热交换器原理与设计
热交换器原理与设计
![热交换器原理与设计](https://img.taocdn.com/s3/m/5e8c0287db38376baf1ffc4ffe4733687f21fc69.png)
热交换器原理与设计
热交换器是一种用于传热的设备,广泛应用于工业生产、能源
领域以及日常生活中。
其作用是在两种流体之间传递热量,使它们
达到所需的温度。
热交换器的设计和运行原理对于提高能源利用效
率和保障设备安全稳定运行具有重要意义。
热交换器的原理是利用热传导的物理特性,通过将两种流体分
别置于不同的传热面上,使它们之间产生温度差,从而实现热量的
传递。
在热交换器中,传热面的设计和流体流动方式是影响传热效
率的关键因素。
此外,热交换器的设计还需要考虑流体的物性参数、流体流速、传热面积以及传热介质的选择等因素。
在热交换器的设计过程中,首先需要确定传热的需求,包括传
热量、传热温差等参数。
然后根据流体的性质和工艺要求选择合适
的传热面积和传热介质。
接下来是热交换器内部结构的设计,包括
传热面的布置方式、流体流动路径的设计等。
最后是对热交换器的
整体结构进行设计,包括支撑结构、连接方式、绝热措施等。
热交换器的设计需要综合考虑传热效率、成本、占地面积等因素。
为了提高传热效率,可以采用增加传热面积、改善流体流动方
式、优化传热介质等措施。
在降低成本方面,可以通过材料选择、结构设计等途径进行优化。
此外,合理设计热交换器的结构,可以减小占地面积,提高设备的整体性能。
总的来说,热交换器的设计是一个综合考虑传热效率、成本和结构合理性的工程问题。
通过科学合理的设计,可以提高能源利用效率,降低生产成本,保障设备的安全稳定运行。
因此,热交换器的设计对于工业生产和生活中的能源利用具有重要的意义。
《热交换器原理与设计》热交换器设计
![《热交换器原理与设计》热交换器设计](https://img.taocdn.com/s3/m/31152e6326284b73f242336c1eb91a37f111320b.png)
结构紧凑,制造简便,单位体积设备内的传热面积约为列管式换 热器的3倍。
操作压力和温度不能太高,尤其是所能承受的压力比较低,操作 压力只能在20atm以下,操作温度约在300-400℃以下。
37
具有的共同特点
①强化传热的凹凸形波纹; ②用以安装密封垫片的密封槽; ③介质进出的角孔; ④板片悬挂装置(缺口); ⑤保证密封垫片压紧时对中的定 位缺口; ⑥板片组装后保持流道一定的间 隙、并使流层“网状”化的触点, 可使板片在两侧介质有压差情况 下减少板片的变形; ⑦使介质能均匀沿板片流道宽度 分布的导流槽;
1—上导杆;2—垫片;3—传热板片;4—角孔; 5—前支柱;6—固定端板;7—下导杆;8—活动端板
29
30
a 传热板片
作用: 流体在低速下发生强烈湍流,以强化传热 提高板片刚度,能耐较高的压力
类型:
人字形板
水平平直波纹板
锯齿形板
31
32
人字形波纹片
33
板片的样式
34
35
水平平直波纹
36
17
组成 传热板片
密封垫圈
压紧装置 轴及接口管等
18
板式换热器的构造
19
20
21
平板式换热器的工作原理
若干矩形板片,其上四角开有圆孔,通过圆孔外设置或不 设置圆环形垫片可使每个板间通道只留两个孔相连。
(a)平板式换热器流向示意图
b)平板式换热器板片
平板式换热器
22
工作过程
板四角开有角孔,流体由一个角孔流入,即在两块板形成的流道 中流动,而经另一对角线角孔流出(该板的另外两个角孔则由垫 片堵住),流道很窄,通常只有3~4 mm,冷热两流体的流道彼 此相间隔。为了强化流体在流道中的扰动,板面都做成波纹形。 板片间装有密封垫片,它既用来防漏,又用以控制两板间的距离。 冷热两流体分别由板的上、下角孔进入换热器,并相间流过奇数 及偶数流道,然后再从下、上角孔流出。传热板片是板式换热器 的关键元件,不同类型的板片直接影响到传热系数、流动阻力和 承受压力的能力。 板片的材料,通常为不锈钢,对于腐蚀性强的流体(如海水冷却 器),可用钛板。
什么是热交换器?热交换器原理与设计
![什么是热交换器?热交换器原理与设计](https://img.taocdn.com/s3/m/ea40cf673b3567ec102d8a40.png)
什么是热交换器?热交换器原理与设计
换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产
中占有重要地位。
在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸
发器和再沸器等,应用更加广泛。
换热器分类:
按传送热量方式可分为:间壁式、混合式、蓄热式(或称回热式)三大类;
按其表面的紧凑程度可分为紧凑式和非紧凑式两类。
换热器如何进行热交换?
热交换系统通常是以热传导和对流两种方式进行热交换的。
热传导是热量传递的一种常见的其过程中流体各部位之间不发生相对的方式,。
位移;
对流是流体各部分质点发生相对位移而引起的热量传递过程。
对流分为强制
对流与自然对流,强制对流是使用机械能(如搅拌)使流体发生对流而传热。
热交换器原理与设计
![热交换器原理与设计](https://img.taocdn.com/s3/m/11ca2408b52acfc789ebc913.png)
绪论1.2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。
3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。
过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。
第一章1.Mc1℃是所需的热量,用W表示。
两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。
2.W—对应单位温度变化产生的流动流体的能量存储速率。
4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。
5.P(定义式P12)物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。
6.R—冷流体的热容量与热流体的热容量之比。
(定义式P12)7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。
除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。
(P22 例1.1)8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。
9.实际传热量Q与最大可能传热量Qmax=Q/Qmax。
意义:以温度形式反映出热、冷流体可用热量被利用的程度。
10.根据ε的定义,它是一个无因次参数,一般小于1。
其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。
热交换器原理与设计
![热交换器原理与设计](https://img.taocdn.com/s3/m/ef0f573ca517866fb84ae45c3b3567ec102ddc3a.png)
热交换器原理与设计热交换器是一种用于传热的设备,它可以将热量从一个流体传递到另一个流体,而两者之间并不直接接触。
热交换器广泛应用于工业生产和日常生活中,如空调系统、冷却系统、加热系统等。
在本文中,我们将深入探讨热交换器的原理与设计。
热交换器的原理主要基于热传导和对流传热。
在热交换器中,两种流体分别流经热交换器的两侧,通过热传导和对流传热的方式,实现热量的传递。
热交换器的设计主要包括换热面积、传热系数、流体流速等因素。
换热面积越大,传热效果越好;传热系数越大,传热效率越高;流体流速对于传热效果也有着重要的影响。
热交换器的设计需要考虑多种因素,如流体的性质、温度、压力、换热面积、传热系数等。
在实际工程中,需要根据具体的工况条件来选择合适的热交换器类型,如板式热交换器、管式热交换器、壳管式热交换器等。
不同类型的热交换器适用于不同的工况条件,需要根据实际情况进行合理选择。
在热交换器的设计过程中,需要进行热力学计算、流体力学分析、材料选型等工作。
通过这些工作,可以确定热交换器的尺寸、结构、材料等参数,确保热交换器在实际工作中能够达到预期的换热效果。
此外,还需要考虑热交换器的清洗维护、安装调试等问题,确保热交换器的长期稳定运行。
总的来说,热交换器是一种重要的传热设备,它在工业生产和日常生活中都有着重要的应用。
热交换器的原理基于热传导和对流传热,设计时需要考虑多种因素,如流体性质、温度、压力、换热面积、传热系数等。
合理的热交换器设计可以提高能源利用效率,降低生产成本,对于工业生产和环境保护都具有重要意义。
因此,热交换器的原理与设计是一个值得深入研究的课题,也是工程技术人员需要掌握的重要知识。
热交换器原理与设计 第6版 第6章 热交换器的试验与研究
![热交换器原理与设计 第6版 第6章 热交换器的试验与研究](https://img.taocdn.com/s3/m/72246aadc9d376eeaeaad1f34693daef5ef71330.png)
重复4~6步骤。 8) 试验中如有必要,可以改变任一侧流体的流向,
重复5、6两步骤。 9) 试验完毕依次关闭电加热器、热水泵及冷水泵等。
试验数据的整理
1) 传热量Q:由于种种原 因,试验测试的冷流体吸 热量不会完全等于热流体 的放热量,可以它们的算 术平均值,Q=(Q1+Q2 )/2 作为实际的传热量。
ci Fi
于是上式变为:
1 Ko
a
b
1 w0.8
i
改变管内流速 wi,则可测得一系列总
传热系数,绘制成图,则是一条直线。
由
b 1 Fo ci Fi
→
ci
1 b
Fo Fi
从而,得到管内的对流换热系数 αi:
αi ciwi0.8
3) 修正的威尔逊图解法
由《传热学》,湍流时管内流体的对流换热准则式为:
Rw
Rs
1 αi
Fo Fi
一般管内流动是处于湍流状态,αi 与流速 w0.8
成正比,可写成 αi = ci·w0.8 ,代入上式:
1 Ko
1 αo
Rw
Rs
1
ci
w0.8 i
Fo Fi
1 Ko
定数
1 ci
Fo Fi
1 w0.8
i
上式右边前3项可认为是常数,用 a 表示,物性
不变情况下,可认为 1 Fo 是常数,用 b 表示,
实验步骤
1) 了解试验系统、操作方法及测量仪表使用方法。 2) 接通热水箱电加热器的电源,将水加热到预定温度。 3) 启动冷、热水泵。 4) 根据预定的试验要求,分别调节冷、热水流量达
热交换器原理
![热交换器原理](https://img.taocdn.com/s3/m/f0524d60bc64783e0912a21614791711cd797968.png)
热交换器原理
热交换器是一种用于热能传递的设备,其原理基于热传导和换热面积的优化利用。
它通常由许多并排的金属管或片组成,这些管或片之间存在热传导的接触。
热交换器的工作原理如下:
1. 流体流动:热交换器内部有两种流体,一个是要被加热的流体(热流体),另一个是需要吸收热量的流体(冷流体)。
2. 热传导:热流体通过热交换器的管道或片内流动时,其热能会通过金属材料逐渐传递给冷流体。
这是通过两种流体之间的热传导实现的。
3. 换热面积:热交换器的设计旨在最大化换热面积,以确保足够的热能传递。
通常,热交换器的管道或片会采用螺旋形状或叠放形式,以增加换热面积。
4. 流体分离:热交换器内的流体是分离的,它们不会混合,但通过金属管壁或片之间的接触而进行换热。
热交换器的优点在于它能够高效地传递热能并方便维护。
通过优化设计和选择合适的材料,热交换器可以实现高热传导效率和较低的能量损失。
这使得热交换器在许多工业和家用应用中得到广泛使用,例如空调系统、汽车发动机、化工过程等。
热交换器的工作原理
![热交换器的工作原理](https://img.taocdn.com/s3/m/a5ba67b84793daef5ef7ba0d4a7302768e996f0a.png)
热交换器的工作原理
热交换器是一种能够在两个流体之间传递热能的设备,它通过多个金属管道将两个流体分隔开,使得它们在管道壁上进行热量的传递。
热交换器的工作原理可以分为两个步骤:
1. 导热步骤:在热交换器内部,流体A和流体B通过独立的管道流经设备。
这两个流体之间以及流体与管道壁之间存在温度差,导致热量的传递。
其中,热量的传递可以通过对流、传导和辐射等方式进行。
2. 热传递步骤:当流体A和流体B通过热交换器的管道壁进行传递时,热量会从高温流体传递到低温流体,从而实现热能的交换。
这个过程中,热量会通过管道壁导热到另一侧,然后再通过对流传递给另一个流体。
为了提高热交换效果,热交换器通常采用多种方法来增大管道壁与流体之间的接触面积。
常见的方法包括使用螺旋形、波纹形或其他结构形状的管道,以增加管道的表面积。
此外,热交换器还可以通过流体流动方式的改变来提高热传递效率。
例如,可以采用逆流流动方式,使得流体A和流体B 在管道中的流动方向相反。
这样可以提高热量的传递效果,使得流体之间的温度差更大。
总的来说,热交换器通过分隔两个流体并增大其接触面积,利
用温度差来实现热量传递。
这种设计可以有效地进行热能的交换,广泛应用于各种工业领域和生活中。
热交换器原理与设计
![热交换器原理与设计](https://img.taocdn.com/s3/m/550c5b23a88271fe910ef12d2af90242a895ab03.png)
热交换器原理与设计热交换器是一种广泛应用于工业生产和生活领域的热传递设备,其原理和设计对于提高能源利用效率和改善环境保护具有重要意义。
热交换器的工作原理主要是利用流体之间的热量传递,通过热传导、对流和辐射等方式,实现热量的传递和平衡。
在设计热交换器时,需要考虑流体的性质、流动状态、传热面积和传热系数等因素,以达到最佳的传热效果。
首先,热交换器的原理是基于热量传递的基本规律,即热量会自高温区流向低温区,直至两者温度相等。
这一原理是热交换器能够实现热量传递的基础,也是设计热交换器时需要遵循的核心原则。
通过合理的设计和优化,可以最大限度地提高热交换器的传热效率,从而节约能源和降低生产成本。
其次,热交换器的设计需要考虑流体的性质和流动状态。
不同的流体具有不同的传热特性,包括传热系数、比热容、粘度等,这些参数对于热交换器的设计和选择具有重要影响。
同时,流体的流动状态也会影响传热效果,包括流速、流态、流向等因素都需要在设计中进行充分考虑,以确保热交换器能够实现预期的传热效果。
另外,传热面积是影响热交换器传热效果的重要因素之一。
通过增大传热面积,可以增加热交换器与流体之间的热量交换,从而提高传热效率。
在设计热交换器时,需要根据实际工况和传热要求确定合适的传热面积,同时考虑传热面积的布置方式和结构形式,以实现最佳的传热效果。
最后,传热系数是评价热交换器传热效果的重要参数之一。
传热系数受到多种因素的影响,包括流体性质、流动状态、传热面积和传热方式等。
在设计热交换器时,需要通过合理的布置和优化结构,以提高传热系数,从而实现更高效的热量传递。
总之,热交换器的原理和设计是一个复杂而又重要的课题,需要综合考虑流体性质、流动状态、传热面积和传热系数等因素,以实现最佳的传热效果。
通过深入研究和不断优化,可以不断提高热交换器的性能,为工业生产和生活提供更加高效和环保的热传递解决方案。
第1章_热交换器基本原理【《热交换器原理与设计》课件】
![第1章_热交换器基本原理【《热交换器原理与设计》课件】](https://img.taocdn.com/s3/m/9c15854df5335a8102d22060.png)
逆流
1.2 平均温差
对顺、逆流的传热温差分析,作如下假设:
1. 冷热流体的质量流量和比热保持定值; 2. 传热系数是常数; 3. 热交换器没有热损失; 4. 沿流动方向的导热量可以忽略不计; 5. 同一种流体从进口到出口,不能既有相变又
有单相对流换热。
要计算整个换热的平均温差,首先需要知道 温差随换热面的变化,即 Δtx= f(Fx),然后再沿 整个换热面积进行平均。
过冷
t1″ t2′
t1′ t2″
放热
过热 沸腾
t1′
部分冷凝
t1″
吸热
t2″
吸热
t1″ t2′
t2′
g :一种流体有相变
h:可凝蒸气和非凝结性 气体混合物的冷凝
1.2.2 顺流、逆流下的平均温差
以顺流为例:已知冷热流体的进出口温度, 针对微元换热面dF一段的传热,温差为:
Δt=t1 – t2
→
dΔt=dt1 – dt2
Fx dΔt μk dF 0 Δt
dΔt μkdF Δt
Δtx ln μkFx Δt
Δtx
Δt
Δtx Δt e
μkFx
Δtx Δt e
Δt Δt e
"
μkFx
当 Fx = F 时,Δtx =Δt"
μkF
1 1 μ W1 W2
' 2
热容量:
W = M· C
(W/℃)
Q = W1 · Δt1 =W2 · Δt2
W1 Δt2 W2 Δt1
平行流:顺流和逆流
Hot fluid Cold fluid
Hot fluid Cold fluid
热交换器原理与设计
![热交换器原理与设计](https://img.taocdn.com/s3/m/ef8cc2553b3567ec102d8aca.png)
绪论1.2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。
3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。
过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。
第一章1.Mc1℃是所需的热量,用W表示。
两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。
2.W—对应单位温度变化产生的流动流体的能量存储速率。
4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。
5.P(定义式P12)物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。
6.R—冷流体的热容量与热流体的热容量之比。
(定义式P12)7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。
除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。
(P22 例1.1)8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。
9.实际传热量Q与最大可能传热量Qmaxε表示,即ε=Q/Qmax。
意义:以温度形式反映出热、冷流体可用热量被利用的程度。
10.根据ε的定义,它是一个无因次参数,一般小于1。
其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。
热交换器原理与设计
![热交换器原理与设计](https://img.taocdn.com/s3/m/5df5815e54270722192e453610661ed9ac515568.png)
热交换器原理与设计
热交换器是一种用于热能传递的设备,它能够将两种介质的热能进行有效的交换,从而实现热能的转移或调节。
热交换器通常由一组平行排列的管子构成,这些管子被称为换热管。
通过换热管,两种介质可以在不直接接触的情况下,通过壁面实现热能的传递。
热交换器的工作原理基于热传导和对流传热的基本原理。
当两种介质经过热交换器时,它们在换热管中流动,并通过壁面进行热能的传递。
通常情况下,一种介质在换热管内流动,被称为工作介质;而另一种介质则在换热管外流动,被称为冷却介质。
在热交换器中,工作介质和冷却介质在壁面上形成热传导层,热能通过壁面的热传导传递给冷却介质。
同时,工作介质和冷却介质的流动会形成一定的速度场,这会引起对流传热。
对流传热使得热交换效果更加显著,提高了热能传递的效率。
为了提高热交换器的效率,设计时需要考虑多种因素。
首先,换热管的设计要合理,以确保工作介质和冷却介质能够在壁面处充分接触,确保热能的传递效果。
其次,交换器的材料选择也非常重要,必须具有良好的热导性和耐腐蚀性,以确保长时间的稳定运行。
此外,流体的流速、压力和温度等参数也需要被正确地控制,以达到最佳的热交换效果。
总之,热交换器通过换热管技术,利用热传导和对流传热的原
理,实现了热能的传递与调节。
通过合理的设计与优化参数,可以提高热交换器的效率,满足不同领域对热能传递的需求。
热交换器原理与设计
![热交换器原理与设计](https://img.taocdn.com/s3/m/d8b0ded9e109581b6bd97f19227916888586b97a.png)
绪论1.在工程中,将某种流体的热量以一定的传热方式传递给他种流体的设备,称为热交换器。
2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。
3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式间壁式I:热流体和冷流体间有一固体表面,一种流体恒在壁的一侧流动,而另一种流体恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。
混合式!:这种热交换器内依靠热流体与冷流体的直接接触而进行传热。
蓄热式I:其中也有固体壁面,但两种流体并非同时而是轮流的和壁面接触,当热流体流过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。
第一章, ,1.Mc称为热容量,它的数字代表流体的温度没改变1°C是所需的热量,用W表示。
两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。
2.W一对应单位温度变化产生的流动流体的能量存储速率。
3.1平均温差指整个热交换器各处温差的平均值。
4.顺流和逆流情况下平均温差的区别:在顺流时,不论W]、W2值的大小如何,总有p >0, 因而在热流体从进口到出口的方向上,两流体间的温差At总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,p >0,At不断降低,当W1>W2时,p V 0,At不断升高。
5.P—冷流体的实际吸热量与最大可能的吸热量的比率,称为温度效率。
(定义式P12)物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。
6.R—冷流体的热容量与热流体的热容量之比。
化工原理课程设计-热交换器
![化工原理课程设计-热交换器](https://img.taocdn.com/s3/m/08b3f9c485868762caaedd3383c4bb4cf6ecb746.png)
化工原理课程设计-热交换器引言热交换器是化工工艺中常用的一种设备,其作用是实现热量的交换,从而实现能量的转移。
本文将从热交换器的原理、设计要点、性能评价等方面进行介绍和讨论。
一、热交换器的原理热交换器是通过两个介质之间的热传导来实现能量转移的设备。
它由一个或多个传热表面组成,介质在这些表面上相互接触,并通过传热表面之间的热传导来实现热量的传递。
根据介质的流动方式,热交换器可以分为管壳式热交换器和板式热交换器。
1.1 管壳式热交换器管壳式热交换器是目前最常用的一种热交换器。
它由一个管子和一个外壳组成,在外壳内部通过一个或多个管子,介质在管子内部流动,通过管子和外壳之间的热传导来实现热量的传递。
管壳式热交换器结构简单、可靠性高,广泛应用于化工、制冷等领域。
1.2 板式热交换器板式热交换器是近年来发展起来的一种新型热交换器。
它由一系列平行排列的波纹板组成,流体通过波纹板之间的间隙流动,通过波纹板的热传导来实现热量的传递。
板式热交换器具有传热效率高、体积小、重量轻等优点,因此在化工工艺中得到广泛应用。
二、热交换器的设计要点热交换器的设计是化工工艺中非常重要的一部分,设计的好坏直接影响到热交换器的性能。
下面将介绍热交换器设计的几个关键要点。
2.1 热传导热传导是热交换器实现热量传递的基本方式。
在设计热交换器时,需要考虑介质之间的热传导系数、传热表面的材料、传热表面的形状等因素,并通过合理的设计来提高热传导效率。
2.2 流体流动流体的流动方式对热交换器的传热效果有着重要影响。
在设计热交换器时,需要考虑流体的流动速度、流动的方式(如层流、湍流)、流体的阻力等因素,并通过合理的设计来优化流体的流动方式,提高传热效率。
2.3 温度差温度差是热交换器实现热量转移的驱动力。
在设计热交换器时,需要考虑介质之间的温度差、介质的流量、介质的性质等因素,并通过合理的设计来控制温度差,提高传热效率。
2.4 材料选择热交换器的材料选择直接影响到其耐腐蚀性、耐高温性、传热效率等性能。
热交换器原理与设计第四版课程设计
![热交换器原理与设计第四版课程设计](https://img.taocdn.com/s3/m/c72994d2541810a6f524ccbff121dd36a32dc431.png)
热交换器原理与设计第四版课程设计一、课程概述本课程是热交换器原理与设计的第四版课程设计,旨在让学生深入了解热交换器的工作原理及设计方法,培养学生的实践能力和创新思维。
本课程主要包括以下几个方面的内容:1.热交换器的基本原理和分类;2.热传导和流体力学基础;3.热交换器的设计计算方法;4.热交换器的模拟与优化;5.热交换器的材料选择和制造工艺。
通过本门课程的学习,学生将掌握热交换器的工作原理和设计方法,能够设计和优化不同类型的热交换器,并且能够熟练掌握热交换器的制造工艺。
二、课程教学大纲1. 热交换器的基本原理和分类1.1 热交换器的概述1.2 热交换器的分类1.3 热交换器的工作原理1.4 热交换器的性能参数2. 热传导和流体力学基础2.1 热传导基础2.2 流体力学基础2.3 热交换器的传热分析3. 热交换器的设计计算方法3.1 热交换器的换热面积计算3.2 热交换器的传热系数计算3.3 热交换器的压降计算4. 热交换器的模拟与优化4.1 热交换器的模拟方法4.2 热交换器的优化设计4.3 热交换器的性能评估5. 热交换器的材料选择和制造工艺5.1 热交换器材料的选择5.2 热交换器的制造工艺5.3 热交换器的维护和保养三、课程设计要求本次课程设计要求学生根据所学知识,设计一种新型的热交换器,并进行模拟和优化。
要求如下:1.设计一种结构简单、性能优良的新型热交换器;2.进行热传导和流体力学分析,并给出计算结果;3.进行热交换器的模拟,并对模拟数据进行评估;4.对设计结果进行优化,并给出优化方案;5.撰写设计报告,详细介绍热交换器的设计过程和结果。
四、参考资料1.热传导与传热学,裴乃正,高等教育出版社,2002年;2.热交换原理与工艺,吕光彪,清华大学出版社,2008年;3.热力学基础,黄思国,高等教育出版社,2010年;4.热交换过程强化,魏都督,清华大学出版社,2014年。
以上参考资料仅供参考,学生可以自行查找相关资料,并按照教师要求撰写设计报告。
全套电子课件:热交换器原理与设计
![全套电子课件:热交换器原理与设计](https://img.taocdn.com/s3/m/5e0eb6406d85ec3a87c24028915f804d2b1687dd.png)
Mb
t1 t1expma L
expma L expmb L
(p)
将式(p)代入(n),则:
Z
t1
t1
t1
t1
expma L mb expma
x L
expmb expmb
L
L
ma x
(q)
式(q)表示了壳侧流体温度沿距离x的变化规律。
若对式(n) x求导,可得壳侧流体温度的变化率:
dZ dt1 dx dx
P’ = P ·R R’ = 1/R
(2)P的物理意义:冷流体的实际温升与理论所
能达到的最大温升之比(< 1) → 温度效率
(3)R的物理意义:两种流体的热容量之比。
R t1 t1 W2 t2 t2 W1
1) 热流体在管外为一个流程, 冷流体在管内先逆后顺两个
流程<1–2>型热交换器
ψ
R2 1
W1 KS
d 2t1 dx 2
2 dt1 dx
KS W2
t2b
t2a
(h)
将式(b)代入式(h)并整理:
d 2t1 dx 2
2KS W1
dt1 dx
KS W2
2 t1
t1
0
(i)
此为壳侧流体温度沿流动方向的微分方程。
为求解此式,引入新变量:
Z = t′1 – t1
(j)
t′1为热流体起始温度,看作常量,(i)式变成:
Mamaexpma x Mbmb mb x
(r)
将式(f)代入式(r),考虑到边界条件:
x=0时,t1 =t″1,t2a =t′2,t2b =t″2
则:
Mama
Mbmb
热交换器原理与设计 史美中
![热交换器原理与设计 史美中](https://img.taocdn.com/s3/m/05a1d30f842458fb770bf78a6529647d272834e7.png)
热交换器原理与设计史美中简介热交换器(Heat Exchanger)是一种被广泛应用于工业领域的热传递设备。
它通过两个或多个流体之间的热交换,实现能量的转移。
热交换器的原理和设计对于提高能源效率、降低生产成本以及减少环境污染具有重要意义。
在本篇文档中,我们将探讨热交换器的原理和设计以及其在实际中的应用。
热交换器原理热交换器的基本原理热交换器的基本原理是利用两个或多个流体之间的热传导,实现能量的转移。
一般来说,热交换器由一个管束和一个壳体组成,流体在管束内部和壳体外部流动。
热交换器可以分为直接传热和间接传热两种类型。
直接传热是指两个流体直接接触并通过传热表面进行热传导。
这种方式适用于流体之间热传导速率较高的情况,如气体之间的传热。
间接传热是指通过一个热传导表面将热量从一个流体传递到另一个流体中。
这种方式适用于流体之间热传导速率较低的情况,如气体和液体之间的传热。
热交换器的工作原理热交换器的工作原理可分为对流传热和辐射传热两种方式。
对流传热是指流体与热交换器内部表面接触并通过对流的方式传热。
流体在热交换器中流动时,与热交换器内部表面发生热交换,使得热量从一个流体传递到另一个流体。
辐射传热是指通过电磁辐射的方式将热量从一个流体传递到另一个流体。
辐射传热主要由热交换器内部表面的热辐射和吸收来实现。
热交换器设计热交换器的设计考虑因素在热交换器的设计过程中,需要考虑以下因素:1.热传导的效率:热交换器设计的关键目标是实现尽可能高的热传导效率,以确保能量的有效转移。
2.流体的物性:流体的物性如粘度、比热容等对热传导效率产生重要影响,需要在设计过程中准确考虑。
3.热交换器的尺寸和形状:合理选择热交换器的尺寸和形状,以适应不同的场景和应用需求。
4.热交换器的材料选择:热交换器需要具备良好的耐腐蚀性和热传导性能,材料的选择对于热交换器的性能至关重要。
热交换器的设计步骤热交换器的设计通常包括以下步骤:1.确定热交换器的类型:根据实际应用需求和流体特性,选择适合的热交换器类型,如管壳式热交换器、板式热交换器等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热交换器原理与设计复习提纲
题型:概念题,问答题,计算。
0.绪论
1.热交换器的分类
2.content of heat exchanger desing.(P6)
1.热交换器热计算的基本原理
1.1.1热计算基本方程式 Q=KF△t ------Heat Transfer Equation
1.1.2热平衡方程式 Heat balance equation Q=M1(I1’-I1”)=M2(I2”-I2’)
1.2平均温差(图)
对数平均温差△tm或LMTD表示,公式1.11 (for counter flow and parallel flow)(主要用这个)
算术平均温差(看)△tm=ψ△tlm,c ψ----修正系数 correction factor ψ=f(P、R) P,R公式及物理意义
1.3.1 传热有效度的定义
1.3.2 LMTD及NTU 两种算法 P24-34
2.管壳式热交换器 shell-and-tube heat exchanger(计算较多)
2.1.1 types(4种) and standards (国标GB151-1999,P43表示法)
2.1.2管子在管板上的固定与排列
Tube bundle type: bined
1)管子在管板上的固定
2)管子在管板上的排列 tube layout
Triangular layout
Square layout
Circular layout
Rotated square layout
3)换热管中心距:管板上两根管子中心线的距离称为换热管中心距。
2.1.5 折流板 baffle-----一个重要的附件
折流板的作用除了使流体横过管束流动外,还有支撑管束、防止管束振动弯曲的作用。
Baffle arrangement:水平,数值,转角
Baffle types:segmental baffle(弓形)、disc-and-ring baflle
Baffle fixing
2.1.7 防冲板
2.3 管壳式热交换器的传热计算
2.3.1 传热系数的确定(确定管内面积还是管外面积)
对光滑圆管,以外表面积为准时:
以内表面积为准时:
公式2.25,,2.26,
do≈di,可用公式2.27:
2.3.2 换热系数的计算
了解贝尔法
Nu=αl/λ Re=ωl/γ Pr=Cpμ/λ
P60 表格
2.4.1 管程阻力计算(压力计算,参考流体力学)注意:入口,出口,转弯处
2.5 管壳式热交换器的合理设计
考虑的主要问题:1.流体在热交换器内流动空间的选择
2.流体文都和终温的确定
3.管子直径的选择
4.流体流动速度的选择
5.管壳式热交换器的热补偿问题
6.管壳式热交换器的震动与噪声
Attention:了解设计原则
3.高效间壁式热交换器
3.1 螺旋板式热交换器 spiral heat exchanger
基本构造和工作原理 basic structure and principle
3.2 板式热交换器板式效率的物理意义及影响板式效率的因素
P129 型号表示法
3.3.2 板翅式热交换器的设计计算注意翅片效率:ηf
翅片避免总效率:η0
传热量和传热系数计算 P150 公式 3.64;公式 3.65
P154 板翅式热交换器设计步骤:(参照老师上课讲的内容)
3.4 翅片管热交换器 tube-fin heatexchanger
翅片管热交换器是一种带翅(亦称带肋)的热交换器
3.5 热管热交换器 heat-pipe heat exchanger
因为工作原理不同(蒸发,冷凝)所以要在第三章重点注意:5个极限,9个热阻,及工作原理
P180 什么叫重力辅助热管
4 混合式热交换器
分类:冷水塔,气体洗涤塔,喷射式热交换器,混合式冷凝器
Attention:重点冷水塔
4.1 冷水塔 1.构造及部件功能
2.分类:干式、湿式(效率低)
为什么湿式效率低??P213
冷水塔的工作原理:P216 注意,水温决定于水和空气的传热
冷水塔内水的降温主要是由于水的蒸发散热和气水之间的接触传热。
单位面积水面上的表面蒸发速度与水温和蒸汽分子向空气中扩散的速度有关。
冷水塔的热力计算:1 迈克尔焓差方程
注意分情况:a.Q>Qβ b.Q=Qβ c.Q<Qβ
公式 4.1 公式 4.3 公式 4.4
什么湿球温度代表着在当地气温条件下,水可能冷却到的最低温度
2 水汽热平衡方程
P221 冷却数N,冷水塔特性数N’
在气量和和水量之比相同时,N值越大,表示要求散发的热量越多,所需淋水装置的体积越大。
特性数中的βx 反映了淋水装置的散热能力,因而特性数反映了淋水塔所具有的冷却能力,他与淋水装置的构造尺寸、散热性能及水、气流量有关。
设计中应保证 N=N
’,及为什么?
P224 图4.15 气水比及冷却数的确定
冷水塔工作点
5 蓄热式热交换器 (Regenerator) storage heat exchanger
5.1 工作原理
P251 优点及缺点
计算特点:以循环周期计算
6 热交换器的实验与研究(了解)
6.1 传热特性试验
传热强化 P265 增强传热的基本途径
增强传热的方法
Attention:unit3 掌握各类换热器的结构原则及特点,着重看不同的热管热交换器。
而且要考虑ηf和fin
(注:本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待你的好评与关注!)。