函数图象的对称性在高考中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图象的对称性在高考中的应用
众所周知,函数历来是高考的重点内容之一,高考对函数的考查离不开函数性质的研究应用,特别是函数的单调性与奇偶性更是高考命题的热点,理应成为高三复习的重点.函数图像的对称性作为奇偶性拓展与延伸,在各类高考试题和模拟题中更是屡见不鲜,同时也是出错率非常高的题目.
如果从图象的角度审视函数,有两类比较特殊的函数,一类是它们图象成中心对称,一类是它们图象成轴对称,那么这样的函数具有什么性质呢?不难发现,这两类函数图象总可以通过适当的平移,转化为具有奇偶性的函数,下面就对有关函数对称性和奇偶性的性质做一总结.
有关函数对称性与奇偶性的一些重要性质:自对称与互对称问题
(1)若函数()f x 为奇函数,则()()()()0f x f x f x f x -=-+-=;;()f x 的图象关于原点对称,反之亦成立.
(2)若函数()f x 为偶函数,则()()()()2()f x f x f x f x f x -=+-=;;()()f x f x =;()f x 的图象关于y 轴对称,反之亦成立.
推论:函数()-f x a 的图象关于直线x a =对称.
(3)若函数()f x 对任意自变量x 都有()()f x a f a x -=-,则()f x 的图象关于直线0x =对称,反之亦成立.
(4)若函数()f x 对任意自变量x 都有()()f a x f a x -=+,则()f x 的图象关于直线x a =对称,反之亦成立.
(5)若函数()f x 对任意自变量x 都有()+()=2f a x f a x b -+,则()f x 的图象关于点(,)a b 对称,反之亦成立.
(6)若函数()f x 对任意自变量x 都有(2)()f a x f x -=,则()f x 的图象关于直线x a =对称,反之亦成立.
(7)若函数()f x 对任意自变量x 都有()()f a x f b x +=-,则()f x 的图象关于直线2
a b x +=对称,反之亦成立.
(8)函数()f x 与函数()f x -的图象关于y 轴对称,反之亦成立.
(9)函数()f x 与函数()f x -的图象关于x 轴对称,反之亦成立.
(10)函数()f x 与函数()f x --的图象关于x 轴对称,反之亦成立.
(11)函数(1)f x -与函数(1)f x -的图象关于直线1x =对称,反之亦成立.
(12)函数()f a x +与函数()f b x -的图象关于直线2
b a x -=
对称,反之亦成立. (13)在()f x ,g()x 的公共定义域上有如下结论:
以上结论中,前7条是一个函数自身的对称性问题,后6条是两个函数之间的对称性问题.
下面主要来研究函数的对称性在各类题型中的应用.
命题方向一:基于函数,考查运算能力
这类题目一般都会给出函数的解析式,目标是求函数值或由函数值求相应的自变量的值,,着重考查考生的运算能力和逻辑思维能力.这类题目不是简单的求值或解方程,而是要考查考生如何如何合理的选择运算路径,即从函数解析式出发,结合函数的奇偶性、单调性、周期性进行运算,达成目标.
【例1】.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g g =+-==则
【解析】解法一:由题意得(2)(2)9=3(2)=6g f f -=-+--,,因为()f x 为奇函数,所以
(2)=6,(2)(2)915f g f =+=.
解法二:因为()f x 为奇函数,所以()f x 图象关于(0,0)点成中心对称;将()f x 沿着y 轴向上平移9个单位长得到()g x 的图象,所以()g x 图象关于(0,9)点成中心对称,由第五条结论可知:()+()=18g x g x -,所以(2)+(2)=18,(2)=15g g g -
【例2】已知函数3
2()=sin 4(,),(lg(log 10))5f x ax b x a b R f ++∈=,则(lg(lg 2))=f
【解析】因为函数3()=sin g x ax b x +为奇函数,图象关于原点对称,所以()f x 图象关于点(0,4)对称,即有()()8f x f x +-=.而21lg(log 10)lg lg(lg(2))lg 2⎛⎫==- ⎪⎝⎭
,所以2(lg(log 10))(lg(lg 2))8f f +=,又2(lg(log 10))5f =,所以(lg(lg 2))3f =,选C.
【评注】这两道题都是考查函数奇偶性的常规问题.由函数解析求定量的函数值,代入计算是最直接的想法,但有时是行不通的.要解决这两个类似的问题,首先考生要熟练掌握函数的奇偶性的性质,函数图象平移的基本法则,其次是对数的化简;进而联想到互为相反数的函数值与函数奇偶性之间的关系;其次是分析函数()f x 的特征,建立与函数奇偶性的联系,这是这两道题的能力要求之所在.
【例3】设函数22(1)sin ()1
x x f x x ++=+的最大值为M ,最小值为m ,则M m += 【解析】因为222(1)sin 2sin ()111x x x x f x x x +++==+++,又22sin ()1
x x g x x +=+为R 上的奇函数,所以()f x 的图象关于(0,1)点成中心对称,从而()f x 的图象上的最大值点与最小值点也关于(0,1)对称,因此2M m +=
【评注】本题貌似一道最值问题,实则为一道函数奇偶性的应用问题,与前两题比较,对奇偶性的应用隐藏的更深,要求考生要有敏锐的观察能力.命题者对函数解析式结构进行适当的“伪装”,只有适当变形,揭露其本质,才是解题的关键点.
【例4】已知函数123()1234x x x x f x x x x x +++=
+++++++ ,则55((22f f -++-= 【解析】11112525()441234(1)(4)(2)(3)x x f x x x x x x x x x ⎡⎤++⎛⎫=-+++=-- ⎪⎢⎥++++++++⎝⎭⎣⎦
22114(25)5456x x x x x ⎛⎫=-+- ⎪++++⎝⎭
. 因为22115456y x x x x =-++++的图象关于直线52
x =-成轴对称,直线25y x =+关于点5,02⎛⎫- ⎪⎝⎭成中心对称,所以函数()f x 的图象关于点5,42⎛⎫- ⎪⎝⎭
成中心对称.
因此55()()822f x f x -++--=,即55((822
f f -++--=. 【评注】相比例2,例3,本题的难度自然要大得多,同样是用函数图象的对称性解题,但是“伪装”