函数图象的对称性在高考中的应用
对称性在高中数学中的应用举例
![对称性在高中数学中的应用举例](https://img.taocdn.com/s3/m/33614d0ee418964bcf84b9d528ea81c758f52e97.png)
对称性在高中数学中的应用举例在高中数学课程中,对称性是一个非常重要的概念,它不仅在数学理论中有着重要的地位,同时也在现实生活中有着广泛的应用。
对称性可以帮助我们更好地理解和解决问题,也可以为我们带来美感和愉悦。
在这篇文章中,我们将介绍对称性在高中数学中的应用,并举例说明其在数学中的实际应用。
对称性是指一个图形或物体具有关于某一中心或某一轴对称的性质。
在数学中,我们经常会遇到对称性的问题,比如点对称、轴对称、中心对称等。
对称性在几何学、代数学、图论等各个分支中都有着广泛的应用。
我们来介绍对称性在几何学中的应用。
在高中数学中,有关于圆的相关知识,这些知识往往涉及到对称性的概念。
一个圆形图案就是具有中心对称性的,不管怎样旋转这个图案,它始终保持不变。
对称性帮助我们更好地理解圆的性质和性质。
在高中数学中还会涉及到三角形的对称性,比如等边三角形具有三条边相等的对称性,等腰三角形具有两条边相等的轴对称性等等。
对称性的概念可以帮助我们更好地理解和分析各种形状的性质。
对称性在代数学中也有着广泛的应用。
在高中数学中,我们经常会遇到各种各样的方程和函数,而对称性可以帮助我们更好地理解和求解这些问题。
关于奇函数和偶函数的性质,就是利用对称性来进行分析的。
奇函数是指满足f(-x)=-f(x)的函数,它具有关于原点对称的性质;偶函数是指满足f(-x)=f(x)的函数,它具有关于y轴对称的性质。
利用对称性的概念,我们可以更好地理解和分析奇函数和偶函数的性质,进而对各种函数进行求解和运用。
对称性在图论中也有着重要的应用。
图论是数学中的一个独立分支,它研究的是由顶点和边组成的图。
对称性在图论中有着广泛的应用,比如在在研究图的着色问题时,我们常常会利用图的对称性来降低问题的复杂性。
在研究网络流问题时,对称性也可以帮助我们更好地理解和分析图的性质。
在生活中,对称性也有着广泛的应用。
比如在建筑设计中,对称性可以带来美感和和谐感;在艺术创作中,对称性也经常被艺术家们所运用。
高考数学复习----《利用周期性和对称性解决函数问题》典型例题讲解
![高考数学复习----《利用周期性和对称性解决函数问题》典型例题讲解](https://img.taocdn.com/s3/m/ff1f685549d7c1c708a1284ac850ad02de8007fe.png)
高考数学复习----《利用周期性和对称性解决函数问题》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知函数()f x 的定义域为R ,()22f x +为偶函数,()1f x +为奇函数,且当[]0,1x ∈时,()f x ax b =+.若()41f =,则3112i f i =⎛⎫+= ⎪⎝⎭∑( )A .12B .0C .12−D .1−【答案】C【解析】因为()22f x +为偶函数,所以()()2222f x f x −+=+, 用1122x +代替x 得:()()13f x f x −+=+, 因为()1f x +为奇函数,所以()()11f x f x −+=−+, 故()()31f x f x +=−+①,用2x +代替x 得:()()53f x f x +=−+②, 由①② 得:()()51f x f x +=+, 所以函数()f x 的周期4T =, 所以()()401f f ==,即1b =,因为()()11f x f x −+=−+,令0x =得:()()11f f =−,故()10f =,()10f a b =+=,解得:1a =−,所以[]0,1x ∈时,()1f x x =−+, 因为()()11f x f x −+=−+, 令12x =,得2123f f ⎛⎫⎛⎫=− ⎪ ⎪⎝⎭⎝⎭, 其中1111222f ⎛⎫=−+= ⎪⎝⎭,所以3122f ⎛⎫=− ⎪⎝⎭,因为()()2222f x f x −+=+,令14x =得:12214422f f ⎛⎫⎛⎫−⨯+=⨯+ ⎪ ⎪⎝⎭⎝⎭,即235212f f ⎛⎫⎛⎫==− ⎪ ⎪⎝⎭⎝⎭,因为4T =,所以7714222f f f ⎛⎫⎛⎫⎛⎫=−=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()()11f x f x −+=−+, 令32x =得:151222f f ⎛⎫⎛⎫−=−= ⎪ ⎪⎝⎭⎝⎭, 故2721f ⎛⎫= ⎪⎝⎭,311111122235722222i f i f f f =⎛⎫⎛⎫⎛⎫⎛⎫+=++=−−+=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑.故选:C例2、(2023·四川资阳·统考模拟预测)已知函数()f x 的定义域为R ,()2f x −为偶函数,()()20f x f x −+−=,当[]2,1x ∈−−时,()14xf x ax a =−−(0a >且1a ≠),且()24f −=.则()131k f k ==∑( )A .16B .20C .24D .28【答案】C【解析】因为()2f x −是偶函数,所以()2(2)f x f x −−=−,所以()(4)f x f x =−−, 所以函数()f x 关于直线2x =−对称,又因为()()20f x f x −+−=,所以()()2f x f x −−=−, 所以()(2)f x f x =−−−,所以()f x 关于点(1,0)−中心对称, 由()(4)f x f x =−−及()(2)f x f x =−−−得(4)(2)f x f x −−=−−− 所以(4)(2)()f x f x f x −−=−−−=− 所以函数()f x 的周期为4, 因为当[]2,1x ∈−−时,()14xf x ax a =−−(0a >且1a ≠),且()24f −=,所以21424a a −=+−,解得:2a =或4a =−,因为0a >且1a ≠,所以2a =. 所以当[]2,1x ∈−−时,()1()242xf x x =−−,所以(2)4,(1)0f f −=−=,(3)(1)0f f −=−=,(0)(2)4f f =−−=−, (1)(14)(3)0f f f =−=−=,(2)(2)4f f =−=,(3)(1)0f f =−=, (4)(0)4f f ==−,所以(1)(2)(3)(4)8f f f f +++=,所以()131(1)+3824k f k f ==⨯=∑,故选:C .例3、(2023·山东济宁·高三嘉祥县第一中学校考阶段练习)已知定义在R 上的偶函数()f x 满足()()11f x f x −=+,且当01x ≤≤时,()21f x x =−.若直线y x a =+与曲线()y f x =恰有三个公共点,那么实数a 的取值的集合为( )A .51,4k k ⎛⎫++ ⎪⎝⎭(Z k ∈)B .521,24k k ⎛⎫++ ⎪⎝⎭(Z k ∈)C .52,214k k ⎛⎫−− ⎪⎝⎭(Z k ∈)D .5,14k k ⎛⎫−− ⎪⎝⎭(Z k ∈)【答案】B【解析】定义在R 上的偶函数()f x 满足()()11f x f x −=+, 所以()f x 的图像关于1x =对称,且()f x 为周期是2的偶函数,当11x −≤≤时,()21f x x =−,所以画出函数图像如下图所示:①当1a =±时,结合图像可知y x a =+与()21f x x =−([)1,1x ∈−)有两个公共点; ②当y x a =+与()21f x x =−([)1,1x ∈−)相切时,满足21x a x +=−,即210x x a ++−=,令()1410a ∆=−−=,解得54a =. 当54a =时,结合图像可知y x a =+与()y f x =(x R ∈)有两个公共点; 由图像可知, 51,4a ⎛⎫∈ ⎪⎝⎭时,直线y x a =+与()y f x =(x R ∈)有三个公共点;又因为()f x 周期2T =,可知521,24a k k ⎛⎫∈++ ⎪⎝⎭(Z k ∈). 故选:B .例4、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 满足()()2f x f x +=,且当[)1,1x ∈−时,()2f x x =,若函数()log 1a g x x =+图像与()f x 的图像恰有10个不同的公共点,则实数a 的取值范围为( )A .()4,+∞B .()6,+∞C .()1,4D .()4,6【答案】D【解析】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数, 又函数()log 1a g x x =+的图像可由函数log a y x =的图像向左平移一个单位可得,所以函数()log 1a g x x =+的图像的对称轴为=1x −,当[)1,1x ∈−时,()2f x x =,所以函数()f x 的图像也关于=1x −对称,在平面直角坐标系中作出函数()y f x =与()y g x =在=1x −右侧的图像,数形结合可得,若函数()log 1a g x x =+图像与()f x 的图像恰有10个不同的公共点, 则由函数图像的对称性可得两图像在=1x −右侧有5个交点, 则()()13log 415log 61a a a g g ⎧>⎪=<⎨⎪=>⎩,解得()4,6a ∈. 故选:D .例5、(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知()f x 是定义在R 上的奇函数,x ∀∈R ,恒有(4)()f x f x +=−,且当[2,0)x ∈−时,()f x x =−−1,则(0)(1)(2)(2020)(2021)f f f f f +++++=( )A .1B .-1C .0D .2【答案】B【解析】因为(4)(),(8)(4)()f x f x f x f x f x +=−+=−+=,所以()f x 的最小正周期是8, 因为(0)0,(2)(2)1,(3)(1)0f f f f f ==−−=−=−−=,(4)(0)0,(1)(3)f f f f =−==−−=(3)0f =,(5)(1)0f f =−=,(6)(2)1f f =−=, (7)(3)0,(8)(4)0f f f f =−==−=,又()f x 是周期为8的周期函数,所以(0)(1)(2)(3)(4)(5)(6)(7)f f f f f f f f +++++++==(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)0f f f f f f f f +++++++=,(2016)(2017)(2018)(2019)(2020)(2021)(0)(1)(2)(3)(4)(5)f f f f f f f f f f f f +++++=+++++00(1)0001=++−+++=−,所以(0)(1)(2)(2020)(2021)1f f f f f +++++=−.故选:B例6、(2023·山东济宁·高三嘉祥县第一中学校考阶段练习)已知定义在R 上的偶函数()f x 满足()()11f x f x −=+,且当01x ≤≤时,()21f x x =−.若直线y x a =+与曲线()y f x =恰有三个公共点,那么实数a 的取值的集合为( )A .51,4k k ⎛⎫++ ⎪⎝⎭(Z k ∈)B .521,24k k ⎛⎫++ ⎪⎝⎭(Z k ∈)C .52,214k k ⎛⎫−− ⎪⎝⎭(Z k ∈)D .5,14k k ⎛⎫−− ⎪⎝⎭(Z k ∈)【答案】B【解析】定义在R 上的偶函数()f x 满足()()11f x f x −=+, 所以()f x 的图像关于1x =对称,且()f x 为周期是2的偶函数,当11x −≤≤时,()21f x x =−,所以画出函数图像如下图所示:①当1a =±时,结合图像可知y x a =+与()21f x x =−([)1,1x ∈−)有两个公共点;②当y x a =+与()21f x x =−([)1,1x ∈−)相切时,满足21x a x +=−,即210x x a ++−=,令()1410a ∆=−−=,解得54a =. 当54a =时,结合图像可知y x a =+与()y f x =(x R ∈)有两个公共点; 由图像可知, 51,4a ⎛⎫∈ ⎪⎝⎭时,直线y x a =+与()y f x =(x R ∈)有三个公共点;又因为()f x 周期2T =,可知521,24a k k ⎛⎫∈++ ⎪⎝⎭(Z k ∈). 故选:B .例7、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 满足()()2f x f x +=,且当[)1,1x ∈−时,()2f x x =,若函数()log 1a g x x =+图像与()f x 的图像恰有10个不同的公共点,则实数a 的取值范围为( )A .()4,+∞B .()6,+∞C .()1,4D .()4,6【答案】D【解析】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数, 又函数()log 1a g x x =+的图像可由函数log a y x =的图像向左平移一个单位可得, 所以函数()log 1a g x x =+的图像的对称轴为=1x −,当[)1,1x ∈−时,()2f x x =,所以函数()f x 的图像也关于=1x −对称,在平面直角坐标系中作出函数()y f x =与()y g x =在=1x −右侧的图像,数形结合可得,若函数()log 1a g x x =+图像与()f x 的图像恰有10个不同的公共点, 则由函数图像的对称性可得两图像在=1x −右侧有5个交点, 则()()13log 415log 61a a a g g ⎧>⎪=<⎨⎪=>⎩,解得()4,6a ∈. 故选:D .例8、(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知()f x 是定义在R 上的奇函数,x ∀∈R ,恒有(4)()f x f x +=−,且当[2,0)x ∈−时,()f x x =−−1,则(0)(1)(2)(2020)(2021)f f f f f +++++=( )A .1B .-1C .0D .2【答案】B【解析】因为(4)(),(8)(4)()f x f x f x f x f x +=−+=−+=,所以()f x 的最小正周期是8, 因为(0)0,(2)(2)1,(3)(1)0f f f f f ==−−=−=−−=,(4)(0)0,(1)(3)f f f f =−==−−=(3)0f =,(5)(1)0f f =−=,(6)(2)1f f =−=, (7)(3)0,(8)(4)0f f f f =−==−=,又()f x 是周期为8的周期函数,所以(0)(1)(2)(3)(4)(5)(6)(7)f f f f f f f f +++++++==(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)0f f f f f f f f +++++++=,(2016)(2017)(2018)(2019)(2020)(2021)(0)(1)(2)(3)(4)(5)f f f f f f f f f f f f +++++=+++++00(1)0001=++−+++=−,所以(0)(1)(2)(2020)(2021)1f f f f f +++++=−.故选:B。
高考数学重难点分析:函数的周期性与对称性(题型战法)(解析版)
![高考数学重难点分析:函数的周期性与对称性(题型战法)(解析版)](https://img.taocdn.com/s3/m/60ceae1782c4bb4cf7ec4afe04a1b0717fd5b3d4.png)
第二章 函数2.3.1函数的周期性与对称性(题型战法)知识梳理一 函数的周期性函数()y f x =满足定义域内的任一实数x (其中,a b 为常数) (1)()()f x f x a =+,则()x f 是以T a =为周期的周期函数; (2)()()f x a f x b +=-, 则()x f 是以b a T +=为周期的周期函数; (3)()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; (4)()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; 二 函数的对称性轴对称:若()()f a x f b x +=- 则f(x)关于2ba x +=对称. 中心对称:若()()2f a x f b x m ++-= 则f(x)关于(2ba +,m) 对称.三 由对称性推周期性(1) 函数()y f x =满足()()f a x f a x +=-(0a >),①若()x f 为奇函数,则函数()f x 4T a =,②若()x f 为偶函数,则函数()f x 周期为2T a =.(2) 函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b ≠都对称,则函数()f x 是以2a b -为最小正周期的周期函数;(3) 函数()y f x =()x R ∈的图象关于两点()0,A a y ,()0,B b y ()a b ≠都对称,则函数()f x 是以2a b -为最小正周期的周期函数;(4) 函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b ≠都对称,则函数()f x 是以4a b -为最小正周期的周期函数;题型战法题型战法一 周期性与对称性的判断典例1.下列函数是周期函数的有( ) ①sin y x = ①cos y x = ①2y xA .①①B .①①C .①①D .①①①【答案】C 【解析】 【分析】根据三角函数和二次函数的性质可得. 【详解】易得sin y x =和cos y x =是周期函数,2y x 不是周期函数. 故选:C.变式1-1.下列函数中,既是周期函数又是偶函数的是( ) A .0.5log y x = B .sin y x =C .cos y x =D .tan y x =【答案】C 【解析】直接利用函数性质判断即可. 【详解】选项A 中0.5log y x =不是周期函数,故排除A; 选项B,D 中的函数均为奇函数,故排除B,D; 故选:C. 【点睛】本题考查基本初等函数的周期性和奇偶性,属于基础题. 变式1-2.函数x y e =与x y e -=的图象( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y x =对称【答案】B 【解析】 【分析】设点00(,)P x y 在函数x y e =图象上,证明00(,)P x y 关于y 轴对称的点00(,)x y -在函数x y e -=的图象上.【详解】解:设点00(,)P x y 在函数x y e =图象上,则00xy e =,则00(,)P x y 关于y 轴对称的点00(,)x y -满足0()0x x y ee --==, 所以点00(,)x y -在函数x y e -=的图象上. 故选:B变式1-3.函数91()3x x f x +=的图像( )A .关于直线1x =对称B .关于y 轴对称C .关于原点对称D .关于x 轴对称【答案】B 【解析】 【分析】利用分离常数法化简函数式,可知函数()f x 为偶函数,进而判断对称性. 【详解】 解:因为()()231911333333x xx x x xxxf x -++===+=+,()()33x x f x f x --=+= 易知()f x 为偶函数,所以函数()f x 的图象关于y 轴对称. 故选:B.变式1-4.函数1()f x x x=+的图象关于( )对称. A .直线y x = B .原点C .y 轴D .x 轴【答案】B 【解析】根据函数的奇偶性判断. 【详解】因为函数1()f x x x=+的定义域为{}|0x x ≠,关于原点对称, 又11()()f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭, 所以()f x 是奇函数,图象关于原点对称, 故选:B题型战法二 由函数周期性求函数值典例2.已知函数()y f x =为R 上的偶函数,若对于0x ≥时,都有()()4f x f x =+,且当[)0,2x ∈时,()()2log 1f x x =+,则()2021f -等于( ) A .1 B .-1 C .2log 6 D .23log 2【答案】A 【解析】 【分析】由已知确定函数的周期,利用周期性和奇偶性进行求解. 【详解】①()y f x =为R 上的偶函数,①(2021)(2021)f f -=, 又当0x ≥时,()(4)f x f x =+, ①(2021)(2017)(1)f f f ==⋅⋅⋅=, 当[)0,2x ∈时,2()log (1)=+f x x , ①2(2021)(1)log (11)1f f -==+=. 故选:A.变式2-1.定义在R 上的函数()f x 满足(2)()f x f x +=,当[1,1]x ∈-时,2()1f x x =+,则(2020.5)f =( ) A .1716B .54C .2D .1【答案】B 【解析】 【分析】由()()2f x f x +=可知,函数()f x 的周期为2,利用周期性把所给的自变量转化到区间[]1,1-上,代入求值即可. 【详解】由()()2f x f x +=可知,函数()f x 的周期为2,当[1,1]x ∈-时,2()1f x x =+, ①1115(2020.5)202012244f f f ⎛⎫⎛⎫=+==+= ⎪ ⎪⎝⎭⎝⎭.故选:B变式2-2.已知函数()f x 是R 上的偶函数,若对于0x ≥,都有()()2f x f x +=.且当[)0,2x ∈时,()()2log 1f x x =+,则()()20132014f f -+的值为( )A .2-B .1-C .1D .2【答案】C 【解析】 【分析】由()()2f x f x +=可得函数的周期为2,再结合函数为偶函数可得()()()()2013201410f f f f -+=+,然后由已知的解析式可求得答案【详解】①函数()f x 是(),-∞+∞上的偶函数, ①()()f x f x -=,又①对于0x ≥都有()()2f x f x +=,①2T =,①当[)0,2x ∈时,()()2log 1f x x =+,①()()()()()()201320142013201421006121007f f f f f f -+=+=⨯++⨯()()2210log 2log 11f f =+=+=,故选:C.变式2-3.已知定义在R 上的偶函数()f x ,对x ∀∈R ,有(6)()(3)f x f x f +=+成立,当03x ≤≤时,()26f x x =-,则()2021f =( ) A .0 B .2-C .4-D .2【答案】C 【解析】 【分析】求得()f x 的周期,结合奇偶性求得()2021f 的值. 【详解】依题意对x ∀∈R ,有(6)()(3)f x f x f +=+成立, 令3x =-,则()()()()33323f f f f =-+=, 所以()30f =,故()()6f x f x +=, 所以()f x 是周期为6的周期函数,故()()()()202163371112164f f f f =⨯-=-==⨯-=-. 故选:C变式2-4.已知函数()f x 是定义在R 上的奇函数,f (1)5=,且(4)()f x f x +=-,则(2020)(2021)f f +的值为( )A .0B .5-C .2D .5【答案】B 【解析】 【分析】根据题意,分析可得(8)(4)()f x f x f x +=-+=,即函数()f x 是周期为8的周期函数,则有(2020)(0)f f =,(2021)f f =(1),由奇函数的性质求出(0)f 与f (1)的值,相加即可得答案. 【详解】解:根据题意,函数()f x 满足(4)()f x f x +=-,则有(8)(4)()f x f x f x +=-+=, 即函数()f x 是周期为8的周期函数,函数()f x 是定义在R 上的奇函数,则(0)0f =,(2020)(48252)f f f =+⨯=(4)(0)0f ==, (2021)(58252)f f f =+⨯=(5)f =-(1)5=-,则(2020)(2021)(0)f f f f +=+(1)5=-, 故选:B. 【点睛】本题考查函数的奇偶性与周期性的性质以及应用,注意分析函数的周期性,属于基础题.题型战法三 由函数对称性求函数值典例3.如果函数()f x 对任意的实数x ,都有()1()f x f x +=-,且当12x ≥时,()()2log 31f x x =-,那么函数()f x 在[]2,0-上的最大值与最小值之和为( )A .2B .3C .4D .-1【答案】C 【解析】根据()1()f x f x +=-,可知:()f x 关于12x =对称,根据对称性,要求函数()f x 在[]2,0-上的最大值与最小值之和,即求函数()f x 在[]1,3上的最大值与最小值之和,代入即可得解. 【详解】根据()1()f x f x +=-,可知:()f x 关于12x =对称, 那么要求函数()f x 在[]2,0-上的最大值与最小值之和, 即求函数()f x 在[]1,3上的最大值与最小值之和,因为()()2log 31f x x =-递增,所以最小值与最大值分别为:(1)1f =,(3)3f =, (1)(3)4f f +=,故答案为:C. 【点睛】本题考查了函数的对称性,考查了转化思想,计算量较小,思路要求较高,属于中档题.变式3-1.已知3()4f x ax bx =+-,若(2)6f =,则(2)f -=( ) A .-14 B .14 C .6 D .10【答案】A 【解析】 【分析】先计算(2)+(2)f f -,再代入数值得结果. 【详解】(2)+(2)8248248f f a b a b -=+----=-,又(2)6f =,所以(2)14,f -=-故选A 【点睛】本题考查函数性质,考查基本分析求解能力,属基础题.变式3-2.已知函数124xy a ⎛⎫= ⎪-⎝⎭的图象与指数函数x y a =的图象关于y 轴对称,则实数a 的值是 A .1B .2C .4D .8【答案】C 【解析】 【分析】指数函数xy a =关于y 轴对称的函数为1xy a ⎛⎫= ⎪⎝⎭,由此得到124a -与a 的关系,即可求解出a 的值. 【详解】因为两函数的图象关于y 轴对称,所以124a -与a 互为倒数, 所以124aa =-,解得4a =. 故选C. 【点睛】本题考查指数函数图象对称与底数之间关系,难度较易.关于y 轴对称的指数函数的底数互为倒数.变式3-3.设函数()1f x x x a =++-的图象关于直线1x =对称,则a 的值为 A .1- B .1 C .2 D .3【答案】D 【解析】 【详解】试题分析:因为函数()1f x x x a =++-的图象关于直线1x =对称,所以点()()1,1f --与点()(),a f a ,关于直线1x =对称,11,32aa -+==,故选D.考点: 函数的图象与性质.变式3-4.已知函数()sin cos f x a x x =+的图象关于直线3x π=对称,则4f π⎛⎫= ⎪⎝⎭( )AB C .D【解析】 【分析】先由对称性求得a ,再将4π代入函数解析式即可求得答案.【详解】因为()f x 的图象关于直线3x π=对称,所以()203f f π⎛⎫= ⎪⎝⎭,即112=-,解得a =4f π⎛⎫= ⎪⎝⎭. 故选:B题型战法四 由周期性与对称性求函数解析式典例4.设()f x 是定义在R 上的周期为2的偶函数,已知[23]x ∈,时,()f x x =,则x ∈[-2,0]时,f (x )的解析式为f (x )=( ) A .4x + B .2x - C .31x -+ D .21x -+【答案】C 【解析】 【分析】根据已知中函数的奇偶性和周期性,结合[]2,3x ∈时,()f x x =,可得答案. 【详解】解:∵()f x 是定义在R 上的周期为2的偶函数,[]2,3x ∈时,()f x x =,∴[]21x ∈--,时, []20,1x +∈,[]42,3x +∈,此时()()44f x f x x =+=+,[]1,0x ∈-时,[]0,1x -∈,[]22,3x -∈,此时()()()22f x f x f x x =-=-=-, 综上可得:[]2,0x ∈-时,()31f x x =-+ 故选:C .本题考查函数解析式的求法,函数的周期性,函数的奇偶性,难度中档. 变式4-1.已知函数()f x 满足(2)()f x f x +=,当(1,0)x ∈-时,有()2x f x =,则当x ①(-3,-2)时,()f x 等于( ) A .2x B .2x - C .22x + D .(2)2x -+-【答案】C 【解析】令(32)x ∈--,,则2(1,)x +∈-0,根据(1,0)x ∈-时,f (x )=2x ,可求得f (x +2)的解析式,再根据f (x +2)=f (x ),即可求得f (x )解析式. 【详解】令(32)x ∈--,,则2(1,)x +∈-0, ①当(1,0)x ∈-时,有()2x f x =, ①f (x +2)=2x +2, ①f (x +2)=f (x ),①f (x +2)=f (x )=2x +2,(32)x ∈--,. 故选:C . 【点睛】本题考查函数解析式的求法,求函数解析式常见的方法有:待定系数法,换元法,凑配法,消元法等,考查学生的计算能力,属于基础题.变式4-2.已知()f x 是定义在R 上周期为2的函数,当[]1,1x ∈-时,()||f x x =,那么当[]7,5x ∈--时()f x =( ) A .|3|x + B .|3|x -C .|6|x +D .|6|x -【答案】C 【解析】利用周期函数的定义求解即可. 【详解】设[]7,5x ∈--,则[]61,1x +∈-, 由题意知,()66f x x +=+,因为函数()f x 是定义在R 上周期为2的函数, 所以()()6f x f x +=,即()6f x x =+.故选: C 【点睛】本题考查周期函数的性质;熟练掌握周期函数的定义是求解本题的关键;属于常考题.变式4-3.若函数()f x 与()3xg x =的图象关于直线3x =对称,则()f x =( )A .33x -B .33x -C .63x -D .63x -【答案】D 【解析】 【分析】先设出函数()f x 图像上任意点的坐标,再求出关于直线3x =对称的点,代入函数()g x 的解析式即可求解. 【详解】解:设函数()y f x =图像上的点为(,)M x y ,关于直线3x =对称的点为(6,)N x y -, 将点N 代入函数()y g x =的解析式可得:63x y -=, 故6()3x f x -=, 故选:D .变式4-4.下列函数中,其图象与函数2x y =的图象关于直线1x =对称的是( ) A .12x y -= B .22x y -= C .12x y += D .22x y +=【答案】B 【解析】 【分析】设所求函数图象上任意一点为(),x y ,由其关于直线1x =的对称点()2,x y -在函数2x y =的图象上可解得结果.【详解】设所求函数图象上任意一点为(),x y ,则其关于直线1x =的对称点()2,x y -在函数2x y =的图象上,所以22x y -=.故选:B.题型战法五 由周期性与对称性比较大小典例5.定义在R 上的函数()f x 满足:()()4f x f x +=成立且()f x 在[]2,0-上单调递增,设()6a f =,(b f =,()4c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .b c a >> D .c b a >>【答案】D 【解析】 【分析】由()()4f x f x +=,得到()f x 是周期为4的周期函数,得到(6)(2),(4)(0)f f f f =-=,4)f f =,结合()f x 在[]2,0-上单调递增,得到(2)4)(0)f f f -<<,即可求解. 【详解】由题意,函数()f x 满足()()4f x f x +=,即函数()f x 是周期为4的周期函数,则(6)(68)(2),4),(4)(0)f f f f f f f =-=-==,又由函数()f x 在区间[]2,0-上单调递增,可得(2)4)(0)f f f -<<,即(6)(4)f f f <<,所以c b a >>. 故选:D.变式5-1.已知定义域为R 的函数()f x 是奇函数,且()()2f x f x +=-,若()f x 在区间[]0,1是减函数,则53f ⎛⎫ ⎪⎝⎭,(1f ,112f ⎛⎫⎪⎝⎭的大小关系是( ) A .()115123f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()115123f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()511132f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()511132f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】根据已知等式判断出函数的周期性,再根据奇函数的性质和单调性进行判断即可. 【详解】()()()()()()22224f x f x f x f x f x f x +=-⇒++=-+⇒=+,由此可知函数()f x 的周期为4,函数()f x 是奇函数,()()2f x f x +=-,所以有:55771142333333f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,113311142222222f f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+==-+=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 因为()f x 在区间[]0,1是减函数,11132<<, 所以()11132f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,即()115123f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 故选:B变式5-2.已知函数()f x 的定义域为 R ,且满足下列三个条件: ①对任意的[]12,4,8x x ∈ ,且 12x x ≠,都有()1212()0f x f x x x ->- ;①(8)()f x f x +=;①(4)y f x =+ 是偶函数;若(7),(11)a f b f =-=,(2020)c f =,则,,a b c 的大小关系正确的是( ) A .a b c << B .b a c << C .b c a << D .c b a <<【答案】D 【解析】由已知条件可知()f x 在[]4,8上单调递增,周期为8,对称轴为4x =.则()7a f =,()5b f =,()4c f =,再结合函数的单调性即可判断大小.【详解】解:由①知,()f x 在[]4,8上单调递增;由①知,()f x 的周期为8; 由①知,()f x 的对称轴为4x =;则()()()717a f f f =-==,()()()()1183835b f f f f =-==-=,()()202025284c f f =-⨯=,因为457<<,由函数的单调性可知,c b a <<. 故选:D. 【点睛】本题考查了函数的对称性,考查了函数的周期,考查了函数的单调性.本题的关键是由已知条件分析出函数的性质.变式5-3.定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;①函数()1y f x =+的图象关于y 轴对称;①对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为( )A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>【答案】B 【解析】 【分析】由①①可得函数()f x 是周期为4的函数,且()f x 是奇函数,由①可得函数()f x 在[]0,1上单调递增,进而可得函数()f x 在[]1,1-上单调递增,从而利用周期性和单调性即可求解. 【详解】解:由题意,因为函数()1y f x =+的图象关于y 轴对称,所以()()11f x f x +=-+, 所以()()2f x f x =-,所以函数()f x 的图象关于1x =对称,又()()220f x f x ++-=,所以()()20f x f x ++=,即()()2f x f x +=-, 因为()()()222f x f x f x ++=-+=⎡⎤⎣⎦,所以函数()f x 是周期为4的函数, 所以()()20211f f =,()()()202220f f f ==,()()20231f f =-, 因为()()2f x f x +=-,且()()2f x f x +=-,所以()()f x f x -=-, 所以函数()f x 为奇函数,又因为对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立,即()()()12120x x f x f x -->⎡⎤⎣⎦, 所以函数()f x 在[]0,1上单调递增, 所以函数()f x 在[]1,1-上单调递增,因为101>>-,所以()()()202120222023f f f >>, 故选:B.变式5-4.已知定义在R 上的函数()f x 满足,①()()2f x f x +=,① ()2f x -为奇函数,①当[)0,1x ∈时,()()12120f x f x x x ->-()12x x ≠恒成立.则152f ⎛⎫- ⎪⎝⎭、()4f 、112f⎛⎫⎪⎝⎭的大小关系正确的是( ) A .()1115422f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭B .()1115422f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭C .()1511422f f f ⎛⎫⎛⎫->>⎪ ⎪⎝⎭⎝⎭D .()1511422f f f ⎛⎫⎛⎫->> ⎪ ⎪⎝⎭⎝⎭【答案】C 【解析】 【分析】根据单调性的定义可得()f x 在0,1上单调递增,根据已知条件可得()f x 是周期为2的奇函数,根据周期性和单调性即可求解. 【详解】由()()2f x f x +=可得()f x 的周期为2, 因为()2f x -为奇函数,所以()f x 为奇函数, 因为[)0,1x ∈时,()()12120f x f x x x ->-,所以()f x 在0,1上单调递增,因为()f x 为奇函数,所以()f x 在1,0上单调递增, 所以()f x 在()1,1-上单调递增, 因为1515124222f f f ⎛⎫⎛⎫⎛⎫-=-+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()44220f f f =-⨯=,1111123222f f f ⎛⎫⎛⎫⎛⎫=-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()11022f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭,即()1511422f f f ⎛⎫⎛⎫->>⎪ ⎪⎝⎭⎝⎭. 故选:C.题型战法六 由抽象函数周期性与对称性求函数值典例6.已知()f x 是定义域为R 的偶函数,()10f =,()5.52f =,()()()1g x x f x =-.若()1g x +是偶函数,则()0.5g -=( ) A .-3 B .-2 C .2 D .3【答案】D 【解析】 【分析】根据()1g x +得到()g x 关于1x =对称,得到()()2g x g x =-,结合()()()1g x x f x =-和()f x 为偶函数即可得()f x 周期为4,进而即得.【详解】因为()1g x +为偶函数,则()g x 关于1x =对称,即()()2g x g x =-. 即()()()()112x f x x f x -=--,即()()20f x f x +-=,()10f =也满足. 又()f x 是定义域为R 偶函数,关于y 轴对称,①()()2f x f x =--,()()()()()2,42f x f x f x f x f x +=-+=-+=, ①()f x 周期为4,①()()()()5.5 1.5 2.5 2.52f f f f ==-==, ①()()()0.5 2.5 1.5 2.53g g f -===. 故选:D.变式6-1.已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f = 则(45)f =( )A .2021B .2021-C .2022D .2022-【答案】D 【解析】 【分析】首先利用赋值法求出()20f =,代入等式赋值得到(4)()f x f x +=-,即对称轴为2x =,再根据函数图象的平移规律判断函数为奇函数,进一步求得函数周期,进而得到(45)(3)(3)(1)f f f f =-=-=-.【详解】因为对任意x ∈R ,都有(3)(1)9(2),f x f x f +=-+ 令1,x =- 得(2)(2)9(2),f f f =+ 解得(2)0,f = 则(3)(1),f x f x +=- 即(4)(),f x f x +=- 所以函数()f x 的图象关于直线2x =对称.又函数(9)f x +的图象关于点(9,0)-对称,则函数()f x 的图象关于点(0,0)对称, 即函数()f x 为奇函数,所以(4)()(),f x f x f x +=-=-所以(8)(4)(),f x f x f x +=-+= 所以8是函数()f x 的一个周期, 所以(45)(683)(3)(3)(1)2022,f f f f f =⨯-=-=-=-=- 故选:D.变式6-2.若定义在实数集R 上的偶函数()f x 满足()0f x >,1(2)()f x f x +=,对任意的x ∈R 恒成立,则()2021f =( ) A .4 B .3 C .2 D .1【答案】D 【解析】 【分析】根据题干条件得到()f x 为周期函数,最小正周期为4,进而得到()()20211f f =,利用()f x 是偶函数得到()()11f f -=,进而得到()211f =,结合()0f x >,得到()11f =.【详解】1(2)()f x f x +=,则1()(2)f x f x =-,所以1(2)(2)()f x f x f x +==-,即()()4f x f x +=,()f x 为周期函数,最小正周期为4,则()()()2021505411f f f =⨯+=,令1x =-得:1(12)(1)f f -+=-,即()()111f f =-,又因为()f x 为偶函数,所以()()11f f -=,故()()111f f =,即()211f =,因为()0f x >,所以()11f =.故选:D变式6-3.已知定义在R 上的函数()f x ,满足()()0f x f x ,(5)(5)f x f x -=+,且(1)2022f =,则(2020)(2021)f f -=( )A .2026B .4044C .2022-D .4044-【答案】C 【解析】 【分析】根据题意可知函数是奇函数,进而推导()f x 的周期,然后求出函数值即可. 【详解】()()0f x f x -+=,()()f x f x ∴-=-,()f x ∴是奇函数,x R ∈,(0)=0f ∴.(5)(5)f x f x -=+,()(10)f x f x ∴-=+,由()()()(10)f x f x f x f x ,()(20)f x f x ∴=+,()f x ∴的周期为20T =.0(1)202()20=f f =,.(0)(1)020222022(2020)(2021)f f f f ∴-=-=--=.故选:C变式6-4.函数()f x 定义域为R ,且,(4)()2(2)x R f x f x f ∀∈+=+,若函数(1)f x +的图象关于1x =-对称,且(1)3f =,则(2021)f =( ) A .3 B .-3C .6D .-6【答案】A 【解析】 【分析】由题设可知()f x 为偶函数且(2)(2)2(2)f f f =-+,即可得(2)0f =,易知()f x 是周期为4的函数,利用周期性求(2021)f 即可. 【详解】①(1)f x +的图象关于1x =-对称, ①()f x 关于y 轴对称,即()f x 为偶函数,又(2)(2)2(2)f f f =-+,即(2)(2)0f f +-=,而(2)(2)f f =-, ①(2)(2)0f f =-=,故,(4)()x R f x f x ∀∈+=, ①()f x 是周期为4的函数,综上,(2021)(45051)(1)3f f f =⨯+==. 故选:A。
高三函数周期性和对称性知识点
![高三函数周期性和对称性知识点](https://img.taocdn.com/s3/m/27faf64c4b7302768e9951e79b89680203d86b1f.png)
高三函数周期性和对称性知识点在高三数学中,函数的周期性和对称性是一个重要的知识点。
了解和掌握函数的周期性和对称性可以帮助我们更加深入地理解和应用函数的性质。
本文将从周期函数、对称函数以及函数的应用等方面来介绍高三函数周期性和对称性的知识点。
一、周期函数周期函数是指在一定的区间内,函数的图像在某一特定规律下重复出现。
周期函数的特点是在一定的区间内有着相同的函数值。
常见的周期函数有正弦函数、余弦函数和正切函数等。
首先,我们来了解正弦函数和余弦函数。
正弦函数的图像是一条上下震荡的曲线,它的周期为2π。
也就是说,当自变量增加2π时,函数值会重新回到原来的值。
而余弦函数的图像也是一条上下震荡的曲线,它的周期也是2π。
正弦函数和余弦函数是非常常见的周期函数,在物理学、工程学等领域中有广泛的应用。
接下来,我们再来介绍一下正切函数。
正切函数的图像是一条摆动不定的曲线,它的周期为π。
也就是说,当自变量增加π时,函数值会重新回到原来的值。
正切函数相比于正弦函数和余弦函数而言,其周期要小一些。
二、对称函数对称函数是指函数的图像具有某种对称性质。
常见的对称函数有偶函数和奇函数。
偶函数是指函数的图像关于y轴对称。
也就是说,如果函数f(x)是一个偶函数,那么对于任意的x值,有f(-x) = f(x)成立。
一个简单的例子就是二次函数y = x^2,它的图像关于y轴对称。
奇函数是指函数的图像关于原点对称。
也就是说,如果函数f(x)是一个奇函数,那么对于任意的x值,有f(-x) = -f(x)成立。
一个简单的例子就是一次函数y = x,它的图像关于原点对称。
三、函数的应用周期性和对称性的函数在实际问题中有很广泛的应用。
例如,振动现象的描述常常使用正弦函数、余弦函数或正切函数。
另外,对称函数的特点也为问题的求解提供了方便。
以周期函数为例,我们来看一个具体的应用。
假设有一个正弦函数表示一个物体的振动情况,我们希望求出物体完成一次振动的时间。
高三对称函数知识点
![高三对称函数知识点](https://img.taocdn.com/s3/m/a9bedcee77a20029bd64783e0912a21614797f2d.png)
高三对称函数知识点函数是数学中的重要概念,而对称函数则是函数中的一种特殊形式。
在高三数学学习中,对称函数是一个重要的知识点。
它具有独特的性质和应用,对于理解和解决数学问题有着重要的作用。
本文将介绍高三数学中对称函数的概念、性质和常见应用。
一、对称函数的概念对称函数是指在数学中,对于自变量的某种变化,函数值也发生相应的对应变化,呈现某种对称性质的函数。
简而言之,就是函数图像关于某一轴线对称。
二、对称函数的性质1. 关于y轴对称:若有函数f(x) = f(-x),则可以得出函数图像关于y轴对称。
例如,f(x) = x^2就是一个关于y轴对称的函数。
2. 关于x轴对称:若有函数f(x) = -f(-x),则可以得出函数图像关于x轴对称。
例如,f(x) = sin(x)就是一个关于x轴对称的函数。
3. 关于原点对称:若有函数f(x) = -f(x),则可以得出函数图像关于原点对称。
例如,f(x) = x^3就是一个关于原点对称的函数。
4. 其他对称形式:还有一些函数的对称性不仅仅表现在对称轴上,具体形式可以是折线对称、旋转对称等。
三、对称函数的应用1. 图像对称性的判断:通过对称性,我们可以判断一个函数的图像是否对称于某一轴。
这在解析几何或图像处理等领域中,具有重要的应用意义。
2. 函数性质的分析:对称函数的性质能够帮助我们更好地理解函数本身的特点。
比如,通过观察对称函数的导数,可以判断函数的凸凹性质。
3. 函数的求解:对称函数在解决一些数学问题时也起到了关键作用。
比如,通过对称性,我们可以简化函数的求导过程,从而快速求得函数的极值点。
四、对称函数的例子1. 指数函数:f(x) = 2^x是一个关于y轴对称的函数。
2. 正弦函数:f(x) = sin(x)是一个关于x轴对称的函数。
3. 偶数次多项式函数:例如f(x) = x^2是一个关于y轴对称的函数。
4. 奇数次多项式函数:例如f(x) = x^3是一个关于原点对称的函数。
函数的对称性在高考题中的应用
![函数的对称性在高考题中的应用](https://img.taocdn.com/s3/m/4d876e9d6bec0975f465e2cb.png)
一
函 数 的 对 称 性 在 = 考 题 中 的 应 用 同 【 = I
陈 守俊
( 至 县第 中学 , 徽 东 至 东 安 270 ) 4 20
函数 的 对 称 性 是 函 数 的 一 个 重 要性 质 ,也 是 高 考 考 查 的 重点 与 热 点 。 像 的 对称 关 系允 分 体 现 了数 学 之美 , 用 对 称 图 利 性 往 往 能 简 捷 地 解 决 一 些 数 学 问 题 。 下 面 以 2 0 年 的 高 考 试 09 题为 例 , 介绍 有 关 题 型 。
(II 0 中 心对 称 , 么 II 一' L ̄ ) - 那 的最 小 值 为 (
,
{,} ̄fx 的图像关于直线x ; 对称, l4,l() J = 从而排除B 若解集 ;
2
) 。
为 { , , , }则 fx 的 图 像 关 于 直 线X - 对 称 , 而 排 除 C; 12 3 4 , ( ) - 从
.
— —
A. 6
B. 4
C. 3
D. 2
命 题 立 意 : 小 题 l 的 函 数 y 3o (x 6) 对 称 中 心 是 本 f I = cs 2 + 的
其 图 像 与x 的所 有 交 点 . 由此 可 得 出 关 于 击的 方 程 .进 而 确 轴 定 的最 小 值 。
1
于x 的方 程mI( ) n ( ) p 0 fx ] fx + = 的解 集 不 可 能是 ( + ) . A{ ,} B{,1 C{, ,,} D. , ,6 6 } . 2 l . 4 1 . 2 34 1 f 4 1 ,4 1 命题 立 意 : 本题 主要 考 查 函数 的对称 性与 方程 的根 的 内容 。
高三函数对称性知识点总结
![高三函数对称性知识点总结](https://img.taocdn.com/s3/m/8eb8d6426fdb6f1aff00bed5b9f3f90f76c64d8a.png)
高三函数对称性知识点总结一、函数对称性的概念与重要性函数作为数学中描述变化规律的重要工具,其图像的对称性是解析几何中一个非常有趣且具有实际意义的课题。
在高中数学的学习中,掌握函数图像的对称性对于理解和运用函数知识至关重要。
对称性不仅能够帮助我们快速识别函数的性质,还能在解决实际问题时提供直观的解题思路。
本文将对高三数学中函数对称性的相关知识点进行总结和梳理。
二、函数图像的对称轴1. 轴对称性轴对称性是函数对称性中最基本也是最常见的一种形式。
对于一个函数图像来说,如果存在一条直线,使得图像上任意一点关于这条直线对称,那么这个函数就具有轴对称性。
对于二次函数,其对称轴通常为 x = -b/2a,这里的 a 和 b 分别是二次项和一次项的系数。
2. 中心对称性除了轴对称性,函数图像还可能具有中心对称性。
如果图像上任意一点 P(x, y) 关于某一点 (a, b) 对称,即存在点 P'(2a-x, 2b-y) 也在图像上,那么这个函数就具有中心对称性。
例如,反比例函数 y =k/x (k 为常数) 的图像就具有中心对称性,其对称中心为原点。
三、常见函数的对称性质1. 二次函数的对称性二次函数 y = ax^2 + bx + c 的图像是一个抛物线。
根据 a 的正负,抛物线的开口方向不同,但其对称轴始终为直线 x = -b/2a。
当 a >0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
此外,二次函数的图像可以通过平移、伸缩等变换保持其对称性质。
2. 一次函数的对称性一次函数 y = kx + b 的图像是一条直线。
直线的对称性较为简单,它关于垂直于其斜率 k 的直线具有轴对称性。
当 k 为正时,直线向右上方倾斜;当 k 为负时,直线向右下方倾斜。
一次函数的图像是对称的,但不是中心对称的。
3. 反比例函数的对称性反比例函数y = k/x (k ≠ 0) 的图像是一对双曲线。
高考数学专题复习 函数的周期性、对称性(原卷版)
![高考数学专题复习 函数的周期性、对称性(原卷版)](https://img.taocdn.com/s3/m/ba0643fa5901020206409c98.png)
第四讲函数的周期性与对称性【套路秘籍】一.对称性(一)对称轴1.概念:如果一个函数的图像沿着一条直线对折,直线两侧的图像能够完全重合,则称函数具备对称性中的轴对称,该直线称为函数的对称轴。
2.常见函数的对称轴①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴⑤指数函数:既不是轴对称,也不是中心对称⑥对数函数:既不是轴对称,也不是中心对称⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。
⒀三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。
⒁绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。
高中数学函数图像的对称与周期性
![高中数学函数图像的对称与周期性](https://img.taocdn.com/s3/m/89c271580a1c59eef8c75fbfc77da26924c5967a.png)
高中数学函数图像的对称与周期性在高中数学中,函数图像的对称性和周期性是一个非常重要的概念。
对称性是指函数图像关于某个轴或点对称,而周期性是指函数在一定区间内以某个固定的周期重复。
一、对称性1. 关于y轴对称当一个函数图像关于y轴对称时,意味着对于函数中的任意一点(x, y),点(-x, y)也在函数图像上。
这种对称性可以用来简化函数图像的绘制和分析。
例如,考虑函数y = x^2,它是一个二次函数,具有关于y轴对称的性质。
我们可以通过绘制函数图像的一部分,再利用对称性得到完整的图像。
2. 关于x轴对称当一个函数图像关于x轴对称时,意味着对于函数中的任意一点(x, y),点(x, -y)也在函数图像上。
这种对称性也可以用来简化函数图像的绘制和分析。
例如,考虑函数y = sin(x),它是一个正弦函数,具有关于x轴对称的性质。
我们可以通过绘制函数图像的一部分,再利用对称性得到完整的图像。
3. 关于原点对称当一个函数图像关于原点对称时,意味着对于函数中的任意一点(x, y),点(-x, -y)也在函数图像上。
这种对称性同样可以用来简化函数图像的绘制和分析。
例如,考虑函数y = x^3,它是一个三次函数,具有关于原点对称的性质。
我们可以通过绘制函数图像的一部分,再利用对称性得到完整的图像。
二、周期性1. 周期函数周期函数是指在一定区间内以某个固定的周期重复的函数。
周期函数的图像具有一定的规律性,可以通过观察周期来简化函数图像的绘制和分析。
例如,考虑函数y = sin(x),它是一个周期为2π的正弦函数。
我们可以通过绘制一个周期内的函数图像,再利用周期性得到完整的图像。
2. 非周期函数非周期函数是指在任意区间内不以固定周期重复的函数。
非周期函数的图像通常没有明显的规律性,需要通过其他方法进行分析和绘制。
例如,考虑函数y = x^2,它是一个非周期函数。
我们需要根据函数的性质和变化规律来绘制函数图像。
三、举一反三通过对函数图像的对称性和周期性的分析,我们可以得到一些解题技巧和方法。
谈高中函数中的奇偶性和对称性
![谈高中函数中的奇偶性和对称性](https://img.taocdn.com/s3/m/8e5970a1690203d8ce2f0066f5335a8102d266b6.png)
谈高中函数中的奇偶性和对称性
高中函数中的奇偶性和对称性是基本的概念,它们在数学分析中被广泛使用。
下面我将详细介绍奇偶性和对称性,并给出一些例子:
一、奇偶性
1. 定义:奇偶性指函数图像围绕其中心(原点)对称,若函数关于原点对称,则称其具有奇偶性。
2. 表示方法: $$f(-x)=f(x)\text{ 即成对函数 }$$
3. 例子:$f(x)=x^2 \; \text{、}\; f(x)=-x$
二、对称性
1. 定义:对称性指函数图像沿某条直线对称,若函数关于这一条直线对称,则称其具有对称性。
2. 表示方法: $$f(x)=-f(x-a)\text{ 其中$a$是平移量}$$
3. 例子:$f(x)=x^2 \; \text{、}\; f(x)=sin(x)$。
综上,奇偶性和对称性是高中数学中非常重要的概念,它们可以帮助我们有效地进行数学分析,提高解题速度和效率。
高考数学中的函数图像对称性
![高考数学中的函数图像对称性](https://img.taocdn.com/s3/m/a497313d77c66137ee06eff9aef8941ea76e4bc7.png)
高考数学中的函数图像对称性数学是一门需要不断练习和思考的学科,高考数学中的函数图像对称性是其中重要的一个部分。
在数学中,我们常常会遇到各种各样的函数,而图像的对称性对于函数的研究和分析具有非常重要的意义。
一、基础概念首先,我们需要了解的是什么是对称性。
在几何学中,对称性是指一个图形相对于某个线段、点或面的对称变换使得它自身与镜子中的图像重合。
在函数图像中,对称性是指函数图像相对于某个直线对称后会得到一样的图像。
比如,若函数图像相对于直线y=x对称,那么得到的图像也是一样的。
二、函数图像的对称性1. 奇偶性在高中数学中,我们经常会遇到奇函数和偶函数。
奇函数指的是当自变量x取相反数时,函数y取相反数,即f(-x)=-f(x);偶函数则指当自变量x取相反数时,函数y不变,即f(-x)=f(x)。
从几何上来看,一个函数如果是奇函数,那么它的图像关于原点对称;而如果是偶函数,它的图像关于y轴对称。
因此,对于一个函数f(x),如果它既不是奇函数也不是偶函数,那么它的图像就不具有对称性。
2. x轴和y轴的对称性当一个函数f(x)满足f(-x)=f(x)时,它就是一个偶函数,这时它的图像关于y轴对称。
这种对称性在数学研究中是非常常见的,比如一些多项式函数和三角函数等。
另外,当一个函数f(x)满足f(x)=0时,它就在x轴上,且图像上下对称。
这是因为,如果将图像沿x轴反转,它会和原来的图像重合。
3. 极轴对称性在极坐标系中,一个点的坐标可以用(r,θ)表示。
若一个点在它的对称点处,则它们到极轴的距离相等,且它们的角度加起来为180度。
在函数图像中,若一个点(x,y)关于极轴对称,则它的对称点为(-x,y)。
因此,如果一个函数图像关于极轴对称,它的图像会在圆心进行对称,即圆心处的点不动。
4. 对称形状在数学图形中,圆、正方形和正多边形等都具有各种不同的对称性,它们的图像所显示的对称性与其形状有关。
比如,当一个正方形图形关于一条对角线对称时,它的图像不变;而当它关于一条边对称时,它的图像会旋转180度。
高中数学 新高考 复习试卷讲义 第2章 §2.4 函数的对称性
![高中数学 新高考 复习试卷讲义 第2章 §2.4 函数的对称性](https://img.taocdn.com/s3/m/bd8ce5cd6aec0975f46527d3240c844768eaa076.png)
§2.4 函数的对称性 考试要求 1.能通过平移,分析得出一般的轴对称和中心对称公式和推论.2.会利用对称公式解决问题.知识梳理1.奇函数、偶函数的对称性(1)奇函数关于 对称,偶函数关于 对称.(2)若f (x -2)是偶函数,则函数f (x )图象的对称轴为 ;若f (x -2)是奇函数,则函数f (x )图象的对称中心为 .2.若函数y =f (x )的图象关于直线x =a 对称,则f (a -x )=f (a +x );若函数y =f (x )满足f (a -x )=-f (a +x ),则函数的图象关于点 对称.3.两个函数图象的对称(1)函数y =f (x )与y =f (-x )关于 对称;(2)函数y =f (x )与y =-f (x )关于 对称;(3)函数y =f (x )与y =-f (-x )关于 对称.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =f (x +1)是偶函数,则函数y =f (x )的图象关于直线x =1对称.( )(2)函数y =f (x -1)是奇函数,则函数y =f (x )的图象关于点(1,0)对称.( )(3)若函数f (x )满足f (x -1)+f (x +1) =0,则f (x )的图象关于y 轴对称.( )(4)若函数f (x )满足f (2+x )=f (2-x ),则f (x )的图象关于直线x =2对称.( )教材改编题1.函数f (x )=x +1x图象的对称中心为( ) A .(0,0)B .(0,1)C .(1,0)D .(1,1)2.已知定义在R 上的函数f (x )在[-2,+∞)上单调递减,且f (-2-x )=f (-2+x ),则f (-4)与f (1)的大小关系为________.3.偶函数y =f (x )的图象关于直线x =2对称,且当x ∈[2,3]时,f (x )=2x -1,则f (-1)=________.题型一 轴对称问题例1 (1)已知定义在R 上的函数f (x )是奇函数,对x ∈R 都有f (x +1)=f (1-x ),当f (-3)=-2时,则f (2 023)等于( )A .-2B .2C .0D .-4(2)已知函数f (x )的定义域为R ,且f (x +2)为偶函数,f (x )在[2,+∞)上单调递减,则不等式f (x -1)>f (1)的解集为________.听课记录:______________________________________________________________ ________________________________________________________________________ 思维升华 函数y =f (x )的图象关于直线x =a 对称⇔f (x )=f (2a -x )⇔f (a -x )=f (a +x );若函数y =f (x )满足f (a +x )=f (b -x ),则y =f (x )的图象关于直线x =a +b 2成轴对称. 跟踪训练1 (1)已知函数f (x )=-x 2+bx +c ,且f (x +1)是偶函数,则f (-1),f (1),f (2)的大小关系是( )A .f (-1)<f (1)<f (2)B .f (1)<f (2)<f (-1)C .f (2)<f (-1)<f (1)D .f (-1)<f (2)<f (1)(2)如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x -1),那么函数f (x )在[-2,0]上的最大值与最小值之和为( )A .2B .3C .4D .-1题型二 中心对称问题例2 (1)(多选)若定义在R 上的偶函数f (x )的图象关于点(2,0)对称,则下列说法正确的是( )A .f (x )=f (-x )B .f (2+x )+f (2-x )=0C .f (-x )=-f (x +4)D .f (x +2)=f (x -2)(2)已知函数f (x )满足f (x )+f (-x )=2,g (x )=1x+1,y =f (x )与y =g (x )有4个交点,则这4个交点的纵坐标之和为________.听课记录:______________________________________________________________ ________________________________________________________________________思维升华 函数y =f (x )的图象关于点(a ,b )对称⇔f (a +x )+f (a -x )=2b ⇔2b -f (x )=f (2a -x );若函数y =f (x )满足f (a +x )+f (b -x )=c ,则y =f (x )的图象关于点⎝⎛⎭⎫a +b 2,c 2成中心对称.跟踪训练2 (1)函数f (x )=e x -2-e 2-x 的图象关于( )A .点(-2,0)对称B .直线x =-2对称C .点(2,0)对称D .直线x =2对称 (2)(2023·郑州模拟)若函数f (x )满足f (2-x )+f (x )=-2,则下列函数中为奇函数的是( )A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+1题型三 两个函数图象的对称例3 已知函数y =f (x )是定义域为R 的函数,则函数y =f (x +2)的图象与y =f (4-x )的图象( )A .关于直线x =1对称B .关于直线x =3对称C .关于直线y =3对称D .关于点(3,0)对称听课记录:______________________________________________________________ ________________________________________________________________________思维升华 函数y =f (a +x )的图象与函数y =f (b -x )的图象关于直线x =b -a 2对称. 跟踪训练3 设函数y =f (x )的定义域为R ,则函数y =f (x -1)的图象与y =f (1-x )的图象( )A .关于y 轴对称B .关于x 轴对称C .关于直线x =1对称D .关于直线y =1对称。
函数对称性在高考中的应用
![函数对称性在高考中的应用](https://img.taocdn.com/s3/m/3721f43e08a1284ac95043ea.png)
函数对称性在高考中的应用标签:函数对称性高考奇函数偶函数应用函数是高中数学的主线,是高中数学的核心内容,也是整个高中数学的基础。
函数的性质是高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。
本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。
一、函数的奇偶性要研究函数的对称性一定要先研究函数的奇偶性,因为奇函数是最典型的点对称,偶函数是最典型的轴对称。
奇函数:f(x)+f(-x)=0或f(x)=-f(-x),关于原点(0,0)对称;偶函数:f(x)-f(-x)=0或f(x)=f(-x)关于y轴对称。
在对称区间上奇函数单调性相同,偶函数单调性相反。
二、函数自身的对称性探究定理1.函数y=f(x)的图像关于点A(a,b)对称的充要条件是f(x)+f (2a-x)=2b.证明:(必要性)设点P(x,y)是y=f(x)图像上任一点,∵点P(x,y)关于点A(a,b)的对称点P′(2a-x,2b-y)也在y =f(x)图像上,∴2b-y=f (2a-x),即y+f(2a-x)=2b故f(x)+f(2a -x)=2b,必要性得证。
(充分性)设点P(x0,y0)是y=f(x)图像上任一点,则y0 = f(x0),∵f (x)+f(2a-x)=2b∴f(x0)+f(2a-x0)=2b,即2b-y0=f(2a-x0)。
故点P′(2a-x0,2b-y0)也在y=f(x)图像上,而点P与点P′关于点A(a,b)对称,充分性得征。
推论:函数y=f(x)的图像关于原点O对称的充要条件是f(x)+f(-x)=0.定理2. 函数y=f(x)的图像关于直线x=a对称的充要条件是f(a+x)=f(a-x),即f(x)=f(2a-x).(证明留给读者)推论:函数y=f(x)的图像关于y轴对称的充要条件是f(x)=f(-x).定理3. ①若函数y=f(x)图像同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。
高三函数对称性知识点归纳
![高三函数对称性知识点归纳](https://img.taocdn.com/s3/m/ca29848c0408763231126edb6f1aff00bed570b0.png)
高三函数对称性知识点归纳函数对称性是数学中一个重要的概念,通过对函数的变换和图像的观察,可以揭示函数的性质和规律。
在高三数学学习中,函数对称性是一个基础而又重要的知识点。
本文将对高三函数对称性的相关知识进行归纳和总结,帮助同学们更好地理解和掌握这一概念。
一、函数关于y轴对称当函数图像在y轴上下对称时,称该函数关于y轴对称。
也就是说,当自变量取负值时,函数值与自变量取正值时函数值相等。
在代数表示中,如果函数f(-x) = f(x),则函数f(x)关于y轴对称。
例如,函数f(x) = x^2就是关于y轴对称的函数,因为 f(-x) = (-x)^2 = x^2 = f(x)。
函数图像关于y轴对称,也可以通过以下特征来判断:1. 函数是偶函数时,即f(x) = f(-x)。
2. 函数的表达式只含有偶次幂的项且系数都是实数。
二、函数关于x轴对称当函数图像在x轴左右对称时,称该函数关于x轴对称。
也就是说,当自变量取负值时,函数值与自变量取正值时函数值相等。
在代数表示中,如果函数f(x) = f(-x),则函数f(x)关于x轴对称。
例如,函数f(x) = sin(x)是关于x轴对称的函数,因为 sin(-x) = -sin(x) = f(x)。
函数图像关于x轴对称,也可以通过以下特征来判断:1. 函数是奇函数时,即f(x) = -f(-x)。
2. 函数的表达式只含有奇次幂的项且系数都是实数。
三、函数关于原点对称当函数图像在原点对称时,称该函数关于原点对称。
也就是说,当自变量取负值时,函数值与自变量取正值时函数值相反。
在代数表示中,如果函数f(x) = -f(-x),则函数f(x)关于原点对称。
例如,函数f(x) = sin(2x)是关于原点对称的函数,因为 sin(2(-x)) = -sin(2x) = -f(x)。
函数图像关于原点对称,也可以通过以下特征来判断:1. 函数的表达式中含有奇数个奇次幂的项,且系数不都为0。
函数对称性、周期性的应用(含解析)
![函数对称性、周期性的应用(含解析)](https://img.taocdn.com/s3/m/e3f8f795647d27284a73512b.png)
函数对称性、周期性的应用高考对函数性质的考查往往是综合性的,如将奇偶性、周期性、单调性及函数的零点综合考查,因此,复习过程中应注意在掌握常见函数图象和性质的基础上,注重函数性质的综合应用的演练.(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)关于轴对称(当时,恰好就是偶函数)(2)关于轴对称 在已知对称轴的情况下,构造形如的等式只需注意两点,一是等式两侧前面的符号相同,且括号内前面的符号相反;二是的取值保证为所给对称轴即可.例如:关于轴对称,或得到均可,只是在求函数值方面,一侧是更为方便(3)是偶函数,则,进而可得到:关于轴对称.① 要注意偶函数是指自变量取相反数,函数值相等,所以在中,仅是括号中的一部分,偶函数只是指其中的取相反数时,函数值相等,即,要与以下的命题区分: 若是偶函数,则:是偶函数中的占据整个括号,所以是指括号内取相反数,则函数值相等,所以有② 本结论也可通过图像变换来理解,是偶函数,则关于轴对称,而可视为平移了个单位(方向由的符号决定),所以关于对称.2、中心对称的等价描述:(1)关于中心对称(当时,恰好就是奇函数)(2)关于中心对称 在已知对称中心的情况下,构造形如的等式同样需注意两点,一是等式两侧和()()f a x f a x -=+⇔()f x x a =0a =()()()f a x f b x f x -=+⇔2a b x +=()()f a x f b x -=+f x ,a b 2a b x +=()f x 1x =()()2f x f x ⇒=-()()31f x f x -=-+()f x ()f x a +()()f x a f x a +=-+()f x x a =()f x a +x x ()()f x a f x a +=-+()f x ()()f x a f x a +=-+⎡⎤⎣⎦()f x x ()()f x a f x a +=-+⎡⎤⎣⎦()f x a +()f x a +0x =()f x ()f x a +a a ()f x x a =()()f a x f a x -=-+⇔()f x (),0a 0a =()()()f a x f b x f x -=-+⇔,02a b +⎛⎫ ⎪⎝⎭()()f a x f b x -=-+f前面的符号均相反;二是的取值保证为所给对称中心即可.例如:关于中心对称,或得到均可,同样在求函数值方面,一侧是更为方便(3)是奇函数,则,进而可得到:关于中心对称.① 要注意奇函数是指自变量取相反数,函数值相反,所以在中,仅是括号中的一部分,奇函数只是指其中的取相反数时,函数值相反,即,要与以下的命题区分: 若是奇函数,则:是奇函数中的占据整个括号,所以是指括号内取相反数,则函数值相反,所以有② 本结论也可通过图像变换来理解,是奇函数,则关于中心对称,而可视为平移了个单位(方向由的符号决定),所以关于对称.4、对称性的作用:最突出的作用为“知一半而得全部”,即一旦函数具备对称性,则只需要分析一侧的性质,便可得到整个函数的性质,主要体现在以下几点:(1)可利用对称性求得某些点的函数值(2)在作图时可作出一侧图像,再利用对称性得到另一半图像(3)极值点关于对称轴(对称中心)对称(4)在轴对称函数中,关于对称轴对称的两个单调区间单调性相反;在中心对称函数中,关于对称中心对称的两个单调区间单调性相同(二)函数的周期性1、定义:设的定义域为,若对,存在一个非零常数,有,则称函数是一个周期函数,称为的一个周期2、周期性的理解:可理解为间隔为的自变量函数值相等3、若是一个周期函数,则,那么,即也是的一个周期,进而可得:也是的一个周期4、最小正周期:正由第3条所说,也是的一个周期,所以在某些周期函数中,往往寻找x ,a b 2a b x +=()f x ()1,0-()()2f x f x ⇒=---()()35f x f x -=--+()f x ()f x a +()()f x a f x a +=--+()f x (),0a ()f x a +x x ()()f x a f x a +=-+()f x ()()f x a f x a +=--+⎡⎤⎣⎦()f x x ()()f x a f x a +=--+⎡⎤⎣⎦()f x a +()f x a +()0,0()f x ()f x a +a a ()f x (),0a ()f x D x D ∀∈T ()()f x T f x +=()f x T ()f x T ()f x ()()f x T f x +=()()()2f x T f x T f x +=+=2T ()f x ()kT k Z ∈()f x ()kT k Z ∈()f x周期中最小的正数,即称为最小正周期.然而并非所有的周期函数都有最小正周期,比如常值函数5、函数周期性的判定:(1):可得为周期函数,其周期(2)的周期分析:直接从等式入手无法得周期性,考虑等间距再构造一个等式:所以有:,即周期注:遇到此类问题,如果一个等式难以推断周期,那么可考虑等间距再列一个等式,进而通过两个等式看能否得出周期(3)的周期 分析: (4)(为常数)的周期分析:,两式相减可得:(5)(为常数)的周期(6)双对称出周期:若一个函数存在两个对称关系,则是一个周期函数,具体情况如下:(假设)① 若的图像关于轴对称,则是周期函数,周期分析:关于轴对称关于轴对称的周期为② 若的图像关于中心对称,则是周期函数,周期③ 若的图像关于轴对称,且关于中心对称,则是周期函数,周期()f x C =()()f x a f x b +=+()f x T b a =-()()()f x a f x f x +=-⇒2T a =()()2f x a f x a +=-+()()()()()2f x a f x a f x f x +=-+=--=2T a =()()()1f x a f x f x +=⇒2T a =()()()()1121f x a f x f x a f x +===+()()f x f x a k ++=k ()f x ⇒2T a =()()()(),2f x f x a k f x a f x a k ++=+++=()()2f x a f x +=()()f x f x a k ⋅+=k ()f x ⇒2T a =()f x ()f x b a >()f x ,x a x b ==()f x ()2T b a =-()f x x a =()()2f x f a x ⇒-=+()f x x b =()()2f x f b x ⇒-=+()()22f a x f b x ∴+=+()f x ∴()222T b a b a =-=-()f x ()(),0,,0a b ()f x ()2T b a =-()f x x a =(),0b ()f x ()4T b a =-7、函数周期性的作用:简而言之“窥一斑而知全豹”,只要了解一个周期的性质,则得到整个函数的性质.(1)函数值:可利用周期性将自变量大小进行调整,进而利用已知条件求值(2)图像:只要做出一个周期的函数图象,其余部分的图像可利用周期性进行“复制+粘贴”(3)单调区间:由于间隔的函数图象相同,所以若在上单调增(减),则在上单调增(减)(4)对称性:如果一个周期为的函数存在一条对称轴 (或对称中心),则 存在无数条对称轴,其通式为 证明:关于轴对称函数的周期为关于轴对称 注:其中(3)(4)在三角函数中应用广泛,可作为检验答案的方法.【经典例题】例1.【2020年高考全国Ⅲ卷文数12】已知函数()1sin sin f x x x =+,则 ( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线x =π对称D .()f x 的图像关于直线2x π=对称例2.(2020·全国高三三模)已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为( )A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 例3.(2020·南岗·黑龙江实验中学高三三模)若()f x 为偶函数,对任意x ∈R ,()()11f x f x -=+恒成立,且当10x -≤≤时,()()()211f x x x =-+.则方程()29log f x x =根的个数为( ) ()kT k Z ∈()f x ()(),a b b a T -≤()f x ()(),a kT b kT k Z ++∈T ()f x x a =()f x ()2kT x a k Z =+∈()f x x a =()()2f x f a x ∴=-()f x T ()()f x kT f x ∴+=()()2f x kT f a x ∴+=-()f x ∴2kT x a =+A .6B .8C .12D .16例4.(2020·山西大学附中三模)已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭ D.⎫⎪⎪⎝⎭例5.(2020·启航中学三模)已知函数()f x 在定义域上的值不全为零,若函数()1f x +的图象关于()1,0对称,函数()3f x +的图象关于直线1x =对称,则下列式子中错误的是( )A .()()f x f x -=B .(2)(6)f x f x -=+C .(2)(2)0f x f x -++--=D .(3)(3)0f x f x ++-= 例6.(2020·山东高密·高三三模)已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( ) A .0 B .6 C .12 D .18例7.(2020·四川泸州·高三三模)定义在实数集R 上的函数()f x 满足(1)(1)f x f x +=-,且当1≥x 时,()f x 是增函数,则()3log 2a f =,⎛=- ⎝b f ,(3)c f =的大小关系正确的是( ). A .a b c >> B .b c a >> C .c a b >>D .b a c >> 例8.(2020·北大附中高三三模)若定义在R 上的偶函数()f x 满足()()2f x f x +=,且在区间[]1,2上是减函数,()11f =,()01f =-现有下列结论,其中正确的是:( )①()f x 的图象关于直线1x =对称;②()f x 的图象关于点3,02⎛⎫⎪⎝⎭对称;③()f x 在区间[]3,4上是减函数;④()f x 在区间()4,4-内有8个零点.A .①③B .②④C .①③④D .②③④ 例9.(2020·咸阳市教育教学研究室高三三模)设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=( ) A .222e e +B .25050e e +C .2100100e e +D .222e e --例10.(2020·山东省实验高三三模)已知定义域为R 的奇函数()f x 满足()()210f x f x -++=,且当()0,3x ∈时,()()12f f ==-则()()()()0122020f f f f +++⋅⋅⋅+=( )A .0BC .D .【精选精练】1.(2020·黑龙江·大庆四中三模)已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,2()log (27)f x x =+,则(2020)f =()A .2-B .2log 3C .3D .2log 5- 2.(2020·济南一中2020届高三三模)若定义在R 上的函数()f x 满足()()0f x f x -+=,()()4f x f x +=,且当()0,2x ∈时,()2x f x =,则()2log 2019f =( )A .20482019-B .40962019-C .40962019D .201940963.(2020·西安市鄠邑区第一中学三模)已知函数()f x 满足()()f x f x =-和()()+2f x f x =,且在[]0,1x ∈时,()1f x x =-,则关于x 的方程13x y ⎛⎫= ⎪⎝⎭在[]0,4上解的个数是( ) A .2 B .3 C .4 D .54.(2020·哈尔滨市第一中学校三模)已知定义在R 上的函数满足()()2,(0,2]f x f x x +=-∈时,()sin f x x x π=-,则20201()i f i ==∑( )A .6B .4C .2D .05.(2020·湖南开福·周南中学三模)已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe -=,若关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,则实数t 的取值范围是( )A .120,e -⎛⎤ ⎥⎝⎦B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎤ ⎥⎝⎦D .112,2e e --⎡⎫⎪⎢⎣⎭6.(2020·浙江西湖·学军中学高三三模)定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( ) A .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭7.(2020·陕西省商丹高新学校三模)若定义在R 上的函数()f x 满足()()2f x f x +=且[]1,1x ∈-时,()f x x =,则方程()3log f x x =的根的个数是A .4B .5C .6D .78.(2020·全国高三三模)已知函数()f x 的图象关于直线1x =对称,当211x x >>时,2121[()()]()0f x f x x x --<恒成立,设1()2a f =-,(2)b f =,()c f e =,则,,a b c 的大小关系为( ) A .c a b >> B .c b a >> C .b a c >> D .a c b >>9.(2020·贵州黔东南·高三三模)已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为( )A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞10.(2020·湖北黄州·黄冈中学三模)方程()222(1)(3)x x x x y e e ----=+的曲线有下列说法: ①该曲线关于2x =对称;②该曲线关于点(2,1)-对称;③该曲线不经过第三象限;④该曲线上有无数个点的横、纵坐标都是整数.其中正确的是( )A .②③B .①④C .②④D .①③11.(2020·湖南长沙一中三模)设函数()f x 的定义域为R ,()()f x f x -=,()()2f x f x =-,当[]01x ∈,时,()3f x x =,则函数()()g x cos x f x π-=在区间13,22⎡⎤-⎢⎥⎣⎦上零点的个数为( ) A .3B .4C .5D .612.(2020·云南省下关第一中学三模)已知定义在R 上的函数()f x 满足()()1f 3x f x +=-,且()3y f x =+为偶函数,若()f x 在()0,3内单调递减,则下面结论正确的是( )A .()()()4.5 3.512.5f f f -<<B .()()()3.5 4.512.5f f f -<<C .()()()12.5 3.5 4.5f f f -<<D .()()()3.512.5 4.5f f f -<<13.(2020·福建高三三模)已知定义在R 上的函数()f x 的对称中心为()2,0,且当[2,)x ∈+∞时,2()2f x x x =-+,则不等式()f x x >的解集为( )A.⎛ ⎝-⎭∞ B.⎫⎪⎝+⎭∞⎪ C.⎫⎪⎝+⎭∞⎪ D.⎛ ⎝-⎭∞ 14.(2020·广东濠江·金山中学高三三模)已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x +=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1m i i i x y =+=∑( ) A .0 B .m C .2m D .4m【经典例题】例1.【2020年高考全国Ⅲ卷文数12】已知函数()1sin sin f x x x =+,则 ( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线x =π对称D .()f x 的图像关于直线2x π=对称 【答案】D【思路导引】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C ,D .【解析】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x xππ-=--≠-=+=故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对,故选:D .【专家解读】本题考查了三角函数图象及其性质,考查三角函数周期公式,考查数形结合思想,考查数学运算、直观想象等学科素养.解题关键是熟记三角函数的性质.例2.(2020·全国高三三模)已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为( )A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 【答案】B【解析】因为定义域为R 的函数()f x 的图像关于原点对称,所以()00f =,因为()()30f x f x -+-=,()()630f x f x -+-=,两式相减可得,()()6f x f x -=-,故6T =,故()()202200f f -==;因为()()()2022064f f f '''-===,故所求切线方程为48088y x =+,故选:B .例3.(2020·南岗·黑龙江实验中学高三三模)若()f x 为偶函数,对任意x ∈R ,()()11f x f x -=+恒成立,且当10x -≤≤时,()()()211f x x x =-+.则方程()29log f x x =根的个数为( )A .6B .8C .12D .16【答案】D【解析】对任意x ∈R ,()()11f x f x -=+恒成立,故()()2f x f x -=+,又()f x 为偶函数,所以()()2f x f x =+,2T =,且当10x -≤≤时,()()()221122f x x x x =-+=-,设()293log log h x x x ==,则()h x 为偶函数,求方程()29log f x x =根的个数转化为求()f x 与()g x 的交点个数,画出当0x >时()y f x =与()y g x =的图像,如图:可知两图像有8个交点,又()f x 与()g x 都为偶函数,所以()f x 与()g x 有16个交点,即方程()29log f x x =根的个数为16.故选:D.例4.(2020·山西大学附中三模)已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.0,6⎛⎫⎪ ⎪⎝⎭B.6⎛⎫⎪ ⎪⎝⎭C.0,5⎛ ⎝⎭D.5⎛⎫⎪ ⎪⎝⎭【答案】A【解析】由题可知:cos 12y x π⎛⎫=-⎪⎝⎭与log a y x =的图像 在0x >的交点至少有3对,可知()0,1a ∈, 如图所示,当6x =时,log 62a >-,则0a <<故实数a的取值范围为0,6⎛ ⎝⎭故选:A例5.(2020·启航中学三模)已知函数()f x 在定义域上的值不全为零,若函数()1f x +的图象关于()1,0对称,函数()3f x +的图象关于直线1x =对称,则下列式子中错误的是( ) A .()()f x f x -=B .(2)(6)f x f x -=+C .(2)(2)0f x f x -++--=D .(3)(3)0f x f x ++-=【答案】D【解析】∵函数(1)f x +的图象关于()1,0对称, ∴函数()f x 的图象关于(2,0)对称,令()(1)F x f x =+,∴()()2F x F x =--,即()(3)1f x f x -=-+,∴()()4f x f x -=- …⑴ 令()(3)G x f x =+,∵其图象关于直线对称,∴()()2G x G x +=-,即()()53f x f x +=-,∴()()44f x f x +=- …⑵ 由⑴⑵得,()()4f x f x +=-,∴()()8f x f x += …⑶ ∴()()()844f x f x f x -=-=+-,由⑵得()()()()()4444f x f x f x +-=--=,∴()()f x f x -=;∴A 对; 由⑶,得()()282f x f x -+=-,即()()26f x f x -=+,∴B 对; 由⑴得,()()220f x f x -++=,又()()f x f x -=, ∴()()(2)(2)220f x f x f x f x -++--=-++=,∴C 对;若()()330f x f x ++-=,则()()6f x f x +=-,∴()()12f x f x +=,由⑶得()()124f x f x +=+,又()()4f x f x +=-,∴()()f x f x =-,即()0f x =,与题意矛盾,∴D 错.故选:D.例6.(2020·山东高密·高三三模)已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( )A .0B .6C .12D .18【答案】D 【解析】()211211x g x x x -==+--,由此()g x 的图像关于点()1,2中心对称,()12y f x =+-是奇函数()()1212f x f x -+-=-++,由此()()114f x f x -+++=,所以()f x 关于点()1,2中心对称,1266x x x +++=,12612y y y +++=,所以12612618x x x y y y +++++++=,故选D例7.(2020·四川泸州·高三三模)定义在实数集R 上的函数()f x 满足(1)(1)f x f x +=-,且当1≥x 时,()f x 是增函数,则()3log 2a f =,⎛=- ⎝b f ,(3)c f =的大小关系正确的是( ). A .a b c >> B .b c a >> C .c a b >>D .b a c >>【答案】C 【解析】(1)(1)f x f x +=-,∴()f x 关于1x =对称,又1≥x 时,()f x 是增函数,()()3339log 22log 2log 2f f f ⎛⎫=-= ⎪⎝⎭,33392log 4,log 4log 321-==<<<, ∴b a c <<.故选:C.例8.(2020·北大附中高三三模)若定义在R 上的偶函数()f x 满足()()2f x f x +=,且在区间[]1,2上是减函数,()11f =,()01f =-现有下列结论,其中正确的是:( ) ①()f x 的图象关于直线1x =对称;②()f x 的图象关于点3,02⎛⎫⎪⎝⎭对称;③()f x 在区间[]3,4上是减函数;④()f x 在区间()4,4-内有8个零点. A .①③ B .②④ C .①③④ D .②③④【答案】C【解析】由()()2f x f x +=,得()()2f x f x -=-, 结合()f x 为偶函数,得()()2f x f x -=, 则曲线()y f x =关于直线1x =对称,则①正确; 无法推出()()3f x f x -=-,则②不一定正确;由曲线()()12y f x x =≤≤可得曲线()()01y f x x =≤≤, 即得曲线()()02y f x x =≤≤,恰好是在一个周期内的图象; 再根据()f x 是以2为周期的函数,得到曲线()()24y f x x =≤≤,因为在()y f x =在[]1,2上是减函数,()y f x =在[]3,4上是减函数,则③正确; 因为()y f x =在[]1,2上是减函数,()110f =>,()210f =-<,所以()y f x =在[]1,2上有唯一的一个零点,根据对称性,()f x 在区间()4,4-内有8个零点.故选:C.例9.(2020·咸阳市教育教学研究室高三三模)设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=( )A .222e e +B .25050e e +C .2100100e e +D .222e e --【答案】A【解析】由()()22f x f x -=+得:()f x 关于2x =对称 又()f x 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=且()()()()2123422f f f f e e +++=+()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+,故选:A例10.(2020·山东省实验高三三模)已知定义域为R 的奇函数()f x 满足()()210f x f x -++=,且当()0,3x ∈时,()()12f f ==-则()()()()0122020f f f f +++⋅⋅⋅+=( )A .0BC .D .【答案】B 【解析】()f x 是奇函数且满足()()210f x f x -++=,(1)(2)(2)f x f x f x ,(3)()f x f x ∴+=,()f x ∴是以3为周期的函数,且(0)0f =,()()()()()()()0122020674067416732f f f f f f f ∴+++⋅⋅⋅+=++=故选:B.【精选精练】1.(2020·黑龙江·大庆四中三模)已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,2()log (27)f x x =+,则(2020)f =() A .2- B .2log 3C .3D .2log 5-【答案】D 【解析】已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,()()(3)f x f x f x ∴-=-=-,∴()f x 的周期为3.3,02x ⎛⎫∴∈- ⎪⎝⎭时,2()log (27)f x x =+,22(2020)(36731)(1)(1log (27)lo )5g f f f f =⨯+==-=--+-=-,故选D .2.(2020·济南一中2020届高三三模)若定义在R 上的函数()f x 满足()()0f x f x -+=,()()4f x f x +=,且当()0,2x ∈时,()2x f x =,则()2log 2019f =( )A .20482019-B .40962019-C .40962019D .20194096【答案】B【解析】由()()4f x f x +=,得函数()f x 的周期是4. 由()()0f x f x -+=,则()f x 在R 上是奇函数, 且当()0,2x ∈时,()2xf x =,210log 201911<<,所以()()()222log 2019log 20191212log 2019f f f =-=--212log 2019409622019-=-=-.故选:B 3.(2020·西安市鄠邑区第一中学三模)已知函数()f x 满足()()f x f x =-和()()+2f x f x =,且在[]0,1x ∈时,()1f x x =-,则关于x 的方程13x y ⎛⎫= ⎪⎝⎭在[]0,4上解的个数是( )A .2B .3C .4D .5【答案】D【解析】由题意可得,函数()f x 为偶函数,且是周期为2的周期函数. 方程1()()3xf x =在[0x ∈,4]上解的个数,即函数()y f x =的图象与函数1()3xy =的图象在[0,4]上的交点个数,再根据当[0x ∈,1]时,()1f x x =-, 设1,(0)11()()()()330x xx g x g f x =--∴-==.因为1211113()1()0223236g -=--=-=<,数形结合可得,函数()y f x =的图象与函数1()3xy =的图象在[0,1)内存在两个交点,画出函数()f x 在[0,4]上的图象,如图,故函数()y f x =的图象与函数1()3xy =的图象在[0,4]上的交点个数为5.(在[0,1]内有2个,在[1,2]有1个,在(2,4]有2个),故选:D .4.(2020·哈尔滨市第一中学校三模)已知定义在R 上的函数满足()()2,(0,2]f x f x x +=-∈时,()sin f x x x π=-,则20201()i f i ==∑( )A .6B .4C .2D .0【答案】D【解析】根据题意,函数()f x 满足()()2f x f x +=-,则()4()f x f x +=,即()f x 是周期为4的周期函数,当2(]0,x ∈时,()sin f x x x π=-,则()11sin 1f π=-=,()22sin 22f π=-=, 又由()()2f x f x +=-,则()()()()311,422f f f f =-=-=-=-, 所以(1)(2)(3)(4)0f f f f +++=,所以20201()505((1)(2)(3)(4))0i f i f f f f ==⨯+++=∑.故选:D .5.(2020·湖南开福·周南中学三模)已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe-=,若关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,则实数t 的取值范围是( )A .120,e -⎛⎤ ⎥⎝⎦B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎤ ⎥⎝⎦D .112,2e e --⎡⎫⎪⎢⎣⎭【答案】B【解析】当[0,3]x ∈时,2()xf x xe =,22211122()x x xf x ee e x x ---⎛⎫-=- ⎪⎝⎭'=, 当(2,3]x ∈时,()0f x '<,当[0,2)x ∈时,()0f x '>, 所以函数()f x 在(2,3]x ∈单调递减,在2(]0,x ∈单调递增,(0)0f =,32(3)30f e -=>,又(3)(3)f x f x +=-,函数()f x 关于3x =对称,且是偶函数,所以()()f x f x =-,所以(3)(3)(3)f x f x f x +=-=-,所以函数周期6T =,关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,即()f x t >在[150,150]-上有且只有150个整数解,所以每个周期内恰有三个整数解结合草图可得:1322,3t e e --⎡⎫∈⎪⎢⎣⎭.故选:B.6.(2020·浙江西湖·学军中学高三三模)定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos xf x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭【答案】C【解析】∵f (x )是奇函数;∴f (x+2)=f (-x )=-f (x );∴f (x+4)=-f (x+2)=f (x ); ∴f (x )的周期为4;∴f (2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ ∵x ∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫⎪⎝⎭∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C.7.(2020·陕西省商丹高新学校三模)若定义在R 上的函数()f x 满足()()2f x f x +=且[]1,1x ∈-时,()f x x =,则方程()3log f x x =的根的个数是A .4B .5C .6D .7【答案】A【解析】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数.又[1,1]x ∈-时,()||f x x =,所以函数()f x 的图象如图所示.再作出3log y x =的图象,易得两图象有4个交点,所以方程3()log ||f x x =有4个零点.故应选A . 8.(2020·全国高三三模)已知函数()f x 的图象关于直线1x =对称,当211x x >>时,2121[()()]()0f x f x x x --<恒成立,设1()2a f =-,(2)b f =,()c f e =,则,,a b c 的大小关系为( )A .c a b >>B .c b a >>C .b a c >>D .a c b >>【答案】C【解析】:∵当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立, ∴()()()122121,1,,0x x x x f x f x ∀∈+∞>-<且,有 , ∴f (x )在(1,+∞)上单调递减, 又∵函数f (x )的图象关于直线x =1对称, ∴a=f (12-)=f (52),∵e>52>2>1, ∴f (e)<f (52)<f (2) 即b>a>c,故选:C.9.(2020·贵州黔东南·高三三模)已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为( ) A .[4,)+∞ B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】C【解析】函数()f x 的图象关于点()1,0对称且在(,0)-∞上单调递增,所以()f x 在(2,)+∞上单调递增,所以对称轴22m≤,即4m ≤.故选:C 10.(2020·湖北黄州·黄冈中学三模)方程()222(1)(3)x xx x y e e ----=+的曲线有下列说法:①该曲线关于2x =对称; ②该曲线关于点(2,1)-对称;③该曲线不经过第三象限;④该曲线上有无数个点的横、纵坐标都是整数. 其中正确的是( ) A .②③ B .①④ C .②④ D .①③【答案】D【解析】因为曲线方程为()222(1)(3)x xx x y e e ----=+,而220x x e e --+>恒成立,故等价于()()()22213x xx x y f x ee----==+.①因为()()()()21122xxx x f x f x e e-+-+==-+,故该曲线关于2x =对称;②要该曲线关于()2,1-对称,则需满足()()2212f x f x ++-=-,而由①中所求,显然()()22f x f x ++-不是常数,故该曲线不关于()2,1-对称; ③当0x <时,()()2130x x -->,且220x x e e --+>,则()0f x >恒成立, 故该曲线不经过第三象限;④容易知()()()21,10,30f f f =-==,此外该曲线上没有其它横纵坐标都是整数的点. 事实上,本题可以利用导数和函数对称性可知,函数图像如下所示:,则容易知该曲线的各种性质. 故选:D.11.(2020·湖南长沙一中三模)设函数()f x 的定义域为R ,()()f x f x -=,()()2f x f x =-,当[]01x ∈,时,()3f x x =,则函数()()g x cos x f x π-=在区间13,22⎡⎤-⎢⎥⎣⎦上零点的个数为( ) A .3 B .4 C .5 D .6【答案】C【解析】由()()f x f x -=,得()f x 的图象关于y 轴对称. 由()()2f x f x =-,得()f x 的图象关于直线1x =对称.当[]01x ∈,时,()3f x x =,所以()f x 在[]1,2-上的图象如图. 令()()0g x cos x f x π-==,得()cos x f x π=,两函数()y f x =与y cos x π=的图象在13,22⎡⎤-⎢⎥⎣⎦上的交点有5个.故选:C.12.(2020·云南省下关第一中学三模)已知定义在R 上的函数()f x 满足()()1f 3x f x +=-,且()3y f x =+为偶函数,若()f x 在()0,3内单调递减,则下面结论正确的是( )A .()()()4.5 3.512.5f f f -<<B .()()()3.5 4.512.5f f f -<<C .()()()12.5 3.5 4.5f f f -<<D .()()()3.512.5 4.5f f f -<<【答案】B【解析】∵函数()f x 满足()()13f x f x +=-,∴()()163f x f x +=-+=()1f x 1f x -=-(), ∴f (x )在R 上是以6为周期的函数,∴f (12.5)=f (12+0.5)=f (0.5),()()()4.5 4.56 1.5f f f -=-+=又()3y f x =+为偶函数,∴f (x )的对称轴为x =3,∴f (3.5)=f (2.5), 又∵0<0.5<1.5<2.5<3,且()f x 在(0,3)内单调递减,∴f (2.5)<f (1.5)<f (0.5) 即f (3.5)<f (-4.5)<f (12.5),故选B .13.(2020·福建高三三模)已知定义在R 上的函数()f x 的对称中心为()2,0,且当[2,)x ∈+∞时,2()2f x x x =-+,则不等式()f x x >的解集为( )A.⎛ ⎝-⎭∞ B.⎫⎪⎝+⎭∞⎪ C.⎫⎪⎝+⎭∞⎪ D.⎛ ⎝-⎭∞ 【答案】D【解析】依题意知()f x 图象关于点(2,0)对称, 作出()f x 图象如图,可知()f x 在R 上为减函数,由图象可得(,2]x ∈-∞时,()(4)(2)(4)f x f x x x =--=--,由(2)(4)x x x x --=⇒=或x 舍去), 由图象可知()f x x >的解为⎛ ⎝-⎭∞,故选:D .14.(2020·广东濠江·金山中学高三三模)已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x +=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1mi i i x y =+=∑( )A .0B .mC .2mD .4m【答案】C【解析】因为函数()f x (x ∈R )满足()()4f x f x -=-,即函数()f x (x ∈R )满足()()22f x f x -+=,所以()y f x =是关于点(0,2)对称,函数21x y x +=等价于12y x =+, 所以函数21x y x +=也关于点(0,2)对称,所以函数21x y x+=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y 也关于点(0,2)对称,故交点()11,x y ,()22,x y ,…,(),m m x y 成对出现,且每一对点都关于(0,2)对称,故()12121()()0422mi i m m i mx y x x x y y y m =+=+++++++=+⨯=∑. 故选:C.。
48.函数图象的对称性(高考)
![48.函数图象的对称性(高考)](https://img.taocdn.com/s3/m/34488b1711661ed9ad51f01dc281e53a580251d6.png)
函数图象的对称性对称性是函数图象的一个重要性质,其中包含着函数的奇偶性.函数图象的对称性又分一个函数图象自身的对称性和两个函数图象的对称性.一、函数图象自身的对称性(自对称)结论1:若)()(x a f x a f -=+(⇔)()2(x f x a f =-,即函数)(x a f y +=为偶函数),则)(x f 的图象关于直线a x =对称.特别地,若)()(x f x f =-,则)(x f 的图象关于直线0=x 即y 轴对称. 证明:用x a -代换)()(x a f x a f -=+中的x ,可得)()2(x f x a f =-;再次用x a -代换)()2(x f x a f =-中的x ,可得)()(x a f x a f -=+.所以)()(x a f x a f -=+⇔)()-2(x f x a f =. 设))(,(x f x P 是)(x f 图象上的任意一点,则它关于直线a x =的对称点为))(,2('x f x a P -,因为)()-2(x f x a f =,所以))2(,2('x a f x a P --,即'P 在)(x f 的图象上.所以)(x f 的图象关于直线a x =对称.例1 (2009年高考山东卷)已知定义在R 上的奇函数)(x f ,满足)()4(x f x f -=-,且在区间]2,0[上是增函数,则( )A .)80()11()25(f f f <<-B .)25()11()80(-<<f f fC .)25()80()11(-<<f f fD .)11()80()25(f f f <<-分析:由条件)()4(x f x f -=-可得函数的周期性,用其先把三个函数值化简,然后结合函数的奇偶性,得出函数图象的对称性,即可进一步转化函数值,最后用函数的单调性比较大小.解:由)()4(x f x f -=-,可得)()4()4)4(()8(x f x f x f x f =--=--=-,所以)(x f 的周期8=T ,所以)0()80(),3()11(),1()25(f f f f f f ==-=-.因为)(x f 是定义在R 上的奇函数,所以0)80(),1()25(=-=-f f f ,)()4(x f x f =-,所以)(x f 图象关于直线2=x 对称,所以)1()3()11(f f f ==.因为在区间]2,0[上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,所以)11()80()25(f f f <<-.选D .评注:若画出草图,数形结合,会把抽象函数直观化,更快捷.练习1 设)(x f 是定义在实数集R 上的函数,且满足下列关系)10()10(x f x f -=+, )20()20(x f x f -=+,则)(x f 是( )A .偶函数,又是周期函数B .偶函数,但不是周期函数C .奇函数,又是周期函数D .奇函数,但不是周期函数解:由)10()10(x f x f -=+可得)(x f 图象关于直线10=x 对称,由)20()20(x f x f -=+可得)(x f 图象关于直线20=x 对称,所以)(x f 是周期函数,其周期20|1020|2=-=T ,同时得)(x f 图象关于y 轴对称,所以)(x f 是偶函数.选A .练习2 已知)(x f 是定义域为R 的奇函数,满足)1()1(x f x f -=+.若2)1(=f ,则=+++)50()2()1(f f f ( )A .50-B .0C .2D .50解:由)1()1(x f x f -=+可得)(x f 图象关于直线1=x 对称,又因为)(x f 是奇函数,所以)(x f 是周期函数,其周期4|01|4=-=T .因为0)0()2(==f f ,2)1()3(-=-=f f ,0)0()4(==f f ,所以++)2()1(f f 0)4()3(=+f f ,所以2)2()1()50()2()1(=+=+++f f f f f .选C .例2 (2022年新高考Ⅰ卷,多选题)已知函数)(x f 及其导函数)('x f 的定义域均为R ,记)()('x f x g =,若)2(,223x g x f +⎪⎭⎫ ⎝⎛-均为偶函数,则( ) A .0)0(=f B .021=⎪⎭⎫ ⎝⎛-g C .)4()1(f f =- D .)2()1(g g =- 解:由⎪⎭⎫ ⎝⎛-x f 223为偶函数,可得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+x f x f 223223,所以⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+x f x f 2323①,所以)(x f 图象关于直线23=x 对称,把25=x 代入①式得)4()1(f f =-,所以C 正确;由)2(x g +为偶函数,可得)2()2(x g x g +=-②,所以)(x g 图象关于直线2=x 对称,由②无法推出D ,错误.依题意23=x 是)(x f 的极值点,所以023=⎪⎭⎫ ⎝⎛g ;所以0252322=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⨯g g ,所以25=x 是)(x f 的极值点,所以2125232=-⨯=x 也是)(x f 的极值点,所以021=⎪⎭⎫ ⎝⎛g ;所以0272122=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⨯g g ,所以27=x 也是)(x f 的极值点,所以2127232-=-⨯=x 也是)(x f 的极值点,所以021=⎪⎭⎫ ⎝⎛-g ,所以B 正确.)0(f 是)(x f 的常数项,不一定为0,所以A 错误.例3 函数x x x f 212)(4+=+的图象关于( ) A .点)0,2(-对称 B .直线2-=x 对称 C .点)0,2(对称 D .直线2=x 对称解法一:⎪⎭⎫ ⎝⎛+=++222124)(x x x f ,易证明x x y 212+=是偶函数,图象关于y 轴对称,而22212+++=x x y 的图象可由前者向左平移2个单位得到,所以)(x f 图象关于直线2-=x 对称.选B .解法二:组成)(x f 两个函数之间用+号连接,所以二者交换位置依然如故,设用y 代换其中的x 可以达成互换,即⎩⎨⎧+=--=+.4,4x y x y 解得4--=x y ,所以)()4(x f x f =--,所以)(x f 图象关于直线2-=x 对称.选B .练习3 已知)4ln()2ln()(x x x f -+-=,则( A )A .)(x f 的图象关于直线3=x 对称B .)(x f 的图象关于点)0,3(对称C .)(x f 在)4,2(上单调递增D .)(x f 在)4,2(上单调递减结论2:若)()(x b f x a f -=+,则)(x f 的图象关于直线2b a x +=对称;若)()(x f x b a f =-+,则)(x f 的图象关于直线2b a x +=对称;若)()(mx b f mx a f -=+,则)(x f 的图象关于直线2b a x +=对称;若)()(mx f mx b a f =-+,则)(x f 的图象关于直线2b a x +=对称.显然结论1是结论2的特例. 证明:设))(,(x a f x a P ++是)(x f 图象上的任意一点,则它关于直线2b a x +=的对称点为))(,('x a f x b P +-,因为)()(x b f x a f -=+,所以))(,('x b f x b P --,即'P 在)(x f 的图象上.所以)(x f 的图象关于直线2b a x +=对称. 例4 (2021年高考全国甲卷)设)(x f 是定义域为R 的奇函数,且)()1(x f x f -=+.若3131=⎪⎭⎫ ⎝⎛-f ,则=⎪⎭⎫ ⎝⎛35f ( ) A .35- B .31- C .31 D .35 分析:把)(x f -视为)0(x f -,即可由结论2得出)(x f 图象的对称性,进而再结合奇偶性求出)(x f 的周期,即可转化⎪⎭⎫ ⎝⎛35f . 解:由)()1(x f x f -=+可得)0()1(x f x f -=+,所以)(x f 图象关于直线21201=+=x 对称,又因为)(x f 是奇函数,所以)(x f 的周期20214=-=T ,所以313135=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛f f .选C . 评注:函数图象的对称性还可以由结论1得出:因为)())(1()1(x f x f x f -=--=+,所以)(x f 图象关于直线21=x 对称. 练习4 若函数)(x f 在定义域R 内可导,)1.0()9.1(x f x f -=+,且0)()1('<-x f x ,)3(,21),0(f c f b f a =⎪⎭⎫ ⎝⎛==,则c b a ,,的大小关系是( ) A .c b a >> B .b a c >> C .a b c >> D .c a b >>解:由)1.0()9.1(x f x f -=+可得)(x f 的图象关于直线121.09.1=+=x 对称,所以)1(-=f c . 由0)()1('<-x f x 可知当1<x 时,0)('>x f ,)(x f 单调递增,所以b a c <<.选D .结论3:若)()(x a f x a f --=+(⇔)()2(x f x a f -=-或0)()(=-++x a f x a f ,即函数)(x a f y +=为奇函数),则)(x f 的图象关于点)0,(a 对称.特别地,若)()(x f x f --=(0)()(=-+x f x f ),则)(x f 的图象关于点)0,0(即原点对称.证明:设))(,(x f x P 是)(x f 图象上的任意一点,则它关于点)0,(a 的对称点为))(,2(x f x a P --,,因为)()2(x f x a f -=-,所以))2(,2('x a f x a P --,即'P 在)(x f 的图象上.所以)(x f 的图象关于点)0,(a 对称.例5 (1992年全国高中数学联赛)设)(x f 是定义在实数集R 上的函数,且满足下列关系)10()10(x f x f -=+,)20()20(x f x f --=+,则)(x f 是( )A .偶函数,又是周期函数B .偶函数,但不是周期函数C .奇函数,又是周期函数D .奇函数,但不是周期函数解:由)10()10(x f x f -=+可得)(x f 图象关于直线10=x 对称,由)20()20(x f x f --=+可得)(x f 图象关于点)0,20(对称,所以)(x f 是周期函数,其周期40|1020|4=-=T ,同时得)(x f 图象关于原点对称,所以)(x f 是奇函数.选C .练习5 函数x x e e x f --=2)(的图象关于() A .点)0,1(对称 B .直线1-=x 对称 C .点)0,1(-对称 D .直线1=x 对称 解法一:)()(11x x e e e x f ---=,易证明x x e e y --=是奇函数,图象关于原点对称,而x x e e y ---=11的图象可由前者向右平移1个单位得到,所以)(x f 图象关于点)0,1(对称.选A .解法二:组成)(x f 两个函数之间用—号连接,所以二者交换位置后互为相反,设用y 代换其中的x 可以达成前后互换,即⎩⎨⎧=--=.2,2x y x y 解得x y -=2,所以)()2(x f x f -=-,所以)(x f 图象关于点)0,1(对称对称.选A .结论4:若)(2)(x a f b x a f --=+(⇔)(2)2(x f b x a f -=-或b x a f x a f 2)()(=-++),则)(x f 的图象关于点),(b a 对称.若)(2)(x n f b x m f --=+(b x n f x m f 2)()(=-++),则)(x f 的图象关于点⎪⎭⎫ ⎝⎛+b n m ,2对称. 证明:设))(,(x f x P 是)(x f 图象上的任意一点,则它关于点),(b a 的对称点为))(2,2(x f b x a P --,,因为)(2)-2(x f b x a f -=,所以))2(,2('x a f x a P --,即'P 在)(x f 的图象上.所以)(x f 的图象关于点),(b a 对称.例6 (2022年高考全国乙卷)已知函数)(),(x g x f 的定义域均为R ,且)(,5)2()(x g x g x f =-+ 7)4(=--x f .若)(x g y =的图象关于直线2=x 对称,4)2(=g ,则∑==221)(i k f ( ) A .21-B .22-C .23-D .24- 分析:根据对称性和已知条件得到2)2()(-=-+x f x f ,从而得到10)21()5()3(-=+++f f f ,10)22()6()4(-=+++f f f ,易求)2(f 的值,再由题意得到6)3(=g ,进而可得)1(f 的值.解:因为)(x g y =的图象关于直线2=x 对称,所以)2()2(+=-x g x g ,因为7)4()(=--x f x g ,所以7)2()2(=--+x f x g ,即)2(7)2(-+=+x f x g ;因为5)2()(=-+x g x f ,所以5)2()(=++x g x f ,所以5)2(7)(=-++x f x f ,即2)2()(-=-+x f x f ,所以10)21()5()3(-=+++f f f ,10)22()6()4(-=+++f f f .因为5)2()(=-+x g x f ,所以5)2()0(=+g f ,所以1)0(=f ,所以3)0(2)2(-=--=f f . 因为7)4()(=--x f x g ,所以7)()4(=-+x f x g ,又因为5)2()(=-+x g x f ,二者相加得12)2()4(=-++x g x g ,所以)(x g y =的图象关于点)6,3(对称,所以6)3(=g ;因为5)2()(=++x g x f ,所以1)3(5)1(-=-=g f .所以24101031)(221-=----=∑=i k f .选D .评注:本例中的图象对称比较隐蔽,需对相关对称的表达式很熟悉,同时还要瞄准目标,善于转化,方能成功求解.练习6 已知函数)12(+=x f y 的图象关于直线1=x 对称,函数)1(+=x f y 的图象关于点)0,1(对称,则下列说法正确的是( )A .0)1(=fB .)1()1(x f x f +=-C .)(x f 的周期是2D .⎪⎭⎫ ⎝⎛-=x f x f 23)( 解:由)12(+=x f y 的图象关于直线1=x 对称,可得)1)1(2()1)1(2(++=+-x f x f ,即)23()23(x f x f +=-,所以)3()3(x f x f +=-,所以)(x f 的图象关于直线3=x 对称,所以)6()(x x f -=,无法得出⎪⎭⎫ ⎝⎛-=x f x f 23)(,D 错误. 由)1(+=x f y 的图象关于点)0,1(对称和平移知识,可得)(x f 图象关于点)0,2(对称,所以)(x f 的周期4)23(4=-=T ,C 错误.由)1(+=x f y 的图象关于点)0,1(对称得0)2(=f ,由)(x f 的图象关于直线3=x 对称得0)4(=f ,由周期4=T 得0)0(=f ,无法得出0)1(=f ,A 错误.由)6()(x x f -=和4=T 可得)2()(x f x f -=,所以)1()1(x f x f +=-,所以B 正确.选B .二、两个函数图象的对称性(互对称)结论5:函数)(x f y =与)2(x a f y -=的图象关于直线a x =对称;函数)(x f y =与)2(x a f y --=的图象关于点)0,(a 对称;函数)(x f y =与)2(2x a f b y --=的图象关于点),(b a 对称.证明:设))(,(x f x P 是)(x f 图象上的任意一点,则它关于直线a x =的对称点为))(,2(x f x a P -,,因为 )())2(2(x f x a a f =--,所以点'P 在)2(x a f y -=的图象上.点))(,(x f x P 关于点)0,(a 的对称点为))(,2(x f x a P --,,因为)())2(2(x f x a a f -=---,所以点'P 在)2(x a f y --=的图象上.反向证明略.例7 下列函数中,其图象与函数)1ln(+=x y 的图象关于直线1=x 对称的是( )A .)1ln(x y -=B .)3ln(x y -=C .)1ln(x y +=D .)3ln(x y += 解:设)1ln()(+=x x f ,则与其关于直线1=x 对称的是)3ln()12ln()2(x x x f -=+-=-的图象.选B .结论6:函数)(x a f y +=与)(x a f y -=的图象关于直线0=x (y 轴)对称;函数)(x a f y +=与)(x a f y --=的图象关于点)0,0((原点)对称.证明:设))(,(x a f x P +是)(x a f y +=图象上的任意一点,则它关于直线0=x 的对称点为))(,(x a f x P +-,,因为)())((x a f x a f +=--,所以点'P 在)(x a f y -=的图象上.点))(,(x a f x P +关于点)0,0(的对称点为))(,(x a f x P +--,,因为)())((x a f x a f +-=---,所以点'P 在)(x a f y --=的图象上.反向证明略.结论7:函数)(x a f y +=与)(x b f y -=的图象关于直线2||b a x -=对称;函数)(x a f y +=与)(x b f y --=的图象关于点⎪⎭⎫ ⎝⎛-0,2||b a 对称;函数m x a f y ++=)(与n x b f y +--=)(的图象关于点⎪⎭⎫ ⎝⎛+-2,2||n m b a 对称.结论5,6是结论7的特殊情况. 证明: 不妨设a b >,则22||a b b a -=-. 设))(,(x a f x P +是)(x a f y +=图象上的任意一点,则它关于直线2a b x -=的对称点为))(,(x a f x a b P +--,,因为)())((x a f x a b b f +=---,所以点'P 在)(x b f y -=的图象上. 点))(,(x a f x P +关于点⎪⎭⎫ ⎝⎛-0,2a b 的对称点为))(,(x a f x a b P +---,,因为)())((x a f x a b b f +-=----,所以点'P 在)(x b f y --=的图象上.反向证明略.例8 函数1)1(+-=x f y 与3)3(---=x f y 的图象关于点 对称.解: 两个函数的图象关于点⎪⎭⎫ ⎝⎛---231,2)1(3即()1,2- 结论8:函数)(x f y =与)(x f y --=的图象关于原点对称;函数)(x f y =与)(x f y -=的图象关于x 轴对称;函数)(x f y =与)(x f y -=的图象关于y 轴对称.例9 (1989年全国高中数学联赛)已知函数)(x f 的定义域均为R ,则)1(-=x f y 与)1(x f y -=的图象( )A .关于x 轴对称B .关于y 轴对称C .关于直线1=x 对称D .关于直线1=y 对称 解:因为)(x f y =与)(x f y -=关于y 轴对称,而)1(-=x f y 与)1(x f y -=的图象可视为前两者向右平移1个单位所得,所以二者图象关于直线1=x 对称.选C .评注:结论:函数)(a x f y -=与)(x a f y -=的图象关于直线a x =对称.练习7 函数)ln(x x y -=与x x y ln =的图象关于( )A .直线x y =对称B .x 轴对称C .y 轴对称D .原点对称解:设)ln()(x x x f -=,则x x y ln =为)(x f y --=,所以二者图象关于原点对称.选D .。
高考数学函数的单调性、奇偶性、对称性、周期性10大题型(解析版)
![高考数学函数的单调性、奇偶性、对称性、周期性10大题型(解析版)](https://img.taocdn.com/s3/m/f557eda06429647d27284b73f242336c1eb930d7.png)
函数的单调性、奇偶性、对称性、周期性10大题型命题趋势函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。
满分技巧一、单调性定义的等价形式: 1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x −与()f x ±之一是否相等.2、验证法:在判断()f x −与()f x 的关系时,只需验证()f x −()f x ±=0及()1()f x f x −=±是否成立. 3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x −与()f x 的关系.首先要特别注意x 与x −的范围,然后将它代入相应段的函数表达式中,()f x 与()f x −对应不同的表达式,而它们的结果按奇偶函数的定义进行比较. 三、常见奇、偶函数的类型1、()x x f x a a −=+(00a a >≠且)为偶函数;2、()x x f x a a −=−(00a a >≠且)为奇函数;3、()2211x x x x x xa a a f x a a a −−−−==++(00a a >≠且)为奇函数; 4、()log ab xf x b x−=+(00,0a a b >≠≠且)为奇函数;5、())log a f x x =±(00a a >≠且)为奇函数;6、()f x ax b ax b ++−为偶函数;7、()f x ax b ax b +−−为奇函数; 四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ; (2)若()()+=−f x a f x a ,则2=T a ; (3)若()()+=−f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=−f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=−T a b (≠a b ); 2、函数对称性的常用结论(1)若()()+=−f a x f a x ,则函数图象关于=x a 对称;(2)若()()2=−f x f a x ,则函数图象关于=x a 对称; (3)若()()+=−f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22−=−f a x b f x ,则函数图象关于(),a b 对称; 3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=−f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=−f x f x ,函数为偶函数,即偶函数为特殊的线对称函数; (2)若函数()f x 满足()()22−=−f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()−=−f x f x ,函数为奇函数,即奇函数为特殊的点对称函数; 4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2−b a ; (2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2−b a ; (3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4−b a . 5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a . (2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a . (3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a . (4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。
高中数学二次函数图像的性质及应用
![高中数学二次函数图像的性质及应用](https://img.taocdn.com/s3/m/d5831118492fb4daa58da0116c175f0e7dd11945.png)
高中数学二次函数图像的性质及应用二次函数是高中数学中重要的一种函数类型,它的图像具有许多特殊的性质和应用。
本文将详细介绍二次函数图像的性质,并通过具体题目的分析来说明考点和解题技巧,以帮助高中学生更好地理解和应用二次函数。
一、二次函数图像的性质1. 对称性:二次函数的图像关于抛物线的对称轴对称。
对称轴是图像的中心线,它垂直于x轴,过抛物线的顶点。
例如,对于函数y = ax^2 + bx + c,其对称轴的x 坐标为 x = -b/2a。
这一性质在解题中常常用来求抛物线的对称轴以及顶点的坐标。
2. 开口方向:二次函数图像的开口方向由二次项系数a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
这一性质在解题中用来判断函数的增减性和极值。
3. 零点:二次函数的零点即为函数图像与x轴的交点,也就是方程ax^2 + bx +c = 0的解。
求零点是解二次方程的常见问题,可以通过因式分解、配方法、求根公式等方法来求解。
二、二次函数图像的应用1. 最值问题:二次函数图像的顶点即为函数的极值点。
通过求解二次函数的极值,可以应用到许多最值问题中。
例如,一辆汽车以二次函数的形式描述其加速度,通过求解函数的极值,可以确定汽车的最大加速度或最短时间内达到某个速度。
2. 抛体运动问题:抛体运动问题是物理学中常见的应用题,可以用二次函数来描述抛体的轨迹。
通过解析抛体运动问题,可以求解抛物线的顶点、抛物线与地面的交点等。
例如,求解一个抛出的物体在空中的最高点、最远距离等问题。
3. 面积问题:二次函数的图像下方与x轴之间的面积可以表示某些实际问题中的面积。
例如,通过求解二次函数图像与x轴之间的面积,可以计算出某个区域的面积、某个物体的体积等。
这一应用在几何学和物理学中都有广泛的应用。
三、解题技巧和注意事项1. 确定函数的类型:在解题过程中,首先要确定给定函数是否为二次函数。
如果函数的表达式中含有二次项(x^2)且系数不为零,则可以确定为二次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图象的对称性在高考中的应用众所周知,函数历来是高考的重点内容之一,高考对函数的考查离不开函数性质的研究应用,特别是函数的单调性与奇偶性更是高考命题的热点,理应成为高三复习的重点.函数图像的对称性作为奇偶性拓展与延伸,在各类高考试题和模拟题中更是屡见不鲜,同时也是出错率非常高的题目.如果从图象的角度审视函数,有两类比较特殊的函数,一类是它们图象成中心对称,一类是它们图象成轴对称,那么这样的函数具有什么性质呢?不难发现,这两类函数图象总可以通过适当的平移,转化为具有奇偶性的函数,下面就对有关函数对称性和奇偶性的性质做一总结.有关函数对称性与奇偶性的一些重要性质:自对称与互对称问题(1)若函数()f x 为奇函数,则()()()()0f x f x f x f x -=-+-=;;()f x 的图象关于原点对称,反之亦成立.(2)若函数()f x 为偶函数,则()()()()2()f x f x f x f x f x -=+-=;;()()f x f x =;()f x 的图象关于y 轴对称,反之亦成立.推论:函数()-f x a 的图象关于直线x a =对称.(3)若函数()f x 对任意自变量x 都有()()f x a f a x -=-,则()f x 的图象关于直线0x =对称,反之亦成立.(4)若函数()f x 对任意自变量x 都有()()f a x f a x -=+,则()f x 的图象关于直线x a =对称,反之亦成立.(5)若函数()f x 对任意自变量x 都有()+()=2f a x f a x b -+,则()f x 的图象关于点(,)a b 对称,反之亦成立.(6)若函数()f x 对任意自变量x 都有(2)()f a x f x -=,则()f x 的图象关于直线x a =对称,反之亦成立.(7)若函数()f x 对任意自变量x 都有()()f a x f b x +=-,则()f x 的图象关于直线2a b x +=对称,反之亦成立.(8)函数()f x 与函数()f x -的图象关于y 轴对称,反之亦成立.(9)函数()f x 与函数()f x -的图象关于x 轴对称,反之亦成立.(10)函数()f x 与函数()f x --的图象关于x 轴对称,反之亦成立.(11)函数(1)f x -与函数(1)f x -的图象关于直线1x =对称,反之亦成立.(12)函数()f a x +与函数()f b x -的图象关于直线2b a x -=对称,反之亦成立. (13)在()f x ,g()x 的公共定义域上有如下结论:以上结论中,前7条是一个函数自身的对称性问题,后6条是两个函数之间的对称性问题.下面主要来研究函数的对称性在各类题型中的应用.命题方向一:基于函数,考查运算能力这类题目一般都会给出函数的解析式,目标是求函数值或由函数值求相应的自变量的值,,着重考查考生的运算能力和逻辑思维能力.这类题目不是简单的求值或解方程,而是要考查考生如何如何合理的选择运算路径,即从函数解析式出发,结合函数的奇偶性、单调性、周期性进行运算,达成目标.【例1】.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g g =+-==则【解析】解法一:由题意得(2)(2)9=3(2)=6g f f -=-+--,,因为()f x 为奇函数,所以(2)=6,(2)(2)915f g f =+=.解法二:因为()f x 为奇函数,所以()f x 图象关于(0,0)点成中心对称;将()f x 沿着y 轴向上平移9个单位长得到()g x 的图象,所以()g x 图象关于(0,9)点成中心对称,由第五条结论可知:()+()=18g x g x -,所以(2)+(2)=18,(2)=15g g g -【例2】已知函数32()=sin 4(,),(lg(log 10))5f x ax b x a b R f ++∈=,则(lg(lg 2))=f【解析】因为函数3()=sin g x ax b x +为奇函数,图象关于原点对称,所以()f x 图象关于点(0,4)对称,即有()()8f x f x +-=.而21lg(log 10)lg lg(lg(2))lg 2⎛⎫==- ⎪⎝⎭,所以2(lg(log 10))(lg(lg 2))8f f +=,又2(lg(log 10))5f =,所以(lg(lg 2))3f =,选C.【评注】这两道题都是考查函数奇偶性的常规问题.由函数解析求定量的函数值,代入计算是最直接的想法,但有时是行不通的.要解决这两个类似的问题,首先考生要熟练掌握函数的奇偶性的性质,函数图象平移的基本法则,其次是对数的化简;进而联想到互为相反数的函数值与函数奇偶性之间的关系;其次是分析函数()f x 的特征,建立与函数奇偶性的联系,这是这两道题的能力要求之所在.【例3】设函数22(1)sin ()1x x f x x ++=+的最大值为M ,最小值为m ,则M m += 【解析】因为222(1)sin 2sin ()111x x x x f x x x +++==+++,又22sin ()1x x g x x +=+为R 上的奇函数,所以()f x 的图象关于(0,1)点成中心对称,从而()f x 的图象上的最大值点与最小值点也关于(0,1)对称,因此2M m +=【评注】本题貌似一道最值问题,实则为一道函数奇偶性的应用问题,与前两题比较,对奇偶性的应用隐藏的更深,要求考生要有敏锐的观察能力.命题者对函数解析式结构进行适当的“伪装”,只有适当变形,揭露其本质,才是解题的关键点.【例4】已知函数123()1234x x x x f x x x x x +++=+++++++ ,则55((22f f -++-= 【解析】11112525()441234(1)(4)(2)(3)x x f x x x x x x x x x ⎡⎤++⎛⎫=-+++=-- ⎪⎢⎥++++++++⎝⎭⎣⎦22114(25)5456x x x x x ⎛⎫=-+- ⎪++++⎝⎭. 因为22115456y x x x x =-++++的图象关于直线52x =-成轴对称,直线25y x =+关于点5,02⎛⎫- ⎪⎝⎭成中心对称,所以函数()f x 的图象关于点5,42⎛⎫- ⎪⎝⎭成中心对称.因此55()()822f x f x -++--=,即55((822f f -++--=. 【评注】相比例2,例3,本题的难度自然要大得多,同样是用函数图象的对称性解题,但是“伪装”的更加深而已,因此对考生的观察能力和知识点的综合应用能力提出了更高的要求.当然,如果直接代入计算,也是可行的,只是过程显得有点“恐怖”.而思维灵活的同学,如果考虑()(5)f x f x +--,则过程更显简洁.()(5)f x f x +--=1235432812344321x x x x x x x x x x x x x x x x +++--------⎛⎫⎛⎫+++++++= ⎪ ⎪++++--------⎝⎭⎝⎭【例5】设函数32()3614f x x x x =+++,且()1,()19f a f b ==,则a b +=【解析】由323()3614(1)3(1)10f x x x x x x =+++=++++,设31,()x t f t t t +==+为奇函数,可知()f x 的图象关于点()1,10-成中心对称,即有(1)(1)20f x f x -++--=,从而有()()11920f a f b +=+=,又'()0f x >恒成立,()f x 为单调函数,所以a b +=-2.【评注】本题可视为例4的逆向问题,依然考查函数的中心对称问题,其核心是探求三次多项式函数的对称性.解题过程中,要求有较强的代数式变形能力,这是对考生创新意识的考查.也就是,要仿照二次函数通过“配平方”求对称轴的方法,对本题三次函数通过“配立方”的方法,寻找函数的对称中心.这里要提醒大家注意的是:若函数()f x 对任意自变量x 都有()+()=2f a x f a x b -+⇔则()f x 的图象关于点(,)a b 对称;但是若函数()f x 图象关于点(,)a b 对称,且()+()=2f m f n b ,则不一定有+=2m n a .【结论1】如果一个单调函数()f x 的图象关于点(,)a b 对称,且()+()=2f m f n b ,那么必有+=2m n a .同类题目练习:1.函数1111() (1232015)f x x x x x =++++++++图象的对称中心的坐标为 . (答案:(-1007,0))2.已知函数 )()ln 22f x x =+,则1(ln 2)+(ln )=2f f . (答案:4) 3.已知函数21()ln(1)32x f x x e x =+-+的最大值为M ,最小值为m ,则M m += . (答案:6) 4.已知函数32115()33212f x x x x =-+-,则1232013...2014201420142014f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (答案:2014) 5.函数()3112x y x x +=≥-的值域为 . (答案:()(),13,-∞-+∞U ,提示:317322x y x x +==+--的图象关于点()2,3成中心对称,结合自变量的取值范围与函数图象即可快速得出答案)命题方向二:立足方程,考查数形结合能力鉴于函数与方程的特殊关系,方程的根就是函数的零点,就是函数图象与x 轴交点的横坐标.若一个函数的图象具有某种对称性,那么它所对应的方程的根也就有相似的对称性.因此,考查方程根的分布问题的考题往往会涉及到函数图象的对称性.这类考题需要考生挖掘题目所给方程所对应的函数的特殊性质,侧重考查考生数形结合能力.【例6】方程(1)sin 1x x π-=在区间(-1,3)上有四个不同的实数根1234,,,x x x x ,则1234x x x x +++=【解析】因为1y x =-与sin y x π=交于()1,0点,且1y x =-与sin y x π=的图像都是关于()1,0点成中心对称,所以函数()()1sin 1f x x x π=--的图像关于直线1x =对称.因此函数()()1sin 1f x x x π=--与x 轴的交点关于点()1,0中心对称,即方程(1)sin 1x x π-=的根“成对”出现,且每对根的和都是2.由于区间()1,3-关于()1,0点中心对称,所以四个不同的实数根1234,,,x x x x 分成两对,有12344x x x x +++=【评注】本题中的方程的根显然是无法求得的只能探求根之间的特殊关系,而根的特殊性是由方程的特殊性决定的,自然引导我们考察函数()()1sin f x x x π=-的特殊性质.类比函数()sin g x x x =的性质:y x =与sin y x =都是奇函数,图像都是关于原点对称,而奇函数与奇函数的积是偶函数,因此()sin g x x x =为偶函数;由此我们可以得到()()1sin f x x x π=-向左平移1个单位长度后也是偶函数,所以()()1sin f x x x π=-的图像关于直线1x =对称.【结论2】如果一个函数存在零点且该函数的图像关于直线x a =或点(),0a 对称,那么该函数的图像与x 轴的交点也关于点(),0a 对称.即该函数的零点会“成对”出现,且每对零点之和为2a .【例7】已知定义在R 上的函数()f x 满足222,[0,1)()2,[1,0)x x f x x x ⎧+∈⎪=⎨-∈-⎪⎩,且25(2)(),()2x f x f x g x x ++==+,则方程()()f x g x =在区间[]5,1-上所有实根之和为 . 【解析】当(1,1)x ∈-时,()f x 的图像关于点()0,2对称,又(2)()f x f x +=,所以()f x 的图像(除去21,x k k Z =+∈的点)关于点()2,2k 中心对称.而251()222x g x x x +==+++的图像关于点()2,2-中心对称,故函数()f x (除去21,x k k Z =+∈的点)与()g x 的图像都关于点()2,2-中心对称.又(3)(3)1,(1)(1)f g f g -=-=-≠-,所以[)3,1x =--时,()f x 与()g x 有且只有一个交点,即方程()()f x g x =在[)3,1x =--上有且只有一个实根.所以方程()()f x g x =在区间[]5,1-上有3个实数根,其中一根为3-,另外两根关于关于点()2,2-中心对称,故所有实根之和为7-.【评注】考查函数零点或方程根的问题,一般不在于解方程,而更多的是倾向于考查函数的性质.借助函数的奇偶性,图像的对称性,易发现两函数图像都是关于点()2,2-中心对称,其中一根为3-,点()3,1-是两个函数的交点,而()3,1-关于点()2,2-的对称点点()1,3-不是两个函数的交点,这正是本题“陷阱”所在.同类题目练习:5.方程()()2sin 1x x x ππ-+-=的所有解之和为 .(答案: 2π) 6.函数442x x y =+的图像与函数()11cos 3422y x x π=+-≤≤的所有交点的横坐标之和为 . (答案: 3.5)7.已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤≤时,3()f x x x =-,则函数()f x 的图像在区间[]0,6上与x 轴的交点个数为 . (答案: 6)8.已知()f x 是R 上以3为周期的奇函数,当30,2x ⎛⎫∈ ⎪⎝⎭时,2()ln(1)f x x x =-+,则函数()f x 的图像在区间[]0,6上零点个数为 . (答案: 7)命题方向三:着眼综合,考查转化化归能力【例8】设函数2()(3)1f x x x =-+-,数列{}n a 为公差不为0的等差数列,且127()()...()14f a f a f a +++=,则127...a a a +++= .【解析】因为2()(3)(3)2f x x x =-+-+,所以函数()f x 的图像关于点()3,2成中心对称,进一步有(3)(3)4f x f x -++=.127()()...()1427,(3)2f a f a f a f +++==⨯=,()f x 为单调函数,数列{}n a 为公差不为0的等差数列,所以1726354==+=223a a a a a a a ++=⨯,因此127...21a a a +++=.【例9】已知函数()sin tan f x x x =+,项数为27的等差数列{}n a 满足,22n a ππ⎛⎫∈- ⎪⎝⎭且公差0d ≠.若1227()()...()0f a f a f a +++=,则当k = 时,()0k f a =.【解析】()sin tan f x x x =+为奇函数且单调递增,其函数图象关于原点对称,(0)0f =.因为1227()()...()0f a f a f a +++=,等差数列{}n a 满足,22n a ππ⎛⎫∈- ⎪⎝⎭且公差0d ≠,所以必有12722614()()()()...()0f a f a f a f a f a +=+===,故当k = 14 时,()0k f a =.【评注】这类问题的典型特征是数列与函数的结合,综合考察函数的奇偶性,对考生的数学能力提出了更高的要求.【结论3】如果一个单调函数()f x 的图象关于点(,)a b 对称, {}n a 为等差数列且12()+()...+()=n f a f a f a nb +,那么必有12+...=n a a a na ++.【例10】设直线l 与曲线31y x x =++交与3个不同的点,,A B C ,且AB BC ==则直线l 的方程为 . 【解析】因为AB BC =,所以B 为线段AB 的中点,而曲线31y x x =++关于点()0,1成中心对称,所以点B 的坐标为()0,1.可以设直线l 的方程为1y kx =+,代入曲线31y x x =++,解得1)x k =>, 因为AB BC ===解得2k =,故所求直线方程为21y x =+.【评注】本题看似一道解析几何问题,如果按照解析几何求曲线与直线相交的弦长问题解决,那么解题将趋于繁琐,甚至步入困境.仔细观察题目,AB BC =与31y x x =++的特殊性,问题中隐含了点B 是AC 中点的重要信息,抓住这一关键点,问题迎刃而解!【例11】已知函数321()3f x x x ax b =-++的图像在点(0,(0))P f 处的切线方程为32y x =-. (Ⅰ)求实数a ,b 的值.(Ⅱ)设()()1m g x f x x =+-是[)2,+∞上的增函数. (1)求实数m 的最大值;(2)当m 取得最大值时,是否存在点Q ,使得过点Q 的直线若能与曲线()y g x =围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q 的坐标;若不存在,说明理由.【解析】(Ⅰ)过程略3a =,2b =-(Ⅱ) (1)321()()32131m m g x f x x x x x x =+=-+-+--,22'()23(1)m g x x x x =-+-- 因为()g x 是[)2,+∞上的增函数,所以'()0g x ≥在[)2,+∞上恒成立,设[)2(1),1,t x t =-∈+∞,则22m t t ≤+在[)1,t ∈+∞上恒成立,所以2min (2)3m t t ≤+=,故m 的最大值为3(2)由(1)得3231131()32(1)2(1)31313m g x x x x x x x x =-+-+=-+-++--,其图像关于点11,3⎛⎫ ⎪⎝⎭对称,即2(1)(1)3f x f x -++=,也就是说存在点Q 11,3⎛⎫ ⎪⎝⎭,使得过点Q 的直线与曲线()y g x =围成两个封闭图形面积总相等.【评注】看似很复杂的问题,在经过适当的变形后,根据题意,从“使得过点Q 的直线若能与曲线()y g x =围成两个封闭图形,则这两个封闭图形的面积总相等”概括提炼出图像的对称性问题,解体就一帆风顺!同类题目练习:9.设函数()2cos ,()2sin f x x x g x x x =-=+,数列{}n a 是公差为8π的等差数列,若71()7i i f a π==∑,则71()2i i g a π=-=∑ ()247i f a a a ⎡⎤⎣⎦=⋅ .(答案: 0,647) 10.已知函数323y x x x =++的图像C 上存在一点P 满足:若过点P 的直线l 与曲线C 相交于异于点P 的两点()()1122,,,M x y N x y ,就恒有12y y +为定值0y ,则0y = . (答案: 2)通过以上问题不难发现,函数对称性在高考试题当中千变万化,花样层出不群,但是无论题目如何变化,函数的性质始终保持不变,以“不变应万变”,只要大家扎实掌握了函数的性质,那么解决函数问题自然就不成问题了。