计算N阶行列式的若干方法
行列式的计算方法(课堂讲解版)04890
计算n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。
下面介绍几种常用的方法,并举例说明。
1.利用行列式定义直接计算例 计算行列式 001002001000000n D n n=-解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=.该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故(1)(2)2(1)!.n n nD n --=-2.利用行列式的性质计算例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n nn n nnna a a a a a D a a a a a a -=-----,由行列式的性质T A A =,1213112232132331230000n n n n nnna a a a a a D a a a a a a -----=-12131122321323312300(1)00n n n n nnna a a a a a a a a a a a -=------(1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
因此化三角形是行列式计算中的一个重要方法。
化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。
行列式的计算方法(课堂讲解版)
计算n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。
下面介绍几种常用的方法,并举例说明。
1.利用行列式定义直接计算例 计算行列式 00100201000000n D n n=-解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=.该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故(1)(2)2(1)!.n n nD n --=-2.利用行列式的性质计算例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式D n 可表示为121311223213233123000n nn n nnna a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112232132331230000n n n n nnna a a a a a D a a a a a a -----=-12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------(1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
因此化三角形是行列式计算中的一个重要方法。
化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。
#线性代数技巧行列式的计算方法
计算n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。
下面介绍几种常用的方法,并举例说明。
1.利用行列式定义直接计算 例1 计算行列式001002001000000n D n n=-解 D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=.该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故(1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例2 一个n 阶行列式n ijD a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j i a a =-知i i i ia a =-,即 0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n n n nnnna a a a a a D a a a a a a -=-----由行列式的性质A A '=1213112232132331230000n n nn nnn a a a a a a D a a a a a a -----=- 12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------ (1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
因此化三角形是行列式计算中的一个重要方法。
例3 计算n 阶行列式a b b b ba b b D bb a bbbba=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b b a n b a b bD a n bb a b a n bb b a+-+-=+-+- 11[(1)]11b b b a b b a n b b a b b ba =+- 100[(1)]00b bb a b a n b a b a b-=+--- 1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。
n阶行列式计算
n阶行列式计算
n阶行列式的计算方法如下:
首先,我们需要了解行列式的定义和性质。
行列式是方阵的一个重要属性,它用来描述线性方程组的解的情况。
对于一个n阶行列式,我们可以看作是一个n×n 的矩阵的特殊表示形式。
在计算n阶行列式时,我们可以采用不同的方法。
其中,最常用的方法是利用行列式的定义和性质,进行逐步展开求解。
具体步骤如下:
1. 首先,我们选取一个行或列作为展开的标准,一般选择矩阵的第一行或第一列进行展开。
这里我们以第一列为例进行说明。
假设选取第一列展开,即将第一列的元素依次乘以它们所在的余子式,并加上相应的正负号。
2. 计算余子式时,我们需要将第一行和第一列所在的元素划去,得到一个(n-1)阶的子矩阵。
然后按照相同的方法继续展开余子式,直到得到一个2阶行列式。
最终,我们会得到n个2阶行列式。
3. 计算2阶行列式时,可以直接采用定义进行计算。
对于一个2阶行列式,其
计算公式为ad-bc,其中a、b、c、d分别表示矩阵中的元素。
4. 将得到的n个2阶行列式相加(或者相减),即可得到n阶行列式的值。
需要注意的是,在计算过程中,我们需要根据行列式的性质进行一些列变换,如交换行和列的位置、用某一行或列的倍数替换另一行或列等操作,以便简化计算。
总之,计算n阶行列式的方法并不复杂,只需要按照定义和性质的要求进行逐步展开和求解即可。
通过掌握这些基本方法和技巧,我们可以更加高效地计算行
列式,并应用于各种数学问题中。
线性代数行列式计算方法总结
线性代数行列式计算方法总结在线性代数中,行列式是一个非常重要的概念,它在矩阵运算和线性方程组的求解中起着至关重要的作用。
本文将总结一些常见的行列式计算方法,希望能够帮助读者更好地理解和运用线性代数中的行列式。
1. 代数余子式法。
代数余子式法是一种常见的计算行列式的方法。
对于一个n阶矩阵A,它的行列式可以通过以下公式来计算:det(A) = a11A11 + a12A12 + ... + a1nA1n。
其中,a11, a12, ..., a1n是矩阵A的第一行元素,A11, A12, ..., A1n分别是对应元素的代数余子式。
代数余子式的计算方法是先将对应元素所在的行和列去掉,然后计算剩下元素构成的(n-1)阶矩阵的行列式,再乘以对应元素的符号(正负交替)。
通过递归的方式,可以计算出整个矩阵的行列式。
2. 克拉默法则。
克拉默法则是一种用于求解线性方程组的方法,它也可以用来计算行列式。
对于一个n阶方阵A,如果它的行列式不为0,那么可以通过克拉默法则来求解它的逆矩阵。
逆矩阵的元素可以通过矩阵A的各个元素的代数余子式和行列式的比值来计算。
虽然克拉默法则在实际计算中并不常用,但它对于理解行列式的性质和逆矩阵的计算方法有一定的帮助。
3. 初等行变换法。
初等行变换法是一种通过对矩阵进行一系列行变换来简化行列式计算的方法。
这些行变换包括交换两行、某一行乘以一个非零常数、某一行加上另一行的若干倍。
通过这些行变换,可以将一个矩阵化简为上三角形矩阵或者对角矩阵,从而更容易计算它的行列式。
需要注意的是,进行行变换时要保持行列式的值不变,即每一次行变换都要乘以一个相应的系数。
4. 特征值法。
特征值法是一种通过矩阵的特征值和特征向量来计算行列式的方法。
对于一个n阶矩阵A,它的行列式可以表示为其特征值的乘积。
通过计算特征值和特征向量,可以得到矩阵A的行列式的值。
特征值法在实际计算中比较复杂,但它对于理解矩阵的性质和特征值分解有一定的帮助。
行列式的计算方法(课堂讲解版)
计算n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。
下面介绍几种常用的方法,并举例说明。
1.利用行列式定义直接计算例计算行列式001002001000000n D n n=-解D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---= .该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故(1)(2)2(1)!.n n nD n --=-2.利用行列式的性质计算例:一个n 阶行列式nij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零.证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n nn n nnn a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112232132331230000n n n n nnna a a a a a D a a a a a a -----=- 12131122321323312300(1)00n n n n nnn a a a a a a a a a a a a -=------(1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
因此化三角形是行列式计算中的一个重要方法。
化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。
N阶行列式的计算方法
N阶行列式的计算方法行列式是矩阵的一个重要性质,它可以用来描述矩阵的线性变换的特征。
N阶行列式的计算方法可以通过多种途径实现,包括展开法、性质法、三角法等。
下面将详细介绍N阶行列式的计算方法。
1.展开法:展开法也是最常用的计算N阶行列式的方法。
N阶行列式可以根据其中的其中一行或其中一列展开成N个N-1阶行列式之和。
以N阶行列式A为例,可以通过以下公式计算:det(A) = a1j * C1j + a2j * C2j + ... + anj * Cnj其中,a1j, a2j, ..., anj 分别是矩阵A第j列的N个元素;C1j,C2j, ..., Cnj 分别是对应元素的代数余子式。
2.性质法:性质法是通过行列式的性质来计算N阶行列式。
行列式有很多性质,包括换行换列、行列秩相等、其中一行列乘以一个常数等。
利用这些性质,可以将N阶行列式变换成简化形式,进而计算行列式的值。
例如,可以通过初等行变换将行列式变换为上(下)三角形,而上(下)三角形行列式的计算非常简单。
此外,还可以使用性质法计算N阶行列式的公式,例如:det(A) = (-1)^(i+j) * Mij,其中,A是一个N阶矩阵,Mij是A删除第i行和第j列后的N-1阶矩阵。
3.三角法:三角法是一种用于计算N阶行列式的简便方法。
它将矩阵进行初等行变换,将其化为上三角阵或下三角阵,然后通过对角线上元素的乘积得到行列式的值。
具体步骤如下:(1)将行列式按其中一行或其中一列展开;(2)通过初等行变换,将行列式化为上三角形或下三角形;(3)计算对角线上元素的乘积,得到行列式的值。
4.克拉默法则:如果N阶行列式的其中一行或其中一列可被向量等式左边的向量线性表出,那么可以使用克拉默法则来计算行列式的值。
克拉默法则通过求解N个方程组,其中每个方程组都将一个未知量用行列式展开的形式表示,最后求解这N个方程组得到行列式的值。
但是,克拉默法则的计算复杂度高,对于大规模的行列式来说,不太适用。
n阶行列式的计算方法
n阶行列式的计算方法姓名:学号:学院:专业:指导老师:完成时间:n阶行列式的计算方法【摘要】本文主要针对行列式的特点,应用行列式的性质,提供了几种计算行列式的常用方法。
例如:利用行列式定义直接计算法,根据行列式性质化为三角形列式法,按一行(列)展开以及利用已知公式法,数学归纳法与递推法,加边法,利用多项式性质法,拉普拉斯定理的应用。
但这几种方法之间不是相互独立,而是相互联系的.一个行列式可能有几种解法,或者在同一个行列式的计算中将同时用到几种方法以简便计算。
这就要求我们在掌握了行列式的解法之后,灵活运用,找到一种最简便的方法,使复杂问题简单化。
【关键词】n阶行列式行列式的性质数学归纳法递推法加边法ISome methods of an n-order determinant calculation【Abstract】In this paper, considering the characteristics of determinant, it provides several commonly used methods to calculate the determinant by applying the properties of the determinant . For example :The direct method of calculation by using the determinant definition . The method of changing the determinant into a triangular determinant According to the properties of the determinant. The method of expanding the determinant by line (column) .using the known formula , the mathematical induction, recursive Method , adding the edge method, using the properties of polynomial , the application of Laplace theorem. These methods are not independent of each other ,but interrelated. There is probably that a determinant has several solutions, or in the calculation of the same determinant there will be used several methods to calculate simply. This requires us to grasp several solution of the determinant,and to find the easiest ways after, so simplify complex issues .【Key words】n-order determinant the property of the determinantthe mathematical induction adding the edge method目录1引言 (1)2 计算行列式的基础方法 (2)2.1利用行列式的定义来计算 (2)2.2化为三角形法 (3)2.3把各行(或各列)统统加到某一行(或列) (4)2.4逐行(列)处理 (5)3加边法 (6)4 展开 (8)5利用已知行列式公式计算法 (10)(1)三角形公式 (10)(2)范德蒙公式 (10)(3)爪型行列式公式 (11)(4)ab行列式公式 (13)6 数学归纳法 (13)7递推法 (16)8 拆项法 (18)9 利用多项式的性质 (21)10 利用矩阵分块理论 (21)1 乘法公式的应用 (22)2 定理2 (22)3 定理3 (23)11 小结 (25)参考文献 (26)致谢 (26)1引言行列式是研究线性代数的一个重要的工具,在线性方程组、矩阵、二次型中要用到行列式,在数学的其他分支里也常常要用到行列式。
n阶行列式的计算
n 阶行列式的计算1.可化为三角阵的形式:使得位于主对角线一侧的所有元素都为零,次对角线的情形则可以用来改变行(列)的次序成相反次序的办法。
这样得到的三角阵的值就是主对角线元素的乘积。
()n-11111111110110-111D===-1110100-1111100-1D从其余各行减去第一行有.111212313100D==000nn a x x xa xxx x a x x x a a x xxa x D x a a x x x x a x a a x------从其余各行减去第一行有从第一列中提出 a 1−x ,从第二列提出 a 2−x ,……,从第n 列提出 a n −x 。
()()()11231121111001010D=.=1+11n n a x x x a x a x a x a x a xa x a x a x a x a x------------令并把所有各列加于第一列()()()12312101000010D=01n n n x xxx x a x a xa x a x a x a x a x a x +++--------()()()121111=n n x a x a x a x x a xa x ⎛⎫---+++ ⎪--⎝⎭ .2.分离线性因子法:把行列式看成是其中一个或一些元素的多项式,经变换该行列式可以被一些线性因子整除。
故将行列式的个别项与线性因子积作比较,并求出这个积出行列式的商,从而求解。
00x+y+z 00x y z x z y D y z x zyx=,如果对第一列加上其余各列,则发现:行列式可用除尽,同理得出其他三个因子。
故有()()()()x y z y z x x y z x y z +++--++-。
计算n阶行列式的若干方法举例论文
计算n阶行列式的若干方法举例论文计算n 阶行列式的若干方法举例摘要:行列式是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,懂得如何计算行列式显得尤为重要。
本文先阐述行列式的基本性质,然后介绍各种具体的方法,最后由行列式与其它知识的联系介绍其它几种方法。
通过这 一系列的方法进一步提高我们对行列式的认识,对我们以后的学习带来十分有益的帮助。
关键字:行列式;n 阶行列式;计算;方法 前 言:行列式在高等代数课程中的重要性以及在考研中的重要地位使我们有必要对行列式进行较深入的认识,本文对行列式的解题方法进行总结归纳。
我们可以这样来理解行列式,它是在实数(复数)的基础上定义的一个独立结构。
作为行列式本身而言,我们可以发现它的二个基本特征,当行列式是一个三角形行列式(上三角或下三角形行列式,对角形行列式也是三角形行列式的特殊形式)时,计算将变得十分简单,于是将一个行列式化为三角形行列式便是行列式计算的一个 基本思想。
这也是化三角形法的思想精髓。
行列式的另一特征便是它的递归性,即一个行列式可以用比它低阶的一系列行列式表示,于是对行列式降阶从而揭示其内 部规律也是我们的一个基本想法,即递推法。
这两种方法也经常一起使用。
而其它方法如:加边法、降阶法、数学归纳法、拆行(列)法、析因法等可以看成是它们 衍生出的具体方法。
作为特殊的行列式当然也有其它方法,如用范德蒙公式计算某些行列式。
上面这些方法是基于行列式这一结构内部的,作为行列式与其它知识的 联系,特别是多项式、矩阵的密切关系,我们将得到一些其它的方法,这将在文中一一讨论。
一、利用行列式的定义计算定义: n 阶行列式111212122212n n n n n nna a a a a a D a a a定义为n !项的代数和,这些项是一切可能的取自D 的不同行与不同列的n 个元素的积1212...n j j nj a a a ,且此项的符号是12(...)(1)n j j j τ-,即 121212(...)12...(1)...n n nj j j n j j nj j j j D a a a τ=-∑ 例1 计算行列式00100201000000n D n n=-解 D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=.该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故 (1)(2)2(1)!.n n n D n --=-计算下列行列式201141183---.解201141183---2(4)31811(4)(1)(1)822484164=⨯-⨯+⨯⨯-⨯-⨯---⨯⨯=-+-+=-. 例2 设ij a 都是整数, ,1,2,...,i j n m =是一个正整数,证明1112121222n 121()21()D 21()2mn mn mn n nn a a a a a a a a a ++=+0≠证明 若n D =0,则(2)m n n D D ==0,即111212122212(21)222(1)2D 22(1)mm m n m m m n m m mn n nn a a a a a a a a a ++=+=显然,在行列式D 中,项1122...nn a a a 为奇数,其余项全为偶数,因此,由行列式的定义,D=奇数+偶数=0,矛盾.所以,n D 0≠. 计算12121212111222...nn nnj j j j j j j j j nj nj nj a a a a a a D a a a =∑解 因为121212111222n n nj j j j j j nj nj nj a a a a a a a a a =(...)12(1)j j j n n D τ-.所以 D=(...)1212 (1)j j j n nn j j j D τ-∑又因为在所有的n !个排列中,奇偶排列各半,故D=0.二、利用行列式性质计算行列式函数满足以下六条性质: 1、'A A =;2、()111121221i n i nij n nn ni nna ka a a ka a k a a ka a ⨯=,类似地,对行向量,有 ()111211212.................................ni i in ij n nn n nna a a a a a k a a a a ⨯=3、若A 的某列(行)为两列(行)之和,则A 为两个相应的行列式之和;4、A 不满秩,则0A =,特别地,A 有两行(列)相等,则0A =;5、将A 的一行(列)的若干倍加到B 的另一行(列)上去,行列式值不变;6、两行(列)互换,行列式反号. 例4 计算行列式108215123203212 , 26641212232.解108215123203212=541141215123103123020321243212==26641212232=2133266232=0. 例5 证明332()x y x y y x y x x y x yx y ++=-++证明2()12()2()12()1x y x y x y y x y y x y y x y x x y x yx x y x yx x yx y x y xyxy+++++=++=++++223312()02()()2()0y x yx y xy x y x xy y x y x yx +=+-=+-+-=-+--三、化成三角形行列式法先把行列式的某一行(列)全部化为1,再利用该行(列)把行列式化为三角形行列式,从而求出它的值,这是因为所求行列式有如下特点:1各行元素之和相等;2各列元素除一个以外也相等. 充分利用行列式的特点化简行列式是很重要的.例6 计算123 (12)34...1345 (1)2..................11 (321)2 (2)1n nn n n n n nn n ------.解123 (123)4...1345...12..................11 (321)2 (2)1n n n n n n n nn n ------=123 (10)11...11011...11(1)..................211...11011...11n n n n n n n n---+-- =(1)11 (1100)...(1)...............20...00...0n n n nn n n n n n ---+--=(1)11...1100 0(1)...............20 (000)...00n n n n n n ---+-- =((1)...21)2(1)(1)(1)()2n n n n n τ--+--- =(1)12(1)(1)2n n n n n --+-. 补充:经过一系列的变化以后,把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
行列式的计算方法(课堂讲解版)
计算n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。
下面介绍几种常用的方法,并举例说明。
1.利用行列式定义直接计算例 计算行列式 001002001000000n D n n=-LLMM M M L L解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=L .该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故(1)(2)2(1)!.n n nD n --=-2.利用行列式的性质计算例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称行列式, 证明:奇数阶反对称行列式为零.证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L故行列式D n 可表示为1213112232132331230000n nn n nnna a a a a a D a a a a a a -=-----L L L L L L L L L,由行列式的性质T A A =,1213112232132331230000n nn n n n na a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00n n n n nnn a a a a a a a a a a a a -=------L L LL L L L L L(1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
N阶行列式的计算
例4: = = =…
练习:(1) 【160】(2) 【 】
(5)逐行(列)相加(减)(适用于行列式相邻两行相加减后有共同特点时)
例5: =…=0
例6:
= 。
练习: 【 】
(6)拆项计算行列式(适用于行列式中的行(列)元素是两项之和)
例7: = + =
题设行列式正是 ,即y的系数,展开(1)式,得到y的系数为
所以: = 。
7、观察一次因式法
例13:计算 =
解:当 时,第一、第二行对应元素相等,所以 =0,可见 中含有因式, ,当 时,第三、第四行对应元素相等,所以 =0,可见 中含有因式 。
由于 中关于 的最高次数是4,所以
中含 的项是 ,
比较上面两式中 的系数,得 ,故 。
N阶行列式的计算
N阶行列式的计算方法主要有以下几种:
1、直接按定义计算:(适用于行列式中非零元素非常少的情形)
例1:计算 = 解:由定义知 = ,因为 ,所以 的非零项中 只能取2或3,同理,有 = = =0,可推出 只能取2或3,又因为 要求各不相同,故 项中至少有一个必须取零,所以 =0.
练习:用行列式的定义计算下列行列式:【1, , 0, 0】
例14:解方程 =0
解:当 =0,1,2, 时,行列式的两列对应元素相等,行列式的值为0,因此左边行列式可写成 ,
于是原方程变为 ,
所以原方程的解为 。
8、利用数学归纳法进行证明或计算。
例15:证明n阶范德蒙行列式的正确性
+ =0练习:证明 =
3、降阶法:利用行列式按行(列)展开定理进行降阶,这种方法适用于行列式中某一行(列)非零元素较少。
第一章行列式的计算方法(课堂讲解版)
计算n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。
下面介绍几种常用的方法,并举例说明。
1.利用行列式定义直接计算例 计算行列式0010020010000n D n n=-解 D n 中不为零的项用一般形式表示为 112211!n n n n na a a a n---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故(1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ijji a a i j n =-= 则称D n 为反对称行列式, 证明:奇数阶反对称行列式为零. 证明:由ijjiaa =-知iiii aa =-,即0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n n nn nnna a a a a a Da a a a a a -=-----,由行列式的性质AA '=,1213112232132331230000n n n n nnna a a a a a D a a a a a a -----=-12131122321323312300(1)00n n n n nnna a a a a a a a a a a a -=------(1)nn D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
因此化三角形是行列式计算中的一个重要方法。
化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。
n阶行列式的若干计算方法
n 阶行列式的若干计算方法n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。
下面介绍几种常用的方法,并举例说明。
1.利用行列式定义直接计算例计算行列式001002001000000n D n n=-L LMM M M L L解D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=L .该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故(1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算 例:一个n 阶行列式n ij D a =的元素满足,,1,2,,,ijji a a i j n =-=L 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零.证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L故行列式D n 可表示为1213112232132331230000n nn n n n na a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质A A '=, 1213112232132331230000n nn n n n na a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00n n n n n n na a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
线性代数1-3 n阶行列式的计算
311 131 113
1234 2341 3412 4123
例7 计算行列式 1 a a 0 0 0 1 1a a 0 0
D5 0 1 1 a a 0 . 0 0 1 1a a 0 0 0 1 1a
解: 将行列式的其它行加到第一行得
a 0 0 0 1 1 1a a 0 0 D5 0 1 1 a a 0 0 0 1 1a a 0 0 0 1 1a
3 2 0 ... 0 0
1 3 2 ... 0 0
3Dn1 2 ... ... ... ... ... ... 3Dn1 2Dn2
0 0 0 ... 3 2 0 0 0 ... 1 3
3 2 0 ... 0 0 1 3 2 ... 0 0
即
Dn 3Dn1 2Dn2
1
0 0 0 y
1 1 1 y
第一章 行列式
1
xy 2 x 1
1
1 1 y
1
1 x 1 0 1 y 0
1 1 y
1
1 1 1
xy2
x
0
0
y 0
1 y 0 x
1 y
1
1
y
xy 2 x( y 2 xy2 ) x 2 y 2
13
第一章 行列式
Dn Dn1 2n
第一章 行列式
Dn 2n Dn1 2n (2n1 Dn2 )
0
a xa
0 0
a 0 xa 0
a 0 0 xa
( x a)n1[ x (n 1)a].
第一章 行列式
行列式的每一行的n个元素之和相等时常用此法.
求n阶行列式的几种方法和技巧
x
a!
a 显 然 f(x)有 因 式 [x+(n- 1)a], 因
!
!!!!
x+(n- 1)a a a ! x
而 f(x)=k(x- a)n-1[ x+(n- 1)a] , 这里 k 为待定系数。
由于 f(x)的 n 次项 xn 的系数为 1, 故 k=1。从而
f(x)=(x- a)n-1[ x+(n- 1)a]
i<j
a n- 1 n
a b !b
b c)ab 行列式公式, 即 n 阶行列式
a
! b =(a- b)n-1[a+(n- 1)b] 。
!!!!
b b!a
d)爪型行列式公式, 设 b1, b2, !, bn≠0
a1 a2 c2 b2 M cn
! an
O
=[ a1-
a2c2 b2
- !-
anc2 bn
] b2!bn。 科
" "
2 " , 其中 a1a2"an≠0
n
n
" n+an
解: 对原行列式加边得
111"1111"1
0 1+a1 1 " 1 - 1 a1 0 " 0 0 2 2+a2 " 2 = - 2 0 a2 " 0 "" "" " "" "" "
0nn
1+ 1 +" n a1 an
0
=
0
"ቤተ መጻሕፍቲ ባይዱ
" n+an - n 0 11"1
6、构造法: 根据题设条件构造一个新行列式再进行计算。
计算行列式常用的7种方法
计算行列式常用的7种方法行列式是线性代数中的重要概念,用于描述线性方程组的性质和解的情况。
在计算行列式时,有多种方法可供选择,下面将介绍行列式的常用计算方法。
1.代数余子式展开法代数余子式展开法是计算行列式的最常用方法之一、对于n阶行列式,可以选择其中的任意一行或一列展开。
选择一行展开时,可以使用代数余子式,即将每一元素乘以其代数余子式后再求和。
例如,对于3阶行列式\(\begin{bmatrix}a & b & c\\ d & e & f\\ g & h &i\end{bmatrix}\)选择第一行展开,计算行列式的值为\(aA_{11} - bA_{12} +cA_{13}\),其中\(A_{ij}\)表示第i行第j列元素的代数余子式。
类似地,可以选择列展开,使用代数余子式计算行列式的值。
2.初等变换法初等变换法是计算行列式的另一种常用方法。
通过一系列的行变换或列变换,将行列式转化为三角形矩阵或对角矩阵。
对于三角形矩阵,行列式的值即为对角线上元素的乘积;对于对角矩阵,行列式的值即为对角线上元素的乘积。
初等变换包括行交换、行缩放和行加减,可以有效地简化行列式的计算过程。
3.拉普拉斯展开法拉普拉斯展开法是计算行列式的一种常用方法,适用于任意阶的行列式。
选择其中的一行或一列展开,将行列式拆解为一系列子行列式的乘积。
每个子行列式的阶数比原行列式小1,可以继续进行递归的计算。
拉普拉斯展开法可以使用代数余子式进行计算,也可以利用构造矩阵的方式计算。
4.三对角矩阵法三对角矩阵法适用于计算特殊形式的行列式,即矩阵中除了对角线和相邻对角线上的元素外,其他元素都为0的情况。
计算三对角矩阵的行列式可以通过逐步化简为二阶或一阶行列式进行计算。
这种方法可以加速计算过程,特别适用于较大阶数的行列式。
5.特殊行列式法对于特殊形式的行列式,例如范德蒙行列式、希尔伯特行列式等,可以利用其特殊性质进行计算。
n阶行列式的计算方法总结及例题
n阶行列式的计算方法总结及例题n阶行列式的计算方法总结及例题一、引言行列式是线性代数中的重要概念,它是一个数学对象,用来表示一个n阶方阵的一种性质。
在实际应用中,我们经常需要计算n阶行列式来解决各种数学和工程问题。
本文将对n阶行列式的计算方法进行总结,并且通过例题来加深理解。
二、行列式的基本定义在n阶行列式中,其中一个基本概念是排列。
一个排列是指1, 2, ..., n 的一种次序。
当n=3时,有6个排列{1,2,3}、{1,3,2}、{2,1,3}、{2,3,1}、{3,1,2}和{3,2,1}。
在行列式中,每个排列的正负号是由该排列的逆序数来决定的。
逆序数是指在一个排列中,逆序对的个数。
若逆序数为奇数,则该排列为负排列;若逆序数为偶数,则该排列为正排列。
三、n阶行列式的计算方法1. 代数余子式法代数余子式法是一种递归的方法,可以用来计算n阶行列式。
我们选择矩阵的某一行(或某一列),然后对该行(或列)中的每个元素,每个元素对应一个代数余子式。
根据代数余子式的定义和符号来计算每个元素的代数余子式。
将这些代数余子式与对应的元素相乘,并相加起来,即得到行列式的值。
2. 公式法当n=2时,行列式的计算方法非常简单,即ad-bc。
当n>2时,可以利用展开定理,将n阶行列式展开为n-1阶行列式的和。
通过递归的方法,最终可以将n阶行列式转化为2阶行列式的组合。
3. 三角形法三角形法是一种几何方法,通过对矩阵进行初等行变换,将矩阵化为上(下)三角矩阵。
根据上(下)三角矩阵的特殊性,可以直接求出行列式的值。
四、例题我们通过以下例题来加深对n阶行列式计算方法的理解:例题1:计算3阶行列式给定矩阵 A =\[ \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{bmatrix} \]我们可以使用代数余子式法,按照第一行展开,得到\[ |A| = 1*|M11| - 2*|M12| + 3*|M13| \]其中,M11、M12、M13分别为A的三个元素对应的代数余子式,根据代数余子式的定义和符号,可以计算得到|A|的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网上搜集的计算行列式方法总结, 还算可以.
计算n 阶行列式的若干方法举例
闵 兰
摘 要:《线性代数》是理工科大学学生的一门必修基础数学课程。
行列式的计算是线性代数中的难点、重点,特别是n 阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。
计算n 阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。
关键词:n 阶行列式 计算方法
n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。
下面介绍几种常用的方法,并举例说明。
1.利用行列式定义直接计算 例1 计算行列式
00100200
1
0000
00n D n n
=
-
解 D n 中不为零的项用一般形式表示为
1122
11!n n n nn a a a a n ---=.
该项列标排列的逆序数t (n -1 n -2…1n )等于
(1)(2)
2
n n --,故 (1)(2)
2
(1)
!.n n n D n --=-
2.利用行列式的性质计算
例2 一个n 阶行列式n ij D a =的元素满足
,,1,2,
,,ij ji a a i j n =-=
则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明 由ij ji a a =-知ii ii a a =-,即
0,1,2,
,ii a i n ==
故行列式D n 可表示为
1213112
23213
2331230000
n n n n n
n
n
a a a a a a D a a a a a a -=----- 由行列式的性质A A '=
1213112
23213
2331230000
n n n n n
n
n a a a a a a D a a a a a a -----=- 1213112
23213
23312300(1)0
n n n n n
n
n
a a a a a a a a a a a a -=------ (1)n n D =-
当n 为奇数时,得D n =-D n ,因而得D n = 0.
3.化为三角形行列式
若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
因此化三角形是行列式计算中的一个重要方法。
例3 计算n 阶行列式
a b b b b a b b D
b
b a b b
b
b
a
= 解 这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得
(1)(1)(1)(1)a n b b b b a n b a
b b D a n b
b a b a n b
b b a
+-+-=+-+- 1
1
[
(1)]1
1b b b a b b a n b b a b b b
a =+- 1
00
[
(1)]
000
b b
b a b a n b a b a b
-=+--- 1[(1)]()n a n b a b -=+--
4.降阶法
降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。
例4 计算n 阶行列式
000
100
00
00000000100
0n a a a D a a
=
解 将D n 按第1行展开
1000000000000(1)000000000
100
n n a a a a D a a
a a
+=+-
12(1)(1)n n n n a a +-=+--
2n n a a -=-.
5.递推公式法
递推公式法:对n 阶行列式D n 找出D n 与D n -1或D n 与Dn -1, D n -2之间的一种关系——称为逆推公式(其中D n , D n -1, D n -
2等结构相同),再由递推公式求出
D
n 的方法称为递推公式法。
例5 证明
122
110000100
0001n n
n n x
x D x a a a a a x
----=
-+
12121,(2)n n n n n x a x a x a x a n ---=+++
++≥
证明 将D n 按第1列展开得
1
2
3
2
110000
100
0001n n n n x x D x
x a a a a a x
-----=-
+
1100010
0(1)0
1
n n
x a x
+--+--
1n n a xD -=+
由此得递推公式:1n n n D a xD -=+,利用此递推公式可得
112()n n n n n n D a xD a x a xD ---=+=++ 212n n n a a x x D --=++ 111n n n n a a x a x x --=
=++
++
6.利用范德蒙行列式 例6 计算行列式
122221122
12
12121122
111
111n n n
n n n n n n n n
x x x D x x x x x x x x x x x x ------+++=
++++++
解 把第1行的-1倍加到第2行,把新的第2行的-1倍加到第3行,以此类推直到把新的第n -1行的-1倍加到第n 行,便得范德蒙行列式
1
22
2212
1
1
1112
1
11()n n i j n i j n n n n
x x x D x x x x x x x x ≥>≥---==
-∏
7.加边法(升阶法)
加边法(又称升阶法)是在原行列式中增加一行一列,且保持原行列式不变
的方法。
例7 计算n 阶行列式
121
21
21
2
n n n n n
x a a a a x a a D a a a a a x a ++=+
解 110
n
n n
a a D D =
121
100
2,
,
11
001
0n
i a a a x i n x x
-=+--第行减第1行
(箭形行列式)
12
1
10000000
n
j
n j a a a a x
x x x
=+=
∑
11n j
n
j a x x =⎛
⎫
=+ ⎪⎝⎭
∑ 8.数学归纳法 例8 计算n 阶行列式
122
110
0001
00
0001n n
n n x x D x a a a a a x
----=
-+
解 用数学归纳法. 当n = 2时
21221
1
()x D x x a a a x a -=
=+++
212x a x a =++
假设n = k 时,有
12121k k k k k k D x a x a x a x a ---=+++
++
则当n = k +1时,把D k +1按第一列展开,得
11k k k D xD a ++=+
1111()k k k k k x x a x a x a a --+=+++++ 12111k k k k k x a x a x a x a +-+=++
+++
由此,对任意的正整数n ,有
12121n n n n n n D x a x a x a x a ---=++
+++
9.拆开法
把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以利计算。
例9 计算行列式 n D =
1121221
2
n
n n n
a a a a a a a a a λλλ+++
解 n D =
121221
2
n n n n
a a a a a a a a a λλ++1
222
00
n n n n
a a a a a λλλ+++
12200
n n
n
a a a a λλ=
11n D λ-+
12
11n n a D λλλ-=+
……
12
11n
i
n i i a λλλλ=⎛⎫=+ ⎪⎝⎭
∑ 上面介绍了计算n 阶行列式的常见方法,计算行列式时,我们应当针对具体问题,把握行列式的特点,灵活选用方法。
学习中多练习,多总结,才能更好地掌握行列式的计算。