电站锅炉事故案例原因分析及预防

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电站锅炉事故案例原因

分析及预防

集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电站锅炉事故案例、原因分析及预防我国电站锅炉占锅炉总数量的比例不高,但电站锅炉都是大型锅炉,压力高,功率大,一旦发生事故,容易造成群死群伤。近年来,电站锅炉重大以上事故较少,但一般事故不断。据统计表明,100MW及以上机组非计划停用所造成的电量损失中,锅炉机组故障停用损失占60%~65%,1995年100MW及以上锅炉及其主要辅机故障停用损失电量近120亿kwh。故障停用造成的启停损失(启动用燃料、电、汽、水)若每次以3万元计,仅此一项全国每年直接经济损失就达2400万元。与此同时每次启停,锅炉承压部件必然发生一次温度交变导致一次寿命损耗,其中直流锅炉水冷壁与分离器可能发生几百度温度的变化,从而诱发疲劳破坏,造成设备的损坏。

通过分析,造成电站锅炉事故发生的原因很多,下面主要介绍常见的三种:

一、承重部件损坏造成的事故

锅炉承重部件基本可以分成三类:一是受拉部件,如吊杆;二是受压部件,如钢柱、支承杆;三是受弯部件,如梁。他们都具有突发性损坏的特点,如吊杆断裂、压杆失稳和桁架失稳。所谓失稳或翘曲失效是指作用在支撑杆、支柱上的压力达到某一临界水平时,它们有时会突然发生

例如弓起、褶皱、弯曲等几何形状上的剧烈变化。这时从强度观点,作用力产生的应力完全在设计范围内,但剧烈的几何变形而引起的大挠度可能破坏结构的平衡,形成不稳定的构形,使其突然崩溃,即通常所谓的失稳或翘曲失效。而吊杆的断裂因为常发生在具有应力集中特征的螺扣处,现在使用的锅炉多为悬吊式锅炉,此类锅炉由于锅炉受热面、汽水联箱、管道、烟风煤粉管道都通过支吊架、梁、桁架,由钢柱承重;并以膨胀中心为零点,向下,向四周膨胀。一旦承重系统失效,部件脱落,部件的几何形状即发生变化,同样可以导致锅炉部件失效。理论计算表明,一根细长的受热管可以承受很高的内压,但却不能承受一般的轴向压力,更不能承受侧向弯曲力的作用,否则将产生变形失效,导致事故发生。

(一)事故案例及分析

案例11988年4月某热电厂一台220t/h锅炉,由于炉膛内聚集的可燃气体爆炸,锅炉钢架不能承受爆炸引起的侧向作用力,炉后钢柱扭曲、断裂,炉顶大板梁失去支承点,向下向右塌落。锅炉省煤器、过热器、水冷壁随之掉落并发生弯曲变形,回转式空气预热器被压下沉,导致整台锅炉报废。

案例21994年3月某热电厂的一台220t/h锅炉,由于锅炉房起火,锅炉钢柱遇热屈服强度下降发生弯曲变形,致炉整体后倾lO°,后移

5.3m,汽包下沉2m,所有受热面下坍弯曲变形,锅炉报废。

案例31993年3月某厂一台2008t/h锅炉,由于大量堆集以及可能存在的塌焦、炉压突升等冲击力,使支撑该炉冷灰斗的钢结构失稳,组成冷灰斗的水冷壁管严重变形,锅炉停用。

(二)事故预防

防止承重部件损坏,应从防止超载及维持支、吊件承载能力两方面着手。当前应注意以下问题:

(1)锅炉钢结构的工作温度。美国锅炉规范规定承重构件受热后温度不得大于315℃,这是因为钢材的屈服强度因温度上升而急剧下降。《建筑设计防火规范》中规定无保护层的钢柱、钢架、钢层架耐火极限只有15分钟,说是说在大火中钢结构很快变形失效。为此要求:

①锅炉油管路,电缆的铺设要离开承重部件;

②一旦发生火灾要组织力量控制承重部件的温度,此时立柱和大梁的冷却至关重要。

(2)要避免炉膛严重堆焦、转向室灰斗存灰、风道积灰与烟道存水等超载现象。

(3)锅炉刚性梁的作用是承受一定的炉膛爆炸力,其薄弱环节是角部绞接结构。在设计抗爆压力下,刚性梁的挠度f=1/500。有怀疑时,应通过测试,确定是否需要加固。

(4)吊杆的安全性取决于力的分配及坡屋内吊杆高温部位的强度是否满足要求,最好使用有承力指示的吊架。个别吊杆弹簧压死或不承力都是不正常的现象,要作为锅炉定期检验内容加以确认调整。

(5)现代锅炉普遍采用全密封膜式炉壁,并确立膨胀中心,为此在锅炉周围、上下设许多向构件,保证以膨胀中心为零点,向一定方向膨胀。凡是没有按设计值胀出的,必然存在残余应力,将影响支吊架安全,务必要究其原因,以防意外。

(6)要弄清锅炉承重部件的设计意图,哪些是受拉杆件,哪些是受压杆件,哪些接合部位要留间隙,哪些部件是要焊牢的。在检验过程中严格贯彻设计意图,维持结构承重功能。

二、爆炸造成的事故

可燃气体或粉尘与空气形成的混合物在短时间内发生化学反应,产生的高温、高压气体与冲击波,超过周围建筑物、容器、管道的承载能力,使其发生破坏,导致人身伤亡、设备损坏,称为爆炸事故。通常说,发生爆炸要有三个条件,一是有燃料和助燃空气的积存:二是燃料和空气的混合物的浓度在爆炸极限内;三是有足够的点火能源。天然气的爆炸下限约为5%,煤粉的爆炸下限是20~60g/m3,爆炸产生的压力可达0.3~1.OMPa。就锅炉范围而言,可燃物质是指天然气、煤气、石油气、油雾和煤粉;构成爆炸事故的有炉膛爆炸、煤粉仓爆炸及制粉系统爆炸。

(一)事故案例及分析

案例11993年3月10日,宁波市北仑港发电厂1号机组锅炉发生炉膛爆炸特大事故,造成死亡23人,重伤8人,伤16人。该机组停运132天,少发电近14亿度,直接经济损失778万元。因该炉事故造成的供电紧张,致使一段时间内宁波地区的企业实行停三开四,杭州地区停二开五,浙江省经济受到了严重影响,间接损失严重。

事故后对现场设备损坏情况检查后发现:21米层以下损坏情况自上而下趋于严重,冷灰斗向炉后侧例呈开放性破口,侧墙与冷灰斗交界处撕裂水冷壁管31根。立柱不同程度扭曲,刚性梁拉裂;水冷壁管严重损坏,

有66根开断,炉右侧2l米层以下刚性梁严重变形,零米层炉后侧基本被热焦堵至冷灰斗,三台碎渣机及喷射水泵等全部埋没在内。炉前侧设备情况尚好,磨煤机、风机、烟道基本无损坏。事故后,清除的灰渣934立方米。

该事故为典型的炉膛爆炸型特大事故,在此特别加以分析。

北仑港发电厂1号锅炉是美国燃烧工程公司生产的亚临界一次再热强制循环汽包锅炉,额定主蒸汽压力17.3MPa,主蒸汽温度540℃,再热蒸汽温度540℃,主蒸汽流量2008t/h。1993年3月6日起该锅炉运行情况出现异常,为降低再热器管壁温度,喷燃器角度由水平改为下摆至下限。3月9日后锅炉运行工况逐渐恶化。3月10日,事故发生时,集中控制室值班人员听到一声闷响,集中控制室备用控制盘上发出声光报警:“炉膛压力‘高高”’、“MFT”(主燃料切断保护)、“汽机跳闸”、“旁路快开”等光字牌亮。FSS(炉膛安全系统)盘显示MFT的原因是“炉膛压力‘高高’”引起,逆功率保护使发电机出口开关跳开,厂用电备用电源自投成功,电动给水泵自启动成功。由于汽包水位急剧下降,运行人员手动紧急停运炉水循环泵B、C(此时A泵已自动跳闸)。就地检查,发现整个锅炉房迷漫着烟、灰、汽雾,人员根本无法进入,同时发现主汽压急骤下降,即手动停运电动给水泵。由于锅炉部分PLC(可编程逻辑控制)柜通讯中断,引起CRT(计算机显示屏)画面锅炉侧所有辅助设备的状态失去,无法控制操作,运行人员立即就地紧急停运两组送

相关文档
最新文档