微电子器件复习题
微电子器件课程复习题教学内容
微电子器件课程复习题“微电子器件”课程复习题一、填空题1、若某突变PN 结的P 型区的掺杂浓度为163A 1.510cm N -=⨯,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为( )和( )。
2、在PN 结的空间电荷区中,P 区一侧带( )电荷,N 区一侧带( )电荷。
内建电场的方向是从( )区指向( )区。
3、当采用耗尽近似时,N 型耗尽区中的泊松方程为( )。
由此方程可以看出,掺杂浓度越高,则内建电场的斜率越( )。
4、PN 结的掺杂浓度越高,则势垒区的长度就越( ),内建电场的最大值就越( ),内建电势V bi 就越( ),反向饱和电流I 0就越( ),势垒电容C T 就越( ),雪崩击穿电压就越( )。
5、硅突变结内建电势V bi 可表为( ),在室温下的典型值为( )伏特。
6、当对PN 结外加正向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。
7、当对PN 结外加反向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。
8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可表示为( )。
若P 型区的掺杂浓度173A 1.510cm N -=⨯,外加电压V = 0.52V ,则P 型区与耗尽区边界上的少子浓度n p 为( )。
9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度( );当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度( )。
10、PN 结的正向电流由( )电流、( )电流和( )电流三部分所组成。
11、PN结的正向电流很大,是因为正向电流的电荷来源是();PN结的反向电流很小,是因为反向电流的电荷来源是()。
12、当对PN结外加正向电压时,由N区注入P区的非平衡电子一边向前扩散,一边()。
每经过一个扩散长度的距离,非平衡电子浓度降到原来的()。
13、PN结扩散电流的表达式为()。
微电子课程复习题
“微电子器件”课程复习题一、填空题1、若某突变PN 结的P 型区的掺杂浓度为163A 1.510cm N -=⨯,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为( )和( )。
2、在PN 结的空间电荷区中,P 区一侧带( )电荷,N 区一侧带( )电荷。
内建电场的方向是从( )区指向( )区。
3、当采用耗尽近似时,N 型耗尽区中的泊松方程为( )。
由此方程可以看出,掺杂浓度越高,则内建电场的斜率越( )。
4、PN 结的掺杂浓度越高,则势垒区的长度就越( ),内建电场的最大值就越( ),内建电势V b i 就越( ),反向饱和电流I 0就越( ),势垒电容C T 就越( ),雪崩击穿电压就越( )。
5、硅突变结内建电势V bi 可表为( ),在室温下的典型值为( )伏特。
6、当对PN 结外加正向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。
7、当对PN 结外加反向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。
8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可表示为( )。
若P 型区的掺杂浓度173A 1.510cm N -=⨯,外加电压V = 0.52V ,则P 型区与耗尽区边界上的少子浓度n p 为( )。
9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度( );当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度( )。
10、PN 结的正向电流由( )电流、( )电流和( )电流三部分所组成。
11、PN 结的正向电流很大,是因为正向电流的电荷来源是( );PN 结的反向电流很小,是因为反向电流的电荷来源是( )。
12、当对PN 结外加正向电压时,由N 区注入P 区的非平衡电子一边向前扩散,一边( )。
每经过一个扩散长度的距离,非平衡电子浓度降到原来的( )。
13、PN 结扩散电流的表达式为( )。
微电子技术基础知识单选题100道及答案解析
微电子技术基础知识单选题100道及答案解析1. 微电子技术的核心是()A. 集成电路B. 晶体管C. 电子管D. 激光技术答案:A解析:集成电路是微电子技术的核心。
2. 以下哪种材料常用于微电子器件的制造()A. 钢铁B. 塑料C. 硅D. 木材答案:C解析:硅是微电子器件制造中常用的半导体材料。
3. 微电子技术中,芯片制造工艺的精度通常用()来衡量。
A. 纳米B. 微米C. 毫米D. 厘米答案:A解析:芯片制造工艺精度通常用纳米来衡量。
4. 集成电路中,基本的逻辑门包括()A. 与门、或门、非门B. 加法门、减法门C. 乘法门、除法门D. 以上都不对答案:A解析:与门、或门、非门是集成电路中的基本逻辑门。
5. 微电子技术的发展使得计算机的体积越来越()A. 大B. 小C. 不变D. 随机答案:B解析:微电子技术进步使计算机体积逐渐变小。
6. 以下哪个不是微电子技术的应用领域()A. 航空航天B. 农业种植C. 通信D. 医疗答案:B解析:农业种植通常较少直接应用微电子技术。
7. 在微电子制造中,光刻技术的作用是()A. 刻蚀电路B. 沉积材料C. 图案转移D. 检测缺陷答案:C解析:光刻技术主要用于图案转移。
8. 微电子封装技术的主要目的是()A. 保护芯片B. 提高性能C. 便于连接D. 以上都是答案:D解析:微电子封装技术能保护芯片、提高性能并便于连接。
9. 摩尔定律指出,集成电路上可容纳的晶体管数目约每隔()翻一番。
A. 18 个月B. 2 年C. 5 年D. 10 年答案:A解析:摩尔定律表明约每隔18 个月集成电路上晶体管数目翻番。
10. 微电子技术中的掺杂工艺是为了改变半导体的()A. 电阻B. 电容C. 电导D. 电感答案:C解析:掺杂改变半导体的电导特性。
11. 以下哪种设备常用于微电子制造中的检测()A. 显微镜B. 示波器C. 扫描仪D. 电子显微镜答案:D解析:电子显微镜常用于微电子制造中的检测。
微电子器件期末试题
微电子器件期末试题一、填空题1.PN结中P区和N区的掺杂浓度分别为NA和ND,本征载流子浓度为ni,kTNANDln则PN结内建电势Vbi的表达式Vbi?。
2qni2.对于单边突变结P?N结,耗尽区主要分布在N区,该区浓度越低,则耗尽区宽度值越大,内建电场的最大值越小;随着正向偏压的增加,耗尽区宽度值降低,耗尽区内的电场降低,扩散电流提高;为了提高P?N结二极管的雪崩击穿电压,应降低N区的浓度,这将提高反向饱和电流IS。
解析:?|E|_n?sma_qND_p?_d??s|Ema_|qNA?s|Ema_|?s|Ema_|qND_n?qNA??s?111?)| Ema_|?s|Ema_|qNDNAqN0(?s11Vbi???Ed_?(_n?_p)|Ema_|?|Ema_|2?_p22qN0|Ema_ |?(2qN0Vbi)?[122kTNANDln(?sNAND)12ni]2?s(NA?ND)对于单边突变结,可通过适当降低轻掺杂一侧的掺杂浓度,使势垒区拉宽来提高雪崩击穿电压。
反向饱和电流IS?(qDpLpDpqDnDn2pn?np)?qni(?)LnLpNDLnNA3.在设计和制造晶体管时,为提高晶体管的电流放大系数,应当增加发射区和基区的掺杂浓度的比值解析:???_??[1?(NE,降低基区宽度。
NB?1WB2DWNR)](1?EBB)?(1?b)(1?口E) 2LBDBWENE?BR口BqV,此2kT4.对于硅PN 结,当V0.45V时,电流密度J满足关系式lnJ?qV,此时以正向扩散电流为主;在室温下,反向电流以势垒区kT产生电流为主,该电流与ni存在?ni关系。
解析:当温度较低时,总的反射电流中以势垒区产生电流为主;当温度较高时,则以反射扩散电流为主。
对于硅PN结,在室温下以势垒区产生电流为主,只有在很高的温度下才以反向扩散电流为主。
反向扩散电流含ni2因子,势垒区产生电流则含?ni因子。
微电子期末考试复习题(附答案)
1. 光敏半导体、掺杂半导体、热敏半导体是固体的三种基本类型。
( × ) 2.用来做芯片的高纯硅被称为半导体级硅,有时也被称为分子级硅。
(×)电子3. 硅和锗都是Ⅳ族元素,它们具有正方体结构。
( × ) 金刚石结构4.硅是地壳外层中含量仅次于氮的元素。
( × ) 氧5.镓是微电子工业中应用最广泛的半导体材料,占整个电子材料的95%左右。
( × ) 硅6.晶圆的英文是wafer,其常用的材料是硅和锡。
( × ) 硅和锗7.非晶、多晶、单晶是固体的三种基本类型。
( √ )8.晶体性质的基本特征之一是具有方向性。
( √ )9.热氧化生长的SiO2属于液态类。
( × ) 非结晶态10.在微电子学中的空间尺寸通常是以μm和mm为单位的。
( × )um和nm 11.微电子学中实现的电路和系统又称为数字集成电路和集成系统,是微小化的。
( × ) 集成电路12.微电子学是以实现数字电路和系统的集成为目的的。
( × ) 电路13.采用硅锭形成发射区接触可以大大改善晶体管的电流增益和缩小器件的纵向尺寸。
( √ )14.集成电路封装的类型非常多样化。
按管壳的材料可以分为金属封装、陶瓷封装和塑料封装。
( √ )15.源极氧化层是MOS器件的核心。
( × ) 栅极16. 一般认为MOS集成电路功耗高、集成度高,不宜用作数字集成电路。
( × ) 功耗低,宜做17. 反映半导体中载流子导电能力的一个重要参数是迁移率。
( √ )18. 双极型晶体管可以作为放大晶体管,也可以作为开关来使用。
( √ )19. 在P型半导体中电子是多子,空穴是少子。
( × ) 空穴是多子20. 双极型晶体管其有两种基本结构:PNP型和NPN 型。
( √ )21. 在数字电路中,双极型晶体管是当成开关来使用的。
( √ )22. 双极型晶体管可以用来产生、放大和处理各种模拟电信号。
微电子器件课程复习资料题
1、若某突变PN 结的P 型区的掺杂浓度为163A 1.510cm N -=⨯,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为(316105.1-⨯=cm N A )和(314105.1-⨯=cm N A )。
2、在PN 结的空间电荷区中,P 区一侧带(负)电荷,N 区一侧带(正)电荷。
内建电场的方向是从(N )区指向(P )区。
[发生漂移运动,空穴向P 区,电子向N 区]3、当采用耗尽近似时,N 型耗尽区中的泊松方程为(D S E u q dx d ε=→)。
由此方程可以看出,掺杂浓度越高,则内建电场的斜率越(大)。
4、PN 结的掺杂浓度越高,则势垒区的长度就越(小),内建电场的最大值就越(大),内建电势V bi 就越(大),反向饱和电流I 0就越(小)[P20],势垒电容C T 就越( 大 ),雪崩击穿电压就越(小)。
5、硅突变结内建电势V bi 可表为(2ln iD A bi n N N q KT v =)P9,在室温下的典型值为(0.8)伏特。
6、当对PN 结外加正向电压时,其势垒区宽度会(减小),势垒区的势垒高度会(降低)。
7、当对PN 结外加反向电压时,其势垒区宽度会(增大),势垒区的势垒高度会(提高)。
8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可表示为()exp()(0KTqv p p p n x n =-)P18。
若P 型区的掺杂浓度173A 1.510cm N -=⨯,外加电压V = 0.52V ,则P 型区与耗尽区边界上的少子浓度n p 为(3251035.7-⨯cm )。
9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(大);当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(小)。
10、PN 结的正向电流由(空穴扩散)电流、(电子扩散)电流和(势垒区复合)电流三部分所组成。
《微电子器件》题集
《微电子器件》题集一、选择题(每题2分,共20分)1.下列哪种材料常用于制造微电子器件中的晶体管?A. 硅(Si)B. 铜(Cu)C. 铝(Al)D. 铁(Fe)2.在CMOS逻辑电路中,哪种类型的逻辑门在输入为高电平时导通?A. NAND门B. NOR门C. AND门D. OR门3.以下哪个参数描述的是二极管的电流放大能力?A. 击穿电压B. 反向电流C. 电流放大系数D. 截止频率4.在集成电路制造中,哪种工艺步骤用于定义晶体管和其他元件的几何形状?A. 氧化B. 扩散C. 光刻D. 金属化5.MOSFET器件中,栅极电压对沟道电流的控制是通过什么机制实现的?A. 欧姆定律B. 量子隧穿效应C. 电场效应D. 热电子发射6.下列哪项技术用于减小集成电路中的寄生电容和电阻?A. SOI技术B. BICMOS技术C. CMOS技术D. TTL技术7.在半导体存储器中,DRAM与SRAM相比,主要缺点是什么?A. 成本高B. 速度慢C. 需要定期刷新D. 功耗高8.下列哪种类型的二极管常用于微波电子器件中?A. 肖特基二极管B. 光电二极管C. 变容二极管D. 整流二极管9.集成电路的特征尺寸越小,通常意味着什么?A. 集成度越低B. 性能越差C. 功耗越高D. 制造成本越高10.在半导体工艺中,哪种掺杂技术用于形成P-N结?A. 离子注入B. 扩散C. 外延生长D. 氧化二、填空题(每空2分,共20分)1.在CMOS逻辑电路中,当输入信号为低电平时,PMOS晶体管处于______状态,而NMOS晶体管处于______状态。
2.二极管的正向电压超过一定值时,电流会急剧增加,这个电压值称为二极管的______电压。
3.在集成电路制造中,______步骤用于形成晶体管的栅极、源极和漏极。
4.MOSFET器件的沟道长度减小会导致______效应增强,从而影响器件的性能。
5.DRAM存储单元由一个晶体管和一个______组成。
微电子器件基础知识单选题100道及答案解析
微电子器件基础知识单选题100道及答案解析1. 微电子器件的核心是()A. 晶体管B. 电容器C. 电阻器D. 电感器答案:A解析:晶体管是微电子器件的核心。
2. 以下哪种材料常用于半导体制造?()A. 铜B. 硅C. 铝D. 银答案:B解析:硅是常用于半导体制造的材料。
3. 半导体中的载流子主要包括()A. 电子和质子B. 电子和空穴C. 正离子和负离子D. 中子和电子答案:B解析:半导体中的载流子主要是电子和空穴。
4. PN 结的主要特性是()A. 单向导电性B. 双向导电性C. 电阻不变性D. 电容不变性答案:A解析:PN 结的主要特性是单向导电性。
5. 场效应管是()控制型器件。
A. 电流B. 电压C. 电阻D. 电容答案:B解析:场效应管是电压控制型器件。
6. 双极型晶体管是()控制型器件。
A. 电流B. 电压C. 电阻D. 电容答案:A解析:双极型晶体管是电流控制型器件。
7. 集成电路的集成度主要取决于()A. 芯片面积B. 晶体管数量C. 制造工艺D. 封装技术答案:B解析:集成电路的集成度主要取决于晶体管数量。
8. 以下哪种工艺常用于芯片制造?()A. 蚀刻B. 锻造C. 铸造D. 车削答案:A解析:蚀刻工艺常用于芯片制造。
9. 微电子器件的性能参数不包括()A. 电流放大倍数B. 输入电阻C. 输出电阻D. 重量答案:D解析:重量不是微电子器件的性能参数。
10. 增强型MOS 管的阈值电压()A. 大于0B. 小于0C. 等于0D. 不确定答案:A解析:增强型MOS 管的阈值电压大于0 。
11. 耗尽型MOS 管的阈值电压()A. 大于0B. 小于0C. 等于0D. 不确定答案:B解析:耗尽型MOS 管的阈值电压小于0 。
12. 半导体中的施主杂质提供()A. 电子B. 空穴C. 质子D. 中子答案:A解析:半导体中的施主杂质提供电子。
13. 半导体中的受主杂质提供()A. 电子B. 空穴C. 质子D. 中子答案:B解析:半导体中的受主杂质提供空穴。
微电子学考试试题
微电子学考试试题一、选择题1. 下列哪种半导体器件主要利用PN结的整流作用?A. 晶体管B. 二极管C. 肖特基势垒二极管D. 发光二极管2. 以下参数哪个代表电流增益?A. βB. VBEC. ICD. VCE3. 一个NMOS晶体管,当栅与源之间的电压为正值时,晶体管导通。
这种情况下,源极是N型半导体,栅极上升表示何种情况?A. 导通态B. 截止态C. 均衡态D. 复原态4. 当一个双极型晶体管的集电极、基极、发射极外电路被取代为下列部件之一,哪项会导致晶体管失活?A. (抗向外)二极管B. 电容C. NPN三极管D. 直流稳流二极管5. 当增加测点1与测点2之间的电阻,而结果观察通路增益的波形例图。
这叫Z11的方法,定义为何种参数?A. 混容压力系数B. 效率C. 功率係数D. 电导致二、判断题1. npkj型晶体管、增大基极电流可提高复合电路集成度。
A. 对B. 错2. 当调制电路被检测得无限输入阻抗无穷大,来评定阻抗值这种情形时,设定参数为MDS。
A. 对B. 错3. 高危险性级收发均过滤器,其的特点为:通路放大会伴随频率变化而变化。
A. 对B. 错4. 当使用参数过程可分找到相标准示波器,以判断时需要观测电子学量子离子。
A. 对B. 错5. 低相对阻抗的大尺寸功能增段导,设定参数为INS;其性能特点为频率变化与温度延程效应的弱小意味意义。
A. 对B. 错三、简答题1. 请简述当一个输入电压发生变化,双极型晶体管中的电流增益如何变化。
2. 详细介绍CMOS数字电路中的传输门电路及其特点。
3. 论述晶体管放大器的增益计算公式及如何影响电路性能。
4. 说明在微电子学中常用的压控压控振荡器(VCO)的工作原理及应用。
5. 解释负反馈在电子电路设计中的作用和优势。
以上就是微电子学考试试题,希望同学们认真阅读题目和要求,并认真作答。
祝各位同学取得优异的考试成绩!。
微电子器件考试必备
3.3 1、缓变基区内建电场的形成。
答:以NPN 管为例,在基区中,受主杂质浓度NB 是x 的函数。
室温下杂质全部电离,因此多子空穴有与受主杂质近似相同的浓度分布。
空穴浓度的不均匀导致空穴从高浓度处向低浓度处扩散,而电离杂质却固定不动,于是杂质浓度高的地方空穴浓度低,带负电荷;杂质浓度低的地方空穴浓度高,带正电。
空间电荷的分离形成了内建电场。
3.47 1、αR 和α相比小很多的原因。
答:αR :倒向晶体管共基极直流短路电流发达系数;α:正向晶体管共基极直流短路电流放大系数。
原因:集电结的面积一般比发射结的面积大。
在正向管中,从发射结注入到基区的少子几乎全部被集电结所收集;但在倒向管中,从集电结注入到基区的少子,只有少部分能被发射结所收集。
除合金管外,集电区的掺杂浓度一般低于基区,使倒向管的注入效率低。
在缓变基区晶体管中,基区内建电场对倒向管的基区少子起减速作用。
•2、发射区重掺杂效应及其原因。
答:发射区掺杂浓度过重时会引起发射区重掺杂效应,即过分加重发射区掺杂不但不能提高注入效率γ,反而会使其下降。
原因:发射区禁带宽度变窄和俄歇复合效应增强。
•2、倒向管与正向管之间的互易关系。
•答:αI ES =αI CS 。
•3、基区宽度调变效应,及V A 的影响。
•答:①(厄尔利效应)当V CE 增加时,集电结上的反向电压增加,集电结势垒区宽度增宽,势垒区的右侧向中性基区扩展,左侧向中性基区扩展,这使得中性基区宽度W B 减小。
基区宽度的减小使基区少子浓度梯度增加,必然导致电流放大系数和集电极电流的增大。
•②对于均匀基区晶体管,厄尔利电压V A :V A =2W B V bi /x dB 。
由式得增大V A 的措施是增大基区宽度W B ,减小势垒区宽度x dB ,即增大基区掺杂浓度。
但这都与提高电流放大系数相矛盾。
• 3.5 1、I CBO、I CEO的定义。
(对NPN管)•答:I CBO:发射极开路(I B=0),集电结反偏(I BC<0)时集电极电流,称为共基极反向截止电流。
微电子器件期末复习题含答案
36、当晶体管处于放大区时,理想情况下集电极电流随集电结反偏的增加而(不变)。
但实际情况下集电极电流随集电结反偏增加而(增加),这称为(基区宽度调变)
效应。[P83]
37、当集电结反偏增加时,集电结耗尽区宽度会(变宽)
,使基区宽度(变窄),从而
电流越大,则扩散电容就越(大)
;少子寿命越长,则扩散电容就越(大)。
【P51】
20、在 PN 结开关管中,在外加电压从正向变为反向后的一段时间内,会出现一个较大
的反向电流。引起这个电流的原因是存储在(N)区中的(非平衡载流子)电荷。
这个电荷的消失途径有两条,即(反向电流的抽取)和(少子自身的复合)
。
3、当采用耗尽近似时,N
d E q u )。由此方程可以看
型耗尽区中的泊松方程为(
dx S D
出,掺杂浓度越高,则内建电场的斜率越(大)
。
4、PN 结的掺杂浓度越高,则势垒区的长度就越(小)
,内建电场的最大值就越(大)
,
内建电势 Vbi 就越(大)
,反向饱和电流 I0 就越(小)[P20],势垒电容 CT 就越( 大 )
。
8、在 P 型中性区与耗尽区的边界上,少子浓度 np 与外加电压 V 之间的关系可表示为
( np( xp) np 0 exp(
qv
) )P18。若 P 型区的掺杂浓度 NA
KT
1.5 1017 cm3 ,外加电压 V
= 0.52V,则 P 型区与耗尽区边界上的少子浓度 np 为( 7.35 10 25 cm 3 )。
21、从器件本身的角度,提高开关管的开关速度的主要措施是(降低少子寿命)和(加
《微电子器件》大学题集
《微电子器件》题集一、选择题(每题2分,共20分)1.微电子技术的核心是基于哪种材料的半导体器件?()A. 硅(Si)B. 锗(Ge)C. 砷化镓(GaAs)D. 氮化硅(Si₃N₃)2.在CMOS集成电路中,NMOS和PMOS晶体管的主要作用是?()A. 分别实现逻辑“1”和逻辑“0”的输出B. 作为开关控制电流的通断C. 用于构成存储单元D. 提供稳定的电压基准3.下列哪项不是PN结二极管的主要特性?()A. 单向导电性B. 击穿电压高C. 温度稳定性好D. 具有放大功能4.在MOSFET中,栅极电压对沟道电流的控制是通过什么机制实现的?()A. 改变沟道宽度B. 改变耗尽层宽度C. 改变载流子浓度D. 改变源漏间电阻5.双极型晶体管(BJT)在放大区工作时,集电极电流与基极电流的比值称为?()A. 放大倍数B. 电流增益C. 电压增益D. 功耗比6.下列哪种材料常用于制作微电子器件中的绝缘层?()A. 二氧化硅(SiO₃)B. 氧化铝(Al₃O₃)C. 氮化硼(BN)D. 碳化硅(SiC)7.在集成电路制造过程中,光刻技术的关键步骤是?()A. 涂胶B. 曝光C. 显影D. 以上都是8.下列哪项技术用于提高集成电路的集成度?()A. 减小特征尺寸B. 增加芯片面积C. 使用更厚的衬底D. 降低工作温度9.微电子器件中的金属-氧化物-半导体 (MOS)结构,其氧化物层的主要作用是?()A. 提供导电通道B. 隔绝栅极与沟道C. 存储电荷D. 增强电场效应10.在CMOS逻辑电路中,静态功耗主要由什么因素决定?()A. 漏电流B. 开关频率C. 逻辑门数量D. 电源电压与漏电流的共同作用二、填空题(每题2分,共20分)1.微电子器件的基本单元是_______,它通过控制_______来实现对电流的调控。
2.在PN结正向偏置时,_______区的多数载流子向_______区扩散,形成正向电流。
3.MOSFET的阈值电压是指使沟道开始形成_______的最小栅极电压。
微电子器件工艺流程考核试卷
8.离子注入技术的优点包括______、______和______。
9.微电子器件的热管理主要包括______、______和______等方面。
10.提高微电子器件集成度的关键技术之一是______技术的应用。
四、判断题(本题共10小题,每题1分,共10分,正确的请在答题括号中画√,错误的画×)
D.外部环境温度
20.微电子器件在制造过程中,以下哪些措施可以减少缺陷的产生?()
A.提高工艺控制水平
B.使用高质量材料
C.改善设备条件
D.加强环境控制
(请注意,以上题目仅为示例,实际考试题目应根据教学大纲和课程内容进行设计。)
三、填空题(本题共10小题,每小题2分,共20分,请将正确答案填到题目空白处)
1.微电子器件制造中,通常使用的光刻技术是基于______原理。
2.在微电子器件中,PN结的形成是通过______过程实现的。
3.微电子器件的绝缘层主要材料是______。
4.金属-氧化物-半导体(MOS)结构中,氧化物的主要作用是______。
5.刻蚀技术可以分为湿法刻蚀和______刻蚀。
6.微电子器件的互联线通常采用______材料制作。
C.修复缺陷
D.改善硅片的表面质量
12.下列哪个过程属于薄膜生长过程?()
A.光刻
B.刻蚀
C.化学气相沉积
D.离子注入
13.以下哪个参数可以反映微电子器件的集成度?()
A.传输速率
B.尺寸
C.驱动能力
D.工作电压
14.下列哪种工艺用于去除微电子器件中的有机污染物?()
A.光刻
微电子器件课程复习题
“微电子器件”课程复习题一、填空题1、若某突变PN 结的P 型区的掺杂浓度为,则室温下该区的平衡多子163A 1.510cm N -=⨯浓度p p0与平衡少子浓度n p0分别为( )和( )。
2、在PN 结的空间电荷区中,P 区一侧带( )电荷,N 区一侧带( )电荷。
内建电场的方向是从( )区指向( )区。
3、当采用耗尽近似时,N 型耗尽区中的泊松方程为()。
由此方程可以看出,掺杂浓度越高,则内建电场的斜率越( )。
4、PN 结的掺杂浓度越高,则势垒区的长度就越( ),内建电场的最大值就越( ),内建电势V bi 就越( ),反向饱和电流I 0就越( ),势垒电容C T 就越( ),雪崩击穿电压就越( )。
5、硅突变结内建电势V bi 可表为( ),在室温下的典型值为( )伏特。
6、当对PN 结外加正向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。
7、当对PN 结外加反向电压时,其势垒区宽度会( ),势垒区的势垒高度会()。
8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可表示为( )。
若P 型区的掺杂浓度,外加电压V = 0.52V ,则P 173A 1.510cm N -=⨯型区与耗尽区边界上的少子浓度n p 为( )。
9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度( );当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度( )。
10、PN 结的正向电流由( )电流、( )电流和( )电流三部分所组成。
11、PN结的正向电流很大,是因为正向电流的电荷来源是();PN结的反向电流很小,是因为反向电流的电荷来源是()。
12、当对PN结外加正向电压时,由N区注入P区的非平衡电子一边向前扩散,一边()。
每经过一个扩散长度的距离,非平衡电子浓度降到原来的()。
13、PN结扩散电流的表达式为()。
这个表达式在正向电压下可简化为(),在反向电压下可简化为()。
微电子器件复习题
微电子器件复习题一、填空题1.突变PN 结低掺杂侧的掺杂浓度越高,则势垒区的长度就越小,内建电场的最大值越大,内建电势V bi 就越大,反向饱和电流I 0就越小,势垒电容C T 就越大,雪崩击穿电压就越小。
P272.在PN 结的空间电荷区中,P 区一侧带负电荷,N 区一侧带正电荷。
内建电场的方向是从 N 区指向 P 区。
3.当采用耗尽近似时,N 型耗尽区中的泊松方程为。
由此方程可以看出,掺杂浓度越高,则内建电场的斜率越大。
4.若某突变PN 结的P 型区的掺杂浓度为183A1.510cm N -=?,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为和。
5.某硅突变PN 结的153D N 1.510cm -=?,31810.51N -?=cm A ,则室温下n0n0p0n p p 、、和p0n 的分别为、、和,当外加0.5V 正向电压时的p p ()n x -和n n ()p x 分别为、,内建电势为。
6.当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度大;当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度小。
7.PN 结的正向电流很大,是因为正向电流的电荷来源是多子;PN 结的反向电流很小,是因为反向电流的电荷来源是少子。
8.PN 结的正向电流由空穴扩散电流电流、电子扩散电流电流和势垒区复和电流电流三部分所组成。
9.PN 结的直流电流电压方程的分布为。
10.薄基区二极管是指PN 结的某一个或两个中性区的长度小于该区的少子扩散长度。
在薄基区二极管中,少子浓度的分布近似为线性;薄基区二极管相对厚基区二极管来说,其它参数都相同,则PN 结电流会大的多。
11.小注入条件是指注入某区边界附近的非平衡少子浓度远小于该区的平衡多子浓度。
12.大注入条件是指注入某区边界附近的非平衡少子浓度远大于该区的平衡多子浓度。
13.势垒电容反映的是PN 结的微分电荷随外加电压的变化率。
微电子材料与器件复习题(终极版)(1)
微电⼦材料与器件复习题(终极版)(1)《微电⼦材料与器件》复习题1.设计制备NMOSFET的⼯艺,并画出流程图。
概括的说就是先场氧,后栅氧,再淀多晶SI,最后有源区注⼊(1)衬底P-SI;(2)初始氧化;光刻I;场区注硼,注硼是为了提⾼场区的表⾯浓度,以提⾼场开启;场区氧化;去掉有源区的SI3N4和SIO2;预栅氧,为离⼦注⼊作准备;调整阈电压注⼊(注硼),⽬的是改变有源区表⾯的掺杂浓度,获得要求的晶硅;光刻II,刻多晶硅,不去胶;离⼦注⼊,源漏区注砷,热退⽕;去胶,低温淀积SIO2;光刻III刻引线孔;蒸铝;光刻IV刻电极;形成N阱初始氧化淀积氮化硅层光刻1版,定义出N阱反应离⼦刻蚀氮化硅层N阱离⼦注⼊,注磷形成P阱去掉光刻胶在N阱区⽣长厚氧化层,其它区域被氮化硅层保护⽽不会被氧化去掉氮化硅层P阱离⼦注⼊,注硼推阱退⽕驱⼊去掉N阱区的氧化层形成场隔离区⽣长⼀层薄氧化层淀积⼀层氮化硅光刻场隔离区,⾮隔离区被光刻胶保护起来反应离⼦刻蚀氮化硅场区离⼦注⼊热⽣长厚的场氧化层去掉氮化硅层形成多晶硅栅⽣长栅氧化层淀积多晶硅光刻多晶硅栅刻蚀多晶硅栅形成硅化物淀积氧化层反应离⼦刻蚀氧化层,形成侧壁氧化层淀积难熔⾦属Ti或Co等低温退⽕,形成C-47相的TiSi2或CoSi去掉氧化层上的没有发⽣化学反应的Ti或Co⾼温退⽕,形成低阻稳定的TiSi2或CoSi2形成N管源漏区光刻,利⽤光刻胶将PMOS区保护起来离⼦注⼊磷或砷,形成N管源漏区形成P管源漏区光刻,利⽤光刻胶将NMOS区保护起来离⼦注⼊硼,形成P管源漏区形成接触孔化学⽓相淀积磷硅玻璃层退⽕和致密光刻接触孔版反应离⼦刻蚀磷硅玻璃,形成接触孔形成第⼀层⾦属淀积⾦属钨(W),形成钨塞淀积⾦属层,如Al-Si、Al-Si-Cu合⾦等光刻第⼀层⾦属版,定义出连线图形反应离⼦刻蚀⾦属层,形成互连图形形成穿通接触孔化学⽓相淀积PETEOS通过化学机械抛光进⾏平坦化光刻穿通接触孔版反应离⼦刻蚀绝缘层,形成穿通接触孔形成第⼆层⾦属淀积⾦属层,如Al-Si、Al-Si-Cu合⾦等光刻第⼆层⾦属版,定义出连线图形反应离⼦刻蚀,形成第⼆层⾦属互连图形合⾦形成钝化层在低温条件下(⼩于300℃)淀积氮化硅光刻钝化版刻蚀氮化硅,形成钝化图形测试、封装,完成集成电路的制造⼯艺2.集成电路⼯艺主要分为哪⼏⼤类,每⼀类中包括哪些主要⼯艺,并简述各⼯艺的主要作⽤。
微电子技术与器件制造基础知识单选题100道及答案解析
微电子技术与器件制造基础知识单选题100道及答案解析1. 微电子技术的核心是()A. 集成电路B. 晶体管C. 电子管D. 二极管答案:A解析:集成电路是微电子技术的核心。
2. 以下哪种材料常用于制造半导体器件()A. 铜B. 硅C. 铝D. 铁答案:B解析:硅是最常用的半导体材料。
3. 微电子器件制造中,光刻工艺的主要作用是()A. 沉积薄膜B. 图形转移C. 刻蚀D. 清洗答案:B解析:光刻工艺用于将设计好的图形转移到半导体材料上。
4. 集成电路制造中,扩散工艺的目的是()A. 形成PN 结B. 去除杂质C. 增加导电性D. 提高硬度答案:A解析:扩散工艺用于在半导体中形成PN 结。
5. 以下哪种设备常用于半导体制造中的薄膜沉积()A. 光刻机B. 刻蚀机C. 溅射仪D. 清洗机答案:C解析:溅射仪可用于薄膜沉积。
6. 微电子技术中,MOSFET 是指()A. 金属-氧化物-半导体场效应晶体管B. 双极型晶体管C. 晶闸管D. 二极管答案:A解析:MOSFET 即金属-氧化物-半导体场效应晶体管。
7. 在半导体中,多数载流子是电子的称为()A. P 型半导体B. N 型半导体C. 本征半导体D. 化合物半导体答案:B解析:N 型半导体中多数载流子是电子。
8. 微电子器件的封装技术主要作用不包括()A. 保护芯片B. 提高性能C. 便于连接D. 增加重量答案:D解析:封装技术不会增加重量,而是起到保护、便于连接等作用。
9. 以下哪种工艺可以提高半导体材料的纯度()A. 外延生长B. 离子注入C. 化学机械抛光D. 区熔提纯答案:D解析:区熔提纯可提高半导体材料的纯度。
10. 半导体制造中,氧化工艺形成的氧化层主要作用是()A. 导电B. 绝缘C. 散热D. 增加硬度答案:B解析:氧化层主要起绝缘作用。
11. 集成电路中的布线通常使用()A. 铝B. 铜C. 金D. 银答案:B解析:集成电路中的布线常用铜。
微电子器件考研题库
微电子器件考研题库微电子器件考研题库微电子器件是电子信息科学与技术领域的重要分支,其研究内容涉及到半导体器件的设计、制造与应用等方面。
对于考研生而言,熟悉微电子器件相关知识是非常重要的。
下面将为大家整理一些微电子器件考研题库,希望对考生备战考试有所帮助。
一、选择题1. 下列关于半导体材料的说法中,正确的是:A. 硅是一种N型半导体材料;B. 硒是一种P型半导体材料;C. 锗是一种绝缘体材料;D. 硅是一种绝缘体材料。
2. 以下哪个是典型的P-N结构?A. 电阻器;B. 电容器;C. 二极管;D. 可变电阻。
3. 对于一块P型硅片,以下哪个掺杂物可以使其变成N型硅片?A. 锗;B. 磷;C. 碳;D. 铝。
4. 以下哪个是典型的N-P-N型晶体管?A. 电容器;B. 电阻器;C. 双极型晶体管;D. 场效应晶体管。
5. 当N型半导体与P型半导体通过P-N结连接时,以下哪个说法是正确的?A. 电子从N区域流向P区域;B. 电子从P区域流向N区域;C. 电子在P-N结处发生复合;D. 电子在P-N结处发生产生。
二、填空题1. 当P型硅片掺杂浓度为1×10^16 cm^-3,N型硅片掺杂浓度为5×10^16 cm^-3时,P-N结的势垒高度为________V。
2. 以下哪个公式可以用来计算PN结的势垒高度?________3. 当PN结的势垒高度为0.7V时,该PN结的导通方向为________。
4. 对于一块P型硅片,以下哪个掺杂物可以使其成为N型硅片?________5. 对于一块N型硅片,以下哪个掺杂物可以使其成为P型硅片?________三、简答题1. 请简要描述PN结的形成过程。
2. 请简要介绍一下晶体管的工作原理。
3. 请简要说明场效应晶体管与双极型晶体管的区别。
4. 请简要介绍一下集成电路的概念和分类。
5. 请简要解释一下半导体材料的导电机制。
四、综合题1. 请设计一个基于晶体管的电路,实现一个简单的放大器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题
1.突变PN 结低掺杂侧的掺杂浓度越高,则势垒区的长度就越 小 ,建电场的最
大值越 大 ,建电势V bi 就越 大 ,反向饱和电流I 0就越 小 ,
势垒电容C T 就越 大 ,雪崩击穿电压就越 小 。
P27
2.在PN 结的空间电荷区中,P 区一侧带 负 电荷,N 区一侧带 正 电
荷。
建电场的方向是从 N 区指向 P 区。
3.当采用耗尽近似时,N 型耗尽区中的泊松方程为 。
由此方程可以看出,掺
杂浓度越高,则建电场的斜率越 大 。
4.若某突变PN 结的P 型区的掺杂浓度为183A 1.510cm N -=⨯,则室温下该区的平
衡多子浓度p p0与平衡少子浓度n p0分别为 和 。
5.某硅突变PN 结的153D N 1.510cm -=⨯,31810.51N -⨯=cm A ,则室温下n0n0p0n p p 、、和p0n 的分别为 、 、 和 ,
当外加0.5V 正向电压时的p p ()n x -和
n n ()p x 分别为 、 ,建电
势为 。
6.当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓
度 大 ;当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处
的平衡少子浓度 小 。
7.PN 结的正向电流很大,是因为正向电流的电荷来源是 多子 ;PN 结的反向电
流很小,是因为反向电流的电荷来源是 少子 。
8.PN 结的正向电流由 空穴扩散电流 电流、 电子扩散电流 电流和 势垒区复和电流 电流三部分所组成。
9.PN 结的直流电流电压方程的分布为 。
10.薄基区二极管是指PN 结的某一个或两个中性区的长度小于 该区的少子扩散长
度 。
在薄基区二极管中,少子浓度的分布近似为 线性 ;薄基区二极
管相对厚基区二极管来说,其它参数都相同,则PN 结电流会 大的多 。
11.小注入条件是指注入某区边界附近的 非平衡少子 浓度远小于该区的 平衡多子 浓度。
12.大注入条件是指注入某区边界附近的 非平衡少子 浓度远大于该区的 平衡多子 浓度。
13.势垒电容反映的是PN 结的 微分 电荷随外加电压的变化率。
PN 结的掺杂浓
度越高,则势垒电容就越 大 ;外加反向电压越高,则势垒电容就越 小 。
14.扩散电容的物理含义为中性区中 非平衡载流子 随外加电压的变化率;外加
正向电压越高,则势垒电容就越 大 。
15.雪崩击穿和齐纳击穿的条件分别是 和 。
16.在PN 结开关管中,在外加电压从正向变为反向后的一段时间,会出现一个较大的反
向电流。
引起这个电流的原因是存储在 N 区中的 非平衡载流子 电荷。
这个电荷的消失途径有两条,即 和 。
17.晶体管的饱和状态是指发射结 正偏 ,集电结 正偏 。
18.晶体管的共基极直流短路电流放大系数α是指发射结正偏、 集电 结零偏
时的集电极电流与 发射 极电流之比。
19.晶体管的共发射极直流短路电流放大系数β是指发射结正偏、 集电 结零
偏时的集电极电流与 基 极电流之比。
20.晶体管的注入效率是指 从发射区注入基区的少子电流I pE 电流与 总的发射极电流
I E 电流之比。
为了提高注入效率,应当使 发射 区掺杂浓度远大于 基 区掺杂浓
度。
21.晶体管的基区输运系数是指 基区中到达集电极结的少子电流I pC 电流
与 从发射结刚注入基区的少子电流I pE 电流之比。
为了提高基区输运系
数,应当使 基区宽度W B 远小于其扩散长度。
22.晶体管中的少子在渡越 基区 的过程中会发生 复合 ,从而使到达集
电结的少子比从发射结注入基区的少子 小 。
23.I CS 是指 基极和发射极 结短路、 集电 结反偏时的集电极电流。
24.I ES 是指 基极和集电极 结短路、 发射 结反偏时的发射极电流。
25.发射区重掺杂效应是指当发射区掺杂浓度太高时,不但不能提高 注入效率 ,反而会使其 下降 。
造成发射区重掺杂效应的原因是 发射区禁带变窄 和 俄歇复合增强 。
P99
26.若用同γ和异γ分别代表同质结晶体管和异质结晶体管的注入效率,则同γ < 异γ;
常用的HBT 用SiGe 制作 基 区,用Si 制作 发射 区。
P101
27.设半导体材料的方块电阻为100Ω,长度和宽度分别为160μm 和40μm ,则沿长度方
向上的电阻为 ,沿宽度方向上的电阻为 。
28.当集电结反偏增加时,集电结耗尽区宽度会 增宽 基区宽度 变窄 ,从而使集
电极电流 增大 ,这就是基区宽度调变效应(即厄尔利效应)。
29.当ωβ降到1时的频率称为 特征频率f T 。
当p max K 降到1时的频率称为 最高振荡频率f M 。
30. f T 代表的是共发射极揭发的晶体管有电流放大能力的频率极限, f M
代表晶体管有功率放大能力的频率极限。
31.N 沟道MOSFET 的衬底是 P 型半导体,源区和漏区是 N+ 型半导体,沟道中的
载流子是 电子 P297
32.P 沟道MOSFET 的衬底是 N 型半导体,源区和漏区是 P+ 型半导体,沟道中的
载流子是 空穴 。
P297
33.由于电子的迁移率n μ比空穴的迁移率p μ 大 ,所以在其它条件相同时, N 沟
道MOSFET 的Dsat I 比 P 沟道MOSFET 的大。
为了使两种MOSFET 的Dsat I 相同,应当使N 沟道MOSFET 的沟道宽度 < P 沟道MOSFET 的。
34.由于栅氧化层常带 正 电荷,所以 P 型区比 N 型区更容易发生
反型。
35.要提高N 沟道MOSFET 的阈电压V T ,应使衬底掺杂浓度N A 增大 。
P303
36.要提高N 沟道MOSFET 的阈电压V T ,应使栅氧厚度 增大 。
P303
37.在实际的工艺生产中,通常采用 改变衬底杂质浓度 和 改变栅氧化层 来调节阈值电压。
P305
38.对于一般的MOSFET ,当沟道长度加倍,而其它尺寸、掺杂浓度、偏置条件等都不变时,其下列参数发生什么变化:Dsat I 减小 、on R 增加 、m g 减小 、T f 。
39.在P 沟道MOSFET 中,V T < 0的称为 增强 型;V T > 0的称为 耗尽 型。
P297
40.为了提高MOSFET 的跨导,从器件制造角度,应提高 β,即 提高 Z L
, 提高 迁移率 μ , 减小 栅氧化层的厚度 T OX 。
从电路使用角度,应 提高 V GS 。
P324
二、问答题
1.简述PN 结耗尽区(空间电荷区)的形成机制。
P9
答:P 区与N 区接触后,由于存在浓度差的原因,结面附近的空穴将从浓度高的P 区
向浓度低的N 区扩散,在P 区留下不易扩散的带负电的电离受主杂质,结果使得在结面的P 区一侧出现负的空间电荷;同样地,结面附近的电子从浓度高的N 区向浓度低的P 区扩散,在N 区留下带正电的电离施主杂质,使结面的N 区一侧出现正的空间电荷。
2.简要叙述PN 结势垒电容和扩散电容的形成机理及特点。
P56,P64
PN 结的扩散电容是因为外加电压的变化,结的界面两边少数载流子的积累或抽取形成
的。
势垒电容是由于结两边空间电荷区宽度随外加电压的变化而变化形成的。
3.定性介绍PN结扩散电流
4.共基极放大区晶体管的电流输运过程。
5.什么是双极型晶体管的基区宽度调变效应(厄尔利效应)?如何抑制该效应?P107 答:当V CE增大时,集电结反偏(V BC= V BE–V CE) 增大,集电结耗尽区增宽,使中性基区的宽度变窄,基区少子浓度分布的梯度增大,从而使I C增大。
这种现象称为基区宽度调变效应,也称为厄尔利效应。
6.写出晶体管的特征频率f T的表达式,说明改善晶体管频率特性的主要措施。
7.什么是MOSFET的阈电压V T?写出V T的表达式,写出影响V T的因素。
(以N沟道MOSFET 为例)
8.什么是有效沟道长度调制效应?如何抑制有效沟道长度调制效应?
9.什么是MOSFET的跨导g m?写出g m的表达式,并讨论提高g m的措施。
三、计算题略。
四.画图题
1、PN结有外加电压(正向和反向)时的少子浓度分布图。
外加正向电压时PN 结中的少子分布图为
外加反向电压时PN 结中的少子分布图为
2、PN结有外加电压(正向和反向)时的少子浓度能带图。
3、分别画出均匀基区NPN晶体管在放大状态、饱和状态和截止状态时的能带图。
4、分别画出均匀基区NPN晶体管在放大状态、饱和状态和截止状态时的少子分布图。
所有答案自己找,如有问题,可以在答疑时间找我。