0_1背包问题的多种解法
回溯法和分支限界法解决0-1背包题(精)[精品文档]
![回溯法和分支限界法解决0-1背包题(精)[精品文档]](https://img.taocdn.com/s3/m/4b32afcc84868762caaed595.png)
0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。
问题的解空间至少包含问题的一个(最优)解。
对于0-1背包问题,解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有0-1赋值。
例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,),xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
二、回溯法步骤思想描述:0-1背包问题是子集选取问题。
0-1 背包问题的解空间可以用子集树表示。
在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。
当右子树中有可能含有最优解时,才进入右子树搜索。
否则,将右子树剪去。
设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。
当cp+r<=bestp时,可剪去右子树。
计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。
例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。
这4个物品的单位重量价值分别为[3,2,3,5,4]。
以物品单位重量价值的递减序装入物品。
先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。
由此得一个解为[1,0.2,1,1],其相应价值为22。
数据结构与算法题解(10):0-1背包问题与部分背包问题
![数据结构与算法题解(10):0-1背包问题与部分背包问题](https://img.taocdn.com/s3/m/5512614d647d27284b7351f9.png)
假设我们有n件物品,分别编号为1, 2...n。其中编号为i的物品价值为vi ,它的重量量为wi 。为了了简
化问题,假定价值和重量量都是整数值。现在,假设我们有一一个背包,它能够承载的重量量是W。现 在,我们希望往包里里里装这些物品,使得包里里里装的物品价值最大大化,那么我们该如何来选择装的东 ⻄西呢?问题结构如下图所示:
}
public void printResult() { for(int i = 0; i < v. length; i++) { for(int j = 0; j <= weight; j++) System.out.print(c[i][j] + " "); System.out.println(); }
一一、0-1背包
1.1 初步分析
对于这个问题,一一开始确实有点不不太好入入手手。一一堆的物品,每一一个都有一一定的质量量和价值,我们
能够装入入的总重量量有限制,该怎么来装使得价值最大大呢?对于这n个物品,每个物品我们可能会 选,也可能不不选,那么我们总共就可能有2n种组合选择方方式。如果我们采用用这种办法来硬算的话,则整体的
回溯法和分支限界法解决背包题
![回溯法和分支限界法解决背包题](https://img.taocdn.com/s3/m/7db9dd7b84254b35effd3464.png)
0-1背包问题计科1班朱润华 32方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。
问题的解空间至少包含问题的一个(最优)解。
对于0-1背包问题,解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有0-1赋值。
例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
二、回溯法步骤思想描述:0-1背包问题是子集选取问题。
0-1 背包问题的解空间可以用子集树表示。
在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。
当右子树中有可能含有最优解时,才进入右子树搜索。
否则,将右子树剪去。
设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。
当cp+r<=bestp时,可剪去右子树。
计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。
例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。
这4个物品的单位重量价值分别为[3,2,3,5,4]。
以物品单位重量价值的递减序装入物品。
先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装的物品2。
由此得一个解为[1,,1,1],其相应价值为22。
尽管这不是一个可行解,但可以证明其价值是最优值的上界。
回溯法解决0-1背包问题
![回溯法解决0-1背包问题](https://img.taocdn.com/s3/m/8f2799f69a89680203d8ce2f0066f5335a81679e.png)
回溯法解决0-1背包问题问题描述: 有n件物品和⼀个容量为c的背包。
第i件物品的价值是v[i],重量是w[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
所谓01背包,表⽰每⼀个物品只有⼀个,要么装⼊,要么不装⼊。
回溯法: 01背包属于找最优解问题,⽤回溯法需要构造解的⼦集树。
在搜索状态空间树时,只要左⼦节点是可⼀个可⾏结点,搜索就进⼊其左⼦树。
对于右⼦树时,先计算上界函数,以判断是否将其减去,剪枝啦啦!上界函数bound():当前价值cw+剩余容量可容纳的最⼤价值<=当前最优价值bestp。
为了更好地计算和运⽤上界函数剪枝,选择先将物品按照其单位重量价值从⼤到⼩排序,此后就按照顺序考虑各个物品。
#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装⼊//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j])//冒泡排序perp[],order[],sortv[],sortw[]{temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i];order[i]=order[j];order[j]=temporder;temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右⼦数backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输⼊物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输⼊物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装⼊的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}时间复杂度分析: 上界函数bound()需要O(n)时间,在最坏的情况下有O(2^n)个右⼦结点需要计算上界,回溯算法backtrack需要的计算时间为O(n2^n)。
分支界限方法01背包问题解题步骤
![分支界限方法01背包问题解题步骤](https://img.taocdn.com/s3/m/4e29328adb38376baf1ffc4ffe4733687e21fcc1.png)
分支界限方法是一种用于解决优化问题的算法。
在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。
01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。
2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。
假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。
对于01背包问题,可以初始化dp数组的第一行和第一列为0。
4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。
分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。
5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。
分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。
分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。
在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。
掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。
分支界限方法在解决01背包问题的过程中,具有重要的作用。
0_1背包问题的多种解法
![0_1背包问题的多种解法](https://img.taocdn.com/s3/m/c832a8bc0722192e4536f6c4.png)
页脚内容1一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。
首先说明一下0-1背包问题拥有最优解。
假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。
如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+n i i i W y w x w 211。
因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。
由于程序过于简单,在这里就不再给出,用实例说明求解过程。
下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。
(完整版)01背包问题
![(完整版)01背包问题](https://img.taocdn.com/s3/m/266d6e8679563c1ec4da7166.png)
01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。
01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。
首先要明确这张表是至底向上,从左到右生成的。
为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。
对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。
同理,c2=0,b2=3,a2=6。
对于承重为8的背包,a8=15,是怎么得出的呢?根据01背包的状态转换方程,需要考察两个值,一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;在这里,f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包以下是actionscript3 的代码public function get01PackageAnswer(bagItems:Array,bagSize:int):Array{var bagMatrix:Array=[];var i:int;var item:PackageItem;for(i=0;i<bagItems.length;i++){bagMatrix[i] = [0];}for(i=1;i<=bagSize;i++){for(varj:int=0;j<bagItems.length;j++){item = bagItems[j] as PackageItem;if(item.weight > i){//i背包转不下itemif(j==0){bagMatrix[j][i] = 0;}else{bagMatrix[j][i]=bagMatrix[j-1][i];}}else{//将item装入背包后的价值总和var itemInBag:int;if(j==0){bagMatrix[j][i] = item.value;continue;}else{itemInBag = bagMatrix[j-1][i-item.weight]+item.value;}bagMatrix[j][i] = (bagMatrix[j-1][i] > itemInBag ? bagMatrix[j-1][i] : itemInBag)}}}//find answervar answers:Array=[];var curSize:int = bagSize;for(i=bagItems.length-1;i>=0;i--){item = bagItems[i] as PackageItem;if(curSize==0){break;}if(i==0 && curSize > 0){answers.push();break;}if(bagMatrix[i][curSize]-bagMatrix[i-1][curSize-item.weight ]==item.value){answers.push();curSize -= item.weight;}}return answers;}PackageItem类public class PackageItem{public var name:String;public var weight:int;public var value:int;public function PackageItem(name:String,weight:int,value:int){ = name;this.weight = weight;this.value = value;}}测试代码varnameArr:Array=['a','b','c','d','e'];var weightArr:Array=[2,2,6,5,4];var valueArr:Array=[6,3,5,4,6];var bagItems:Array=[];for(vari:int=0;i<nameArr.length;i++){var bagItem:PackageItem = new PackageItem(nameArr[i],weightArr[i],valueArr[i]);bagItems[i]=bagItem;}var arr:Array = ac.get01PackageAnswer(bagItems,10);。
0-1背包问题——回溯法求解【Python】
![0-1背包问题——回溯法求解【Python】](https://img.taocdn.com/s3/m/acb44aa764ce0508763231126edb6f1aff00718c.png)
0-1背包问题——回溯法求解【Python】回溯法求解0-1背包问题:问题:背包⼤⼩ w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放⼊背包中物品的总价值最⼤。
回溯法核⼼:能进则进,进不了则换,换不了则退。
(按照条件深度优先搜索,搜到某⼀步时,发现不是最优或者达不到⽬标,则退⼀步重新选择)注:理论上,回溯法是在⼀棵树上进⾏全局搜索,但是并⾮每种情况都需要全局考虑,毕竟那样效率太低,且通过约束+限界可以减少好多不必要的搜索。
解决本问题思路:使⽤0/1序列表⽰物品的放⼊情况。
将搜索看做⼀棵⼆叉树,⼆叉树的第 i 层代表第 i 个物品,若剩余空间允许物品 i 放⼊背包,扩展左⼦树。
若不可放⼊背包,判断限界条件,若后续继续扩展有可能取得最优价值,则扩展右⼦树(即此 i 物品不放⼊,但是考虑后续的物品)。
在层数达到物品的个数时,停⽌继续扩展,开始回溯。
注:如何回溯呢?怎样得到的,怎样恢复。
放⼊背包中的重量取出,加在bagV上的价值减去。
约束条件:放⼊背包中物品的总质量⼩于等于背包容量限界条件:当前放⼊背包中物品的总价值(i及之前) + i 之后的物品总价值 < 已知的最优值这种情况下就没有必要再进⾏搜索数据结构:⽤⼀个变量记录当前放⼊背包的总价值 bagV(已扩展),⼀个变量记录后续物品的总价值 remainV(未扩展),当前已得到的⼀种最优值 bestV(全局情况),⼀个⽤0/1表⽰的数组bestArr[]记录哪些物品放⼊了背包。
核⼼结构:递归思路进⾏解决。
层层递归,递归到尽头,保留最优值,恢复递归中,层层回溯,即将原来加上去的重量与价值恢复。
# -*- coding:utf-8 -*-def Backtrack(t):global bestV, bagW, bagV,arr, bestArr, cntVif t > n: #某次深度优先搜索完成if bestV < bagV:for i in range(1, n+1):bestArr[i] = arr[i]bestV = bagVelse: #深度优先搜索未完成if bagW + listWV[t][0] <= w: #第t个物品可以放⼊到背包中,扩展左⼦树arr[t] = TruebagW += listWV[t][0]bagV += listWV[t][1]Backtrack(t+1)bagW -= listWV[t][0]bagV -= listWV[t][1]if cntV[t] + bagV > bestV: #有搜索下去的必要arr[t] = FalseBacktrack(t+1)if__name__ == '__main__':w = int(input()) #背包⼤⼩n = int(input()) #物品个数listWV = [[0,0]]listTemp = []sumW = 0sumV = 0for i in range(n):listTemp = list(map(int, input().split())) #借助临时list每次新增物品对应的list加⼊到listWV中sumW += listTemp[0]sumV += listTemp[1]listWV.append(listTemp) #依次输⼊每个物品的重量与价值bestV = 0bagW = 0bagV = 0remainV = sumVarr = [False for i in range(n+1)]bestArr = [False for i in range(n+1)]cntV = [0 for i in range(n+1)] #求得剩余物品的总价值,cnt[i]表⽰i+1~n的总价值 cntV[0] = sumVfor i in range(1, n+1):cntV[i] = cntV[i-1] - listWV[i][1]if sumW <= w:print(sumV)else:Backtrack(1)print(bestV)print(bestArr)print(cntV)检测:1052 65 34 52 43 617[False, True, False, True, False, True][24, 18, 15, 10, 6, 0]。
蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】
![蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】](https://img.taocdn.com/s3/m/d3e04f1abb1aa8114431b90d6c85ec3a87c28b1d.png)
一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。
注:0/1背包问题:给定种物品和一个容量为的背包,物品的重n C i 量是,其价值为,背包问题是如何使选择装入背包内的物品,使得装i w i v 入背包中的物品的总价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1向量组成,可用子集数表示。
在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。
2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100//最多可能物体数struct goods //物品结构体{int sign;//物品序号int w;//物品重量int p;//物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w);}int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++)X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1;//装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0;//不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]){Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n);//输入物品种数printf("背包容量C: ");scanf("%d",&C);//输入背包容量for (int i=0;i<n;i++)//输入物品i 的重量w 及其价值v {printf("物品%d 的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("]装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:蛮力法求解0/1背包问题的时间复杂度为:。
0-1背包问题的枚举算法
![0-1背包问题的枚举算法](https://img.taocdn.com/s3/m/1f42cb8b0408763231126edb6f1aff00bfd5706b.png)
0-1背包问题的枚举算法一、问题概述0-1背包问题是一种经典的优化问题,给定一组物品,每种物品都有自己的重量和价值,而你有一个限制容量的背包。
目标是在不超过背包容量的情况下,选择物品使得总价值最大化。
然而,在某些情况下,所有的物品都不能被放入背包中,这时就需要用到0-1背包问题的枚举算法。
二、算法原理枚举算法的基本思想是从所有可能的物品组合中逐个尝试,找出满足条件的组合。
对于0-1背包问题,我们可以枚举所有可能的物品组合,对于每个组合,计算其总价值和当前背包的剩余容量,如果总价值大于当前背包容量所能获得的最大价值,那么就将这个物品放入背包中,并更新背包剩余容量和总价值。
如果当前物品的价值小于或等于当前背包容量所能获得的最大价值,那么就将这个物品标记为0(表示已经考虑过),并继续尝试下一个物品。
最终得到的组合就是最优解。
三、算法实现以下是一个简单的Python实现:```pythondefknapsack_enumeration(items,capacity):#初始化结果列表和当前价值result=[]current_value=0#枚举所有可能的物品组合foriinrange(len(items)):#标记当前物品为0(已考虑过)items[i][1]=0#计算当前物品的价值并更新总价值forjinrange(len(items)):ifj<i:#不考虑之前的物品对当前物品的价值影响current_value+=items[j][1]*items[i][0]/capacityelse:#考虑之前的物品对当前物品的价值影响(假设不考虑前一个物品的重量)current_value+=items[j][0]*(capacity-items[i][0])/capacity#将当前物品从物品列表中移除(放入背包中)delitems[i]#将当前价值添加到结果列表中result.append(current_value)returnresult```四、应用场景枚举算法在许多实际应用中都有应用,如计算机科学、运筹学、工程学等。
背包问题:0-1背包、完全背包和多重背包
![背包问题:0-1背包、完全背包和多重背包](https://img.taocdn.com/s3/m/81f5ec116ad97f192279168884868762cbaebb56.png)
背包问题:0-1背包、完全背包和多重背包背包问题泛指以下这⼀种问题:给定⼀组有固定价值和固定重量的物品,以及⼀个已知最⼤承重量的背包,求在不超过背包最⼤承重量的前提下,能放进背包⾥⾯的物品的最⼤总价值。
这⼀类问题是典型的使⽤动态规划解决的问题,我们可以把背包问题分成3种不同的⼦问题:0-1背包问题、完全背包和多重背包问题。
下⾯对这三种问题分别进⾏讨论。
1.0-1背包问题0-1背包问题是指每⼀种物品都只有⼀件,可以选择放或者不放。
现在假设有n件物品,背包承重为m。
对于这种问题,我们可以采⽤⼀个⼆维数组去解决:f[i][j],其中i代表加⼊背包的是前i件物品,j表⽰背包的承重,f[i][j]表⽰当前状态下能放进背包⾥⾯的物品的最⼤总价值。
那么,f[n][m]就是我们的最终结果了。
采⽤动态规划,必须要知道初始状态和状态转移⽅程。
初始状态很容易就能知道,那么状态转移⽅程如何求呢?对于⼀件物品,我们有放进或者不放进背包两种选择:(1)假如我们放进背包,f[i][j] = f[i - 1][j - weight[i]] + value[i],这⾥的f[i - 1][j - weight[i]] + value[i]应该这么理解:在没放这件物品之前的状态值加上要放进去这件物品的价值。
⽽对于f[i - 1][j - weight[i]]这部分,i - 1很容易理解,关键是 j - weight[i]这⾥,我们要明⽩:要把这件物品放进背包,就得在背包⾥⾯预留这⼀部分空间。
(2)假如我们不放进背包,f[i][j] = f[i - 1][j],这个很容易理解。
因此,我们的状态转移⽅程就是:f[i][j] = max(f[i][j] = f[i - 1][j] , f[i - 1][j - weight[i]] + value[i])当然,还有⼀种特殊的情况,就是背包放不下当前这⼀件物品,这种情况下f[i][j] = f[i - 1][j]。
分支限界法0-1背包问题-队列式
![分支限界法0-1背包问题-队列式](https://img.taocdn.com/s3/m/bdba5cf9b9f67c1cfad6195f312b3169a451ea33.png)
分⽀限界法0-1背包问题-队列式⼀.分⽀限界法概述(1)分⽀限界法就是采⽤⼴度优先的策略,依次搜索活结点所有的分枝,也就额是所有的相邻结点。
在求最优解时采⽤⼀个限界函数,计算限界函数值,选择⼀个最有利的⼦节点作为扩展结点,使搜索树朝着解空间树上有最优解的分⽀推进,以便尽快找出⼀个最优解。
(2)常见的两种分⽀限界法 先进先出(FIFO)队列式:在先进先出的分⽀限界法中,⽤队列作为组织活结点表的数据结构,并按照队列先进先出的原则选择结点作为扩展结点。
优先队列(PQ):⽤优先队列作为组织活结点表的数据结构。
⼆.0-1背包问题问题:给定n种物品和⼀背包。
物品i的重量是wi,其价值为pi,背包的容量为C。
问应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?#include<iostream>#include<queue>using namespace std;const int maxn=99;int n,c;int w[maxn];int v[maxn];int bestv=0;int bestx[maxn];int total=1; //解空间中的节点数累计,全局变量struct nodetype //队列中的结点类型{int no; //结点编号,从1开始int i; //当前结点在搜索空间中的层次int w; //当前结点的总重量int v; //当前结点的总价值int x[maxn]; //当前结点包含的解向量double ub; //上界};void input(){cout<<"请输⼊物品的个数:"<<endl;cin>>n;cout<<"请输⼊每个物品的重量及价值(如5 4):"<<endl;for(int i = 1; i <= n; i++){cin>>w[i]>>v[i];}cout<<"请输⼊背包的容量:"<<endl;cin>>c;}void bound(nodetype &e) //计算分⽀结点e的上界{int i=e.i+1; //考虑结点e的余下物品int sumw=e.w;double sumv=e.v;while((sumw+w[i]<=c)&&i<=n){sumw+=w[i];sumv+=v[i];i++;}if(i<=n) //余下物品只能部分装⼊e.ub=sumv+(c-sumw)*v[i]/w[i];else e.ub=sumv;}void enqueue(nodetype e,queue<nodetype> &qu)//结点e进队qu{if(e.i==n) //到达叶⼦节点,不在扩展对应⼀个解{if(e.v>bestv) //找到更⼤价值的解{bestv=e.v;for(int j=1;j<=n;j++)bestx[j]=e.x[j];}}else qu.push(e); //⾮叶⼦结点进队}void bfs(){int j;nodetype e,e1,e2;queue<nodetype> qu;e.i=0;e.w=0;e.v=0;e.no=total++;for(j=1;j<=n;j++)e.x[j]=0;bound(e);qu.push(e);while(!qu.empty()){e=qu.front();qu.pop(); //出队结点eif(e.w+w[e.i+1]<=c) //剪枝,检查左孩⼦结点{e1.no=total++; //建⽴左孩⼦结点e1.i=e.i+1;e1.w=e.w+w[e1.i];e1.v=e.v+v[e1.i];for(j=1;j<=n;j++)e1.x[j]=e.x[j];e1.x[e1.i]=1;bound(e1); //求左孩⼦的上界enqueue(e1,qu); //左孩⼦结点进队}e2.no=total++;e2.i=e.i+1;e2.w=e.w;e2.v=e.v;for(j=1;j<=n;j++)e2.x[j]=e.x[j];e2.x[e2.i]=0;bound(e2);if(e2.ub>bestv) //若右孩⼦结点可⾏,则进队,否则被剪枝 enqueue(e2,qu);}}void output(){cout<<"最优值是:"<<bestv<<endl;cout<<"(";for(int i=1;i<=n;i++)cout<<bestx[i]<<"";cout<<")";}int main(){input();bfs();output();return0;}。
0-1背包问题(分支限界法)
![0-1背包问题(分支限界法)](https://img.taocdn.com/s3/m/577e5bbb90c69ec3d4bb7587.png)
分支限界法——01 背包问题12 软工028 胡梦颖一、问题描述0-1背包问题:给定n种物品和一个背包。
物品i的重量是Wi,其价值为Vi,背包的容量为C。
应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有2种选择,即装入背包或不装入背包。
不能将物品i 装入背包多次,也不能只装入部分的物品i。
二、问题分析分支限界法类似于回溯法,也是在问题的解空间上搜索问题解的算法。
一般情况下,分支限界法与回溯法的求解目标不同。
回溯法的求解目标是找出解空间中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。
由于求解目标不同,导致分支限界法与回溯法对解空间的搜索方式也不相同。
回溯法以深度优先的方式搜索解空间,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间。
分支限界法的搜索策略是,在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一扩展结点。
为了有效地选择下一扩展结点,加速搜索的进程,在每一个活结点处,计算一个函数值(限界),并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解。
这种方式称为分支限界法。
人们已经用分支限界法解决了大量离散最优化的问题。
三.源代码#include <stdio.h>#include<malloc.h>#define MaxSize 100 //结点数的最大值typedef struct QNodefloat weight;float value;int ceng;struct QNode *parent; bool leftChild;}QNode,*qnode; typedef struct{qnode Q[MaxSize];int front,rear;}SqQueue;SqQueue sq;float bestv=0;int n=0;float w[MaxSize];float v[MaxSize]; intbestx[MaxSize]; qnodebestE; void InitQueue(SqQueue &sq ) //队列初始化{ sq.front=1;sq.rear=1;}bool QueueEmpty(SqQueue sq) //队列是否为空{// 存放结点的队列// 最优解// 实际物品数// 物品的重量// 物品的价值 // 存放最优解if(sq.front==sq.rear)return true;elsereturn false;}void EnQueue(SqQueue &sq,qnode b) // 入队{if(sq.front==(sq.rear+1)%MaxSize){printf(" 队列已满!");return;}sq.Q[sq.rear]=b;sq.rear=(sq.rear+1)%MaxSize;} qnode DeQueue(SqQueue &sq) // 出队{ qnode e;if(sq.front==sq.rear){printf(" 队列已空!");return 0;}e=sq.Q[sq.front];sq.front=(sq.front+1)%MaxSize;return e;} voidEnQueue1(floatwt,floatvt,inti,QNode*parent,{ qnode b;if (i==n) // 可行叶子结点{ if (vt==bestv)boolleftchild){ bestE=parent; bestx[n]=(leftchild)?1:0;}return;}b=(qnode)malloc(sizeof(QNode)); // 非叶子结点b->weight=wt;b->value=vt; b->ceng=i; b->parent=parent; b->leftChild=leftchild; EnQueue(sq,b);}void maxLoading(float w[],float v[],int c){float wt=0;float vt=0;int i=1; // 当前的扩展结点所在的层float ew=0; // 扩展节点所相应的当前载重量float ev=0; // 扩展结点所相应的价值qnode e=NULL; qnode t=NULL; InitQueue(sq);EnQueue(sq,t); // 空标志进队列while (!QueueEmpty(sq)){wt=ew+w[i]; vt=ev+v[i];点if (wt <= c){if(vt>bestv)bestv=vt;EnQueue1(wt,vt,i,e,true); EnQueue1(ew,ev,i,e,false); // 取下一扩展结if (e == NULL){if (QueueEmpty(sq))break;EnQueue(sq,NULL);e=DeQueue(sq);i++;}ew=e->weight;}printf(" 最优取法为:\n");for( int j=n-1;j>0;j--){bestx[j]=(bestE->leftChild?1:0); bestE=bestE->parent;// 左儿子结点进队}// 右儿子总是可行;e=DeQueue(sq);// 同层结点尾部标志// 取下一扩展结点// 更新当前扩展结点的值ev=e->value // 构造最优解}for(int k=1;k<=n;k++){if(bestx[k]==1)}printf(” 物品%d重量:%.1f,价值:%.1f\n",k,w[k],v[k]);printf(” 最大价值为:%.1f\n",bestv);}void main(){int c;float ewv[MaxSize];printf(" 请输入背包的最大容量v:");scanf("%d",&c);printf(" 请输入物品总数n:");scanf("%d",&n);printf(" 请输入物品的重量和单位重量价值:\n");for(int i=1;i<=n;i++){printf("第%d 件物品:",i);scanf("%f%f",&w[i],&ewv[i]);}maxLoading(w,v,c);}五.实验结果v[i]=w[i]*ewv[i];。
三种基本背包问题
![三种基本背包问题](https://img.taocdn.com/s3/m/3f413e51814d2b160b4e767f5acfa1c7aa008229.png)
三种基本背包问题⼀、0/1背包问题问题描述:有n件物品和容量为m的背包给出i件物品的重量以及价值求解让装⼊背包的物品重量不超过背包容量且价值最⼤。
特点:这是最简单的背包问题,特点是每个物品只有⼀件供你选择放还是不放。
如果想不通代码就填表观察过程。
输⼊:5 102 62 36 55 44 6输出:15①⼆维解法设f[i][j]表⽰前 i 件物品总重量不超过 j 的最⼤价值可得出状态转移⽅程f[i][j]=max{f[i-1][j-a[i]]+b[i], f[i-1][j]}核⼼代码int f[100][100]={0};for(int i=1;i<=num;i++){for(int j=capacity;j>=1;j--){if(weight[i]<=j){f[i][j]=max(f[i-1][j],f[i-1][j-weight[i]]+value[i]);}elsef[i][j]=f[i-1][j];}}表格:②⼀维解法设f[j]表⽰重量不超过j公⽄的最⼤价值可得出状态转移⽅程f[j]=max{f[j], f[j−a[i]]+b[i]}核⼼代码int f[1000]={0};for(int i=1;i<=num;i++){for(int j=capacity;j>=weight[i];j--){f[j]=max( f[j],f[j-weight[i]]+value[i] );}}循环的第⼆层为什么要从后往前循环因为吧,从后往前循环,每次取得状态不会和你之前取得状态重合,这样就符合01背包的要求,每种物品只取⼀次;不理解填表表格:完整代码:#include <bits/stdc++.h>using namespace std;int main(){int num,capacity; // 第⼀⾏为n值和c值,表⽰n件物品和背包容量ccin>>num>>capacity;int weight[1000];int value[1000];for(int i=1;i<=num;i++){ //每⾏有两个数据,分别表⽰第i(1≤i≤n)件物品的重量和价值。
背包问题
![背包问题](https://img.taocdn.com/s3/m/8cb93a8002d276a200292e8e.png)
(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。
设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。
这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。
一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。
然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。
算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。
if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。
动态规划算法0-1背包问题课件PPT
![动态规划算法0-1背包问题课件PPT](https://img.taocdn.com/s3/m/b727259db8f3f90f76c66137ee06eff9aef8493e.png)
回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。
01背包跳跃点解法的解题思路
![01背包跳跃点解法的解题思路](https://img.taocdn.com/s3/m/bd007b7782c4bb4cf7ec4afe04a1b0717fd5b3a2.png)
01背包跳跃点解法的解题思路?
答:01背包问题是一个经典的动态规划问题,而01背包跳跃点解法则是对此问题的一种优化解法。
以下是01背包跳跃点解法的解题思路:
定义状态:令dp[i]表示背包容量为i时能够获得的最大价值。
初始化:将dp数组全部初始化为0。
状态转移方程:考虑当前物品的重量和价值。
假设当前物品的重量为w,价值为v。
对于每个背包容量i,可以选择将该物品放入背包或者不放入背包。
若不放入物品,则dp[i]保持不变,即dp[i] = dp[i]。
若放入物品,则背包容量减少w,同时价值增加v,即dp[i] = dp[i-w] + v。
综上所述,状态转移方程为:dp[i] = max(dp[i], dp[i-w] + v)。
遍历顺序:在进行状态转移时,需要按照背包容量从大到小的顺序遍历,确保每个状态都是基于之前的状态计算得出的。
返回结果:最终的答案即为dp[背包容量]。
通过使用01背包跳跃点解法,可以有效地优化时间复杂度,使得求解01背包问题的效率更高。
该方法基于一个观察:不同重量的物品之间的状态转移是相互独立的,因此可以跳过一些不必要的计算,直接利用之前已经计算出的状态值。
这种优化的思想在解决大规模背包问题时非常有用。
背包问题
![背包问题](https://img.taocdn.com/s3/m/92378c20a5e9856a56126015.png)
背包问题常州一中林厚从背包问题是信息学奥赛中的经典问题。
背包问题可以分为0-1背包和部分背包两种类型,0-1背包还可以再分为有限背包和无限背包(完全背包)。
背包问题的求解涉及到贪心、递归、递推、动态规划、搜索等多种算法。
熟练掌握各种背包问题及其变形试题的解法,是信息学奥赛选手从入门走向提高的必经之路。
先简单归纳一下涉及到的这几种重要算法:1、贪心:贪心法可以归纳为“每步取优”。
假设你的程序要走1~n共n步,则你只要保证在第i步(i=1..n)时走出的这一步是最优的。
所以,贪心法不是穷举,而只是一种每步都取优的走法。
但由于目光短浅,不考虑整体和全局,所以“步步最优”并不能保证最后的结果最优。
比如经典的“两头取数”问题、“n个整数连接成最大数”问题、“删数”问题等。
2、递归:递归算法可以归纳为将问题“由大化小”。
也就是将一个大问题分解为若干个“性质相同”的子问题,求解的的过程,一般是通过“函数的递归调用”,不断将大问题逐步细化、直至元问题(边界情况),最后通过递归函数的自动返回得到问题的解。
递归算法的关键是递归函数的构造,它的效率往往比较低,原因在于大量的“冗余”计算。
比如经典的“斐波那挈数列”问题,在递归实现时效率极低,存在着大量的冗余计算,可以采用“记忆化”的方法优化。
3、递推:递推问题往往有一个“递推公式”,其实和“递归公式”差不多,但是出发点不一样,递归的思想是“要想求什么就要先求出什么”。
而递推是从问题的边界情况(初始状态)出发,一步步往下走,直到走完n步,判断最后的解。
由于其中的每一步并不知道当前一步的哪一个值对后面的步骤有用,所以只能把所有情况(一步的所有走法)全部计算出来,也造成了很多的“冗余计算”。
时间上往往没有太多的优化余地,但空间上经常利用“滚动数组”等方式,把空间复杂度由O(n2)降到O(2n)。
比如经典的“杨辉三角形”问题、“判断n是否是斐波那挈数”问题等。
4、动态规划:本质上是一种克服了“冗余”的“递归”算法。
01背包问题及变种详解
![01背包问题及变种详解](https://img.taocdn.com/s3/m/99bc922ce2bd960590c67757.png)
P01: 01背包问题题目有N件物品和一个容量为V的背包。
第i件物品的费用是c[i],价值是w[i]。
求解将哪些物品装入背包可使价值总和最大。
基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。
所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
优化空间复杂度以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。
那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:)2(max )1()1}(1,0{11∑∑==⎪⎩⎪⎨⎧≤≤∈≤ni i i ini i i x v n i x Wx w 于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。
首先说明一下0-1背包问题拥有最优解。
假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i i ni i i x v n i x x w W x w 2211max )2}(1,0{。
如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+n i i i W y w x w 211。
因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。
由于程序过于简单,在这里就不再给出,用实例说明求解过程。
下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。
背包物品1物品2物品3物品4(a)四个物品和一个容量为10的背包(b)用回溯法求解0-1背包问题的过程递归法:在利用递归法解决0-1背包问题时,我们可以先从第n个物品看起。
每次的递归调用都会判断两种情况:(1)背包可以放下第n个物品,则x[n]=1,并继续递归调用物品重量为W-w[n],物品数目为n-1的递归函数,并返回此递归函数值与v[n]的和作为背包问题的最优解;(2)背包放不下第n个物品,则x[n]=0,并继续递归调用背包容量为W,物品数目为n-1的递归函数,并返回此递归函数值最为背包问题的最优解。
递归调用的终结条件是背包的容量为0或物品的数量为0.此时就得到了0-1背包问题的最优解。
用递归法解0-1背包问题可以归结为下函数:⎩⎨⎧+---=][])[,1(),1(),(n v n w m n KnapSack m n KnapSack m n KnapSack nn 选择了物品没有选择物品第一个式子表示选择物品n 后得到价值][])[,1(n v n w m n KnapSack +--比不选择物品n 情况下得到的价值),1(m n KnapSack -小,所以最终还是不选择物品n;第二个式子刚好相反,选择物品n 后的价值][])[,1(n v n w m n KnapSack +--不小于不选择物品n 情况下得到了价值),1(m n KnapSack -,所以最终选择物品n 。
在递归调用的过程中可以顺便求出所选择的物品。
下面是标记物品被选情况的数组x[n]求解的具体函数表示:⎩⎨⎧=1][n x][])[,1(),(),1(),(n v n w m n KnapSack m n KnapSack m n KnapSack m n KnapSack +--=-= 在函数中,递归调用的主体函数为KnapSack ,m 表示背包的容量,n 表示物品的数量,x[n]表示是否选择了第n 个物品(1—选,0—不选)。
每个物品的重量和价值信息分别存放在数组w[n]和v[n]中。
具体的代码见《递归法》文件夹。
贪心法:0-1背包问题与背包问题类似,所不同的是在选择物品)1(n i i ≤≤装入背包时,可以选择一部分,而不一定要全部装入背包。
这两类问题都具有最优子结构性质,相当相似。
但是背包问题可以用贪心法求解,而0-1背包问题却不能用贪心法求解。
贪心法之所以得不到最优解,是由于物品不允许分割,因此,无法保证最终能将背包装满,部分闲置的背包容量使背包单位重量的价值降低了。
事实上,在考虑0-1背包问题时,应比较选择物品和不选择物品所导致的方案,然后做出最优解。
由此导出了许多相互重叠的子问题,所以,0-1背包问题可以用动态规划法得到最优解。
在这里就不再用贪心法解0-1背包问题了。
动态规划法分析:0-1背包问题可以看作是寻找一个序列),........,,,(321n x x x x ,对任一个变量i x 的判断是决定i x =1还是i x =0.在判断完1-i x 之后,已经确定了),........,,,(1321-i x x x x ,在判断i x 时,会有两种情况:(1) 背包容量不足以装入物品i ,则i x =0,背包的价值不增加; (2) 背包的容量可以装下物品i ,则i x =1,背包的价值增加i v 。
这两种情况下背包的总价值的最大者应该是对i x 判断后的价值。
令),(j i C 表示在前i )1(n i ≤≤个物品中能够装入容量为j )1(W j ≤≤的背包的物品的总价值,则可以得到如下的动态规划函数:)2(}),1(),,1(max{),1(),()1(0),0()0,(⎩⎨⎧>+---<-===ii i i w j v w j i C j i C w j j i C j i C j C i C 式(1)说明:把前面i 个物品装入容量为0的背包和把0个物品装入容量为j 的背包,得到的价值均为0.式(2)第一个式子说明:如果第i 个物品的重量大于背包的容量,则装入第i 个物品得到的最大价值和装入第i-1个物品得到的最大价值是相同的,即物品i 不能装入背包中;第二个式子说明:如果第i 个物品的重量小于背包的容量,则会有两种情况:(1)如果把第i 个物品装入背包,则背包中物品的价值就等于把前i-1个物品装入容量为i w j -的背包中的价值加上第i 个物品的价值i v ;(2)如果第i 个物品没有装入背包,则背包中物品的价值就是等于把前i-1个物品装入容量为j 的背包中所取得的价值。
显然,取二者中价值较大者作为把前i 个物品装入容量为j 的背包中的最优解。
我们可以一步一步的解出我们所需要的解。
第一步,只装入第一个物品,确定在各种情况下背包能得到的最大价值;第二步,只装入前两个物品,确定在各种情况下的背包能够得到的最大价值;一次类推,到了第n 步就得到我们所需要的最优解了。
最后,),(W n C 便是在容量为W 的背包中装入n 个物品时取得的最大价值。
为了确定装入背包的具体物品,从),(W n C 的值向前寻找,如果),(W n C >),1(W n C -,说明第n 个物品被装入了背包中,前n-1个物品被装入容量为n w W -的背包中;否则,第n 个物品没有装入背包中,前n-1个物品被装入容量为W 的背包中。
依此类推,直到确定第一个物品是否被装入背包为止。
由此,我们可以得到如下的函数:⎩⎨⎧->-=-==),1(),(,1),1(),(0j i C j i C w j j j i C j i C x i i .根据动态规划函数,用一个)1][[jn的二维数组C存放中间变量,]C表示把前i个i()1(++W⨯物品装入容量为j的背包中获得的最大价值。
设物品的重量存放在数组w[n]中,价值存放在数组v[n]中,背包的容量为W,数组]1nC][+W[+1存放迭代的结果,数组x[n]存放装入背包的物品,动态规划解0-1背包问题的源代码在文件夹《动态规划法》中。
回溯法分析:用回溯法解0_1背包问题时,会用到状态空间树。
在搜索状态空间树时,只要其左儿子结点是一个可行结点,搜索就进入其左子树。
当右子树有可能包含最优解时才进入右子树搜索,否则将右子树剪去。
设r是当前剩余物品价值总和;cp是当前价值;bestp是当前最优价值。
当cp+r≤bestp时,可剪去右子树。
计算右子树中解的上界可以用的方法是将剩余物品依其单位重量价值排序,然后依次装入物品,直至装不下时,再装入该物品的一部分而装满背包。
由此得到的价值是右子树中解的上界,用此值来剪枝。
为了便于计算上界,可先将物品依其单位重量价值从大到小排序,此后只要顺序考察各物品即可。
在实现时,由MaxBoundary函数计算当前结点处的上界。
它是类Knap的私有成员。
Knap的其他成员记录了解空间树种的节点信息,以减少函数参数的传递以及递归调用时所需要的栈空间。
在解空间树的当前扩展结点处,仅当要进入右子树时才计算上界函数MaxBoundary,以判断是否可以将右子树减去。
进入左子树时不需要计算上界,因为其上界与父结点的上界相同。
在调用函数Knapsack之前,需要先将各物品依其单位重量价值从达到小排序。
为此目的,我们定义了类Objiect。
其中,<=运算符与通常的定义相反,其目的是为了方便调用已有的排序算法。
在通常情况下,排序算法将待排序元素从小到大排序。
在搜索状态空间树时,由函数Backtrack控制。
在函数中是利用递归调用的方法实现了空间树的搜索。
具体的代码见《回溯法》文件夹。
限界分支法:在解0-1背包问题的优先队列式界限分支法中,活结点优先队列中结点元素N的优先级由该结点的上界函数MaxBoundary计算出的值uprofit给出。
该上界函数在0-1背包问题的回溯法总已经说明过了。
子集树中以结点N为根的子树中任一个结点的价值不超过N.profit。
因此我们用一个最大堆来实现活结点优先队列。
堆中元素类型为HeapNode,其私有成员有uprofit,profit,weight,level,和ptr。
对于任意一个活结点N,N.weight是活结点N所相应的重量;N.profit是N所相应的价值;N.uprofit是结点N的价值上界,最大堆以这个值作为优先级。
子集空间树中结点类型为bbnode。
在分支限界法中用到的类Knap与0-1背包问题的回溯法中用到的类Knap很相似。
他们的区别是新的类中没有了成员变量bestp,而增加了新的成员bestx。