摄影测量实验报告(前方交汇后方交汇)

摄影测量实验报告(前方交汇后方交汇)
摄影测量实验报告(前方交汇后方交汇)

摄影测量学

实验报告

学院:地信院

班级:测绘0904班

老师:邹峥嵘

姓名:张文佳

学号:0405090921

2011年11 月11 日

空间后方交会——空间前方交会

程序编程实验

一.实验目的

1、要求掌握运用摄影测量中空间后方交会-空间前方交会求解地面点的空间位

置的方法和原理。

2、学会运用空间后方交会的原理,根据所给控制点的地面摄影测量坐标系坐标

以及相应的像平面坐标系中的坐标,利用计算机编程语言实现空间后方交会的计算,完成所给像对中两张像片各自的六个外方位元素的求解和精度评定。

3、根据空间后方交会所得的两张像片的内外方位元素,利用同名像点在左右像

片上的坐标,利用计算机编程语言前方交会编程,求解其对应的地面点在摄影测量坐标系中的坐标,从而达到通过摄影测量量测地面地理数据的目的。

二.实验仪器

1、计算机

2、MATLAB计算机编程软件

三、实验数据

实验数据实验数据包含四个地面控制点(GCP)的地面摄影测量坐标及在左右像片中的像平面坐标。此四对坐标运用最小二乘法求解左右像片的外方位元素,即完成了空间后方的过程。另外还给出了 5 对地面点在左右像片中的像平面坐标和左右像片的内方位元素。实验数据如下:

四、程序设计流程图

1、后方交会

此过程完成空间后方交会求解像片的外方位元素,其中改正数小于限差(长度改

正数小于0.01m,角度改正数小于0.0003,相当于1’的角度值)为止。在这个过程中采用迭代计算的方法,是外方位元素逐渐收敛于理论值,每次迭代所得的改正数都应加到上一次的初始值之中。

2、前方交会

七、实验原理公式

1、后方交会中运用的共线方程数学模型

Z

Y

f

Z Z c Y Y b X X a Z Z c Y Y b X X a f

y y Z X

f

Z Z c Y Y b X X a Z Z c Y Y b X X a f x x s s s s s s s s s s s s -=-+-+--+-+--=--=-+-+--+-+--=-)()()()()()()()()()()()(33322203331110

3、前方交会与后方交会中均用到旋转矩阵进行的坐标转换

????

???

???---=??????????---??????????=??????????-s s s s s s Z Z Y Y X X Z Z Y Y X X c b a c b a c b a Z Y X 133

3

222111R

4、精度评定中均采用最小二乘准则进行平差计算

y y Z Z y Y Y y X X y y y y v x x Z Z x Y Y x X X x x x x v s s

s s s s y s s s s s s x -+???+???+???+???+???+???=

-+???+???+???+???+???+???=00κκωω??κκωω??

y

y a a a Z a Y a X a v x x a a a Z a Y a X a v s s s y s s s x -+?+?+?+?+?+?=-+?+?+?+?+?+?=0

2625242322210161514131211κω?κω?

??

????=??????--=??????

???

???????????????=??????=2625

24

23

22

21

161514131211

00,,a a a a a a a a a a a a

y y x x Z Y X v v s s s y x A l x V κω?

l Ax V -= )()(T

1

T

l A A A x -= 62T 0-=n V

V σ 1T )(-=A A Q xx ii xx i m Q 0σ=

5.前方交会的转换

2

'12'12'1222222111111212121121212,,,Z N B Z NZ Z Z Y N B Y NY Y Y X N B X NX X X f y x R Z Y X f y x R Z Y X Z Z B Y Y B X X B Z S S Y S S X S S S S Z S S Y S S X ++=+=++=+=++=+=???

???????-=????????????????????-=??

????????-=-=-=标):地面坐标(摄影测量坐像空间辅助坐标:

基线分量:

1

2211121

221221Z X Z X X B Z B N Z X Z X X B Z B N Z X Z X --=

--=

八.实验源程序

1.空间后方交会(以左片为例)

%已知地面摄影测量坐标

Xg=[5083.205,5780.02,5210.879,5909.264];

Yg=[5852.099,5906.365,4258.466,4314.283];

Zg=[527.925,571.549,461.81,455.484];

%对应地面坐标的左片像点坐标

x=[0.016012,0.08856,0.013362,0.08224];

y=[0.079963,0.081134,-0.07937,-0.080027];

%设置初始值

c=0;w=0;k=0;

f=0.15;

Dg=sqrt((Xg(1)-Xg(2))^2+(Yg(1)-Yg(2))^2);

Ds=sqrt((x(1)-x(2))^2+(y(1)-y(2))^2);

p=Dg/Ds;

Xs0=1/4*(Xg(1)+Xg(2)+Xg(3)+Xg(4));

Ys0=1/4*(Yg(1)+Yg(2)+Yg(3)+Yg(4));

Zs0=p*f+(Zg(1)+Zg(2)+Zg(3)+Zg(4))/4;

W=0 %统计迭代计算次数

%完成迭代计算,检验改正是是否符合要求

while 1

%计算旋转矩阵系数

a1=cos(c)*cos(k)-sin(c)*sin(w)*sin(k);

a2=-cos(c)*sin(k)-sin(c)*sin(w)*cos(k);

a3=-sin(c)*cos(w);

b1=cos(w)*sin(k);

b2=cos(w)*cos(k);

b3=-sin(w);

c1=sin(c)*cos(k)+cos(c)*sin(w)*sin(k);

c2=-sin(c)*cos(k)+cos(c)*sin(w)*cos(k);

c3=cos(c)*cos(w);

R=[a1,a2,a3;b1,b2,b3;c1,c2,c3]

for n=1:1:4

X(n)=a1*(Xg(n)-Xs0)+b1*(Yg(n)-Ys0)+c1*(Zg(n)-Zs0); Y(n)=a2*(Xg(n)-Xs0)+b2*(Yg(n)-Ys0)+c2*(Zg(n)-Zs0); Z(n)=a3*(Xg(n)-Xs0)+b3*(Yg(n)-Ys0)+c3*(Zg(n)-Zs0); xj(n)=-f*X(n)/Z(n); %计算近似点坐标

yj(n)=-f*Y(n)/Z(n);

a11(n)=1/Z(n)*(a1*f+a3*x(n)); %矩阵系数

a12(n)=1/Z(n)*(b1*f+b3*x(n));

a13(n)=1/Z(n)*(c1*f+c3*x(n));

a21(n)=1/Z(n)*(a2*f+a3*y(n));

a22(n)=1/Z(n)*(b2*f+b3*y(n));

a23(n)=1/Z(n)*(c2*f+c3*y(n));

a14(n)=y(n)*sin(w)-(x(n)/f*(x(n)*cos(k)-y(n)*sin(k))+f*cos(k))*cos(w) ;

a15(n)=-f*sin(k)-x(n)/f*(x(n)*sin(k)+y(n)*cos(k));

a16(n)=y(n);

a24(n)=-x(n)*sin(w)-(y(n)/f*(x(n)*cos(k)-y(n)*sin(k))-f*sin(k))*cos(w );

a25(n)=-f*cos(k)-y(n)/f*(x(n)*sin(k)+y(n)*cos(k));

a26(n)=-x(n);

end

A=[a11(1),a12(1),a13(1),a14(1),a15(1),a16(1);

a21(1),a22(1),a23(1),a24(1),a25(1),a26(1);

a11(2),a12(2),a13(2),a14(2),a15(2),a16(2);

a21(2),a22(2),a23(2),a24(2),a25(2),a26(2);

a11(3),a12(3),a13(3),a14(3),a15(3),a16(3);

a21(3),a22(3),a23(3),a24(3),a25(3),a26(3);

a11(4),a12(4),a13(4),a14(4),a15(4),a16(4);

a21(4),a22(4),a23(4),a24(4),a25(4),a26(4)];

L=[x(1)-xj(1);y(1)-yj(1);x(2)-xj(2);y(2)-yj(2);x(3)-xj(3);y(3)-yj(3); x(4)-xj(4);y(4)-yj(4)];

Xp=inv((A')*A)*(A')*L

V=A*Xp-L

Xs0=Xs0+Xp(1,1)

Ys0=Ys0+Xp(2,1)

Zs0=Zs0+Xp(3,1)

c=c+Xp(4,1); w=w+Xp(5,1); k=k+Xp(6,1);

W=W+1

%判断收敛条件

if((abs(Xp(1,1))<0.01&&abs(Xp(2,1))<0.01&&abs(Xp(3,1))<0.01&&abs(Xp(4 ,1))<0.0003&&abs(Xp(5,1))<0.0003&&abs(Xp(6,1))<0.0003))

break

end

end

%精度评定

Qxx=inv((A')*A) %外方元素协因素阵

mo=sqrt(((V)'*V)/(2*8-6)) %单位权中误差

mi=mo*sqrt(Qxx) %外方元素改正数中误差

2.前方交会

%后方交会中计算出的改正后外方元素

Xs1=4999.7;Ys1=5000.1;Zs1=2000.0;

Xs2=5896.3;Ys2=5087.9;Zs2=2029.9;

%量测像点左右片坐标

xa=[0.051758,0.014618,0.04988,0.08614,0.048035];

ya=[0.080555,-0.000231,-0.000782,-0.001346,-0.079962];

xb=[-0.039953,-0.076006,-0.042201,-0.007706,-0.044438];

yb=[0.078463,0.000036,-0.001022,-0.002112,-0.079736];

%由外方位线元素计算基线分量 Bx, By, Bz

Bx=Xs2-Xs1;

By=Ys2-Ys1;

Bz=Zs2-Zs1;

%由外方位角元素计算像空间辅助坐标X1, Y1, Z1 , X2, Y2, Z2

R1=[0.9955,-0.0951,-0.0002;0.0951,0.9950,-0.0291;0.0030,0.0287,0.9996 ];

R2=[0.9938,-0.1108,-0.0134;0.1101,0.9929,-0.0461;0.0184,0.0325,0.9988 ];

Fa=R1*[xa(1),xa(2),xa(3),xa(4),xa(5);ya(1),ya(2),ya(3),ya(4),ya(5);-0 .015,-0.015,-0.015,-0.015,-0.015]

Fb=R2*[xb(1),xb(2),xb(3),xb(4),xb(5);yb(1),yb(2),yb(3),yb(4),yb(5);-0 .015,-0.015,-0.015,-0.015,-0.015]

Xa=[Fa(1,1),Fa(1,2),Fa(1,3),Fa(1,4),Fa(1,5)];

Ya=[Fa(2,1),Fa(2,2),Fa(2,3),Fa(2,4),Fa(2,5)];

Za=[Fa(3,1),Fa(3,2),Fa(3,3),Fa(3,4),Fa(3,5)];

Xb=[Fb(1,1),Fb(1,2),Fb(1,3),Fb(1,4),Fb(1,5)];

Yb=[Fb(2,1),Fb(2,2),Fb(2,3),Fb(2,4),Fb(2,5)];

Zb=[Fb(3,1),Fb(3,2),Fb(3,3),Fb(3,4),Fb(3,5)];

%计算点投影系数 N1 , N2

for n=1:1:5

Na(n)=(Bx*Zb(1,(n))-Bz*Xb(1,(n)))/(Xa(1,(n))*Zb(1,(n))-Xb(1,(n))*Za(1 ,(n)));

Nb(n)=(Bx*Zb(1,(n))-Bz*Xb(1,(n)))/(Xa(1,(n))*Zb(1,(n))-Xb(1,(n))*Za(1 ,(n)));

%计算地面坐标 XA, YA, ZA

Xg(n)=Na(n)*Xa(n)+Xs1;

Zg(n)=Na(n)*Za(n)+Zs1;

Yg(n)=1/2*((Ys1+Na(n)*Ya(n))+(Ys2+Nb(n)*Yb(n)));

End

X=[Xg(1),Xg(2),Xg(3),Xg(4),Xg(5)]

Y=[Yg(1),Yg(2),Yg(3),Yg(4),Yg(5)]

Z=[Zg(1),Zg(2),Zg(3),Zg(4),Zg(5)]

九、计算结果,精度评定

1.左片计算结果

(1)旋转矩阵

R = 0.9955 -0.0951 -0.0002

0.0951 0.9950 -0.0291

0.0030 0.0287 0.9996

(2)左片外方元素改正数

Xp =

1.0e-003 *

0.0277,-0.4099,0.0058,0.0000,0.0000,0.0000

(3)左片像点坐标改正数

V =

1.0e-005 *

-0.2514,0.3595,-0.0704,-0.2227,0.5448,0.3856,-0.2179,-0.5205 (4)左片外方元素改正结果

Xs0 = 4.9997e+003

Ys0 = 5.0001e+003

Zs0 = 2.0000e+003

(5)左片迭代次数

W = 5

(6)左片外方元素协因素阵

Qxx =

1.0e+009 *

1.3812 0.0062 0.4778 -0.0009 -0.0000 0.0001

0.0062 2.3416 0.1160 -0.0000 -0.0011 -0.0003

0.4778 0.1160 0.2659 -0.0003 -0.0001 0.0000

-0.0009 -0.0000 -0.0003 0.0000 0.0000 -0.0000

-0.0000 -0.0011 -0.0001 0.0000 0.0000 0.0000

0.0001 -0.0003 0.0000 -0.0000 0.0000 0.0000

(7)左片单位权中误差

mo =3.1794e-006

(8)左片外方元素改正数中误差

2.右片计算结果

(1)旋转矩阵

R = 0.9938 -0.1108 -0.0134

0.1101 0.9929 -0.0461

0.0184 0.0325 0.9988

(2)右片外方元素改正数

Xp =

-0.0002,0.0072,-0.0003,0.0000,0.0000,0.0000

(3)右片像点坐标改正数

V =

1.0e-004 *

-0.0639,-0.0103,0.0157,-0.0482,-0.0735,0.1193,0.1226,-0.0607

(4)右片外方元素改正结果

Xs0 = 5.8963e+003

Ys0 = 5.0879e+003

Zs0 = 2.0299e+003

(5)右片迭代次数

W = 6

(6)右片外方元素协因素阵

Qxx =

1.0e+009 *

1.5207 0.1224 -0.4192 -0.0009 -0.0001 0.0001

0.1224 2.6049 -0.0578 -0.0001 -0.0013 0.0003

-0.4192 -0.0578 0.2084 0.0003 0.0000 -0.0000

-0.0009 -0.0001 0.0003 0.0000 0.0000 -0.0000

-0.0001 -0.0013 0.0000 0.0000 0.0000 -0.0000

0.0001 0.0003 -0.0000 -0.0000 -0.0000 0.0000

(7)右片单位权中误差

mo = 6.7173e-006

(8)右片改正数中误差

3.前方交会

反算的地面摄影测量坐标

X =

1.0e+003 *

5.3846 5.1324 5.4571 5.8154 5.5274

Y =

1.0e+003 *

5.7446 5.0165 5.0414 5.0679 4.2922

Z =

1.0e+003 *

1.8901 1.8638 1.8633 1.8597 1.8368

十、实验心得体会

经过几个星期的努力,这个当初看似不可能完成的任务终于完成了,我感到很欣慰很有成就感。通过这次编程实验,加强了我对空间后方交会求解外方元素以及应用空间前方交会求解物点在摄影测量做坐标系中的三维坐标,同时让我认识到将理论联系实际的重要性。

在本次试验中,我都遇到了很多困难,但都被我逐级突破。在这之前我并没有系统性的学习过MATLAB,甚至可以说是根本没用过,虽然通过了计算机二级,但如果仅凭自己的能力,用C编写这个程序,还是觉得毫无头绪。后来听同学说MATLAB简单易学,容易掌握,而且处理矩阵运算有强大的优势,所以我毅然选择了MATLAB作为本次实验编程的软件。花了几天的时间学习了MATLAB的编绘语言以及运算法则。

刚开始编写时毫无头绪,而且觉得变量多得错综复杂,搞得我两眼发晕。后来我没有急着去编写,而是回归到课本,将空间后方交会和前方交会有关的理论知识系统认真的看了几遍,了解了整个计算过程后,弄清变量之间的转换关系后,再将整个计算过程绘制成流程图,

再进行编程。

完成了有关代码的基本编写后,就开始了程序的调试了,这是让我最为痛苦的一个环节,看似简单,而我却花了很长时间,语法错误比较容易发现,根据软件提示是很容易找出来的,其中很容易出现的错误是错误的拼写,矩阵维数不一致等问题。就在没有语法错误的时候我满怀希望的再次运行,却得到的了无限循环,让我很吃惊,强制退出程序后,重新检查了很多遍源程序,把书上的公式和自己的进行了详细比对,最后才发现因为马虎导致有的公式漏打括号,变量输错等原因,进行改正后得到了正确结果。

在整个过程中,因为时间等原因,我没有对MATLAB进行深入学习,没有运用到程序函数功能,用了两个m文件进行了左片右片的程序编写,导致了很多重复步骤,效率低下,也没有注意到程序运行结果的美观和清晰明了程度。在下次进行运用时会多加注意。

总之,整个实验算是完成了,我不仅对后方交会和前方交会的实用原理更加明了,初步学习了MATLAB,通过本次实验也增强了我分析问题和处理问题的能力,也给了我一个机会把理论知识运用到实际计算中去的机会。

倾斜摄影测量.

倾斜摄影测量 倾斜摄影技术是国际测绘领域近些年发展起来的一项高新技术,它颠覆了以往正射影像只能从垂直角度拍摄的局限,通过在同一飞行平台上搭载多台传感器,同时从一个垂直、四个倾斜等五个不同的角度采集影像,将用户引入了符合人眼视觉的真实直观世界。航空倾斜影像不仅能够真实地反应地物情况,而且还通过采用先进的定位技术,嵌入精确的地理信息、更丰富的影像信息、更高级的用户体验,极大地扩展了遥感影像的应用领域,并使遥感影像的行业应用更加深入。同时,倾斜影像技术的引进和应用,使得目前高昂的三维城市建模成本将得以大大降低!由于倾斜影像为用户提供了更丰富的地理信息,更友好的用户体验以及其低廉的成本,该技术目前在欧美等发达国家已经广泛应用于应急指挥、国土安全、城市管理、房产税收等行业。 倾斜摄影技术是国际测绘领域近些年发展起来的一项高新技术,它颠覆了以往正射影像只能从垂直角度拍摄的局限,通过在同一飞行平台上搭载多台传感器,同时从一个垂直、四个倾斜等五个不同的角度采集影像,将用户引入了符合人眼视觉的真实直观世界。 北京天下图作为全国首次独家引进斜摄影技术的航摄单位,将美国Pictometry公司的机载倾斜摄影设备及相关解决方案引入中国,结合北京天下图在国内航摄领域的技术优势和市场资源,形成了自有的倾斜摄影影像获取及应用技术,为广大用户提供一体化全方位的解决方案。 倾斜摄影 - 倾斜摄影技术特点 特点一:反映地物周边真实情况 相对于正射影像,倾斜影像能让用户从多个角度观察地物,更加真实的反映地物的实际情况,极大的弥补了基于正射影像应用的不足。 特点二:倾斜影像可实现单张影像量测 通过配套软件的应用,可直接基于成果影像进行包括高度、长度、面积、角度、坡度等的量测,扩展了倾斜摄影技术在行业中的应用。 特点三:建筑物侧面纹理可采集 针对各种三维数字城市应用,利用航空摄影大规模成图的特点,加上从倾斜影像批量提取及贴纹理的方式,能够有效的降低城市三维建模成本。 同一地点的侧面影像 特点四:数据量小易于网络发布

摄影测量立体相对的前方交会VB程序代码

Private Sub Command1_Click() Dim zx1 As Single, zy1 As Single, zx2 As Single, zy2 As Single, zx3 As Single, zy3 As Single, zx4 As Single, zy4 As Single, zx5 As Single, zy5 As Single, zx6 As Single, zy6 As Single Dim yx1 As Single, yy1 As Single, yx2 As Single, yy2 As Single, yx3 As Single, yy3 As Single, yx4 As Single, yy4 As Single, yx5 As Single, yy5 As Single, yx6 As Single, yy6 As Single Dim f As Single Dim jd11 As Single, jd12 As Single, jd13 As Single, jd21 As Single, jd22 As Single, jd23 As Single, jd1 As Single, jd2 As Single Dim a1(1 To 3, 1 To 3) As Single Dim a2(1 To 3, 1 To 3) As Single Dim fz1(1 To 6, 1 To 3) As Single Dim fz2(1 To 6, 1 To 3) As Single Dim aa(1 To 6, 1 To 5) As Single Dim p As String Dim bx(1 To 6, 1 To 1) As Single Dim n1(1 To 6, 1 To 1) As Single, n2(1 To 6, 1 To 1) As Single Dim aat(1 To 5, 1 To 6) As Single Dim aataa() As Double ReDim aataa(1 To 5, 1 To 5) Dim l(1 To 6, 1 To 1) As Single Dim aatl(1 To 5, 1 To 1) As Single Dim atal(1 To 5, 1 To 1) As Single Dim jd11z As Single, jd12z As Single, jd13z As Single, jd21z As Single, jd22z As Single, jd23z As Single Dim jd1z As Single, jd2z As Single zx1 = Val(Text1(0).Text): zy1 = Val(Text1(1).Text): yx1 = Val(Text1(2).Text): yy1 = Val(Text1(3).Text) zx2 = Val(Text1(4).Text): zy2 = Val(Text1(5).Text): yx2 = Val(Text1(6).Text): yy2 = Val(Text1(7).Text) zx3 = Val(Text1(8).Text): zy3 = Val(Text1(9).Text): yx3 = Val(Text1(10).Text): yy3 = Val(Text1(11).Text) zx4 = Val(Text1(12).Text): zy4 = Val(Text1(13).Text): yx4 = Val(Text1(14).Text): yy4 = Val(Text1(15).Text) zx5 = Val(Text1(16).Text): zy5 = Val(Text1(17).Text): yx5 = Val(Text1(18).Text): yy5 = Val(Text1(19).Text) zx6 = Val(Text1(20).Text): zy6 = Val(Text1(21).Text): yx6 = Val(Text1(22).Text): yy6 = Val(Text1(23).Text) jd11 = Val(Text2(0).Text): jd12 = Val(Text2(1).Text): jd13 = Val(Text2(2).Text) jd21 = Val(Text2(3).Text): jd22 = Val(Text2(4).Text): jd23 = Val(Text2(5).Text) jd1 = Val(Text2(6).Text): jd2 = Val(Text2(7).Text)

《近景摄影测量学》课堂实验报告

河南理工大学测绘学院 《近景摄影测量学》教学实验报告 (专业必修课) 2011年月日 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 实验成绩: 评语: 指导老师签名: 2011年月日

实习报告一:相机的认识和使用 一、实验的目的与要求: 1.熟悉使用相机并对物体进行高清晰拍摄 2.了解相机的各功能键对拍摄景物的作用 二、实验仪器: 佳能相机一台 三、实验步骤 1.打开相机 2.阅读相机的使用说明书,了解相机的参数设置 3.用一种拍摄模式对物体进行拍摄然后观察其效果 4.换一种拍摄模式在观察相片的效果,然后与上一张相片对比,观察其图形的差别 5.修改相机参数再观察相片的成图效果。 四、实验体会与收获: 这次实习让我学会到如何使用相机对物体进行高清晰拍摄,同时认识了相机的各个功能键的作用和用法,初步掌握了拍摄的技巧,了解了相机各个功能键对拍摄景物的作用。

实习报告二:Lensphoto软件的处理过程 一、实验目的: 1.掌握Lensphoto软件的操作步骤 2.掌握Lensphoto软件对非量测相机参数的检校。 二、实验内容: 用Lensphoto软件对已有的实验数据进行处理并得出处理结果 三、实验步骤 1.相机检校 2、新建工程 (1)工程--新建--导入(导入对应要处理的工程影像数据),输入航带数,对影像进行航带分组。 3、打开工程 打开对应的工程文件*.prj。 (1)、空三匹配匹配前人工给定航带内和航带间立体像对的种子点,目的是确定匹配像对两张影像间的概略偏移量。 (2)、光束法平差只有进行了相对定向,控制点量测才具有预测功能 (3)、控制点量测 4、引入控制点 (1)把全站仪导出的三维点信息,进行编辑。整理成软件可识别的*.ctl数据格

2021年倾斜摄影测量技术方案

航测1:500房屋测量 欧阳光明(2021.03.07) 技术方案 2018年12月14日 目录 一、技术标准3 二、航飞摄影基本流程4 1.项目所用测量数据4 2.像控点选取要求4 3.飞行及摄影设备7 4.飞行质量要求8 5.影像质量要求9 6.飞行任务规划9 三倾斜摄影测量建模10 3.1空三加密11 3.2加密要求12 3.3模型分块重构13 四立体测图15 4.1 工作流程15 4.2内业采集15

4.3 细部采集16 五外业调绘补测17 六成果整理19 6.1数据编辑19 6.2 数据输出20 七完成成果20 一、技术标准 1.《无人机航摄安全作业基本要求》CH/Z 3001-2010 2.《无人机航摄系统技术要求》CH/Z3002-2010 3.《低空数子航空摄影测量内业规范》CH/Z3003-2010 4.《低空数字航空摄影规范》CH/Z 3005-2010 5.《数字航摄仪检定规程》CH/Z 8021-2010 6.《全球定位系统(GPS)测量规范》(GBT18314-2009); 7.GB/T20257.1-2007《国家基本比例尺地图图式第1部分:1:5001: 10001:2000地形图图式》 8.《1:5001:10001:2000地形图图式》GBT 20257.1-2007) 9.《数字测绘产品检查验收规定和质量评定》GB/T18316-2001) ; 10.《1:5001:10001:2000比例尺地形图航空摄影规范》 (GB/T15967-2008); 11.本项目技术设计书。 二、航飞摄影基本流程 1.项目所用测量数据

1、项目测区内有高等级平面控制点5个以上(含五个),用于 精度控制。 2、坐标系统:平面坐标系统采用2000国家大地坐标系,中央 子午线117度,投影面为参考椭球面。 3、高程系统:采用1985国家高程基准。 2.像控点选取要求 1)在选择像控点时,应充分考虑布点要求,将像控点的布设与布点方案结合在一起,选择地形测量对天通视良好且可以明确辨认的地物点和目标点; 2)布设的标志应对空视角好,避免被建筑物、树木等地物遮挡;黑白反差不大,地物有阴影以及某些弧形地物不应作为控制点点位目标; 3)航摄相片控制点的选取还需满足以下几个标准: ①像控点应尽量布设在航向旁向重叠的公共区域使控制点能够公用; ②控制点应选在旁向重叠中线附近,离开中线的距离不应大于3cm,当旁向重叠过大或过小而不能满足要求时,应分别布点; 4)控制点距相片边缘不小于1.5cm,距相片的各类标志不小于1mm; 5)位于自由图边的控制点,应布设在图廓线外(如图1): 图1 像控点布设方案基本图式 6)像控点样式 图2 像片像控点样式

摄影测量坐标转换实验报告

实验一、坐标转换 一、实验背景: 解析摄影测量学通过坐标系统旋转和共线方程建立了像点坐标与对应物点坐标的严密关系。数字影像像素坐标系不同于像平面坐标系,需要通过内定向建立像素坐标系与像平面坐标系的关系,故此次实验的本质即数字影像内定向。 二、实验原理: 1.内定向通过对影像框标的量测来解决,影像内定向的实质是确定像平面坐标系。 2.进行解算的时候我们希望得到的是一个点的像平面坐标,而根据扫描所得到的相片 我们只能得到其像素坐标,它们之间存在一个转换的关系,即仿射变换: 数学模型: ,, 012 ,, 012 x a a x a y y b b x b y =++ =++ 其中x’y’分别为像素点在像素坐标值,x y为对应点像平面坐标值。根据上式我们可以通过部分控制点求得仿射变换中的系数,然后就可以根据一个像素点的像素坐标而 求得其所对应的像平面坐标。 注:当量测分别位于影像四边中央和四角的8个框标,也可采用双线性变换公式进行像 点坐标改正。 三、实验工具: MATLAB,Photoshop 四、实验步骤: 1.量测像框标的像素坐标。 通过PS打开量测其8个框标的像素坐标。 框标分布图: 具体方法:将范围拖动至框标所在处,放大框标,鼠标瞄准十字丝中心,显示出X,Y坐标。

量测完8个框标的像素坐标,同理对中的8个框标点进行量测。 2.找出两张相片上控制点所对应的像素坐标。 由找出下图中左图6个控制点像素坐标。再 由找出下图中右图6个控制点像素坐标。 具体方法:比如要找到6157的像素坐标,我们先找到其大致范围,然后放大,再与周围环 境比对,利用放大的图综合比较,找到控制点

倾斜摄影测量在三维建模中的应用

毕业设计 题目:倾斜摄影测量在三维建模中的应用学院:测绘工程学院 专业:测绘工程 姓名:原一哲 学号: 061410150 指导老师:李军杰 完成时间:2014年5月25日

摘要 机载倾斜摄影测量系统是对常规摄影测量系统的改进和发展,它能够获取常规摄影无法得到的地物立面的纹理信息和几何信息,在数字城市构建中具有重要的意义。本文应用机载倾斜摄影数据进行了三维建模和单斜片测量的应用研究与实验,初步实验表明:倾斜摄影数据应用三维建模单斜片测量是可行的并且具有较好的应用前景。 关键词:倾斜摄影测量,三维建模,单斜片测量

Abstract Airborne oblique photogrammetric system is the improvement of the traditional photogrammetric system ,which can get the facade texture and geometry information that cannot be obtained by conventional photography ,and it is of great significance in the construction of digital city .In this paper,the airborne oblique photogrammetry data were used for three dimensional modeling and single-oblique photo measure.Preliminary experiments showed the good application prospects. Key words:oblique photogrammetry ;three dimensional modeling;single-oblique photo measure.

摄影测量学 考前知识点整理

摄影比例尺: 摄影比例尺越大,像片地面的分辨率越高,有利于影像的解译与提高成图精度 摄影航高: 相对航高: 绝对航高: 摄影测量生产对摄影资料的基本要求: 影像的色调、 像片倾角(摄影机主光轴与铅垂线的夹角,α= 0 时为最理想的情形) 像片重叠:航向重叠:同一航线内相邻像片应有一定的影像重叠 旁向重叠:相邻航线也应有一定的重叠 航线弯曲:一条航线内各张像片的像主点连线不在一条直线上 像片旋角:相邻两像片的主点的连线与像片沿航线方向的两框标连线之间的夹角 像片旋角过大会减小立体相对的有效观察范围 中心投影:所有投射线或其延长线都通过一个固定点的投影 阴位:投影中心位于物和像之间。(距摄影中心f ) 阳位:投影中心位于物和像同侧。(距摄影中心f ) 像方坐标系:像平面坐标系(像主点o 为原点) 像空间坐标系(x 、y 、-f) 像空间辅助坐标系S-uvw 物方坐标系:地面测量坐标系T-XYZ (高斯平面坐标+高程)左手系 地面摄影测量坐标系D-XYZ 内方位元素: x 0,y 0,f 作用: 1、像点的框标坐标系向像空间坐标系的改化; 2、确定摄影光束的形状; 外方位元素:确定摄影光束在摄影瞬间的空间位置和姿态的参数 线元素(X S ,Y S ,Z S ) 角元素(航向倾角?、 旁向倾角ω、 像片旋角κ) 共线条件方程(摄影中心、像点、地面点) 像点位移:因像片倾斜引起的像点位移 同摄站同主距的倾斜像片和水平像片沿等比线重 合时,地面点在倾斜像片上的像点与相应水平像片上像点之间的直线移位 像点位于等比线上,无像片倾斜引起的像点位移 等比线上部的像点的像片倾斜误差方向向着等角点 等比线下部的像点的像片倾斜误差方向背向等角点 (1) 当 时, ,即等比线上的点不会因像片倾斜产生像点位移 (2)当 ,像点位移朝向等角点(一、二像限) (3)当 ,像点位移背向等角点(三、四像限) (4)当 时,主纵线上点的位移最大 像片纠正:因像片倾斜产生的影像变形改正 因地面起伏引起的像点位移(投影差):当地面有起伏时,高于或低于所选定的基准面 的地面点的像点,与该地面点在基准面上的垂直投影点的像点之间的直线移位 ???????-+-+--+-+--=-+-+--+-+--=)Z Z (c )Y Y (b )X X (a )Z Z (c )Y Y (b )X X (a f y )Z Z (c )Y Y (b )X X (a )Z Z (c )Y Y (b )X X (a f x S S S S S S S S S S S S 333222333111

数字摄影测量实验报告

《数字摄影测量学》之“4D 产品生产”综 合实习实验报告 一、实验任务及目的 在所有专业课程结束之后,为巩固所学知识,通过毕业前的以实际生产为标准的4D 产品生产实习,进一步深入掌握摄影测量学的基础理论以及全数字摄影测图过程。包括掌握VirtuoZo 的主要模块的功能、数字高程模型(DEM)、数字正射影像(DOM)、数字栅格地图(DRG)、数字线画地图(DLG)的制作工艺与流程。并在4D产品基础上,制作出该区域虚拟现实成果。 此实习主要针对遥感科学与技术专业中摄影测量与遥感方向的本科生。 二、试验流程 设置模型参数设置 影像 参数 设置 DEM 参数 设置 正射 影像 参数 设置 等高 线参 数 模型定向 (内相对绝对) 打开工程 打 开 模 型 核线重采样 影像匹配 编辑匹 配结果 生成 DEM 生成 等高线 生成正 射影像 生成等高线叠合 正射影像 IGS编辑4D产品 将4D成果导入三维软件

三、内容和形式 ●了解掌握VirtuoZo 的主要功能模块,利用自动空中三角测量软件完 成一个区域的加密任务 ●利用空中三角测量的成果,生成DEM ●进行数字微分纠正,生成DOM,并且进行影像镶嵌 ●采用已有航空影像的调绘资料,结合等高线图完成一幅全要素矢量 DLG 制作 ●对已有的纸质地形图扫描数字化,完成DRG 制作 ●将4D成果,导入三维软件,制作虚拟现实场景; 四、实验准备 ●23×23一对数字航空影像以及相应的影像参数。例如:主距、框标距、 摄影比例尺、成图比例尺、控制点、数字高程模型的间隔参数以及正 射影像的比例尺等。 ●每个学生提供一台数字摄影测量工作站VirtuoZo 及立体观测设备

倾斜摄影测量技术方案

航测1:500房屋测量技术方案 2018年12月14日

目录 一、技术标准.................................... 错误!未定义书签。 二、航飞摄影基本流程............................ 错误!未定义书签。 1.项目所用测量数据....................... 错误!未定义书签。 2.像控点选取要求......................... 错误!未定义书签。 3.飞行及摄影设备......................... 错误!未定义书签。 4.飞行质量要求........................... 错误!未定义书签。 5.影像质量要求........................... 错误!未定义书签。 6.飞行任务规划........................... 错误!未定义书签。三倾斜摄影测量建模............................. 错误!未定义书签。 空三加密 ................................... 错误!未定义书签。 加密要求 ................................... 错误!未定义书签。 模型分块重构 ............................... 错误!未定义书签。四立体测图..................................... 错误!未定义书签。 工作流程 .................................. 错误!未定义书签。 内业采集 ................................... 错误!未定义书签。 细部采集 .................................. 错误!未定义书签。五外业调绘补测................................. 错误!未定义书签。六成果整理..................................... 错误!未定义书签。 数据编辑 ................................... 错误!未定义书签。 数据输出 .................................. 错误!未定义书签。七完成成果..................................... 错误!未定义书签。

摄影测量学__考前知识点整理

摄影比例尺:摄影比例尺越大,像片地面的分辨率越高,有利于影像的解译与提高成图精度 摄影航高:相对航高:绝对航高: 摄影测量生产对摄影资料的基本要求:影像的色调、像片倾角(摄影机主光轴与铅垂线的夹 角,α= 0 时为最理想的情形)像片重叠:航向重叠:同一航线内相邻像片应有一定的影 像重叠;旁向重叠:相邻航线也应有一定的重叠;航线弯曲:一条航线内各张像片的像主点 连线不在一条直线上;像片旋角:相邻两像片的主点的连线与像片沿航线方向的两框标连线 之间的夹角;像片旋角过大会减小立体相对的有效观察范围 中心投影:所有投射线或其延长线都通过一个固定点的投影 阴位:投影中心位于物和像之间。(距摄影中心f ) 阳位:投影中心位于物和像同侧。(距摄影中心f ) 像方坐标系:像平面坐标系(像主点o 为原点) 像空间坐标系(x 、y 、-f) 像空间辅助坐标系S-uvw 物方坐标系:地面测量坐标系T-XYZ (高斯平面坐标+高程)左手系 地面摄影测量坐标系D-XYZ 内方位元素: x 0,y 0,f 作用: 1、像点的框标坐标系向像空间坐标系的改化; 2、确定摄影光束的形状; 外方位元素:确定摄影光束在摄影瞬间的空间位置和姿态的参数 线元素(X S ,Y S ,Z S ) 角元素(航向倾角?、 旁向倾角ω、 像片旋角κ) 共线条件方程(摄影中心、像点、地面点) 像点位移:因像片倾斜引起的像点位移 同摄站同主距的倾斜像片和水平像片沿等比线重 合时,地面点在倾斜像片上的像点与相应水平像片上像点之间的直线移位 像点位于等比线上,无像片倾斜引起的像点位移 等比线上部的像点的像片倾斜误差方向向着等角点 等比线下部的像点的像片倾斜误差方向背向等角点 (1) 当 时, ,即等比线上的点不会因像片倾斜产生像点位移 (2)当 ,像点位移朝向等角点(一、二像限) (3)当 ,像点位移背向等角点(三、四像限) (4)当 时,主纵线上点的位移最大 像片纠正:因像片倾斜产生的影像变形改正 因地面起伏引起的像点位移(投影差):当地面有起伏时,高于或低于所选定的基准面 的地面点的像点,与该地面点在基准面上的垂直投影点的像点之间的直线移位 地形起伏像点位移的符号与该点的高差符号相同,像片上任何一点都存在像点位移 物镜畸变、大气折光、地球曲率及底片变形等一些因素均会导致像点位移 航摄像片:中心投影,平均比例尺,影像有变形,方位发生变化 地形图:正射投影,比例尺固定,图形形状与实地完全相似,方位保持不变 在表示方法上:地形图是按成图比例尺,用各种规定的符号、注记和等高线表示地物地 貌;航片则是通过影像的大小、形状和色调表示。 在表示内容上:在地形图上用相应的符号、文字、数字注记表示,在像片上这些是不存 ??? ????-+-+--+-+--=-+-+--+-+--=)Z Z (c )Y Y (b )X X (a )Z Z (c )Y Y (b )X X (a f y )Z Z (c )Y Y (b )X X (a )Z Z (c )Y Y (b )X X (a f x S S S S S S S S S S S S 333222 333111

摄影测量实验报告

《摄影测量原理》 实 验 报 告 院系: 班级: 姓名: 指导教师: 实验一预备知识 一、实验目得 1、了解4d得基本概念。 2、了解VirtuoZo NT系统得运行环境及软件模块得操作特点。 3、了解实习工作流程,从而能对4d产品生产实习有个整体概念。 二、实验内容 1、熟悉4D得基本概念。 数字高程模型(缩写DEM)就是在某一投影平面(如高斯投影平面)上规则格网点得平面坐标(X,Y)及高程(Z)得数据集。 数字正射影像图(缩写DOM)就是利用数字高程模型(DEM)对经扫描处理得数字化航空像片,经逐像元进行投影差改正、镶嵌,按国家基本比例尺地形图图幅范围剪裁生成得数字正射影像数据集。它就是同时具有地图几何精度与影像特征得图像,具有精度高、信息丰富、直观真实等优点。 数字线划地图(缩写DLG)就是现有地形图要素得矢量数据集,保存各要素间得空间关系与相关得属性信息,全面地描述地表目标。 数字栅格地图(缩写DRG)就是现有纸质地形图经计算机处理后得到得栅格数据文件。每一幅地形图在扫描数字化后,经几何纠正,并进行内容更新与数据压缩处理,彩色地形图还应经色彩校正,使每幅图像得色彩基本一致。数字栅格地图在内容上、几何精度与色彩上与国家基本比例尺地形图保持一致。 2、了解VirtuoZo NT系统,熟悉系统得运行环境及配置,主要软件模块以及作业方式等,了解系统目录。 3、系统启动。 4、4d产品制作流程

根据VirtuoZo制作4d产品得基本工作流程如下: 三、实验方 法与步骤 通过阅读 实验指导书, 对制作DE M、DOM流 程以及基本知 识进行足够得 了解。 四、实验结 果 五、实验心得与体会 通过学习摄影测量这门课,我已经了解4D得一些知识,现在又做了这次实验,使我对4D产品又加深了了解,此外,我也接触到了一个软件VirtuoZo NT,我开始就将这个软件进行练习,不断得去了解这个软件,通过实习指导书与视频,我对这个软件得又了更进一步得了解,这个软件就是做摄影测量实验得基础,在这个界面里能够做出一个完美得数字模型,能够将整个城市或者整个地区得影像制作成地形图与正摄投影图,能够使人们更加直观得瞧出地区得整体景象,我们能够用它制作4D产品,我要理解这个软件得制作流程,能够更好得做出产品。

摄影测量程序汇总(后方交会+前方交会+单模型光束法平差)

程序运行环境为Visual Studio2010.运行前请先将坐标数据放在debug 下。 1.单像空间后方交会 C语言程序: #include #include #include double *readdata(); void savedata(int hang,double *data,double *xishuarray,double *faxishu,double *l,int i,double xs,double ys,double zs,double fai,double oumiga,double kapa); void transpose(double *m1,double *m2,int m,int n); void inverse(double *a,int n); void multi(double *mat1,double * mat2,double * result,int a,int b,int c); void inverse(double *a,int n)/*正定矩阵求逆*/ { int i,j,k; for(k=0;k

摄影测量学实验报告

课间实验报告 2010年——2011年第 2学期 实验课程:摄影测量学 实验班级:08级地理信息系统 学生: 学号: 指导教师: 重庆交通大学测量与空间数据处理实验室

目录 实验一:单像空间后方交会算法实现 实验二:人眼立体相对观察

实验一:单像空间后方交会算法实现 一、 实验目的 通过用程序设计语言(Visual C++或者C 语言、C# 、VB 语言)编写一个完整的单片空间后方交会程序,通过对提供的一定数量的地面控制点进行计算,运用共线方程式反求输出像片的外方位元素并评定精度。本实验的目的在于让学生深入理解单片空间后方交会的原理、方法,体会在有多余观测情况下,用最小二乘平差方法实现解求影像外方位元素的过程。通过上机调试程序加强动手能力的培养,通过对实验结果的分析,增强学生综合运用所学知识解决实际问题的能力。 二、 实验器材 1. 航片坐标量测数据,控制点成果表,航片摄影参数等: ①已知航摄仪内方位元素:f=153.24㎜,000x y ==,摄影比例尺:1/50000 ②已知4对控制点的影像坐标和地面坐标 ③要求写出详细的解答过程 三、 实验原理 以单幅航空影像为基础,从该影像所覆盖地面范围内若干控制点的已知地面坐标和相应点的 像坐标量测值出发,根据共线条件方程,求解该影像在航空摄影时刻的外方位元素 。由于空间后方交会所采用的数学模型共线方程是非线性函数,为了方便外方位元素的求解,需要首先对共线方程进行线性化。 四、 实验步骤 运用程序设计语言编写计算过程代码,其代码编写原理为: 1. 运用空间后方交会的基本公式: 2. 误差方程式和法方程式的建立:

倾斜摄影测量开题报告(DOC)

倾斜摄影测量开题报告(DOC) 毕业设计(论文)开题报告 题目 倾斜摄影测量应用 学院测绘工程学院专业测绘工程班级测绘一班学号 学生姓名指导教师 开题日期 2014 3 31 《倾斜摄影测量应用》开题报告一、选题的背景与意义: (一)课题研究来源 (二)课题研究的目的通过掌握倾斜摄影测量技术来获取地面物体地形全面准确的三维信息。 (三)课题研究的意义通过研究倾斜摄影测量这项高新技术通过在同一飞行平台上搭载多台传感器,同时从垂直,倾斜等不同角度采集影像,获取地面物体更为准确的信息。传统的影像数据主要来源于垂直角度的航空或卫星影像,这些影像大多只有地物顶部的信息特征,缺乏地物侧面的详细轮廓及纹理信息,不利于全方位的模型重建和场景感知,并且这些影像上的建筑物容易产生墙面的倾斜和屋顶位移,遮挡压盖等问题,不利于后期的几何纠正和辐射处理。 二、国内外研究现状: (一)国内研究现状 (二)国外研究现状 三、课题研究内容及创新 倾斜影像是通过具有一定倾角的倾斜航摄相机获取的,具有如下的特点: 1可以获取多个视点和视角的影像,从而得到更为详尽的侧面信息 2具有较高的分辨

率和较大的视场角,3同一地物具有多重分辨率的影像; 4倾斜影像地物遮挡现象较突出。倾斜摄影测量技术通常包括影像预处理、区域网联合平差、多视影像匹配DSM 生成、真正射纠正、三维建模等关键内容 倾斜影像测量的关键技术1 多视影像联合平差,多视影像不仅包含垂直摄影数据,还包括倾斜摄影数据,而部分传统空中三角测量系统无法较好地处理倾斜摄影数据,因此,多视影像联合平差需充分考虑影像间的几何变形和遮挡关系。结合POS 系统提供的多视影像外方位元素,采取由粗到精的金字塔匹配策略,在每级影像上进行同名点自动匹配和自由网光束法平差,得到较好的同名点匹配结果,同时,建立连接点和连接线、控制点坐标、GPU/IMU 辅助数据的多视影像自检校区域网平差的误差方程,通过联合解算,确保平差结果的精度。2多视影像密集匹配,影像匹配是摄影测量的基本问题之一,多视影像具有覆盖范围大,分辨率高等特点,因此,如何在匹配过程中充分考虑冗余信息,快速准确获取多视影像上的同名点坐标,进而获取地物的三维信息,是多视影像匹配的关键,由于单独使用一种匹配基元或匹配策略往往难以获取建模需要的同名点,因此近年来随着计算机视觉发展起来的多基元、多视影像匹配,逐渐成为人们研究的焦点,目前,在该领域的研究已取得很大进展,例如建筑物侧面的自动识别与提取。通过搜索多视影像上的,在确定墙面时,可以设置若干影响因子,并给予一定的权值,将墙面分为不同的类,将建筑的各个墙面进行平面扫描和分割,获取建筑物的侧面结构,再通过对侧面进行重构,提取出建筑物屋顶的高度和轮廓,数字表面模型生成和真正射影像纠正,数字表面模型生成和真正射影像纠正倾斜摄影测量技术以大范围、高精度、高清晰的方式全面感知复杂场景,系统具备高性能的协同并行处理能力,在新一代城 市空间数据基础设施建设中有着巨大的发展潜力。随着我国城市化进程的快速推进,精细化的三维城市模型作为城市规划、建设、管理和信息化的基础数据,得

摄影测量学复习资料(全)复习过程

摄影测量学复习资料 (全)

一、名词解释 1、解析相对定向:根据同名光线对对相交这一立体相对内在的几何关系,通过量测的像点坐标,用解析计算方法解求相对定向元素,建立与地面相似的立体模型,确定模型点的三维坐标。 2、GPS辅助空中三角测量:将基于载波相位观测量的动态 GPS 定位技术获取的摄影中心曝光时刻的三维坐标作为带权观测值,引入光束法区域网平差中,整体求解影像外方位元素和加密点的地面坐标,并对其质量进行评定的理论和方法。 3、主合点:地面上一组平行于摄影方向线的光束在像片上的构像 4、核线:立体像对中,同名光线与摄影基线所组成核面与左右像片的交线。 5、航向重叠:同一条航线上相邻两张像片的重叠度。 6、旁向重叠:两相邻航带摄区之间的重叠。 7、影像匹配:利用互相关函数,评价两块影像的相似性以确定同名点 8、影像的内方元素:是描述摄影中心与像片之间相关位置的参数。 9、影像的外方元素:描述像片在物方坐标的位置和姿态的参数。 10、景深:远景与近景之间的纵深距离称为景深 11、空间前方交会:由立体像对中两张像片的内、外方位元素和像点坐标来确定相应地面点的地面坐标的方法,称为空间前方交会。 12、空间后方交会:利用一定数量的地面控制点,根据共线条件方程或反求像片的外方位元素这种方法称为单张像片的空间后方交会。 13、摄影基线:相邻两摄站点之间的连线。 14、像主点:像片主光轴与像平面的交点。 15、立体像对:相邻摄站获取的具有一定重叠度的两张影像。 16、数字影像重采样:当欲知不位于采样点上的像素值时,需进行灰度重采样。 17、核面:过摄影基线与物方任意一点组成的平面。 18、中心投影:所有投影光线均经过同一个投影中心。 19、单模型绝对定向:相对定向所构建的立体模型经平移、缩放、旋转后纳入到地面坐标系中的过程相对定向:根据立体像对内在的几何关系恢复两张像片之间的相对位置和姿态,使同名光线对对相交,建立与地面相似的立体模型。即确定一个立体像对两像片的相对位置。 20、数字影像内定向:同一像点的像平面坐标与其扫描坐标不相等,需要加以换算,这种换算称为数字影像内定向。 21、像主点:摄影机主光轴在框标平面上的垂足 22、内部可靠性:一定假设条件下,平差系统所能发现的模型误差的下界值 22、外部可靠性:一定显著性水平和检验功效下,平差系统不能发现的模型误差对平差结果的影响。 23、摄影学:利用光学摄影机摄取相片,通过相片来研究和确定被摄物体的形状,大小,位置和相互关系的一门学科技术。 24、影像信息学:是一门记录、储存、传输、量测、处理、解译、分析和显示由非接触传感器影响获得的目标及其环境信息的科学技术和经济实体。

摄影测量学空间后方交会实验报告测绘101徐斌

摄影测量学空间后方交会实验报告测绘101徐斌摄影测量学实验报告 实验一、单像空间后方交会 学院: 建测学院 班级: 测绘101 姓名: 徐斌 学号: 26 一( 实验目的 1.深入了解单像空间后方交会的计算过程; 2.加强空间后方交会基本公式和误差方程式,法线方程式的记忆; 3.通过上机调试程序加强动手能力的培养。 二(实验原理 以单幅影像为基础,从该影像所覆盖地面范围内若干控制点和相应点的像坐标量测值出发,根据共线条件方程,求解该影像在航空摄影时刻的相片外方位元素。 三(实验内容 1.程序图框图

2.实验数据 (1)已知航摄仪内方位元素f,153.24mm,Xo,Yo,0。限差0.1秒 (2)已知4对点的影像坐标和地面坐标: 影像坐标地面坐标 x(mm) y(mm) X(m) Y(m) Z(m) 1 -86.15 -68.99 36589.41 25273.32 2195.17 2 -53.40 82.21 37631.08 31324.51 728.69 3 -14.78 -76.63 39100.97 24934.98 2386.50 4 10.46 64.43 40426.54 30319.81 757.31 3.实验程序 Form1.cs 程序

using System; using System.Collections.Generic; using https://www.360docs.net/doc/7b9264304.html,ponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using System.IO; namespace 后方交会1 { public partial class Form1 : Form { public Form1() { InitializeComponent(); } public double f,m, Xs, Ys, Zs, a1, a2, a3, b1, b2, b3, c1, c2, c3, q, w, k; public static int N,s; public double[] x = new double[4];

摄影测量学复习文档

《摄影测量学》课程复习大纲 第一章:绪论 (一)摄影测量学的定义(传统、现代、比较): 1、传统摄影测量学定义:摄影测量学是利用光学摄影机获取的像片,经过处理以获取被摄物体的形状、大小、位置、特性及其相互关系的一门学科。 2、现代定义:摄影测量与遥感:1988年ISPRS在日本京都第16届大会上定义:摄影测量与遥感是对非接触传感器系统获得的影像采用数字方式进行记录、量测和解译,从而获得自然物体和环境的可靠信息的一门工艺、科学和技术。 (二)航空影像与地形图的优缺点比较: 1、影像特点:1.直观;2.信息丰富;3.目标之间相对关系固定,无绝对的地理方位等信息; 2、地形图特点:1.统一的比例尺;2.符号化;3.地貌、地物综合取舍;4.目标具备地理坐标及方位绝对信息; 3、航空影像——地形图 主要特点:在像片上进行量测和解译,无需接触物体本身,因而很少受自然和地理等条件的限制。 各种技术的迅猛发展,使摄影测量学发展为摄影测量与遥感学科。 (三)测绘4D产品的定义: 测绘4D产品(DEM,DOM ,DLG ,DRG ) 1、数字高程模型(Digital Elevation Model,缩写DEM); 2、数字正射影像图(Digital Orthophoto Map,缩写DOM); 3、数字线划地图(Digital Line Graphic,缩写DLG); 4、数字栅格地图(Digital Raster Graphic,缩写DRG); (四)摄影测量分类和特点: 按技术手段分: 模拟摄影测量(Analog Photogrammetry)(像片,模拟解算); 解析摄影测量(Analytical Photogrammetry)(像片,数字解算); 数字摄影测量(Digital Photogrammetry)(数字图像,数字解算); 1.2摄影原理与航空摄影机 2、主光轴:组成物镜的各个透镜光学中心位于同一直线上,这条直线称为主光轴, 用LL表示; 3、焦点:主光轴与像平面和物方平面的交点,用“F”表示; *****还有书本第12页-第14页的八个名词解释(摄影测量对空中摄影的基本要求)。(5)摄影测量与遥感影像获取方法的异同点。

摄影测量实验 立体观察

实验立体观察 一.目的 1.熟练掌握每种立体镜的使用方法,利用立体镜看出航片的立体效果。 2.了解桥式立体镜和红绿立体镜的原理。 二.要求 1.禁止大声喧哗,随意进出教室。保持课堂秩序。 2.不得随意损坏涂抹照片,不得损坏眼镜,各小组组长负责仪器和像片完好无损,损坏像片和仪器的要进行赔偿。 三.仪器 每组一套立体像对,一个桥式立体镜。 电脑一台,红绿立体镜,数字影像。 四.方法和步骤 1.拿到两张像片之后,首先观察像片上一样图案的部分,把它们按照规定的 顺序摆放好。 2.寻找同名像点,把立体镜摆放在同名像点的上方,左眼看左片的像点,右 眼看右片的像点,仔细观察,直到看出高低起伏的感觉。 用立体镜进行像对立体观察时,首先要将像片定向。像片定向是用 针刺出每张像主点O 1、O 2 ,并将其转刺于相邻像片上O′ 1 和O′ 2 ,在像 片上画出像片基线O 1O′ 2 和O′ 1 O 2 ,再在图纸上画一条直线,使两张像 片上基线O 1O′ 2 和O′ 1 O 2 与直线重合,并使基线上一对相应像点间的距 离略小于立体镜的观察基线。然后将立体镜放在像对上,使立体镜观察基线与像片基线平行。同时用左眼看左像,右眼看右像。 开始观察时,可能会有三个相同的影像(左、中、右)出现,这时要凝视中间清晰的目标(如道路、田地),如该目标在中间的影像出现双影,可适当转动像片,使影像重合,即可看出立体。 3、像对立体观察的立体效果 在满足立体观察的条件下,随着两张像片放置方式的不同,就会产生不同的立体效应。 1)正立体效应 如果把左方摄影站获得的像片放在左方用左眼观察;右方摄影站摄取的像片放在右方用右眼观察,这时获得与观察实物相似的立体效果,称为正立体效应。

相关文档
最新文档