第三章 统计热力学基础

合集下载

《物理化学》第三章 热力学第二定律PPT课件

《物理化学》第三章 热力学第二定律PPT课件

例一:理想气体自由膨胀
原过程:Q=0,W=0,U=0, H=0
p2,V2
体系从T1,p1,V1 T2, 气体
真空
复原过程:
复原体系,恒温可逆压缩
WR
RT1
ln
V2 ,m V1,m
环境对体系做功
保持U=0,体系给环境放热,而且 QR=-WR
表明当体系复原时,在环境中有W的功变为Q的热,因 此环境能否复原,即理想气体自由膨胀能否成为可逆 过程,取决于热能否全部转化为功,而不引起任何其 他变化。
它们的逆过程都不能自动进行。当借助外力,系统 恢复原状后,会给环境留下不可磨灭的影响。
•化学反应 Zn+H2SO4等?
如图是一个典型的自发过程
小球
小球能量的变化:
热能
重力势能转变为动能,动能转化为热能,热传递给地面和小球。
最后,小球失去势能, 静止地停留在地面。此过程是不可逆转的。 或逆转的几率几乎为零。
能量转化守恒定律(热力学第一定律)的提出,根本上宣布 第一类永动机是不能造出的,它只说明了能量的守恒与转化及 在转化过程中各种能量之间的相互关系, 但不违背热力学第一 定律的过程是否就能发生呢?(同学们可以举很多实例)
热力学第一定律(热化学)告诉我们,在一定温度 下,化学反应H2和O2变成H2O的过程的能量变化可用U(或H) 来表示。
热力学第二定律(the second law of thermodynamics)将解答:
化学变化及自然界发生的一切过程进行 的方向及其限度
第二定律是决定自然界发展方向的根本 规律
学习思路
基本路线与讨论热力学第一定律相似, 先从人们在大量实验中的经验得出热力学第 二定律,建立几个热力学函数S、G、A,再 用其改变量判断过程的方向与限度。

热力学基础

热力学基础
总热量:
绝 热 壁
Q T 恒温热源
Q 1 dQ
2
积分与过程有关
功与热量的异同
热量是过程量
(1)都是过程量:与过程有关; (2)等效性:都会使系统能量发生变化, (3)功与热量的物理本质不同 .
二、热力学第一定律
某一过程,系统从外界吸热 Q,对外界做 功A,系统内能从初始态 E1变为 E2,
Q E2 E1 A
P
1(P1 ,V1 ,T1)
绝 热 等温
dP P )T 等温曲线的斜率:( dV V dP P 绝热曲线的斜率: ( )Q dV V >1
2(P2 ,V2 ,T2)
O
V1
V
物理原因:
这表明:从同一状态出发,膨胀同一体积, 绝热过程比等温过程的压强下降得更多一些。 P 绝热曲线

Cm dT
定容摩尔热容CV,m 1mol气体,保持体积不变,吸(或放)热dQV,温度升 高(或降低)dT,则定容(定体)摩尔热容为 dQV CV , m M dT 1 M i i 热一: dQV 2 RdT pdV RdT 2 i CV , m R 2
CV , m
S
说明
O (1) 准静态过程是一个理想过程; (2) 除一些进行得极快的过程(如爆炸过程)外,大多数情 况下都可以把实际过程看成是准静态过程; (3) 准静态过程在状态图上可用一条曲线表示, 如图.
V
内能: 物体分子无规则运动的总和
M i RT 理想气体的内能 E 2
理想气体的内能是温度的单值函数。 内能是状态函数(state-dependent quantity)
2. 热力学平衡状态 (equilibrium state of thermodynamics)

统计热力学基础

统计热力学基础

统计热力学基础教学目的与要求:通过本章的教学使学生初步了解统计热力学的基本研究方法,各种独立子系统的微观状态数的求法,不同系统的统计规律,系统的各热力学函数的表示式,配分函数的计算,固体的热容理论导出的基本思路。

重点与难点:统计热力学的基本研究方法,不同系统的微观状态数的计算,玻尔兹曼分布律的含义,系统的热力学函数的表示式,配分函数的计算,不同的固体热容理论的基本方法。

概论统计热力学的研究任务和目的统计力学的研究对象是大量微观粒子所构成的宏观系统。

从这一点来说,统计热力学和热力学的研究对象都是一样的。

但热力学是根据从经验归纳得到的四条基本定律,通过演绎推理的方法,确定系统变化的方向和达到平衡时的状态。

由于热力学不管物质的微观结构和微观运动形态,因此只能得到联系各种宏观性质的一般规律,而不能给出微观性质与宏观性质之间的联系。

而统计热力学则是从物质的微观结构和基本运动特性出发,运用统计的方法,推导出系统的宏观性质,和变化的可能方向。

统计力学的研究方法是微观的方法,它根据统计单位(微粒)的力学性质如速度、动量、位置、振动、转动等,用统计的方法来推求系统的热力学性质,例如压力、热容、熵等热力学函数。

统计力学建立了体系的微观性质和宏观性质之间的联系。

从这个意义上,统计力学又可称为统计热力学。

相对于热力学,统计力学对系统的认识更深刻,它不但可以确定系统的性质,变化的方向和限度,而且还能确定系统的性质的微观根源,这一点要比热力学要深刻。

对于简单系统,应用统计热力学的方法进行处理,其结果是令人满意的。

当然统计热力学也有自身的局限性,由于统计力学要从微观粒子的基本运动特性出发,确定系统的状态,这就有一个对微观粒子的运动行为的认识问题。

由于人们对于物质结构的认识不断深化,不断地修改充实物质结构的模型,所对统计理论和统计方法也要随之修改,所以统计理论是一种不断发展和完善的。

同时模型本身也有近似性,所以由此得到的结论也有近似性。

热力学第二定律的统计解释

热力学第二定律的统计解释

3 – 9 热力学第二定律的统计意义
第三章热力学基础
N1
2
4
N
Ω
(左)
2
22
24
2N
0
N个分子,Ωi
2 N。
若N=100, 则:
Ωi 2100 1030
而左右各半的平衡态及其附近宏观态的热力学概率则
占总微观状态数的绝大比例。 Ω(N左)
一般热力学系统 N的数量级约
N 很大
为1023,上述比例实际上是百分
概率小的状态
概率大的状态
讨论 N 个粒子在空间的分布问题
可分辨的粒子集中在 左空间的概率
N 1, 2
N 2, 4
3 – 9 热力学第二定律的统计意义
第三章热力学基础
b Aa
B
cd
ab
bc
c
a dcd
a bd
a bd
c
1 1264
A
bBa
cd
bd c
a
ab
c d
分子的分布
容器 A
的部
分B
设 S f(),求 f 的函数形式。
由 S 的可加性来分析:
1 S1, 1
1+2
S,
2 S2, 2 1、2彼此独立
∴ 应有: f( ) ln
3 – 9 热力学第二定律的统计意义
第三章热力学基础
S k ln
─ 玻耳兹曼熵公式
1877年玻耳兹曼提出了S ln 。
1900年普朗克引进了比例系数 k 。
ab cd
0
0a
b
c
d
bc ac ab a a d d d bc b
abbc cd d

统计热力学

统计热力学

统计热力学统计热力学是宏观热力学与量子化学相关联的桥梁。

通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观性质。

由于热力学是对大量粒子组成的宏观系统而言,这决定统计热力学也是研究大量粒子组成的宏观系统,对这种大样本系统,最合适的研究方法就是统计平均方法。

微观运动状态有多种描述方法:经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;量子力学用代表能量的能级和波函数描述。

由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。

这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。

Boltzmann 给出了宏观性质—熵(S )与微观性质—热力学几率(Ω)之间的定量关系:ln S k =Ω。

热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的Ω无法做到,也没有必要。

因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。

因此,有了数学上完全容许的ln Ω≈ln W D,max ,所以,S =k ln W D,max 。

这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。

波尔兹曼分布就是一种最概然分布,该分布公式中包含重要概念—配分函数。

用波尔兹曼分布求任何宏观状态函数时,最后都转化为宏观状态函数与配分函数之间的定量关系。

配分函数与分子的能量有关,而分子的能量又与分子运动形式有关。

因此,必须讨论分子运动形式及能量公式,各种运动形式的配分函数及分子的全配分函数的计算。

确定配分函数的计算方法后,最终建立各个宏观性质与配分函数之间的定量关系。

热力学:基础:三大定律研究对象:(大量粒子构成的)宏观平衡体系研究方法:状态函数法手段:利用可测量量p-T-V+C p,m和状态方程结果:求状态函数(U,H,S,G,等)的改变值,以确定变化过程所涉及的能量和方向。

傅献彩物理化学选择题———第一章 热力学第一定律及其应用 物化试卷(二)

傅献彩物理化学选择题———第一章 热力学第一定律及其应用   物化试卷(二)

目录(试卷均已上传至“百度文库”,请自己搜索)第一章热力学第一定律及其应用物化试卷(一)第一章热力学第一定律及其应用物化试卷(二)第二章热力学第二定律物化试卷(一)第二章热力学第二定律物化试卷(二)第三章统计热力学基础第四章溶液物化试卷(一)第四章溶液物化试卷(二)第五章相平衡物化试卷(一)第五章相平衡物化试卷(二)第六章化学平衡物化试卷(一)第六章化学平衡物化试卷(二)第七章电解质溶液物化试卷(一)第七章电解质溶液物化试卷(二)第八章可逆电池的电动势及其应用物化试卷(一)第八章可逆电池的电动势及其应用物化试卷(二)第九章电解与极化作用第十章化学动力学基础(一)物化试卷(一)第十章化学动力学基础(一)物化试卷(二)第十一章化学动力学基础(二) 物化试卷(一)第十一章化学动力学基础(二) 物化试卷(二)第十二章界面现象物化试卷(一)第十二章界面现象物化试卷(二)第十三章胶体与大分子溶液物化试卷(一)第十三章胶体与大分子溶液物化试卷(二)参考答案1.1mol 单原子分子理想气体从298 K,200.0 kPa 经历:①等温, ②绝热, ③等压三条途径可逆膨胀,使体积增加到原来的2倍,所作的功分别为W,W2,W3,三者的关系是: ( )1(A) |W1|>|W2|>|W3| (B) |W2|>|W1|>|W3|(C) |W3|>|W2|>|W1| (D) |W3|>|W1|>|W2|2. 下述说法哪一个是错误的? ( )(A)封闭体系的状态与其状态图上的点一一对应(B)封闭体系的状态即是其平衡态(C)封闭体系的任一变化与其状态图上的实线一一对应(D)封闭体系的任一可逆变化途径都可在其状态图上表示为实线3. 凡是在孤立体系中进行的变化,其ΔU和ΔH的值一定是: ( )(A) ΔU > 0 , ΔH > 0 (B) ΔU = 0 , ΔH = 0(C) ΔU < 0 , ΔH < 0 (D) ΔU = 0 , ΔH不确定4. " 封闭体系恒压过程中体系吸收的热量Q p等于其焓的增量ΔH ",这种说法:( )(A)正确(D) 需加可逆过程与无非体积功的条件(B) 需增加无非体积功的条件(C) 需加可逆过程的条件5. 非理想气体进行绝热自由膨胀时,下述答案中哪一个是错误的? ( )(A) Q=0 (B) W=0 (C) ΔU=0 (D) ΔH=06.当体系将热量传递给环境之后,体系的焓: ( )(A)必定减少(B) 必定增加(C)必定不变(D) 不一定改变7. 一定量的理想气体从同一始态出发,分别经(1)等温压缩,(2)绝热压缩到具有相同压力的终态,以H1,H2分别表示两个终态的焓值,则有:( )(A)H1> H2(B)H1= H2(C)H1< H2(D)H1>=H28. 下列诸过程可应用公式dU = (C p-nR)dT进行计算的是:( )(A)实际气体等压可逆冷却(C)理想气体绝热可逆膨胀(B)恒容搅拌某液体以升高温度(D)量热弹中的燃烧过程9. 1mol单原子分子理想气体,从273 K,202.65 kPa,经pT=常数的可逆途径压缩到405.3 kPa的终态,该气体的ΔU为: ( )(A)1702 J (B)-406.8 J (C)406.8 J (D)-1702 J10. 一定量的理想气体从同一初态分别经历等温可逆膨胀、绝热可逆膨胀到具有相同压力的终态,终态体积分别为V1,V2,则: ( )(A) V1> V2(B)V1< V2(C) V1= V2(D) 无法确定11.一容器的容积为V1=162.4 立方米,内有压力为94430 Pa,温度为288.65 K的空气。

统计热力学基础.ppt

统计热力学基础.ppt

N
qN
lnq
S kBln
N! NkBT (
T
)
V, N
(定位) (非定位)
G
kBTln q N
NkBTV
lnq ()
V T, N
G
kBTln
qN N!
NkBTV
lnq ()
V T, N
(定位) (非定位)
2020-6-17
谢谢阅读
18
U
NkBT
2 (lnq ) T V,
N
(定位或非定位)
H
NkBT
分布为最概然分布;
2020-6-17
谢谢阅读
7
通过摘取最大相原理可证明:在粒子数 N 很大 (N 1024)时,玻尔兹曼分布的微观状态数 (tmax) 几乎可以代表体系的全部微观状态数 ();
故玻尔兹曼分布即为宏观平衡分布。
在 A、B 两个能级上粒子数之比:
A / kBT
N g e A
A
量在第 i 个微态中的取值。
2020-6-17
谢谢阅读
6
七、玻尔兹曼分布
玻尔兹曼分布是自然界最重要的规律之一,其数 学表达为:
Ni
N
g ei / kBT i g ei / kBT i
i
(定位或非定位)
玻尔兹曼分布是微观状态数最多(由求 ti 极大值
得到)的一种分布;根据等概率原理,玻尔兹曼
可计算体系的熵。
2020-6-17
谢谢阅读
2
三、分布(构型、布居)
一种分布: 指 N 个粒子在许可能级上的一种分配;
每一种分布的微观状态数(ti)可用下列公式计算:
• 定位体系: ti N!

(上)第三章 热力学第二定律-1

(上)第三章 热力学第二定律-1

机效率。
19
§3.3 熵与克劳修斯不等式
1、熵的导出 已知一个卡诺循环(可逆循环)的热温商之和
等于零,即
Q1 Q2 0 T1 T2 对于一个无限小的卡诺循环(可逆循环),则
Q1
T1 T2 现在考虑任意一个可逆循环,如下图所示。
20

Q2
0
其过程可看成是由无数个小卡诺循环构成的, 由于数量无穷多,折线与原曲线重合。其中任意 一个小卡诺循环的热温商等于零。

2
Qir
T
1

1
Qr
T
2
0
28
1 2 对可逆途径: Qr Qr 2 1
代入上式得
T
T

2
Qr
T
1

2
Qir
T
2
1
可逆热温熵等于熵变,即 S 1 代入上式得
Qr
T
S
2
Qir
T
1
上两式合并可表示为
29
S
2
Q
T
1
>,不可逆 ,可逆
7
§3.2 卡诺循环及卡诺定理
1、卡诺循环 1824年法国工程师卡诺(Carnot)为了研究热功 转换问题,设计了一种在两个热源工作的理想热机, 工作物质是理想气体,这种热机工作时,由两个恒温 可逆过程和两个绝热可逆过程组成一个循环过程,称 为“卡诺循环”,按卡诺循环工作的热机叫“卡诺热 机”,也叫“可逆热机”。
1
对绝热可逆过程,已知
T2 V2 T1 V1
1
状态1和状态4在一条绝热线上,状态2和状态3在另 一条绝热线上,分别应用上式得:

热力学中统计力学的数学基础

热力学中统计力学的数学基础

热力学中统计力学的数学基础热力学是研究物质内部微观粒子间相互作用引起的宏观性质和过程的一门科学。

而统计力学则是研究宏观物理规律与微观粒子运动规律之间的关系的一门科学。

在热力学中,统计力学起着至关重要的作用,提供了理解系统行为和推导宏观性质的数学基础。

微观与宏观在介绍统计力学的数学基础之前,我们先来从宏观和微观两个角度看待物理系统。

宏观角度下,我们研究物质的整体性质以及宏观现象,如温度、压强、体积等。

而微观角度下,我们关注的是物质内部微观粒子(原子、分子、离子)的运动状态和相互作用。

统计力学的目标就是通过建立微观粒子之间的统计关系来推导出宏观量的统计规律。

这种桥梁就是统计力学在热力学中的数学基础。

统计力学的数学基础1. 统计方法统计力学使用概率论和统计学的方法来处理物质内部微观粒子的运动和相互作用问题。

其中,概率论提供了描述微观粒子状态变化的工具,而统计学则用于将大量微观粒子系统的行为推断到整个系统层面。

其中一个关键概念是正则分布,即指明了能量分布在一定区域内服从某种规律。

这个概念在统计力学中被广泛应用于描述粒子处于某个能级上的概率,并进一步推导得到宏观量。

2. 状态与能级在统计力学中,系统的状态是由其微观粒子状态所决定的。

每个微观粒子都有一定数量的离散能级,而整个系统则包含了所有微观粒子共同构成的能级结构。

根据量子力学理论,每个能级都对应着具体的能量取值。

而不同能级上有不同数量的微观粒子,在某个时刻处于某个能级上的概率由正则分布给出。

3. 统计物理量在热力学中,我们通常关注与宏观状态有关的物理量,比如温度、压强、体积等。

这些物理量可以通过平均值来描述。

在统计力学中,根据概率分布函数求平均值可以得到系统各种物理量对时间平均之后得到系综平均值。

从而将微观数量转化为宏观数量来揭示系统规律。

4. 统计热力学统计热力学是建立在统计力学基础上研究热力学问题的一个分支。

它通过使用数列方法推导出经典热力学定律,并将其与实验结果进行对比以验证模型的正确性。

化工热力学Ⅱ(高等化工热力学)——第三章 流体的P—V—T关系

化工热力学Ⅱ(高等化工热力学)——第三章  流体的P—V—T关系
2 2 3 2 1 1 2 2 1
2! ( 3 2 )!
∈ 所以对于N个粒子分布在 ∈1 ,∈2 , …., , M ,共M个能级上,微观数 为: g N ! W = ∏ g = N !∏ n ! ∏ n! 定域子系统: (3-1) 离域子系统: (3-2) ( n i + g i 1 )!
分布方式 第一种方式 第二种方式
左边容器 abcd abc abd acd bcd ab ac ad bc bd cd a b c d 0
右边容器 0 d c b a cd bd bc ad ac ab bcd acd abd abc abcd
分布性质 四个粒子均在左边 三个粒子在左边 一个粒子在右边 共有4种方式 两个粒子在左边两个粒子 在右边共有6种方式
分布方 式
n左
n左 右
n右
0 10 1
1 9 10
2 8 45
3 7 120
4 6 210
5 5 252
6 4 210
7 3 120
8 2 45
9 1 10
10 0 1
微态数 WD
最可几分布 可见,当系统中所含粒子的量很大时,系统的宏观性质是由最可 几分布决定,其微态数为: N !
W
* D
=
N 2
例2 同例1,但能级有ξ1二个量子态(简并度g1=2),求此分布的微态数. 解:微态数为:
ε2 c
(g2=1)
c
c c a b
b
b
b a
b c a
a
a
a b
a c b
ε1
(g1=2)
ab -
ac -
bc -
ab b a
ac c

热学第三章气体分子速率和能量统计分布律

热学第三章气体分子速率和能量统计分布律

vz ~vz dvz 内的分子数 dNvx ,vy ,vz
即:在速度空间中,在速度分
量 v x ,附v y近,v的z 小立方体
区间dv范xd围vy内dv的z 代表点数(即分 子数)就是麦克斯韦速度分布
中的
d Nvx ,vy ,vz
d N v x ,v y ,v z N f(v x ,v y ,v z)v x d d v y d v z
kT1.59 m
RT
3)方均根速率 v 2
N v2dN v2Nf(v)dv
v2 0
0
f (v)
N
N
v2 f (v)dv 0
o
v
v2 3kT m
v2
3kT m
3R T1.73R T
vp v v2
v1.59
kT1.59 m
RT
vp
2kT m
2R T1.41RT
方均根速率
1m2 3kT
2
解: 速率在 v vdv间的分子数 dNN(v f)dv
1)
v v Nf( )dv
vp
2)
v p 1 2mv2Nf(v)dv
3)
2 Nf ()d
1~2
ห้องสมุดไป่ตู้
1
2 Nf ()d
1
例 如图示两条 f(v)~v 曲线分别表示氢气和
氧气在同一温度下的麦克斯韦速率分布曲线, 从图
上数据求出氢气和氧气的最概然速率 .
解:
1、必要的假设:
取直角坐标系 xyz
在垂直于 x 方向上取面积 d A
设单位体积内的气体分子数为
n
n
N
V
vx ~vx dvx 2、求一段时间 d t 内速度分量在 vy :~范围内

第三章_单元系的相变_热力学统计物理

第三章_单元系的相变_热力学统计物理
T0

U p0 V
T0
代入平衡条件得到:
1 1 p p S U ( ) V ( 0 ) 0 T T0 T T0

9
上页得到: S U ( ) V (
1 T
1 T0
p T
p0 )0 T0
由于虚变动δU、δV 可任意变化,故上式要求:
UB U A W T
外界所作的功是
SB S A
W p(VB VA )
SB S A
U B U A p (VB V A ) T
G GB GA 0
在等温等压过程中,系统的吉布斯函数永不增 加。也就是说,在等温等压条件下,系统中发 生的不可逆过程总是朝着吉布斯函数减少的方 向进行的。
T T0
p p0
结果表明:达到平衡时整个系统的温度和压强是均匀的!
2、稳定平衡
近似有 而
~ S 2 S0 2 S 0 2~ S 2S 0
2
可以证明:
2 S0 2 S
2S 2S 2S 2S (U ) 2 2 UV 2 (V ) 2 0 U 2 UV V

4
二、热平衡的判据(热动平衡条件)
1、基本平衡判据
根据熵增加原理,孤立系统中发生的趋于平衡的过程 必朝着熵增加的方向进行。
熵判据:孤立系统平衡态是熵最大的态。 相对于平衡态的虚变动后的态的熵变小。 孤立系统处在稳定平衡状态的必要充分条件:
1 1 S S 2! S 3! S

U n H n F n
pdV dn

T ,V

18
定义:巨热力势

《热力学与统计物理》第三章 单元系的相变

《热力学与统计物理》第三章 单元系的相变

三.化学势分析
Vm
O K
范氏方程的平衡曲线
B T, p A T, p
J
J
K O
G
B G+L
D
N
L
A
M
R
p
D NR BA M
p
d SmdT Vmdp
p
dT 0 O pO Vmdp
NDJ段:Gm 最大, 不稳定 OKBAMR段:Gm 最小, 稳定
BN段: 亚稳 过饱和蒸气
JA段:
过热液体
两相平衡曲线:两相平衡共存,温 度和压强只有一个独立。
三相点:三相平衡共存,温度和压 强完全确定。
临界点:汽化线终点,温度高于此 点,无液相。由于临界点的存在, 从两相中任意一相的某一个状态出 发,可以经绕过临界点的任意路径 连续进行气—液的过渡而无需经过 相分离(或两相共存)的状态。
固 三相点 •
RT ln pr p
将上式代入*,以及p 2 ,得 :
r
2 v ln pr
r 107 m, pr r 108 m, pr r 109 m, pr
RTr
p
可见,液滴的平衡蒸汽压与液滴的半径有关
p 1.011; p 1.115; p 2.966;
三.中肯半径与过饱和蒸气
S U pV ,
T
S0
U0
p0V0
T0
2.稳定性条件
2S0 2S
系统的平衡条件
2S 2S 0
TdS
dU
pdV
S U
V
1 T
,
S V
U
p T
以 T,V 为自变量,有:
1 T
T
1 T
V
T

热学 (3 第三章 气体分子热运动速率和能量的统计分布率)

热学 (3 第三章 气体分子热运动速率和能量的统计分布率)
或概率密度。
f ()d dN
N
dN
2

f
( )d
N 1
表示速率分布在→+d内的
分子数占总分子数的概率
表示速率分布在1→2内的分
子数占总分子数的概率
N
0
dN N


0
f
d
1
归一化条件
应注意的问题:
分布函数是一个统计结果,以上各种讨论都是建立在众多分子微 观运动基础上的,分子的数目越大,结论越正确。所以:
1、作速率分布曲线。 2、由N和vo求常数C。 3、求粒子的平均速率。 4、求粒子的方均根速率。
f (v)
C ( vo> v > 0) 0 ( v > vo )
f (v)
解:

f (v)dv
0
vo 0
Cdv

Cvo
1
C
C 1 vo
o
vo v
o f ()d o Cd C o2
3. 方均根速率
2


2
f
d
0
3
2

4

m
2 kT
2


e
m 2 2kT

4
d

3kT

3RT
0
mM
2 3kT 3RT
m
M
4. 三种速率的比较
最概然速率
p
2kT m
2RT M
平均速率
8kT 8RT m M
方均根速率
一、速率分布函数
气体分子处于无规则的热运动之中,由于碰撞,每个分子的速度都

统计热力学基础

统计热力学基础
能量是量子化的,但每一个能级上可能有若 干个不同的量子状态存在,反映在光谱上就是代 表某一能级的谱线常常是由好几条非常接近的精 细谱线所构成。
量子力学中把能级可能有的微观状态数称为
该能级的简并度,用符号gi 表示。简并度亦称为
退化度或统计权重。
简并度(degeneration)
例如,气体分子平动能的公式为:
N!
Hale Waihona Puke g Ni iN! i
i Ni !
非定位体系的最概然分布
同样采用最概然分布的概念,用Stiring公式
和Lagrange乘因子法求条件极值,得到微态数为
极大值时的分布方式
N
*(非定位)为:
i
N(i* 非定位) N
g ei / kT i g ei / kT i
i
由此可见,定位体系与非定位体系,最概然
的分布公式是相同的。
Boltzmann公式的其它形式
(1)将i能级和j能级上粒子数进行比较,用最 概然分布公式相比,消去相同项,得:
Ni*
N
* j
g ei / kT i
g e j / kT j
Boltzmann公式的其它形式
(2)在经典力学中不考虑简并度,则上式成为
Ni*
N
* j
i / kT
ee j / kT
(U,V , N)
N!
g Ni i
i
i Ni !
求和的限制条件仍为:
Ni N
Nii U
i
i
有简并度时定位体系的微态数
再采用最概然分布概念, i max ,用
Stiring公式和Lagrange乘因子法求条件极值,得
到微态数为极大值时的分布方式 Ni* 为:

统计热力学

统计热力学
F U T S kl N Q n k T lT Q n N
这就是定域体系的自由能公式,式中Q称为分子配分函数。
❖ 总结
定域体系有三个重要公式:
1、总微观状态数
γν ι
Ω Ν! ι
D
i νι!
2、最可几分布
FkT lnQN
3、热力学函数
*
ni N
g ie i g ie i
i
基本粒子:如电子、中子、光子等。 复合粒子:如原子、分子等。 复合粒子构成体系:如一升气体,一摩尔晶体等。 (2)统计体系分类 按照体系内粒子之间相互作用的强弱可把体系分为近独立 粒子体系和相依粒子体系。 按照体系内粒子是否可区分,也可把体系分为定域粒子体 系和离域粒子体系。
(3)微观态和宏观态 体系的微观态是指在某一瞬间,体系中全体
N个全同粒子构成体系,总自由度为Nf (f 为一个粒 子自由度),需要2 Nf 维相空间。
Γ空间:描述N个粒子构成体系,整个气体运动状态的 相空间,也叫做气体相空间。 Γ空间中的一个相点 代表体系的一个微观运动状态。
测不准原理:△q× △p≈ h
相胞:hf
❖ §1.2 粒子微观运动状态的描述 一、自由粒子
ni !
2、最可几分布
ni* e i e(i)/kT gi
3、热力学函数
Sk
i
[ni*lnngi*i ni*]
❖ §2.3 费米-狄拉克统计
由质子、中子、电子以及由奇数个这些基本粒子组成的复合粒子构成的体系 服从费米-狄拉克统计。这个统计分布的特点是每一状态最多容纳一个粒子。
一、微观状态数
D D
如果每个容器最多容纳物体数目不受限制,有多少种排列方式(N≤M)?
N个可区分的物体,排列在M个不同容器中,物体的数目不受限制,可能的方式 数有多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、玻色-爱因斯坦统计和费米-狄拉克统计
三、玻色-爱因斯坦统计和费米-狄拉克统计
1. 玻色-爱因斯坦统计 2. 费米-狄拉克统计 3. 三种统计的比较
四、配分函数
四、配分函数
1. 配分函数的定义 2. 配分函数与热力学函数的关系 3. 配分函数的分离
五、各配分函数的求法及其对热力学函数的贡献
1. 原子配分函数 2. 电子配分函数 3. 平动配分函数 4. 单原子理想气体的热力学函数 5. 转动配分函数 6. 振动配分函数 六、晶体的热容
(三)计算题
例1 .O2的摩尔质量为 0.03200 kg· mol-1,O2分子的核 间平均距离R=1.2074×10-10 m,振动基本波数ω=
1580 cm-1 ,电子最低能级的简并度为 3 ,电子第一激 发能级比最低的能量高 1.5733×10-19J ,其简并度为 2 , 更高电子能级可忽略不计,对T=298K,P= 101.325 kPa,V=24.54×10-3 m3的O2理想气体,求 (1) O2 分子以基态为能量零点的平动、转动、振动、 电子及分子配分函数
N N
* i
gie
i

i
kT
g e
i
i
kT
都可用下式表示
N i* g i e kT i N kT g e i
i

i
3.配分函数
3.配分函数
q gi e
i

i
kT
配分函数q是对体系中一个粒子的所有可能状态的玻兹 曼因子求和,又算状态和。
4. 统计力学的基本假设 4. 统计力学的基本假设
上述公式:无论定位体系或非定位体系, U、H、Cv的表示式是一样的,只是在热力 学函数 F 、 S、G上相差一些常数项 。
各配分函数的计算公式
1. 配分函数的分离 2. 平动配分函数
qq q q q q
t r v n
e
3. 转动配分函数
2m kT q ( ) V 2 h
t 3 2
双原子分子或线型多原子分子 非线型多原子分子

2.从自由能函数计算平衡常数
G (T ) U 0 q Nk ln T N
G (T ) U o T
D+E
θ m
称为自由能函数
G+H
θ m θ m θ m
r G (T ) G (T ) H (0) rU (0) θ RT ln K ( ) T T T θ θ θ Gm (T ) H m (0) rU m (0) B { }B T T
E0 k BT f exp( ) h f A f BC RT
q是不包括体积项V的分子总的配分函数
E0是活化络合物的零点能与反应物零点能之差值。
f f


k BT h
E0 k T f B k KC exp( ) h f A fB RT
由上式可知,原则上只要知道分子的质量、 转动惯量、振动频率等微观物理量(有些可 以从光谱数据获得),就可用统计热力学的 方法求出配分函数,从而计算出k值。
5.了解玻色-爱因斯坦统计和费米-狄拉克统计
重点 :配分函数与热力学函数的关系、各配分函 数的求算及其对热力学函数的贡献。
基本内容
一、统计体系的分类与基本假定
二、玻兹曼统计 1. 定位体系的最概然分布 2. 、值的推导 3. 玻兹曼公式的讨论——非定位体系的最概然分布 4. 玻兹曼公式的其它形式 5. 摘取最大项原理
线型多原子分子
q
v
1 1 e
1


h i kT
非线型多原子分子
q
v i 1
3n 6
1 e
h i kT
5.电子配分函数
qe ge,0 exp(
e,0
kT
)
若将 e,0 视为零,则 6. 原子核配分函数
n
qe ge,0 2 j 1
n 0
n 0
q g e
3 2
23
4.281030
转动: 当T»Θr时,qr=T/(σΘr), 为此需计算I(转 动惯量)和Θr(转动特征温度)
mo=0.01600/(6.023×1023)
h2 r 2 2.079K T 8 IkB
μO2= mo/2
I=μR2=( mo/2) R2=19.37×10-47Kg· m2
q N F(非定位) kT ln F(定位) kT ln q N!
N
五、配分函数的应用
1. 能量的公共点选择
q g i e e
0 kT

( o i ) kT
e
0 kT
g e
i
i kT
q
q是按各自的零点没有考虑到公共标线时的配 分函数,无论采用何种标度对S、Cv和p的表示 式和以前一样,不受影响,而在采用了公共 零点后,F、G、H、U的表示式中均多了一个 U0项(U0=N 0)
2 r
2 8 IkT r q 2 h
3 2 1 2
(qr=T/Θr 转动特征温度 Θr=h2/(8πIk)
8 (2kT ) q (I x I y I z ) 3 h
4. 振动配分函数
双原子分子
q
v
3 n 5 i 1
1 1 e
h i kT

1 1 e
V T
4.从配分函数求平衡常数
D + E = G
t=0 ND0
t=t ND
NE0
G
0
NG
N qG KN N D N E q D qE
NE
q V f e
o kT

0
kT
C fG Kc e CD CE f D f E
G

q q e
[ A B C ] KC [ A][BC]
d [ A BC ] r [ A BC ] dt K C [ A][BC] k[ A][BC]
E0 [ A B C ] q f KC exp( ) [ A][BC] q A qBC f A f BC RT

0
kT
q指各自的基态的能 量,选为0。
0 是反应前后分子最 f指在q中提出V后的配分函数 , 低能级的差值.
从统计热力学的观点看,化学平衡是体系中不同粒 子的运动状态之间达成的平衡 宏观状态的改变必定伴随着能量的变化。
5. 从配分函数求速率常数
根据过渡态理论
A+B-C
KC
[A…B…C]≠→A-B+C
i ,t [ gi ,v exp( [ gi ,n exp(
i
)
kT i ,v kT i ,n kT
)] [ gi ,r exp(
i i
i ,r
kT
)] )]
)] [ gi ,e exp( )]
i ,e
kT
qt qr qv qe qn
第三章 统计热力学基础
通过本章的学习,了解体系的热力学宏观
性质可以通过微观性质计算出来。掌握
由配分函数的分离求算简单分子的热力
学函数。
(一)基本要求和基本内容
基本要求:
1.了解什么是最概然分布
2.掌握配分函数及它的物理意义
3.定位体系与非定位体系的热力学函数有什么差别?
4.了解平动、转动、振动对热力学函数的贡献。
七、分子的全配分函数
(二)基本概念和公式
一、玻兹曼分布和配分函数 1.玻兹曼熵公式 S=klnΩ 该公式沟通了宏观和微观,热力学和统计力学;该公 式对独立粒子体系能很好成立。
2.玻兹曼分布定律
对一个热力学量u、v、n完全 确定的体系(不论是定位体系 还是非定位体系)在最概然分 布时,各能级上分布的分子数Ni
ΔrUmθ是在标准情况下在0K时该反应的内能变化值 。 在0K时,Uo=H,ΔrUmθ(0)=ΔrHmθ(0)。
3.从热函函数计算反应热
Hm (T ) U m (0) ln q RT ( )V , N R T T
Hm (T ) U m (0) T
称为热函函数
θ θ θ H ( T ) U ( 0 ) U θ m m r m (0) r H m (T ) {[ ] }T T T
4.非线型多原子分子
3 2 3n 6 2 m kT 8 IkT e e e kT kT 2 q总 [ g o e ][g o e ][( 3 ) V ][ ][ ] h 2 h h i 1 1 e kT
e o n o

1 h 2 kT
这些公式中包含着一些微观物理量如振动频率、 转动惯量、各能级的简并度等,这些数据可以 从光谱中获得,从而可求出配分函数,然后再 通过如下的两个公式与热力学函数挂起钩来。
qe g e,0 g e,1e

1
kT 19
1.573310 s 3 2 exp[ ] 23 1 (1.3810 JK )(298K ) 3.00
(2) N/q的值,N为O2分子数。
解答
(1)计算分子配分函数必须计算平动、转动、振动 ,电子的配分函数。
平动
2m kT q ( ) V 2 h ) (1.3810 ) 298 3 } ( 24 . 45 10 ) 23 34 2 (6.02310 ) (6.62610 )
对于非定位体系
q F(非定位) kT ln N!
q ln q S(非定位) k ln NkT ( )V , N N! T
相关文档
最新文档