大体积混凝土温度和温度应力计算

合集下载

大体积混凝土温度应力实用计算方法及控裂工程实例

大体积混凝土温度应力实用计算方法及控裂工程实例

大体积混凝土温度应力实用计算方法及控裂工程实例嘿,咱今儿就来聊聊大体积混凝土温度应力实用计算方法和控裂工程实例这档子事儿。

你想想看,那大体积混凝土,就好像是一个大块头,它可不简单呐!温度应力就像是藏在它身体里的小怪兽,要是不把这小怪兽给搞定,那可就要出大乱子啦!那怎么计算这个温度应力呢?这可不是随随便便就能搞定的事儿。

咱先来说说计算方法。

就好比咱要去量一个人的身高体重一样,得有一套靠谱的办法。

计算大体积混凝土温度应力也有它的门道。

咱得考虑好多因素呢,像混凝土的材料特性啦,环境温度啦,施工过程啦等等。

这就像是解一道复杂的谜题,得一步步慢慢来,不能着急。

比如说,咱得知道这混凝土在不同温度下会有啥变化,就像人在不同天气穿不同衣服一样。

然后呢,根据这些信息来算出温度应力有多大。

这可不是拍拍脑袋就能想出来的,得有真功夫才行!再来说说控裂工程实例。

你看那些高楼大厦、大桥大坝,它们可都是用大体积混凝土建起来的。

要是不做好控裂,那可不得了,说不定哪天就裂出个大口子来。

就好比有个大坝,那可是关系着好多人的生命财产安全呐!要是大坝因为温度应力裂了,那后果简直不堪设想。

所以啊,在工程中就得特别小心地处理这个问题。

他们会采取各种办法来控制温度应力,比如用合适的材料,调整施工工艺,做好养护工作等等。

就像照顾一个小婴儿一样,得精心呵护。

你想想,要是建个房子,没几年就裂得不成样子,那多难看呐,还不安全。

所以啊,这个大体积混凝土温度应力实用计算方法和控裂工程实例可太重要啦!咱平常生活中可能不太会注意到这些,但这些可都是建筑工程里的关键啊!没有这些,那些宏伟的建筑怎么能建得起来呢?总之,大体积混凝土温度应力实用计算方法就像是一把钥匙,能打开解决问题的大门;而控裂工程实例则是一面镜子,让我们看到实际应用中的成功与失败。

我们得好好研究它们,让我们的建筑更加坚固、美观、安全。

难道不是吗?你说要是没有这些,那我们的城市会变成什么样呢?。

大体积混凝土计算

大体积混凝土计算

大体积混凝土计算在建筑工程中,大体积混凝土的应用越来越广泛。

大体积混凝土结构厚实、混凝土量大、工程条件复杂,施工技术要求高,水泥水化热较大,易使结构产生温度变形。

为了确保大体积混凝土结构的质量和安全性,准确的计算是至关重要的。

大体积混凝土计算主要包括温度场计算、温度应力计算以及混凝土配合比计算等方面。

首先,温度场计算是大体积混凝土计算的重要环节。

水泥在水化过程中会释放出大量的热量,而大体积混凝土由于体积大,热量难以迅速散发,导致内部温度升高。

温度场计算的目的就是要确定混凝土在不同时间和位置的温度分布情况。

在计算温度场时,需要考虑多个因素。

其中,混凝土的绝热温升是一个关键参数。

绝热温升是指在绝热条件下,水泥水化热使混凝土升高的温度。

它与水泥品种、用量、混凝土的比热等因素有关。

通过实验或者经验公式可以估算出混凝土的绝热温升。

此外,混凝土的热传导系数、表面散热系数等也会影响温度场的分布。

热传导系数表示混凝土传递热量的能力,而表面散热系数则反映了混凝土表面与外界环境进行热交换的效率。

除了上述因素,浇筑温度也是温度场计算中不可忽视的因素。

浇筑温度是指混凝土在浇筑时的初始温度,它受到原材料温度、搅拌运输过程中的温度变化以及施工环境温度等的影响。

在实际计算中,可以采用有限元法、差分法等数值方法来求解温度场的分布。

这些方法能够较为准确地模拟混凝土内部的温度变化情况。

其次,温度应力计算对于评估大体积混凝土结构的安全性具有重要意义。

由于混凝土内部和表面存在温度差异,会产生温度应力。

当温度应力超过混凝土的抗拉强度时,就可能导致混凝土开裂。

温度应力的计算需要结合温度场的结果。

通常,温度应力可以分为自约束应力和外约束应力。

自约束应力是由于混凝土内部各部分之间的温度变形受到相互约束而产生的应力。

外约束应力则是由于混凝土结构与外部约束之间的温度变形不协调而产生的应力。

在计算温度应力时,需要考虑混凝土的弹性模量、徐变特性、抗拉强度等力学性能参数。

大体积混凝土施工中混凝土温度计算

大体积混凝土施工中混凝土温度计算

大体积混凝土施工中混凝土温度计算在大体积混凝土施工中,混凝土温度的计算是至关重要的环节。

准确计算混凝土在施工过程中的温度变化,对于预防混凝土裂缝的产生、保证混凝土结构的质量和耐久性具有重要意义。

首先,我们要了解大体积混凝土的特点。

大体积混凝土结构厚实,混凝土量大,工程条件复杂,施工技术要求高。

由于水泥水化热的大量积聚,使得混凝土内部温度显著升高,而表面散热较快,从而形成较大的内外温差。

这种温差会在混凝土内部产生温度应力,如果温度应力超过混凝土的抗拉强度,就会导致混凝土开裂。

那么,如何计算大体积混凝土施工中的温度呢?这需要考虑多个因素。

水泥水化热是产生混凝土内部温度升高的主要原因。

不同品种、不同强度等级的水泥,其水化热是不同的。

一般来说,水泥用量越多,水化热越大。

我们可以通过查阅相关的水泥资料或者实验数据,获取水泥的水化热数值。

混凝土的浇筑温度也是一个重要的影响因素。

浇筑温度取决于混凝土出机温度、运输过程中的温度损失以及浇筑时的环境温度。

混凝土出机温度可以通过公式计算得出:$T_0 = T_s +(T_g T_s)(\theta_1 +\theta_2 +\cdots +\theta_n)$其中,$T_0$ 为混凝土出机温度,$T_s$ 为原材料的平均温度,$T_g$ 为搅拌机棚内温度,$\theta_1$、$\theta_2$ 、$\cdots$ 、$\theta_n$ 为各种原材料的温度修正系数。

在运输过程中,混凝土的温度会受到外界环境的影响而有所降低。

温度损失可以通过以下公式计算:$\Delta T_1 =(025t + 0032n)(T_0 T_a)$其中,$\Delta T_1$ 为运输过程中的温度损失,$t$ 为运输时间(单位:小时),$n$ 为混凝土转运次数,$T_a$ 为运输时的环境温度。

混凝土的绝热温升也是计算温度的关键参数。

绝热温升可以用以下公式计算:$T_{max} = WQ /(c\rho) (1 e^{mt})$其中,$T_{max}$为绝热温升,$W$ 为每立方米混凝土中水泥的用量(单位:千克),$Q$ 为水泥的水化热(单位:焦耳/千克),$c$ 为混凝土的比热容(单位:焦耳/(千克·摄氏度)),$\rho$ 为混凝土的质量密度(单位:千克/立方米),$m$ 为与水泥品种、浇筑温度等有关的系数,$t$ 为混凝土的龄期(单位:天)。

大体积混凝土施工计算

大体积混凝土施工计算

大体积混凝土施工计算一、裂缝种类按产生原因一般可分:o荷载作用下的裂缝(约占10%)oo变形作用下的裂缝(约占80%)oo耦合作用下的裂缝(约占10%)o按裂缝有害程度分:o有害裂缝oo无害裂缝o按裂缝出现时间分:o早期裂缝(3~28天)、oo中期裂缝(28~180天)oo晚期裂缝(180~720天,最终20年)。

o按深度一般可分:o表面裂缝oo浅层裂缝oo深层裂缝oo贯穿裂缝二、温度裂缝1、裂缝产生的原因大体积混凝土施工阶段产生的温度裂缝,是其内部矛盾发展的结果,一方面是混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。

2、水泥水化热水泥的水化热是大体积混凝土内部热量的主要来源,由于大体积混凝土截面厚度大,水化热聚集在混凝土内部不易散失。

3、外界气温变化4、约束条件结构在变形时会受到一定的抑制而阻碍其自由变形,该抑制即称“约束”,大体积混凝土由于温度变化产生变形,这种变形受到约束才产生应力。

在全约束条件下,混凝土结构的变形:式中三个参数分别为:——混凝土收缩时的相对变形;——混凝土的温度变化量;——混凝土的温度膨胀系数。

5、混凝土收缩变形三、大体积混凝土的温度应力1、大体积混凝土温度应力特点混凝土的温度取决于它本身环境有温差存在,而结构物四周又不可能做到完全绝热,因此,在新浇筑的混凝土与其四周环境之间,就会发生热能的交换。

模板、外界气候(包括温度、湿度和风速)和养护条件等因素,都会不断改变混凝土所贮备的热能,并促使混凝土的温度逐渐发生变动。

因此,混凝土内部的最高温度,实际上是由浇筑温度、水泥水化热引起的绝对温升和混凝土浇筑后的散热温度三部分组成。

2、大体积混凝土温度应力计算(1)大体积混凝土温度计算最大绝热温升(二式取其一)。

大体积混凝土温度应力与收缩应力计算

大体积混凝土温度应力与收缩应力计算

大体积混凝土浇筑体施工阶段温度应力与收缩应力的计算B.1 混凝土绝热温升B.1.1 水泥水化热可按下式计算:式中:Q3——在龄期3d时的累积水化热(kJ/kg);Q7——在龄期7d时的累积水化热(kJ/kg);Q0——水泥水化热总量(kJ/kg)。

B.1.2 胶凝材料水化热总量应在水泥、掺合料、外加剂用量确定后,根据实际配合比通过试验得出。

当无试验数据时,可按下式计算:式中:Q——胶凝材料水化热总量(kJ/kg);k——不同掺量掺合料水化热调整系数。

B.1.3 当采用粉煤灰与矿渣粉双掺时,不同掺量掺合料水化热调整系数可按下式计算:式中:k1——粉煤灰掺量对应的水化热调整系数,取值见表B.1.3;k2——矿渣粉掺量对应的水化热调整系数,取值见表B.1.3。

表B.1.3 不同掺量掺合料水化热调整系数注:表中掺量为掺合料占总胶凝材料用量的百分比。

B.1.4 混凝土绝热温升值可按现行行业标准《水工混凝土试验规程》DL/T 5150中的相关规定通过试验得出。

当无试验数据时,混凝土绝热温升值可按下式计算:式中:T(t)——混凝土龄期为t时的绝热温升(℃);W——每立方米混凝土的胶凝材料用量(kg/m3);C——混凝土的比热容,可取0.92~1.00[kJ/(kg·℃)];ρ——混凝土的质量密度,可取2400~2500(kg/m3);t——混凝土龄期(d);m——与水泥品种、用量和入模温度等有关的单方胶凝材料对应系数。

B.1.5 单方胶凝材料对应的系数m值可按下列公式计算:式中:m0——等效硅酸盐水泥对应的系数;W——等效硅酸盐水泥用量(kg);A、B——与混凝土施工入模温度相关的系数,按表B.1.5-1取内插值;当入模温度低于10℃或高于30℃时,按10℃或30℃选取;W C——单方其他硅酸盐水泥用量(kg);λ——修正系数。

表B.1.5-1 不同入模温度对m的影响值当使用不同品种水泥时,可按表B.1.5-2的系数换算成等效硅酸盐水泥的用量。

大体积混凝土热工计算表格

大体积混凝土热工计算表格

Th= W c Q/C ρ(1-е-mt)式中:Th—混凝土的绝热温升(℃);m c ——每m 3 混凝土的水泥用量,取3;Q——每千克水泥28d 水化热,取C——混凝土比热,取0.97[KJ/(Kg·K)];ρ——混凝土密度,取2400(Kg/m3);е——为常数,取2.718;t——混凝土的龄期(d);m——系数、随浇筑温度改变,取2、混凝土内部中心温度计算T 1(t)=T j +Thξ(t)式中:T 1(t)——t 龄期混凝土中心计算温度,是混凝土温度最高值T j ——混凝土浇筑温度,取由上表可知,砼第9d左右内部温度最高,则验算第9d砼温差3、混凝土养护计算1、绝热温升计算计算结果如下表ξ(t)——t 龄期降温系数,取值如下表大体积混凝土热工计算计算结果如下表:混凝土表层(表面下50-100mm 处)温度,混凝土表面采用保温材料(稻草)蓄热保温养护,并在稻草上下各铺一层不透风的塑料薄膜。

①保温材料厚度δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T 2)式中:δ——保温材料厚度(m);λi ——各保温材料导热系数[W/(m·K)] ,取λ——混凝土的导热系数,取2.33[W/(m·K)]T 2——混凝土表面温度:29.9(℃)(Tmax-25)T q ——施工期大气平均温度:12(℃)T 2-T q —-17.9(℃)T max -T 2—21.0(℃)K b ——传热系数修正值,取δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T2)*100=4.75cm故可采用两层土工布并在其上下各铺一层塑料薄膜进行养护。

②混凝土保温层的传热系数计算β=1/[Σδi /λi +1/βq ]δi ——各保温材料厚度λi ——各保温材料导热系数[W/(m·K)]βq ——空气层的传热系数,取23[W/(m 2·K)]代入数值得:β=1/[Σδi /λi +1/βq ]= 1.01③混凝土虚厚度计算:hˊ=k·λ/βk——折减系数,取2/3;λ——混凝土的传热系数,取2.33[W/(m·K)]hˊ=k·λ/β=1.542④混凝土计算厚度:H=h+2hˊ=7.08m ⑤混凝土表面温度T 2(t)= T q +4·hˊ(H- h)[T 1(t)- T q ]/H 2式中:T 2(t)——混凝土表面温度(℃)T q —施工期大气平均温度(℃)hˊ——混凝土虚厚度(m)H——混凝土计算厚度(m)式中: hˊ——混凝土虚厚度(m)式中:β——混凝土保温层的传热系数[W/(m 2·K)]T 1(t)——t 龄期混凝土中心计算温度(℃)不同龄期混凝土的中心计算温度(T 1(t))和表面温度(T 2(t))如下表。

大体积混凝土温度应力实用计算方法及控制工程实例

大体积混凝土温度应力实用计算方法及控制工程实例

大体积混凝土温度应力实用计算方法及控制
工程实例
大体积混凝土的温度应力主要由于混凝土内部温度梯度不均匀所
引起,温度应力大小与混凝土的水泥含量、骨料类型、孔隙结构以及
环境温度等因素有关。

计算温度应力可采用以下公式:σ=αEΔT+(1-ν)αmΔT,其中,σ为温度应力,α为混凝土的线膨胀系数,E为混凝土的弹性模量,
ν为混凝土的泊松比,αm为混凝土的平均线膨胀系数,ΔT为混凝土内部温度差。

控制大体积混凝土的温度应力,可采取以下措施:
1. 使用高性能混凝土材料,降低混凝土线膨胀系数;
2. 对混凝土的成分、配合比等进行优化设计,降低混凝土内部温度梯度;
3. 控制施工环境的温度和湿度,提高混凝土的早期强度和抗裂性能;
4. 采用降温措施,如水帘喷淋、冷却剂等,降低混凝土的温度。

实际工程中,可通过对混凝土施工过程进行监控和管控,以及采
用温度预应力技术等措施,有效控制大体积混凝土的温度应力。

例如,在某大型桥梁工程中,采用了温度预应力技术,并通过建立温度控制
模型对施工过程进行精细化监控,成功地控制了混凝土的温度应力,
确保了施工质量和结构安全。

大体积混凝土温度应力和收缩应力计算书-secret

大体积混凝土温度应力和收缩应力计算书-secret

大体积混凝土温度应力和收缩应力计算书由于混凝土为C 30 S 8,厚度为1300mm ,为大体积混凝土,故选用水化热低的矿渣425#水泥,辅以外加剂和掺合料.根据以往施工资料,掺外加剂和掺合料的C 30 S 8大体混凝土每立方米用料,矿425#水泥390kg 水泥发热量335kj/kg,预计8月份施工大气温度最高为35℃以上,混凝土浇筑温度控制在26℃以内,进行计算分析。

(1)混凝土温度应力分析 1)混凝土最终绝热温升 ==ρC Q T t 0c )(m =57.6℃式中T (t)—混凝土最终绝热温升m c —每立方米混凝土水泥用量 Q o —每公斤水泥水化热量 C —混凝土比热 ρ—混凝土密度2)混凝土内部不同龄期温度 ①求不同龄期绝热温升混凝土块体的实际温升,受到混凝土块体厚度变化的影响,因此与绝热温升有一定的差异。

算得水化热温升与混凝土块体厚度有关的系数ξ值,如表7-10。

不同龄期水化热温升与混凝土厚度有关系数ξ值 表7-10T t =T (t )·ξ式中T t —混凝土不同龄期的绝热温升T(t)—混凝土最高绝热温升ξ—不同龄期水化热温升与混凝土厚度有关值经计算列于下表7-11不同龄期的绝热温升(℃)表7-11②不同龄期混凝土中心最高温度Tmax=T j+T t式中T max—不同龄期混凝土中心最高温度T j—混凝土浇筑温度T t—不同龄混凝土绝热温升计算结果列于表7-12不同龄期混凝土中心最高温度表7-123)混凝土温度应力本底板按外约束为二维时的温度应力(包括收缩)来考虑计算①各龄期混凝土的收缩变形值及收缩当量温差a.各龄期收缩变形&y(t)=&0y(1-e-0.01t)×M1×M2x……xMn式中&y(t)—龄期t时混凝土的收缩变形值&0y—混凝土的最终收缩值,取3.24×10-4/℃M1.M2……Mn各种非标准条件下的修正系数本工程根据用料及施工方式修正系数取值如表7-13修正系数取值表7-13经计算得出收缩变形如表7-15各龄期混凝土收缩变形值 表7-15b.各龄期收缩当量温差将混凝土的收缩变形换算成当量温差式中—各龄期混凝土收缩当量温差(℃)&y (t)—各龄期混凝土收缩变形—混凝土的线膨胀系数,取10×10-6/℃ 计算结果列于表7-16各龄期收缩当量温差 表7-16②各龄期混凝土的最大综合温度差 ΔT(t)=T j +T(t)+T y (t)-T q 式中ΔT(t)—各龄期混凝土最大综合温差T j —混凝土浇筑温度,取26℃ T(t)—龄期t 时的绝热温升 T y (t)—龄期t 时的收缩当量温差T q —混凝土浇筑后达到稳定时的温度,取年平均气温25℃计算结果列表7-17各龄期混凝土最大综合温度差 表7-17③各龄期混凝土弹性模量 E(t)=E h (1-e -0.09t )式中E(t)—混凝土龄期t 时的弹性模量(MPa)E h —混凝土最终弹性模量(MPa) C 30混凝土取3.0×104(MPa) 计算结果列表7-18混凝土龄期t 时的强性模量 表7-18④混凝土徐变松驰系数、外约束系数、泊桑比及线膨胀系数 a.松驰系数,根据有关资料取值列表7-19混凝土龄期t 时的松驰系数 表7-19b.外约束系数(R) 按一般土地基,取R=0.5c.混凝土泊桑比(μ) 从取0.15d.混凝土线膨胀系数(α) α取10×10-6/℃⑤不同龄期混凝土的温度应力 σ(t)=-RS T E t h t t ⨯⨯-∆⨯⨯)()()(1μα式中σ(t)—龄期t 时混凝土温度(包括收缩)应力E (t)—龄期t 时混凝土弹性模量 α—混凝土线膨胀系数ΔT(t)—龄期t 时混凝土综合温差 μ—混凝土泊桑比S h(t)—龄期t 时混凝土松驰系数 R —外约束系数 计算结果列表7-20不同龄期混凝土温度(包括收缩)应力 表7-204)结论C 30混凝土 28d R L =1.43(MPa) 同龄期混凝土 R L (12d)=0.75R1=1.07(MPa) 所以:()07.196.173.043.112=>==k R d L σ由计算可知基础在露天养护期间混凝土有可能出现裂缝,在此期间混凝土表面应采取养护和保温措施,使养护温度加大,综合温度减小,则可控制裂缝出现。

大体积混凝土温度应力计算

大体积混凝土温度应力计算

大体积混凝土温度应力计算在大体积混凝土结构中,温度变化会导致混凝土产生应力,这种应力称为温度应力。

温度应力的大小取决于温度变化的程度、混凝土的热膨胀系数和约束条件等因素。

为了确保混凝土结构的安全可靠,必须对温度应力进行计算和控制。

下面将介绍大体积混凝土温度应力的计算方法。

首先,需要确定混凝土结构中的温度变化范围。

混凝土在不同环境温度下会发生热膨胀或热收缩,其热膨胀系数一般在10×10^-6/℃到15×10^-6/℃之间。

根据混凝土的温度膨胀系数和温度变化范围,可以计算出混凝土结构的温度变化引起的应变。

其次,需要确定混凝土结构中约束条件的情况。

混凝土结构可以通过外部约束或内部约束来限制其热膨胀或热收缩。

外部约束可以通过支座或混凝土外部的钢筋约束进行,而内部约束则是指混凝土内部的钢筋约束。

约束条件的类型会影响混凝土结构中温度应力的传递和分布。

根据上述参数,可以使用以下公式计算温度应力:σ=α×ΔT×E其中,σ表示温度应力,α表示混凝土的热膨胀系数,ΔT表示温度变化引起的温度差,E表示混凝土的弹性模量。

此公式是基于线弹性理论,适用于小应变和小变形的情况。

在大体积混凝土结构中,温度应力的分布是非均匀的。

在一般情况下,温度应力在混凝土结构的表面会较大,而在内部会较小。

因此,为了确保结构的安全,需要进行应力分析,并采取相应的措施,如设置伸缩缝、防止温度差异过大等。

除了考虑温度应力,还需要综合考虑其他应力源,如自重应力、施工载荷应力、外部荷载应力等,以确保混凝土结构的稳定性和安全性。

总之,大体积混凝土温度应力的计算是结构设计中的重要一环。

通过合理的温度应力计算和控制,可以确保混凝土结构的安全、可靠和耐久性。

大体积混凝土温控计算表格

大体积混凝土温控计算表格

大体积混凝土温控计算表格在建筑工程中,大体积混凝土的施工是一个关键环节。

由于其体积较大,水泥水化热释放集中,内部温升快,如果不进行有效的温度控制,容易产生温度裂缝,影响结构的安全性和耐久性。

因此,在大体积混凝土施工前,进行准确的温控计算是非常必要的。

而温控计算表格则是进行这一计算的重要工具。

一、大体积混凝土温控计算的基本原理大体积混凝土在浇筑后,水泥水化反应会释放出大量的热量,导致混凝土内部温度升高。

由于混凝土的导热性能较差,热量在内部积聚,形成温度梯度。

当混凝土表面与内部的温差过大时,会产生温度应力。

如果温度应力超过混凝土的抗拉强度,就会出现裂缝。

温控计算的目的就是通过计算混凝土在浇筑后的温度变化和温度应力,判断是否会出现裂缝,并采取相应的温控措施,如降低水泥用量、掺入外加剂、设置冷却水管等,以保证混凝土的质量。

二、大体积混凝土温控计算表格的组成大体积混凝土温控计算表格通常包括以下几个部分:1、工程基本信息这部分需要填写工程名称、混凝土浇筑部位、混凝土强度等级、浇筑日期等基本信息。

2、混凝土配合比包括水泥品种、水泥用量、水灰比、砂率、骨料种类和用量等。

3、混凝土热学参数如混凝土的比热容、导热系数、导温系数等。

这些参数可以通过试验或参考相关规范确定。

4、环境参数包括气温、风速、相对湿度等。

这些参数会影响混凝土的散热情况。

5、计算参数如混凝土的绝热温升计算参数、表面散热系数计算参数等。

6、温度计算结果包括混凝土内部最高温度、表面温度、温差等。

7、温度应力计算结果计算混凝土在不同龄期的温度应力,并与混凝土的抗拉强度进行比较。

8、温控措施根据计算结果,提出相应的温控措施,如保温保湿养护时间、冷却水管的布置等。

三、大体积混凝土温控计算表格的填写方法1、工程基本信息的填写按照实际工程情况,准确填写工程名称、混凝土浇筑部位、混凝土强度等级、浇筑日期等信息。

2、混凝土配合比的填写从混凝土配合比设计报告中获取水泥品种、水泥用量、水灰比、砂率、骨料种类和用量等数据,并填入表格。

大体积混凝土温度和温度应力计算

大体积混凝土温度和温度应力计算

大体积混凝土温度和温度应力计算在大体积混凝土施工前,必须进行温度和温度应力的计算,并预先采取相应的技术措施控制温度差值,控制裂缝的发展,做到心中有数,科学指导施工,确保大体积混凝土的施工质量。

1温度计算1、混凝土拌合物的温度混凝土拌合物的温度是各种原材料入机温度的中和。

温度计算:水泥:328 Kg 70℃砂子:742 Kg 35℃含水率为3%石子:1070Kg 35℃含水率为2%水:185 Kg 25℃粉煤灰:67 Kg 35℃外加剂:8 Kg 30℃TO=[0.9(MceTce+MsaTsa+MgTg)+2Tw(Mw-WsaMsa-WgMg)+C1(WsaMsaTsa+WgMgTg)-C2(WsaMsa+WgMg)]/[2Mw+0.9(Mce+Msa+Mg)]式中:TO ——混凝土拌合物的温度(℃)Mw、Mce、Msa、Mg ——水、水泥、砂、石每m3的用量(kg/m3) Tw、Tce、Tsa、Tg ——水、水泥、砂、石入机前温度Wsa、Wg ——砂、石的含水率(%)C 1、C2——水的比热溶(kJ/Kg K)及溶解热(kJ/Kg)C 1=2,C2=0(当骨料温度>0℃时)TO=[0.9(328×70+67×35+8×30+742×35+1070×35)+2×25(185-742×3%-1070×2%)+2(3%×742×35+2%×1070×35)-0]/[2×185+0.9(328+742+1070)]=37.49℃2、混凝土拌合物的出机温度T 1=T-0.16(T-Ti)式中: T1——混凝土拌合物的出机温度(℃)Ti——搅拌棚内温度,约30℃∴ T1=37.49-0.16(37.49-30)=36.3℃3、混凝土拌合物浇筑完成时的温度T2= T1-(αtt+0.032n)(T1-Ta)℃式中:T2——混凝土拌合物经运输至浇筑完成时的温度(℃)α——温度损失系数取0.25tt——混凝土自运输至浇筑完成时的时间取0.7h n ——混凝土转运次数取3Ta——运输时的环境气温取35T2=36.3-(0.25×0.7+0.032×3)(36.3-35)=35.95℃混凝土拌合物浇筑完成时温度计算中略去了模板和钢筋的吸热影响。

大体积混凝土应力计算

大体积混凝土应力计算

大体积混凝土应力计算在建筑工程中,大体积混凝土的应用十分广泛,如大坝、大型基础、大型桥梁墩台等。

然而,由于大体积混凝土结构的尺寸较大,水泥水化热释放集中,内部温度升高较快,与外部环境形成较大温差,从而产生较大的温度应力。

如果温度应力超过混凝土的抗拉强度,就会导致混凝土开裂,影响结构的安全性和耐久性。

因此,准确计算大体积混凝土的应力对于保证工程质量至关重要。

大体积混凝土应力的产生主要源于两个方面:一是由外荷载引起的应力,二是由温度变化、收缩等非荷载因素引起的应力。

外荷载引起的应力计算相对较为简单,通常可以根据结构力学的方法进行计算。

而温度应力和收缩应力的计算则较为复杂,需要考虑混凝土的热学性能、力学性能以及施工过程等多种因素。

在计算温度应力时,首先需要确定混凝土的温度场。

混凝土在浇筑后的水化过程中会释放出大量的热量,导致内部温度升高。

热量的传递主要通过热传导、热对流和热辐射三种方式进行。

通过建立热传导方程,并结合边界条件和初始条件,可以求解出混凝土内部的温度分布。

常用的方法有有限元法、有限差分法等。

确定了温度场后,就可以计算温度应力。

温度应力的计算通常基于热弹性理论。

混凝土在温度变化时会产生膨胀或收缩,如果这种变形受到约束,就会产生应力。

温度应力的大小与混凝土的线膨胀系数、弹性模量、温度变化量以及约束程度等因素有关。

在实际计算中,通常将混凝土结构简化为一维、二维或三维模型,并采用相应的计算公式进行计算。

收缩应力的计算与温度应力类似,也需要考虑混凝土的收缩特性和约束条件。

混凝土的收缩主要包括干燥收缩、自收缩和碳化收缩等。

收缩的大小与混凝土的配合比、养护条件、环境湿度等因素有关。

在计算收缩应力时,通常将收缩等效为温度降低引起的变形,然后按照温度应力的计算方法进行计算。

除了温度应力和收缩应力外,混凝土还会受到徐变的影响。

徐变是指混凝土在长期荷载作用下,应变随时间增长的现象。

徐变会使混凝土的应力得到部分松弛,从而降低温度应力和收缩应力的不利影响。

大体积混凝土温度应力计算

大体积混凝土温度应力计算

计算结果分析
温度应力分布情况 应力与应变关系 裂缝产生原因及分布规律 计算结果与实际监测数据的对比分析
结论与建议
结论:大体积混凝土温度应力计算案例 分析表明,温度应力对混凝土结构的影 响较大,需要采取有效的措施进行控制。
建议:在设计和施工过程中,应充分考 虑温度应力的影响,采取适当的构造措 施和施工方法,以减少温度应力对混凝 土结构的影响。
求解温度场:通过有限元法或有限差分法等数值计算方法,求解大体积混凝土的温度场。
计算应力应变:根据温度场计算结果,结合弹性力学理论,计算大体积混凝土的应力应 变。
建立数学模型
确定温度场和应力场的基本方程
建立温度应力和收缩应力的计算公 式
添加标题
添加标题
确定边界条件和初始条件
添加标题
添加标题
考虑混凝土的弹塑性本构关系
Part Five
大体积混凝土温度 应力计算案例分析
工程概况
工程名称:大体积混凝土温度应力计算案例分析 建设地点:某市 建设规模:建筑面积约为XX平方米 建设单位:某建筑公司
计算模型建立
确定计算模型:根据实际情况选择合适的计算模型,如有限元法、有限差分法等。 建立温度场:根据混凝土的物理性质和边界条件,建立温度场方程。 确定初始条件和边界条件:根据实际情况确定初始温度和边界温度。 求解温度场:采用合适的数值方法求解温度场方程,得到各点的温度分布。
确定材料参数
混凝土的弹性模量 混凝土的热膨胀系数 混凝土的导热系数 混凝土的密度
求解方程
建立数学模型
求解温度场方 程
确定边界条件 和初始条件
计算温度应力
结果分析
计算结果:根据计算公式和参数,得出大体积混凝土温度应力计算结果 结果分析:分析计算结果,确定大体积混凝土的温度应力分布和变化规律 影响因素:分析各因素对大体积混凝土温度应力的影响程度和作用机制 优化建议:根据计算结果和分析,提出优化大体积混凝土温度应力的建议和措施

大体积混凝土温度计算

大体积混凝土温度计算

大体积混凝土温度计算在建筑工程中,大体积混凝土的应用越来越广泛,如大型基础、大坝、桥墩等。

然而,由于大体积混凝土结构的尺寸较大,水泥水化热在混凝土内部积聚不易散发,容易导致混凝土内部温度升高,从而产生较大的温度应力。

如果温度应力超过混凝土的抗拉强度,就会引起混凝土裂缝,影响结构的安全性和耐久性。

因此,准确计算大体积混凝土的温度变化,对于控制混凝土裂缝的产生具有重要意义。

一、大体积混凝土温度组成大体积混凝土在浇筑后的温度变化主要由以下几个部分组成:1、浇筑温度浇筑温度是指混凝土浇筑时的初始温度,它取决于混凝土原材料的温度、搅拌过程中的温度升高以及运输和浇筑过程中的温度损失。

2、水泥水化热温升水泥在水化过程中会释放出大量的热量,这是导致混凝土内部温度升高的主要原因。

水泥水化热温升的大小与水泥品种、用量、混凝土配合比以及浇筑后的时间等因素有关。

3、混凝土的散热混凝土在浇筑后会向周围环境散热,散热的速度取决于混凝土的表面系数(表面积与体积之比)、环境温度、风速等因素。

二、大体积混凝土温度计算方法1、经验公式法经验公式法是根据大量的工程实践数据总结出来的一些简化计算公式。

常见的经验公式有绝热温升公式、表面散热系数公式等。

这些公式虽然简单易用,但由于其是基于经验数据得出的,对于一些特殊情况可能会存在较大的误差。

2、有限元法有限元法是一种数值计算方法,它将大体积混凝土结构离散为若干个单元,通过建立热传导方程,求解混凝土内部各点在不同时刻的温度分布。

有限元法可以考虑混凝土结构的复杂形状、边界条件以及材料的非均匀性等因素,计算结果较为准确,但计算过程较为复杂,需要专业的软件和一定的计算能力。

三、大体积混凝土温度计算的影响因素1、混凝土配合比混凝土中水泥用量、水灰比、骨料种类和级配等配合比参数会影响水泥水化热的产生和混凝土的导热性能,从而对温度变化产生影响。

2、浇筑工艺浇筑的分层厚度、浇筑速度、振捣方式等浇筑工艺参数会影响混凝土的散热和内部温度分布。

大体积混凝土水化热及温度计算

大体积混凝土水化热及温度计算

大体积混凝土水化热及温度计算一、混凝土水化热计算1、混凝土配合比的原则主桥墩、过渡墩承台采用C30砼,采用恩施州连珠水泥厂家生产的普通硅酸盐P.032.5级水泥。

3#、4#主墩承台砼方量为445.4m3,2#、5#过渡墩承台砼方量为173.3 m3均属大体积砼,砼配合比的原则为:满足设计混凝土强度等级条件下,掺适量粉煤灰,同时加缓凝剂,延长混凝土的初凝时间,尽可能降低混凝土的水泥用量,尽量降低混凝土内最大温升值。

2、C30设计配合比水泥: 350kg/m3;水:176 kg/m3;大气温度在30℃,马水河水温在27℃粗骨料: 767 kg/m3;细骨料: 938 kg/m3;粉煤灰: 90kg/m3;缓凝型减水剂: 1%。

3、混凝土温度计算1)、搅拌温度计算和浇筑温度混凝土拌和温度计算表(注:本表中数值为经验数据)混凝土拌和温度为:Tc =∑Ti*W*c/∑W*c=75410.4/2510.3=30.04℃。

考虑到混凝土运输过程中受日晒等因素,入模温度比搅拌温度约高3℃。

混凝土入模温度约Tj=33.04℃。

2)混凝土中心最高温度:Tmax=Tj +Th*ξTj=33.04℃(入模温度),ξ散热系数取0.70混凝土最高绝热温升Th=W*Q/c/r=350*377/0.973/2321=50.43℃其中350 Kg为水泥用量;377KJ/Kg为单位水泥水化热;0.973KJ/Kg.℃为水泥比热;2321Kg/m3为混凝土密度。

则Tmax=Tj +Th*ξ=33.04+50.43*0.70=70.94℃。

3)混凝土内外温差混凝土表面温度(未考虑覆盖):Tb =Tq+4h’(H-h’)△T/H2。

H=h+2h’=3+2*0.07=3.14m,h’=k*λ/β=0.666*2.33/22=0.07m式中Tbmax--混凝土表面最高温度(℃);Tq--大气的平均温度(℃);H-一混凝土的计算厚度;h’--混凝土的虚厚度;h--混凝土的实际厚度;ΔT--混凝土中心温度与外界气温之差的最大值;λ--混凝土的导热系数,此处可取 2.33W/m· K;K--计算折减系数,根据试验资料可取0.666;β--混凝土模板及保温层的传热系数(W/m*m·K),取22Tq 为大气环境温度,取30℃,△T= Tmax-Tq=40.94℃故Tb=33.73℃。

混凝土温度应力计算

混凝土温度应力计算
ቤተ መጻሕፍቲ ባይዱ
混凝土温度应力计算
土建工程大体积混凝土最高温升值可按式(4-49)计算。
式中,T′max 为混凝土内部的最高温升值(℃);t0为 混凝土浇筑温度(℃),计算时,在无气温和浇筑温度的关 系值时,可采用计划浇筑日期的当地平均气温(℃);Q为 每立方米混凝土中水泥的用量(kg/m3),上述两式适用于 强度等级为42.5级的矿渣硅酸盐水泥;F为每立方米混凝土 中粉煤灰的用量(kg/m3)。
高层建筑施工
混凝土温度应力计算
1. 混凝土绝热最高温升值计算
大体积混凝土中心部分的最高温度,在绝热条件下是混凝土浇 筑温度与水泥水热化之和。但实际的施工条件表明,混凝土内部的 温度与外界环境之间必然存在着温差,加上结构物的四周又具备一 定的散热条件,因此在新浇筑的混凝土与其周围环境之间必然会发 生热能交换。故大体积混凝土内部的最高温度,是由浇筑温度、水 泥水化后产生的水化热量全部转化为温升后的最后温度,称为绝热 最高温升,一般用Tmax表示,可按式(4-48)计算。
混凝土温度应力计算
不同龄期几种常用水泥在常温下释放的水化热值如表4-14 所示。从表中可以看出,水泥水化热值与水泥品种、水泥强度 等级和混凝土龄期等因素有关。
注:表中数值是按平均硬化温度为15 ℃时编制的,当平 均温度为7~10 ℃时,表中数值按60%~70%采用;当采用粉 煤灰硅酸盐水泥、火山灰硅酸盐水泥时,其水化热值可参考矿 渣硅酸盐水泥的数值。
混凝土温度应力计算
2. 混凝土最高温升值计算
自1979年以来,对已施工的许多大体积混凝土结构的 现场实测升温、降温数据资料,经过统计整理分析后得出: 凡混凝土结构厚度在1.8 m以下的,在计算最高温升值时, 可以忽略水灰比、单位用水量、浇筑工艺及浇筑速度等次要 因素的影响,而只考虑单位体积水泥用量及混凝土浇筑温度 这两个主要影响因素,以简便的经验公式进行计算。工程实 践证明,其精确程度完全可以满足指导施工的要求,其计算 值与实测值相比误差较小。

大体积混凝土热工计算书

大体积混凝土热工计算书

大体积混凝土热工计算书大体积混凝土是指体积较大,一般厚度大于3米,体积大于1000立方米的混凝土结构。

大体积混凝土在工程中应用广泛,如桥梁基础、高层建筑基础等。

大体积混凝土与其他混凝土相比,具有结构厚、体积大、钢筋密集等特点,因此其施工过程中的热工计算尤为重要。

本计算书将根据相关规范和理论,对大体积混凝土施工过程中的热工问题进行计算和分析。

《混凝土结构工程施工规范》(GB-2011)《混凝土外加剂应用技术规范》(GB-2013)《民用建筑热工设计规范》(GB-2016)混凝土材料:采用C30混凝土,密度为2400kg/m³,比热容为92kJ/(kg·℃),导热系数为33W/(m·℃)。

钢筋材料:采用HRB400钢筋,密度为7850kg/m³,比热容为5kJ/(kg·℃),导热系数为80W/(m·℃)。

施工环境:考虑混凝土浇筑时的温度为25℃,环境温度为20℃。

体积表面系数计算:根据混凝土立方体尺寸,计算立方体表面积与体积之比,即体积表面系数。

混凝土内部温度计算:根据混凝土材料比热容和导热系数,结合环境温度和浇筑温度,计算混凝土内部温度。

表面温度计算:根据混凝土表面与环境之间的热交换,计算表面温度。

温度应力计算:根据混凝土内部温度和表面温度之差,计算温度应力。

体积表面系数计算结果:根据计算,该大体积混凝土的体积表面系数为85。

该系数较大,说明混凝土表面积较大,散热较快。

因此,在施工过程中应采取相应的措施,如通水冷却、表面保温等,以控制混凝土内部温度。

混凝土内部温度计算结果:根据计算,该大体积混凝土的内部温度最高可达35℃。

由于大体积混凝土厚度较大,热量传递至表面需要一定时间,因此内部温度较高。

在施工过程中应采取相应的措施,如分层浇筑、控制水泥用量等,以降低内部温度。

表面温度计算结果:根据计算,该大体积混凝土的表面温度为24℃。

由于大体积混凝土表面积较大,与环境之间的热交换较为明显。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽机上部大体积混凝土温度和温度应力计算
在大体积混凝土施工前,必须进行温度和温度应力的计算,并预先采取相应的技术措施控制温度差值,控制裂缝的开展,做到心中有数,科学指导施工,确保大体积混凝土的施工质量.
1、温度计算
搅拌站提供的混凝土每立方米各项原材料用量及温度如下:
水泥:325kg,14℃。

砂子:773kg,14℃,含水率为2%。

石子:1025kg,14℃,含水率为1%。

水:168kg,4℃。

粉煤灰:57kg,14℃。

外加剂:10.3kg,14℃。

防冻剂:30.5 kg,10℃。

(1)混凝土拌合物的温度
T0=[0.9(mceTce+msaTsa+mgTg)+4.2Tw(mw- msa-ωgmg)+c1(ωsa
msaTsa+ωgmgTg)-c2(ωsamsa+ωgmg)]÷[4.2mw+0.9(mce+msa+mg)]
式中T0—混凝土拌合物的温度(℃)。

mw、mce、msa、mg —水、水泥、砂、石的用量(kg)。

Tw、Tce、Tsa、Tg —水、水泥、砂、石的温度(℃)。

ωsa、ωg—砂、石的含水率(%)。

c1、c2 —水的比热容(kJ/kg.K)及溶解热(kJ/kg)。

当骨料温度>0℃时, c1=4.2,c2=0;
≤0℃时, c1=2.1,c2=335。

为了计算简便,粉煤灰和外加剂的重量均计算在水泥的重量内。

T0=[0.9(422.8×14+773×14+1025×14)+4.2×4(168-2%×773-1%×1025)+4.2( 2%×773×14+1%×1025×14)-0]÷[4.2×168+0.9(442.8+773+1025)]=18.6℃
(2)混凝土拌合物的出机温度
T1=T0-0.16(T0-Ti)
式中T1—混凝土拌合物的出机温度(℃);
Ti—搅拌棚内温度(℃)。

T1=18.6-0.16(18.6-14)=17.9℃
(3)混凝土拌合物浇筑完成时的温度
T2=T1-(αtt+0.032n)(T1-Ta)
式中T2—混凝土拌合物经运输至浇筑完成时的温度(℃);
T1—温度损失系数(h-1);
α—混凝土自运输至浇筑完成时的时间(h);
tt—混凝土转运次数;
Ta—运输时的环境气温(℃)。

T2=17.9-(0.25×0.7+0.032×3)[ 17.9-14]=16.8℃
混凝土拌合物浇筑完成时的温度计算中略去了模板和钢筋的吸热影响。

有关的计算可以参照《混凝土结构工程施工及验收规范》中的附录三。

(4)混凝土最高升温值
Tmax=T2+mce/10+F/50
式中Tmax—混凝土最高升温值(℃);
mce—水泥用量(kg);
F—粉煤灰用量(kg)。

Tmax=16.8+325/10+57/50=50.44℃
该温度为基础底板混凝土内部中心点的温升高峰值,该温升值一般都略小于绝热温升值,一般在混凝土浇筑后3d左右产生,以后趋于稳定不再升温,并且开始逐步降温。

(5).混凝土表面温度
规范规定:对大体积混凝土的养护,应根据气候条件采取控温措施,并按需要测定浇筑后的混凝土表面和内部温度,将温差控制在设计要求的范围内以内;当设计无具体要求时,温差不宜超过25℃。

由于混凝土内部最高温升值理论计算为50.4℃,因此将混凝土表面的温度控制在35℃左右,这样混凝土内部温度与表面温度,以及表面温度与环境温度之差均不超过25℃。

表面温度的控制可采取调整保温层的厚度。

(6).保温材料厚度计算
保温材料采用棉毡,基础底板的厚度按2.5m计算,保温用的棉毡厚度计算如下: [0.5Hλ(Ta-Tb)]/[λ1(Tmax-Ta)].K
式中δ—养护材料所需的厚度(m);
H—结构物的厚度(m);
λ—养护材料的导热系数(W/m.K);
λ1—混凝土的导热系数(W/m.K),取2.3 W/m.K ;
Tmax—混凝土中的最高温度(℃);
Ta—混凝土与养护材料接触面处的温度(℃),当内外温差控制在25时,则取Ta = Tmax -25℃
Tb—混凝土达到最高温度时的大气平均温度(℃);
K—传热系数的修正值。

δ=[0.5×2.5×0.05×(25.4-14)]/[2.3×(50.4-25.4)]×1.3=0.011(m)
保温材料采用一层2cm厚的棉毡。

1m厚的基础底板由于表面至中心点的距离更近,其表面的温度会更高一些,保温层的厚度可相应减薄些。

2、温度应力计算
混凝土浇筑后18d左右,水化热量值基本达到最大,所以计算此时由温差和收缩
差引起的温度引力。

(1)混凝土收缩变形值计算
εy(t)=ε0y(1-e-0.01t)×M1×M2×M3×……×M10
式中εy(t)—各龄期混凝土的收缩变形值;
ε0y—标准状态下的混凝土最终收缩值,取值3.24×10-4;
e—常数,为2.718;
t—从混凝土浇筑后至计算时的天数;
M1、M2、M3……M10—考虑各种非标准条件的修正系数,按《简明施工计算手册》表5-55取用。

根据已知条件和查表5-55,取值如下M1=1.25,M2、M3、M5、M8、M9均为1,M4=1.21,M6=0.93,M7=0.77,M10=0.90
εy(18)= 3.24×10-4(1-2.718-0.01×18)×1.25×1×1.21×0.93×0.77×0. 90=0.520×10-4
(2)混凝土收缩当量温差计算
Ty(t)=-εy(t)/α
式中Ty(t)—各龄期混凝土收缩当量温差(℃),负号表示降温;
εy(t)—各龄期混凝土的收缩变形值;
α—混凝土的线膨胀系数,取1.0×10-5。

Ty(18)=-0.520×10-4/(1.0×10-5)=-5.2℃
(3)混凝土的最大综合温度差
⊿T=T2+2/3Tmax+Ty(t)-Th
式中⊿T—混凝土的最大综合温度差(℃);
T2—混凝土拌合物经运输至浇筑完成时的温度(℃);
Tmax—混凝土最高温升值(℃);
Ty(t)—各龄期混凝土收缩当量温差(℃);
Th—混凝土浇筑后达到稳定时的温度,一般根据历年气象资料取当地年平均气温(℃)。

⊿T=18+2/3×58.6-5.212=52℃
(4)混凝土弹性模量计算
Ee(1-e-0.09t)
式中E(t)—混凝土从浇筑后至计算时的弹性模量(N/mm2);
Ee—混凝土的最终弹性模量(N/mm2),可近似取28d的弹性模量;
T—混凝土从浇筑后到计算时的天数。

E(18)=2.80×104(1-e-0.09×18)=2.246×104N/mm2
(5)混凝土温度收缩应力计算
由于基础底板两个方向的尺寸都比较大,所以考虑两个方向所受的外约束来进行计算。

σ=E(t).α..ΔT/(1-ν).H(t).R
式中σ—混凝土的温度应力(N/mm2);
H(t)—考虑徐变影响的松弛系数,按《简明施工计算手册》中表5-57取用; R—混凝土的外约束系数,当为岩石地基时,R=1;当为可滑动的垫时,R=0;一般土地基取0.25-0.5;
ν—混凝土的泊松比,取0.15。

σ=-2.246×104×10×10-6×29.6/1-0.15)×0.389×0.3=-0.913 N/mm2
采用425号硅酸盐水泥拌制的混凝土,在养护温度25℃左右,龄期18d时的强度可达到设计强度的85%左右,掺加了NF-2高效缓凝减水剂以后,龄期18d时的混凝土强度可达到设计强度的95%以上。

C35混凝土的抗拉强度设计值为2.25N/mm2 ,设计强度的95%为2.1375N/mm2。

K=2. 1375/0.913=2.34>1.15 满足要求式中K—抗裂安全度。

相关文档
最新文档