第十一章 物质代谢的相互联系及其调节(编写)

合集下载

物质代谢的相互联系和调节

物质代谢的相互联系和调节

细胞质:酵解; 细胞质:酵解;磷酸 戊糖途径; 戊糖途径;糖原合成 脂肪酸合成; ;脂肪酸合成;
线粒体:丙酮酸氧化; 线粒体:丙酮酸氧化;三 羧酸循环; 氧化; 羧酸循环;β-氧化;呼吸 链电子传递; 链电子传递;氧化磷酸 化
(二)酶定位 的区域化
细胞核: 细胞核:核酸 合成
内质网: 内质网:蛋白质 合成; 合成;磷脂合成
酮酸或乙酰 CoA
脂肪酸
脂肪
(四)核酸与糖、脂类、蛋白质代谢的联系
核酸是细胞内重要的遗传物质, • 核酸是细胞内重要的遗传物质,控制着蛋白质的 合成,影响细胞的成分和代谢类型 合成,影响细胞的成分和代谢类型; • 核酸生物合成需要糖和蛋白质的代谢中间产物参 加,需要酶和多种蛋白质因子; 需要酶和多种蛋白质因子
如:E. coli 色氨酸操纵子模型
p o L a E D C B A
trpR
trpP
trpO trpE trpD trpC trpB trpA
情况1: 情况 :缺 乏色氨酸时
无活性的 阻遏蛋白
情况2:色 情况 : 氨酸充足时
可阻遏的色氨酸操纵子(Trp )模型
Trp合成途径还存在色氨酸操纵子中 合成途径还存在色氨酸操纵子中 衰减子所引起的衰减调节。 衰减子所引起的衰减调节。 衰减子是DNA中可导致转录过早终 中可导致转录过早终 衰减子是 止的一段核苷酸序列。 止的一段核苷酸序列。
2. 酶合成的诱导机理---
参与分解代谢反应的的酶
诱导物 调节基因 阻遏蛋白 (有活性) 有活性) 阻遏蛋白 (无活性) 无活性) 不能阻挡 操纵基因
基因表达
酶 调节基因 的 阻遏蛋白 (有活性 有活性) 有活性 诱 导 操 B.有诱导物 有诱导物 纵 子 诱导物 模 型

物质代谢的联系与调节笔记

物质代谢的联系与调节笔记

第十一章. 物质代谢的联系与调节一.新陈代谢:物质的合成与分解并与环境的相互联系二.本章主要内容(1)物质代谢的特点与相互联系(2)物质代谢调节1. 细胞水平的调节(酶的调节)2. 激素水平的调节(体液调节)3. 整体水平的代谢调节(神经-体液调节)第一节.物质代谢的特点1.整体性2.调节性:体内各种物质代谢均受控于机体的精细调节,代谢的强度、速度、方向不断的适应内外环境的变化。

3.特色性:各组织、器官结构不同,酶系的种类、含量不同,------代谢途径及功能各不相同。

4.代谢池:各种代谢物均具有各自共同的代谢池5.能量形式:ATP6.还原当量:NADPH第二节.物质代谢的相互联系一、在能量代谢上的相互联系共同中间代谢物:乙酰辅酶A共同最后分解途径:三羧酸循环和呼吸链共同能量形式:ATP供能:互相代替,互相制约。

一种供能物质代谢占优势,抑制或节约其他供能物质。

二、糖、脂和蛋白质代谢通过共同中间产物相互联系(一)糖在体内可转变为脂,脂酸不能转变为糖当摄入的糖量超过体内能量消耗时,糖可以转变为脂肪。

脂肪绝大部分不能在体内转变为糖。

(二)绝大多数氨基酸的碳链骨架在体内可与糖相互转变 20种氨基酸除亮氨酸及赖氨酸外均可转变为糖。

(三)蛋白质/氨基酸可转变为脂肪,而脂类不能转变为氨基酸蛋白质1.生糖氨基酸可通过丙酮酸转变为3-磷酸甘油参与脂肪的合成2.脂肪只有甘油部分可转变为非必需氨基酸。

(四)氨基酸是合成核酸的重要原料1.嘌呤,嘧啶的合成需要天冬氨酸、谷氨酰胺,嘌呤的合成还需要甘氨酸2.合成核苷酸所需的磷酸核糖由磷酸戊糖途径提供第二节.代谢调节方式葡萄糖合成糖原储存(肝、肌肉)乙酰CoA磷酸二羟丙酮合成脂肪 脂肪脂酸乙酰葡萄糖1.代谢调节普遍存在于生物界,是生物体的重要特征2.代谢调节分为三级水平调节⏹细胞水平代谢调节、激素水平代谢调节及整体水平代谢的调节统称为三级水平代谢调节。

⏹在代谢调节的三级水平中,细胞水平代谢调节是基础,激素及神经对代谢的调节都是通过细胞水平的代谢调节实现的。

生物化学-第十一章-物质代谢调节控制

生物化学-第十一章-物质代谢调节控制

一、酶活性的调节
A
B
E1
C E2
D E3
催化反应速度最慢的酶:关键酶或限速酶
酶结构调节 酶数量调节 (快速调节) (迟缓调节)
1、变构调节
活性中心
代谢物
非共价键
E
别位
变构酶 E 酶结构发生改变
变构效应剂
变构激活剂 变构抑制剂
酶活性↑ 酶活性↓
变构调节的生理意义
① 代谢终产物反馈抑制 (feedback inhibition) 反应途径中的酶,使代谢物不致生成过多 。
呼吸链 蛋白质合成 尿素合成 三羧酸循环 氧化磷酸化 血红素合成 蛋白质降解 核酸合成
分布区域 线粒体 核糖体 胞浆、线粒体 线粒体 线粒体 胞浆、线粒体 溶酶体、蛋白酶体 细胞核
• 多酶体系的隔离分布:使物质代谢互不干扰
酶活性的调节方式: 1、快速调节,也叫酶活性调节。
2、迟缓调节,也叫酶含量调节。
• 受体分类
按受体在细胞的部位不同,分为:
Ι 膜受体 Ⅱ 细胞内受体
细胞膜受体和细胞内受体
细胞膜受体的类型 1. 离子通道偶联受体 2. G蛋白偶联受体 3. 酶偶联受体
离子通道偶联受体
G蛋白偶联受体
G蛋白
全称:鸟苷酸结合蛋白 特点: ① 由a、b、g亚基组成的异聚体; ②具有GTP酶(GTPase)的活性,能结合GTP或GDP; ③ 其本身的构象改变可活化效应蛋白。
乙酰CoA
乙酰CoA羧化酶
丙二酰CoA
长链脂酰CoA
②变构调节使能量得以有效利用,不致浪费。
+ 糖原合酶
G-6-P –
糖原磷酸化酶
促进糖的储存
抑制糖的氧化
2、共价修饰

生物化学物质代谢的联系与调节ppt课件

生物化学物质代谢的联系与调节ppt课件
第十章
物质代谢的联系与调节
概述
(一)物质代谢调节的概念
正常情况下,为适应内外环境的不断变化,机体 能够及时调节物质代谢的强度、速率和方向,以 维持机体内环境的稳定及代谢的顺利进行,在整 体上保持动态平衡。机体 对物质代谢的精细调 节过程称做代谢调节。
(二)代谢途 径
代谢途径是指生物 体内物质在代谢过 程中,由许多酶促 反应组成的、有秩 序的、依次连接的、 连续的化学反应。
某些代谢途径的变构酶及其变构效应剂
代谢途径 变构酶
变构激活剂
变构抑制剂
糖酵解
己糖激酶
AMP、ADP、FDP、Pi G-6-P
三羧酸循环
磷酸果糖激酶-1 丙酮酸激酶 柠檬酸合酶
FDP FDP AMP
柠檬酸 ATP、乙酰CoA ATP、长链脂酰CoA
糖异生
糖原分解 糖原合成 脂酸合成 胆固醇合成 氨基酸代谢
线粒体
胆固醇合成 细胞液和内质网
磷酸戊糖途径 细胞液
尿素合成 细胞液和线粒体
糖异生
细胞液
蛋白质合成 细胞液和内质网
糖原合成与分解 细胞液
DNA合成 细胞核
氧化磷酸化
线粒体
mRNA合成 细胞核
磷脂合成
内质网
tRNA合成 核质
脂肪酸合成
细胞液
rRNA合成 核仁
脂肪动员
细胞液
血红素合成 细胞液和线粒体
脂酸β氧化
草酰乙酸
丙酮酸
丙酮酸羧化酶
3. 级联调节
肾上腺素 肾上腺素受体
肾上腺素—肾上腺素受体
G蛋白(无活性) G蛋白(有活性)
腺苷酸环化酶 腺苷酸环化酶
(无活性)
(有活性)
ATP

第十一章物质代谢的相互联系及其调节

第十一章物质代谢的相互联系及其调节

CTP
血红素合成 ALA合成酶
血红素
(2)变构酶的特点及作用机制
变构酶常由多个亚基构成; 变构效应剂可通过非共价键与调节亚基结合,引起酶构
象改变(T态和R态)或亚基的聚合、分离从而影响酶 的活性; 变构酶的酶促反应动力学不符合米曼氏方程式; 变构效应剂常常是酶的底物、产物或其他小分子中间代 谢物。 变构调节过程不需要能量。
(CH2)4CO HS Co
OH
AO
CH
3
CO
P
丙酮酸脱氢 酶
O CH HC TT
S
二氢硫辛酸 转乙酰酶
C C S Co
H3
A
H SH
(CH2)4CO OH
2 3
HP
S
(CH2)4CO OH
S
S
FAD H2
二氢硫辛酸
脱氢酶 FA D
丙酮酸氧化脱羧
NFAA
D+
NADH +H+
乙酰 丙二酸单 β-酮脂酰转移酶 酰转移酶 合成酶
第一节
物质代谢的相互联系
一、物质代谢的特点
物质代谢的整体性 物质代谢的可调节性 组织器官代谢的特色性 不同来源代谢物代谢的共同性 能量储存的特殊性 NADPH为合成代谢提供还原当量
二、物质代谢的相互联系
(一)能量代谢上的相互联系
物质代谢过程中所伴随的能量的贮存、释放、转移和利 用等称为能量代谢。
现出激素的生物学效应。 根据激素作用受体部位不同,激素可分为:细胞膜受
体激素和细胞内受体激素。
三、整体水平的代谢调节
1.应激状态下的代谢调节
应激是机体在一些特殊的情况下,如严重创伤、感染、中 毒、剧烈的情绪变化等所作出的应答性反应。

第11章-物质代谢的联系与调节1022共59页文档

第11章-物质代谢的联系与调节1022共59页文档
一)细胞内酶的隔离分布(区室化)
各代谢途径的有关酶类,常组成酶体系, 分布于细胞的某一区域或亚细胞结构中,使不 同的代谢途径在细胞不同区域内进行。
胞液:糖酵解、糖原合成 与分解、糖异生、磷酸戊 糖途径、脂酸合成酶系
线粒体:三羧酸循环、氧 化磷酸化、呼吸链、脂酸 氧化酶系
胞核:核酸合成酶系
任一供能物质的代谢占优势,常能抑制和节 约其他物质的降解。
二、糖、脂和蛋白质代谢之间的相互联系
(一)糖代谢与脂代谢的相互联系
糖变脂
合成糖原储存(肝、肌肉)
摄糖过多
乙酰辅酶A↑
柠檬酸↑ATP↑
肥胖
及血TG ↑
变构 乙酰辅酶A
+ 羧化酶↑
储脂 ↑
合成
脂酸↑
脂肪的甘油部分能在体内转变为糖, 但脂酸不能转变为糖
7. 肾 能进行糖异生(与肝相当),并能 储存糖原;亦能利用酮体氧化供能; 肾髓质无线粒体,只能通过糖酵解供能。
第四节 代谢调节(重点与难点)
代谢调节作用的三个水平:
• 细胞水平的代谢调节(酶活性和酶量,代谢 物浓度,区室化)---本章重点
• 激素水平的代谢调节(内分泌细胞→激素→细 胞内代谢)
• 整体水平的代谢调节(中枢神经→神经递质 →效应器→激素分泌→细胞内代谢)
脂肪 动员 脂肪分解代谢
甘油↑ 脂酸 ↑
α-磷酸甘油↑ (少)
糖异生
有赖于糖代谢 正常进行
高酮血症
乙酰CoA↑↑ (多)
糖↑(少)
糖代谢 草酰乙酸

三羧酸 循环
(二)糖代谢与氨基酸代谢的相互联系
除生酮aa(Leu和Lys)外,其余aa均可 生成-酮酸,并循糖异生途径转变为糖 糖代谢中间产物可氨基化转变为非必需

第11章-物质代谢的相互联系和代谢调节教学文案

第11章-物质代谢的相互联系和代谢调节教学文案

第十一章物质代谢的相互联系和代谢调节一、选择题1、糖酵解中,下列哪一个催化的反应不是限速反应?A、丙酮酸激酶B、磷酸果糖激酶C、己糖激酶D、磷酸丙糖异构酶2、磷酸化酶通过接受或脱去磷酸基而调节活性,因此它属于A、别(变)构调节酶B、共价调节酶C、诱导酶D、同工酶3、下列与能量代谢有关的途径不在线粒体内进行的是A、三羧酸循环B、脂肪酸β氧化C、氧化磷酸化D、糖酵解作用4、关于共价修饰调节酶,下列哪种说法是错误的?A、这类酶一般存在活性和无活性两种形式,B、酶的这两种形式通过酶促的共价修饰相互转变C、伴有级联放大作用D、是高等生物独有的代谢调节方式5、阻遏蛋白结合的位点是A、调节基因B、启动因子C、操纵基因D、结构基因6、下面哪一项代谢是在细胞质内进行的A、脂肪酸的β-氧化B、氧化磷酸化C、脂肪酸的合成D、TCA7、在乳糖操纵子模型中,操纵基因专门控制是否转录与翻译。

A、结构基因B、调节基因C、起动因子D、阻遏蛋白8、有关乳糖操纵子调控系统的论述何者是错误的?A、大肠杆菌乳糖操纵子模型也是真核细胞基因表达调控的形式B、乳糖操纵子由三个结构基因及其上游的启动子何操纵基因组成C、乳糖操纵子有负调节系统和正调节系统D、乳糖操纵子负调控系统的诱导物是乳糖9、下列有关阻遏物的论述何者是正确的?A、阻遏物是代谢的终产物B、阻遏物是阻遏基因的产物C、阻遏物与启动子结合而阻碍基因转录D、阻遏物与RNA聚合酶结合而阻碍基因转录二、是非题(在题后括号内打√或×)1、共价调节是指酶与底物形成一个反应活性很高的共价中间物。

2、在酶的别构调节和共价修饰中,常伴有酶分子亚基的解聚和缔合,这种可逆的解聚/缔合也是肌体内酶活性调节的重要方式。

3、细胞的区域化在代谢调节上的作用,除了把不同的酶系统和代谢物分隔在特定的区间,还通过膜上的运载系统调节代谢物、辅酶和金属离子的浓度。

4、操纵基因又称操纵子,如同起动基因又称启动子一样。

物质代谢的相互联系和调节控制医学知识

物质代谢的相互联系和调节控制医学知识

物质代谢与基因表达的联系
物质代谢与基因表达相互影响
基因表达是生物体在特定时间和空间内表达基因的过程,而物质代谢则是对这些表达进行 调节的过程。
基因表达对物质代谢的影响
基因表达可以调节物质代谢的过程。例如,当机体需要大量能量时,某些与能量代谢相关 的基因会被诱导表达,从而增加机体能量的供应。
物质代谢对基因表达的影响
物质代谢的相互联系和调 节控制医学知识
xx年xx月xx日
目录
• 物质代谢的概述 • 物质代谢的相互联系 • 物质代谢的调节控制 • 物质代谢在医学中的应用
01
物质代谢的概述
物质代谢的定义
物质代谢
是生物体内伴随物质合成、分解、运输、分泌等过程所进行 的化学变化和能量转化的过程。
物质代谢的特点
具有复杂性和多样性,涉及多个器官、系统和细胞,同时受 到神经、内分泌等多种调节因素的影响。
物质代谢的相互联系
物质代谢与能量代谢的联系
物质代谢和能量代谢密切相关
物质代谢是生物体内化学物质的合成和分解过程,能量代谢是生物体内能量的获取和利用 过程。物质代谢往往伴随着能量代谢的进行,能量代谢也影响着物质代谢的过程。
物质代谢对能量代谢的影响
物质代谢过程中产生的能量和物质,可以影响能量代谢的过程。例如,葡萄糖的氧化分解 过程可以提供能量,同时也可以产生二氧化碳和水。
THANKS
谢谢您的观看
药物副作用
药物治疗过程中,药物可能会影响机体其他部位的物质代谢,从而产生副作用, 如肝肾功能损害、胃肠道反应等。
物质代谢与营养保健
营养摄入与健康
合理的营养摄入是维持机体正常代谢的关键,不同的营养素 对物质代谢的影响不同。
营养保健品的作用

第十一章 物质代谢的相互联系及其调节(编写)

第十一章 物质代谢的相互联系及其调节(编写)

第十一章物质代谢的相互联系及其调节第一节物质代谢的相互联系一、糖、脂、蛋白质在能量代谢上的相互联系二、糖、脂、蛋白质及核酸代谢之间的相互联系第二节物质代谢的调节一、细胞水平的代谢调节二、激素水平的代谢调节三、整体水平的代谢调节第十一章物质代谢的相互联系及其调节物质代谢、能量代谢与代谢调节是生命存在的三大要素。

生命体都是由糖类、脂类、蛋白质、核酸四大类基本物质和一些小分子物质构成的。

虽然这些物质化学性质不同,功能各异,但它们在生物体内的代谢过程并不是彼此孤立、互不影响的,而是互相联系、互相制约、彼此交织在一起的。

机体代谢之所以能够顺利进行,生命之所以能够健康延续,并能适应千变万化的体内、外环境,除了具备完整的糖、脂类、蛋白质与氨基酸、核苷酸与核酸代谢和与之偶联的能量代谢以外,机体还存在着复杂完善的代谢调节网络,以保证各种代谢井然有序、有条不紊地进行。

第一节物质代谢的相互联系一、糖、脂、蛋白质在能量代谢上的相互联系糖类、脂类及蛋白质都是能源物质均可在体内氧化供能。

尽管三大营养物质在体内氧化分解的代谢途径各不相同,但乙酰CoA是它们代谢的中间产物,三羧酸循环和氧化磷酸化是它们代谢的共同途径,而且都能生成可利用的化学能ATP。

从能量供给的角度来看,三大营养物质的利用可相互替代。

一般情况下,机体利用能源物质的次序是糖(或糖原)、脂肪和蛋白质(主要为肌肉蛋白),糖是机体主要供能物质(占总热量50%~70%),脂肪是机体储能的主要形式(肥胖者可多达30%~40%)。

机体以糖、脂供能为主,能节约蛋白质的消耗,因为蛋白质是组织细胞的重要结构成分。

由于糖、脂、蛋白质分解代谢有共同的代谢途径限制了进入该代谢途径的代谢物的总量,因而各营养物质的氧化分解又相互制约,并根据机体的不同状态来调整各营养物质氧化分解的代谢速度以适应机体的需要。

若任一种供能物质的分解代谢增强,通常能代谢调节抑制和节约其它供能物质的降解,如在正常情况下,机体主要依赖葡萄糖氧化供能,而脂肪动员及蛋白质分解往往受到抑制;在饥饿状态时,由于糖供应不足,则需动员脂肪或动用蛋白质而获得能量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章物质代谢的相互联系及其调节第一节物质代谢的相互联系一、糖、脂、蛋白质在能量代谢上的相互联系二、糖、脂、蛋白质及核酸代谢之间的相互联系第二节物质代谢的调节一、细胞水平的代谢调节二、激素水平的代谢调节三、整体水平的代谢调节第十一章物质代谢的相互联系及其调节物质代谢、能量代谢与代谢调节是生命存在的三大要素。

生命体都是由糖类、脂类、蛋白质、核酸四大类基本物质和一些小分子物质构成的。

虽然这些物质化学性质不同,功能各异,但它们在生物体内的代谢过程并不是彼此孤立、互不影响的,而是互相联系、互相制约、彼此交织在一起的。

机体代谢之所以能够顺利进行,生命之所以能够健康延续,并能适应千变万化的体内、外环境,除了具备完整的糖、脂类、蛋白质与氨基酸、核苷酸与核酸代谢和与之偶联的能量代谢以外,机体还存在着复杂完善的代谢调节网络,以保证各种代谢井然有序、有条不紊地进行。

第一节物质代谢的相互联系一、糖、脂、蛋白质在能量代谢上的相互联系糖类、脂类及蛋白质都是能源物质均可在体内氧化供能。

尽管三大营养物质在体内氧化分解的代谢途径各不相同,但乙酰CoA是它们代谢的中间产物,三羧酸循环和氧化磷酸化是它们代谢的共同途径,而且都能生成可利用的化学能ATP。

从能量供给的角度来看,三大营养物质的利用可相互替代。

一般情况下,机体利用能源物质的次序是糖(或糖原)、脂肪和蛋白质(主要为肌肉蛋白),糖是机体主要供能物质(占总热量50%~70%),脂肪是机体储能的主要形式(肥胖者可多达30%~40%)。

机体以糖、脂供能为主,能节约蛋白质的消耗,因为蛋白质是组织细胞的重要结构成分。

由于糖、脂、蛋白质分解代谢有共同的代谢途径限制了进入该代谢途径的代谢物的总量,因而各营养物质的氧化分解又相互制约,并根据机体的不同状态来调整各营养物质氧化分解的代谢速度以适应机体的需要。

若任一种供能物质的分解代谢增强,通常能代谢调节抑制和节约其它供能物质的降解,如在正常情况下,机体主要依赖葡萄糖氧化供能,而脂肪动员及蛋白质分解往往受到抑制;在饥饿状态时,由于糖供应不足,则需动员脂肪或动用蛋白质而获得能量。

二、糖、脂、蛋白质及核酸代谢之间的相互联系体内糖、脂、蛋白质及核酸的代谢是相互影响,相互转化的,其中三羧酸循环不仅是三大营养物质代谢的共同途径,也是三大营养物质相互联系、相互转变的枢纽。

同时,一种代谢途径的改变必然影响其他代谢途径的相应变化,当糖代谢失调时会立即影响到蛋白质代谢和脂类代谢。

(一)糖代谢与脂代谢的相互联系糖和脂类都是以碳氢元素为主的化合物,它们在代谢关系上十分密切。

一般来说,机体摄入糖增多而超过体内能量的消耗时,除合成糖原储存在肝和肌外,可大量转变为脂肪贮存起来。

糖转变为脂肪的大致步骤为:糖经酵解产生磷酸二羟丙酮和3-磷酸甘油醛,其中磷酸二羟丙酮可以还原为甘油;而3-磷酸甘油醛能继续通过糖酵解途径形成丙酮酸,丙酮酸氧化脱羧后转变成乙酰辅酶A,乙酰辅酶A可用来合成脂肪酸,最后由甘油和脂肪酸合成脂肪。

此外,糖的分解代谢增强不仅为脂肪合成提供了大量的原料,而且其生成的ATP及柠檬酸是乙酰CoA羧化酶的变构激活剂,促使大量的乙酰CoA羧化为丙二酸单酰CoA进而合成脂肪酸及脂肪在脂肪组织储存。

脂肪分解成甘油和脂肪酸,其中甘油可经磷酸化生成α-磷酸甘油,再转变为磷酸二羟丙酮,然后经糖异生的途径可变为葡萄糖;而脂肪酸部分在动物体内不能转变为糖。

相比而言,甘油占脂肪的量很少,其生成的糖量相当有限,因此,脂肪绝大部分不能在体内转变为糖。

脂肪分解代谢的强度及代谢过程能否顺利进行与糖代谢密切相关。

三羧酸循环的正常运转有赖于糖代谢产生的中间产物草酰乙酸来维持,当饥饿或糖供给不足或糖尿病糖代谢障碍时,引起脂肪动员加快,脂肪酸在肝内经β-氧化生成酮体的量增多,其原因是糖代谢的障碍而致草酰乙酸相对不足,生成的酮体不能及时通过三羧酸循环氧化,而造成血酮体升高。

(二)糖代谢与氨基酸代谢的相互联系糖是生物体内的重要碳源和能源。

糖经酵解途径产生的磷酸烯醇式丙酮酸和丙酮酸,丙酮酸羧化生成草酰乙酸,及其脱羧后经三羧酸循环形成的α-酮戊二酸,它们都可以作为氨基酸的碳架。

通过氨基化或转氨基作用形成相应的氨基酸。

但是必需氨基酸,包括赖氨酸、色氨酸、甲硫氨酸、苯丙氨酸、亮氨酸、苏氨酸、异亮氨酸、缬氨酸八种,则必需由自食物提供。

组成蛋白质的20种氨基酸,除亮氨酸和赖氨酸(生酮氨基酸)外,均可通过脱氨基作用生成相应的α-酮酸,而这些α-酮酸均可为或转化为糖代谢的中间产物,可通过三羧酸循环部分途径及糖异生作用转变为糖。

由此可见,20种氨基酸除亮氨酸和赖氨酸外均可转变为糖,而糖代谢的中间物质在体内仅能转变为12种非必需氨基酸,其余八种必需氨基酸必需由食物供给,故食物中的糖是不能替代蛋白质。

(三)脂类代谢与氨基酸代谢的相互联系脂肪分解产生甘油和脂肪酸,甘油可转变为丙酮酸、草酰乙酸及α-酮戊二酸,分别接受氨基而转变为丙氨酸、天冬氨酸及谷氨酸。

脂肪酸可以通过β-氧化生成乙酰辅酶A,乙酰辅酶A与草酰乙酸缩合进入三羧酸循环,可产生α-酮戊二酸和草酰乙酸,进而通过转氨作用生成相应的谷氨酸和天冬氨酸,但必需消耗三羧酸循环的中间物质而受限制,如无其他来源补充,反应将不能进行下去。

因此脂肪酸不易转变为氨基酸。

生糖氨基酸可通过丙酮酸转变为磷酸甘油;而生糖氨基酸、生酮氨基酸及生糖兼生酮氨基酸均可转变为乙酰CoA,后者可作为脂肪酸合成的原料,最后合成脂肪。

因而蛋白质可转变为脂肪。

此外,乙酰CoA还是合成胆固醇的原料。

丝氨酸脱羧生成乙醇胺,经甲基化形成胆碱,而丝氨酸、乙醇胺和胆碱分别是合成磷脂酰丝氨酸、脑磷脂及卵磷脂的原料。

(四)核酸与氨基酸代谢及糖代谢的相互联系核酸是遗传物质,在机体的遗传、变异及蛋白质合成中,起着决定性的作用。

许多游离核苷酸在代谢中起着重要的作用。

如ATP是能量生成、利用和贮存的中心物质,UTP参与糖原的合成,CTP参与卵磷脂的合成,GTP供给蛋白质肽链合成时所需要部分能量。

此外,许多重要辅酶也是核苷酸的衍生物,如辅酶A 、NAD+、NADP+、FAD等。

另一方面,核酸或核苷酸本身的合成,又受到其他物质特别是蛋白质的影响。

如甘氨酸、天冬氨酸、谷氨酰胺及一碳单位(是由部分氨基酸代谢产生的)是核苷酸合成的原料,参与嘌呤和嘧啶环的合成;核苷酸合成需要酶和多种蛋白因子的参与;合成核苷酸所需的磷酸核糖来自糖代谢中的磷酸戊糖途径等等。

糖、脂、氨基酸代谢途径间的相互关系见图11-1。

第二节物质代谢的调节代谢调节(metabolic regulation),是生物在长期进化过程中,为适应环境需要而形成的一种生理机能,进化程度愈高的生物其调节方式就愈复杂。

在单细胞的微生物中只能通过细胞内代谢物浓度的改变来调节酶的活性及含量,从而影响某些酶促反应速度,这种调节称为细胞水平的代谢调节。

这也是最原始的调节方式。

随着低等的单细胞生物进化到多细胞生物时出现了激素调节,激素能改变靶细胞的某些酶的催化活性或含量,来改变细胞内代谢物的浓度从而实现对代谢途径的调节。

而高等生物和人类则有了功能更复杂的神经系统,在神经系统的控制下,机体通过神经递质对效应器发生影响,或者改变某些激素的分泌,再通过各种激素相互协调,对整体代谢进行综合调节。

总之,就整个生物界来说,代谢的调节是在细胞(酶)、激素和神经这三个不同水平上进行的。

由于这些调节作用点最终均在生命活动的最基本单位细胞中,所以细胞水平的调节是最基本的调节方式,是激素和神经调节方式的基础。

一、细胞水平的代谢调节细胞水平的代谢调节就是细胞内酶的调节,主要包括酶的分布、活性和酶的含量等调节。

(一)细胞内酶的区域化分布细胞是生物体结构和功能的基本单位。

细胞内存在由膜系统分开的区域,使各类反应在细胞中有各自的空间分布,称为区域化(compartmentation)。

尤其是真核生物细胞呈更高度的区域化,由膜包围的多种细胞器分布在细胞质内,如细胞核、线粒体、溶酶体、高尔基体等。

代谢上相关的酶常常组成一个多酶体系(multienzyme system)或多酶复合体(multienzyme complex),分布在细胞的某一特定区域,执行着特定的代谢功能。

例如糖酵解、糖原合成与分解、磷酸戊糖途径和脂肪酸合成的酶系存在于细胞质中;三羧酸循环、脂肪酸β-氧化和氧化磷酸化的酶系存在于线粒体中;核酸合成的酶系大部分在细胞核中;水解酶系在溶酶体中(表11-1)。

即使在同一细胞器内,酶系分布也有一定的区域化。

例如在线粒体内,在外膜、内膜、膜间空间以及内部基质的酶系是不同的:细胞色素和氧化磷酸化的酶分布在内膜上,而三羧酸循环的酶则主要是在基质中。

这种细胞内酶的区域化分布对物质代谢及调节有重要的意义:①使得在同一代谢途径中的酶互相联系、密切配合,同时将酶、辅酶和底物高度浓缩,使同一代谢途径一系列酶促反应连续进行,提高反应速度;②使得不同代谢途径隔离分布,各自行使不同功能,互不干扰,使整个细胞的代谢得以顺利进行;③使得某一代谢途径产生代谢产物在不同细胞器呈区域化分布,而形成局部高代谢物浓度,有利于其对相关代谢途径的特异调节。

此外,一些代谢中间产物在亚细胞结构之间还存在着穿梭,从而组成生物体内复杂的代谢与调节网络。

因此,酶在细胞内的区域化分布也是物质代谢调节的一种重要方式。

(二)代谢调节作用点——关键酶、限速酶代谢途径包含一系列催化化学反应的酶,其中有一个或几个酶能影响整个代谢途径的反应速度和方向,这些具有调节代谢的酶称为关键酶(key enzymes))或调节酶(regulatory enzymes。

在代谢途径的酶系中,关键酶一般具有以下的特点:①常催化不可逆的非平衡反应,因此能决定整个代谢途径的方向;②酶的活性较低,其所催化的化学反应速度慢,故又称限速酶(rate-limiting enzymes),因此它的活性能决定整个代谢途径的总速度;③酶活性受底物、多种代谢产物及效应剂的调节,因此它是细胞水平的代谢调节的作用点。

例如已糖激酶、磷酸果糖激酶-1和丙酮酸激酶均为糖酵解途径的关键酶,它们分别控制着酵解途径的速度,其中磷酸果糖激酶-1的催化活性最低,通过催化果糖-6-磷酸转变为果糖1,6-二磷酸控制糖酵解途径的速度。

而果糖-1,6-二磷酸酶则通过催化果糖-1,6-二磷酸转变为果糖-6-磷酸作为糖异生途径的关键酶之一。

因此,这些关键酶的活性决定体内糖的分解或糖异生。

当细胞内能量不足时,AMP含量升高,可激活磷酸果糖激酶-1而抑制果糖-1,6-二磷酸酶,使葡萄糖分解代谢途径增强而产生能量。

相反,当细胞内能量充足,ATP含量升高时,抑制磷酸果糖激酶-1,则葡萄糖异生途径增强。

调节某些关键酶的活性是细胞代谢调节的一种重要方式,表11-2列出一些重要代谢途径的关键酶见。

相关文档
最新文档