果性D. 可逆性答案:D二、简答题1. 简述傅里叶变换与拉普拉斯变换的区别。

答案:傅里叶变换主要用于处理周期信号或至少是定义在实数线上的信号,而拉普拉斯变换则可以处理更广泛类型的信号,包括非周期信号和定义在复平面上的信号。

傅里叶变换是拉普拉斯变换的一个特例,当\( s = j\omega \)时,拉普拉斯变换退化为傅里叶变换。

2. 解释什么是系统的冲激响应,并举例说明。

答案:系统的冲激响应是指系统对单位冲激信号的响应。

它是系统特性的一种表征,可以用来分析系统对其他信号的响应。

例如,一个简单的RC电路的冲激响应是一个指数衰减函数。

三、计算题1. 已知连续时间信号\( x(t) = e^{-|t|} \),求其傅里叶变换\( X(f) \)。

答案:\[ X(f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-|t|}e^{-j2\pi ft} dt \]\[ X(f) = \frac{1}{2\pi} \left[ \int_{-\infty}^{0} e^{t} e^{-j2\pi ft} dt + \int_{0}^{\infty} e^{-t} e^{-j2\pi ft} dt\right] \]\[ X(f) = \frac{1}{2\pi} \left[ \frac{1}{1+j2\pi f} -\frac{1}{1-j2\pi f} \right] \]\[ X(f) = \frac{1}{\pi} \frac{j2\pi f}{1 + (2\pi f)^2} \]2. 给定一个线性时不变系统的系统函数\( H(f) = \frac{1}{1+j2\pi f} \),求该系统对单位阶跃信号\( u(t) \)的响应。

信号与系统考试题及答案

信号与系统考试题及答案

信号与系统考试题及答案一、单项选择题(每题2分,共20分)1. 信号与系统中,信号的分类不包括以下哪一项?A. 确定性信号B. 随机信号C. 离散信号D. 连续信号答案:C2. 以下哪个选项不属于线性时不变系统的属性?A. 线性B. 时不变性C. 因果性D. 稳定性答案:C3. 傅里叶变换的主要应用不包括以下哪一项?A. 信号频谱分析B. 滤波器设计C. 信号压缩D. 信号加密答案:D4. 拉普拉斯变换与傅里叶变换的主要区别是什么?A. 拉普拉斯变换适用于所有信号B. 傅里叶变换适用于周期信号C. 拉普拉斯变换适用于非周期信号D. 拉普拉斯变换是傅里叶变换的特例答案:D5. 以下哪个选项不是信号与系统中的卷积定理?A. 卷积定理将时域的卷积转换为频域的乘法B. 卷积定理适用于连续信号和离散信号C. 卷积定理只适用于线性时不变系统D. 卷积定理可以简化信号处理中的计算答案:C6. 信号的采样定理是由哪位科学家提出的?A. 奈奎斯特B. 香农C. 傅里叶D. 拉普拉斯答案:A7. 以下哪个选项是信号的时域表示?A. 傅里叶级数B. 拉普拉斯变换C. 傅里叶变换D. 时域图答案:D8. 以下哪个选项是信号的频域表示?A. 时域图B. 傅里叶级数C. 傅里叶变换D. 拉普拉斯变换答案:C9. 信号的希尔伯特变换主要用于什么?A. 信号滤波B. 信号压缩C. 信号解析D. 信号调制答案:C10. 信号与系统中,系统的稳定性是指什么?A. 系统对所有输入信号都有输出B. 系统对所有输入信号都有有限输出C. 系统对所有输入信号都有零输出D. 系统对所有输入信号都有无限输出答案:B二、填空题(每题2分,共20分)1. 信号与系统中,信号可以分为______信号和______信号。

答案:确定性;随机2. 线性时不变系统的最基本属性包括线性、时不变性和______。

3. 傅里叶变换的公式为:X(f) = ∫x(t)e^(-j2πft)dt,其中j是______。

信号与系统考试题及答案

信号与系统考试题及答案

信号与系统考试题及答案# 信号与系统考试题及答案一、选择题(每题2分,共20分)1. 信号f(t)=3cos(2πt + π/3)的频率是:A. 1HzB. 2HzC. 3HzD. 4Hz答案:B2. 系统是线性时不变系统(LTI),如果满足以下条件:A. 系统对所有信号都有响应B. 系统对输入信号的线性组合有响应C. 系统对时间平移的输入信号有响应D. 系统对所有条件都有响应答案:B3. 如果一个信号是周期的,那么它的傅里叶级数表示中包含:A. 只有直流分量B. 只有有限个频率分量C. 无限多个频率分量D. 没有频率分量答案:B4. 拉普拉斯变换可以用来分析:A. 仅连续时间信号B. 仅离散时间信号C. 连续时间信号和离散时间信号D. 仅离散时间系统答案:C5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. 1/tD. e^(-st)答案:A6. 一个系统是因果系统,如果:A. 它的脉冲响应是零,对于所有t<0B. 它的输出总是零C. 它的输出在任何时候都不依赖于未来的输入D. 所有上述条件答案:A7. 傅里叶变换可以用来分析:A. 仅周期信号B. 非周期信号C. 周期信号和非周期信号D. 仅离散信号答案:B8. 一个信号x(t)通过一个线性时不变系统,输出y(t)是:A. x(t)的时移版本B. x(t)的反转版本C. x(t)的缩放版本D. x(t)的卷积答案:D9. 如果一个信号的傅里叶变换存在,那么它是:A. 周期的B. 非周期的C. 有限能量的D. 有限功率的答案:C10. 系统的频率响应H(jω)是输入信号X(jω)和输出信号Y(jω)的:A. 乘积B. 差C. 比值D. 和答案:C二、简答题(每题10分,共30分)1. 解释什么是卷积,并给出卷积的基本性质。

答案:卷积是信号处理中的一个重要概念,表示一个信号与另一个信号的加权叠加。

具体来说,如果有两个信号f(t)和g(t),它们的卷积定义为f(t)与g(-t)的乘积的积分,对所有时间t进行积分。

信号与系统考试题及答案

信号与系统考试题及答案

信号与系统考试题及答案第一题:问题描述:什么是信号与系统?答案:信号与系统是电子工程和通信工程中重要的基础学科。

信号是信息的传递载体,可以是电流、电压、声音、图像等形式。

系统是对信号进行处理、传输和控制的装置或网络。

信号与系统的研究内容包括信号的产生、变换、传输、处理和控制等。

第二题:问题描述:信号的分类有哪些?答案:信号可以根据多种特征进行分类。

按照时间域和频率域可以将信号分为连续时间信号和离散时间信号;按照信号的能量和功率可以分为能量信号和功率信号;按照信号的周期性可以分为周期信号和非周期信号;按照信号的波形可以分为正弦信号、方波信号、脉冲信号等。

第三题:问题描述:什么是线性时不变系统?答案:线性时不变系统是信号与系统领域中重要的概念。

线性表示系统满足叠加性原理,即输入信号的线性组合经过系统后,输出信号也是输入信号的线性组合。

时不变表示系统的性质不随时间变化而改变。

线性时不变系统具有许多重要的性质和特点,可以通过线性时不变系统对信号进行处理和分析。

第四题:问题描述:系统的冲激响应有什么作用?答案:系统的冲激响应是描述系统特性的重要参数。

当输入信号为单位冲激函数时,系统的输出即为系统的冲激响应。

通过分析冲激响应可以得到系统的频率响应、幅频特性、相频特性等,从而对系统的性能进行评估和优化。

冲激响应还可以用于系统的卷积运算和信号的滤波等应用。

第五题:问题描述:如何对信号进行采样?答案:信号采样是将连续时间信号转换为离散时间信号的过程。

常用的采样方法包括周期采样和非周期采样。

周期采样是将连续时间信号按照一定的时间间隔进行等间隔采样;非周期采样是在信号上选取一系列采样点,采样点之间的时间间隔可以不相等。

采样频率和采样定理是采样过程中需要考虑的重要因素。

第六题:问题描述:什么是离散傅里叶变换(DFT)?答案:离散傅里叶变换是对离散时间信号进行频域分析的重要工具。

通过计算离散傅里叶变换可以将离散时间信号转换为复数序列,该复数序列包含了信号的频率成分和相位信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长沙理工大学拟题纸课程编号 1 拟题教研室(或老师)签名 教研室主任签名 符号说明:)sgn(t 为符号函数,)(t δ为单位冲击信号,)(k δ为单位脉冲序列,)(t ε为单位阶跃信号,)(k ε为单位阶跃序列。

一、填空(共30分,每小题3分)1. 已知)()4()(2t t t f ε+=,求_______)("=t f 。

)('4)(2)("t t t f δε+2. 已知}4,2,4,3{)(},1,2,2,1{)(=-=k h k f ,求______)()(=*k h k f 。

}4,6,8,3,4,10,3{)()(-=*k h k f3. 信号通过系统不失真的条件为系统函数_______)(=ωj H 。

0)(t j Kej H ωω-=4. 若)(t f 最高角频率为m ω,则对)4(t f 取样的最大间隔是______。

m T ωπωπ4max max ==5. 信号t t t f ππ30cos 220cos 4)(+=的平均功率为______。

101122222=+++==∑∞-∞=n n F P6. 已知一系统的输入输出关系为)3()(t f t y =,试判断该系统是否为线性时不变系统______。

故系统为线性时变系统。

7. 已知信号的拉式变换为)1)(1(1)(2-+=s s s F ,求该信号的傅立叶变换)(ωj F =______。

故傅立叶变换)(ωj F 不存在。

8. 已知一离散时间系统的系统函数2121)(---+=z z z H ,判断该系统是否稳定______。

故系统不稳定。

9. =+-+⎰∞∞-dt t t t )1()2(2δ______。

310. 已知一信号频谱可写为)(,)()(3ωωωωA e A j F j -=是一实偶函数,试问)(t f 有何种对称性______。

关于t=3的偶对称的实信号。

二、计算题(共50分,每小题10分)1. 已知连续时间系统的单位冲激响应)(t h 与激励信号)(t f 的波形如图A-1所示,试由时域求解该系 统的零状态响应)(t y ,画出)(t y 的波形。

图 A-11. 系统的零状态响应)()()(t h t f t y *=,其波形如图A-7所示。

图 A-72. 在图A-2所示的系统中,已知)()5.0()(),2()(21k k h k k h kεδ=-=,求该系统的单位脉冲响应)(k h 。

f图 A-22.)2()5.0()(][)5.0()2()()()()()(221-+=*-+=*+=-k k k k k k h k h k k h k k εδεδδδ3. 周期信号)(t f 的双边频谱如图A-3所示,写出)(t f 的三阶函数表示式。

图 A-33. 写出周期信号)(t f 指数形式的傅立叶级数,利用欧拉公式即可求出其三阶函数表示式为tt e e e e eF t f t j t j t j t j n tjn n00222cos 2cos 42222)(00000ωωωωωωω++=++++==--∞-∞=∑4. 已知信号)1()()(--=t t t f εε通过一线性时不变系统的响应)(t y 如图A-4所示,试求单位阶跃信号)(t ε通过该系统的响应并画出其波形。

图 A-44. 因为∑∞=-=+-++-+=0)()()1()()(i i t f i t f t f t f t ε故利用线性时不变特性可求出)(t ε通过该系统的响应为∑∞=-=0)()}({i i t y t T ε波形如图A-8所示。

图 A-85. 已知)(t f 的频谱函数)1()1()(--+=ωωωSgn Sgn j F ,试求)(t f 。

5. )(21,01,2)1()1()(2ωωωωωωg Sgn Sgn j F =⎪⎩⎪⎨⎧><=--+=,因为)(2)(2ωSa t g ⇔,由对称性可得:)(2)(2)(222ωπωπg g t Sa =-⇔,因此,有)(2)(t Sa t f π=三、综合计算题(共20分,每小题10分)1. 一线性时不变因果连续时间系统的微分方程描述为)(3)('2)(10)('7)("t f t f t y t y t y +=++已知,1)0(',1)0(),()(===---y y t e t f t ε由s 域求解: (1)零输入响应)(t y x ,零状态响应)(t y f ,完全响应)(t y ;(2)系统函数)(s H ,单位冲激响应)(t h 并判断系统是否稳定; (3)画出系统的直接型模拟框图。

解:1. (1)对微分方程两边做单边拉斯变换得 )()32()(10)0(7)(7)0(')0()(2s F s s Y y s sY y sy s Y s +=+-+-----整理后可得)(10732107)0(7)0(')0()(22s F s s s s s y y sy s Y ++++++++=---零输入响应的s 域表达式为51221078)(2+-++=+++=s s s s s s Y x进行拉斯反变换可得 0,2)(52≥-=--t e e t y t t x零状态响应的s 域表达式为57/1223/114/1)1)(107(32)(10732)(22+-+++=++++=+++=s s s s s s s s F s s s s Y f进行拉斯反变换可得)()1273141()(52t e e e t y t t t f ε----+=完全响应为0,12193141)()()(52≥-+=+=---t e e e t y t y t y tt t f x(2)根据系统函数的定义,可得53/723/110732)()()(2+++-=+++==s s s s s s F s Y s H f进行拉斯反变换即得)()3731()(52t e e t h t t ε--+-=由于系统函数的极点为-2、-5,在左半s 平面,故系统稳定。

2121107132)(----++=s s s s s H 由此可画出系统的直接型模拟框图,如图A-9所示 )2. 一线性时不变因果离散时间系统的差分方程描述为0)()2(2)1(3)(≥=-+-+k k f k y k y k y已知,3)2(,2)1(),()(=--=-=y y k k f ε由z 域求解:(1)零输入响应)(k y x ,零状态响应)(k y f,完全响应)(k y ;(2)系统函数)(z H ,单位脉冲响应)(k h 。

(3) 若)5()()(--=k k k f εε,重求(1)、(2)。

2. (1)对差分方程两边进行z 变换得 )()}2()1()({2)}1()({3)(121z F y y z z Y z y z Y z z Y =-+-++-++---整理后可得11212211214142314231)2(2)1(2)1(3)(--------+++=++=++------=z z z z z z z y y z y z Y x进行z 变换可得系统零输入响应为 )(])2(4)1(4[)(k k y k k x ε---=零状态响应的z 域表示式为)21(3/4)1(2/1)1(6/1113311331)()(11112121--------+++-+-=-++=++=z z z z z z z z z F z Y f进行z 反变换可得系统零状态响应为)(])2(43)1(2161[][k k Y k k f ε-+--=系统的完全响应为)(]61)2(38)1(27[)()()(k k y k y k y k k f x ε+---=+=(2)根据系统函数的定义,可得1121212112311)()()(----+++-=++==z z z z z F z Y z H f进行z 反变换即得)(])2(2)1([)(k k h k k ε-+--=(3) 若)5()()(--=k k k f εε,则系统的零输入响应)(k y x 、单位脉冲响应)(k h 和系统函数)(z H 均不变,根据时不变特性,可得系统零状态响应为)5(])2(43)1(2161[)(])2(43)1(2161[)5()()}5()({55--+----+--=--=----k k k y k y k k T k k k k f f εεεε完全响应为)5(])2(43)1(2161[)(])2(38)1(2761[)}5()({)()(55--+----+--=--+=--k k k k T k y k y k k k k x εεεε长沙理工大学拟题纸课程编号 2 拟题教研室(或老师)签名 教研室主任签名 符号说明:)sgn(t 为符号函数,)(t δ为单位冲击信号,)(k δ为单位脉冲序列,)(t ε为单位阶跃信号,)(k ε为单位阶跃序列。

一、填空(共30分,每小题3分)1. 已知某系统的输入输出关系为)0(2)()()(2X dt t df t f t t y +=(其中X(0)为系统初始状态,)(t f 为外部激励),试判断该系统是(线性、非线性)________(时变、非时变)________系统。

线性时变2. ⎰∞-=-+32_________)221()32(dt t t t δ。

03.⎰∞∞-=--_________)24()22(dt t t εε⎰⎰∞∞-==--1)24()22(21dt dt t t εε4. },3,5,2{)()},3()({2)(021=↓=--=K k f k k k f kεε计算)()(21k f k f *=________。

}12,26,21,9,2{)()(21↓=*k f k f5. 若信号)(t f 通过某线性时不变系统的零状态响应为),(),()(00为常数t K t t Kf t y f -=则该系统的频率特性)(ωj H =________,单位冲激响应=)(t h ________。

系统的频率特性0)(t j Ke j H ωω-=,单位冲激响应)()(0t t K t h -=δ。

6. 若)(t f 的最高角频率为)(Hz f m ,则对信号)2()()(t f t f t y =进行时域取样,其频谱不混迭的最大取样间隔=max T ________。

m ax T 为)(6121max max s f f T m==7. 已知信号的拉式变换为)1)(1(1)(2-+=s s s F ,求该信号的傅立叶变换)(ωj F =______。

相关文档
最新文档