高中数学人教版必修几何概型教案(系列五)

合集下载

人教版高中数学必修5《基本不等式》教案

人教版高中数学必修5《基本不等式》教案

人教版高中数学必修5《基本不等式》教案课题:基本不等式教材:《普通高中课程标准实验教科书数学必修5》3.4一、教学目标:1、探索并了解基本不等式的证明过程,了解这个基本不等式的几何意义,并掌握定理中的不等号“≥”或“≤”取等号的条件是:当且仅当这两个数相等;会用基本不等式解决简单的最大(小)值问题。

2、通过实例探究抽象基本不等式,体会特殊到一般的数学思想方法;3、通过本节的学习,体会数学来源于生活,提高学习数学的兴趣;4、培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。

二、教学重点和难点:重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式2a b+ 的证明过程;难点:注意基本不等式2a b+≤等号成立条件以及应用于解决简单的最大(小)值问题。

三、教学方法:启发、探究式相结合 四、教学工具:多媒体课件五、教学过程:一、问题引入:如图是2002年在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

你能在这个图案中找出一些相等关系或不等关系吗?这样,三角形的面积的和是2ab ,正方形的面积为a b +。

由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab+≥《几何画板》课件动画显示,当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。

问题:你能证明这个结论吗? 证明:(作差法) 因为 222)(2b a ab b a -=-+ 当b a ≠时,0)(2>-b a 当b a =时,0)(2=-b a所以,0)(2≥-b a ,即.2)(22ab b a≥+总结结论1:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a文字叙述为:两数的平方和不小于积的2倍。

人教版(A)高中数学必修3《几何概型》教案及教案说明

人教版(A)高中数学必修3《几何概型》教案及教案说明

课题:《几何概型》教案及其说明教材:人教版(A)数学必修3《几何概型》教案说明一、《几何概型》的教学目标:1、教学目标:(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。

(3)通过例题教学,使学生能掌握几何概型概率计算公式的应用。

2、教学目标的设置意图:几何概型概念中的核心是它的两个特征,(1)试验中所有可能出现的基本事件有无限多个;(2)每个基本事件出现的可能性相等(等可能性),尤其是特征(2),所以教学的重点不是“如何计算概率”,而是要引导学生动手操作,开展小组合作学习,通过举出大量的几何概型的实例与数学模型使学生概括、理解、深化几何概型的两个特征及概率计算公式。

同时使学生初步能够把一些实际问题转化为几何概型,并能够合理利用随机、统计、化归、数形结合等数学思想方法有效解决有关的概率问题。

几何概型是对古典概型有益的补充,几何概型将古典概型的研究从有限个基本事件过渡研究无限多个基本事件,几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例。

在强化几何概型概念教学的同时,将几何概型概念形成的教学通过猜想验证思想逐步让学生自主探究,并体会概念形成的合理性。

二、《几何概型》在教材中的地位:1、几何概型是区别于古典概型的又一概率模型,几何概型是对古典概型有益的补充,将研究有限个基本事件过渡到研究无限多个基本事件;2、学习几何概型主要是为了更广泛地满足随机模拟的需要。

三、《几何概型》的重难点分析:1、《几何概型》的重难点:重点:(1)几何概型概率计算公式及应用。

(2)如何利用几何图形,把问题转化为几何概型问题。

难点:无限过渡到有限;实际背景如何转化几何图形;正确判断几何概型并求出概率。

2、几何概型的学习是建立在古典概型的学习基础之上,少数学生受古典概型学习的影响,容易忽视对几何概型的判断和选择,不善于把求未知量的问题转化成几何概型求概率的问题,而常常转化成古典概型进行分析;因此在教学中结合[课前练习]、[问题初探]进行深入讨论,让学生真正体会到判断几何概型的特点以及重要性,利用回顾、猜想、试验、对比等手段来帮助学生解决问题。

高中数学《几何概型》教案

高中数学《几何概型》教案

高中数学《几何概型》教案一、教学目标1、建立几何概型的概念,了解点、线、面、几何体的基本概念。

2、学习古希腊的几何概型理论,理解“公理化”证明的基本方法。

3、掌握平面几何的基本定理,如欧氏几何五大公设、垂线、角平分线定理等。

4、培养学生思维的逻辑性,进一步提高分析解决问题的能力,以及形象思维的能力和几何思维的能力。

二、教学重点和难点1、平面几何的基本定理。

2、学习古希腊几何学的公理化方法,认识并应用公理、定义、定理、证明等,进一步提高学生的推理思维。

三、教学方法1、理论结合实践,通过练习掌握平面几何的基本定理,培养学生的推导思维。

2、利用黑板画图辅助教学,加强学生的形象思维。

3、倡导学生积极参与课堂讨论,相互分享探讨问题,提高学习效果。

四、教学内容与步骤第一节、几何概念的复习1、点、线、面、几何体的基本概念。

2、点、线、面的分类。

3、几何图形的构造方法。

4、几何问题的解决方法。

第二节、平面几何基本定理1、欧氏几何五大公设的理解和应用。

2、角平分线的定理及其应用。

3、垂线定理及其应用。

4、圆的性质与应用。

5、全等三角形的性质。

第三节、公理化证明的基本方法1、公理与定义的概念及其作用。

2、定理的定义和证明方法。

3、数学证明思路的讲解。

4、实例分析与案例练习。

五、教学手段黑板,笔,直尺,量角器,地球仪等。

六、教学评价1、通过课堂练习加深对平面几何的了解和掌握。

2、通过提高几何思维的能力和推理逻辑的能力,进一步提高学生的数学水平和思维能力。

3、根据课堂互动、单词测试和综合评定等方式,对学生的学习情况进行评价。

人教版高中数学必修三3.3几何概型教案(5)

人教版高中数学必修三3.3几何概型教案(5)

教学过程: 一、〖创设情境〗创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。

例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个 二、〖新知探究〗1、基本概念(预习后填空):(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等三、〖典型例题〗:课本例题略例1 判下列试验中事件A 发生的概度是古典概型, 还是几何概型。

(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如课本P132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率。

分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性。

而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关。

解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.例2 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)= 605060 =61,即此人等车时间不多于10分钟的概率为61. 小结:在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数.牛刀小试1.已知地铁列车每10min 一班,在车站停1min ,求乘客到达站台立即乘上车的概率。

高中数学几何概型教案

高中数学几何概型教案

高中数学几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握几何概型的基本性质和特点。

2. 培养学生运用几何概型解决实际问题的能力。

3. 通过对几何概型的学习,提高学生的逻辑思维能力和空间想象能力。

二、教学内容1. 几何概型的定义与特点2. 几何概型的分类3. 几何概型的概率计算方法4. 几何概型在实际问题中的应用三、教学重点与难点1. 重点:几何概型的概念、特点和概率计算方法。

2. 难点:几何概型在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究几何概型的相关知识。

2. 利用多媒体课件,辅助教学,增强学生对几何概型的空间想象力。

3. 结合实际例子,让学生感受几何概型在生活中的应用。

五、教学过程1. 导入新课:通过一个简单的抽奖活动,引导学生思考抽奖活动的概率问题,从而引入几何概型的概念。

2. 自主学习:让学生阅读教材,理解几何概型的定义与特点。

3. 课堂讲解:讲解几何概型的分类和概率计算方法。

4. 课堂练习:让学生完成一些有关几何概型的练习题,巩固所学知识。

5. 应用拓展:结合实际例子,让学生运用几何概型解决实际问题。

六、教学评价1. 评价学生对几何概型的概念、特点和概率计算方法的掌握程度。

2. 评价学生运用几何概型解决实际问题的能力。

3. 评价学生在课堂练习中的表现,包括解题速度和正确率。

4. 评价学生在小组讨论中的参与程度和合作能力。

七、教学资源1. 教材:高中数学几何概型相关内容。

2. 多媒体课件:用于展示几何概型的图形和实例。

3. 练习题库:用于课堂练习和课后作业。

4. 实际案例:用于引导学生将几何概型应用于实际问题。

八、教学进度安排1. 第一课时:介绍几何概型的概念和特点。

2. 第二课时:讲解几何概型的分类和概率计算方法。

3. 第三课时:课堂练习和应用拓展。

九、教学反思1. 反思教学内容是否适合学生的认知水平。

2. 反思教学方法是否有效,是否能够激发学生的兴趣和参与度。

高中数学几何概型教案模板

高中数学几何概型教案模板

高中数学几何概型教案模板教学目标:
1. 熟练掌握数学几何概型的相关概念和定理;
2. 能够运用几何概型进行问题求解;
3. 培养学生的逻辑思维能力和数学推理能力。

教学重点:
1. 几何概型的基本概念;
2. 几何概型定理的应用。

教学难点:
1. 几何概型问题的解题方法;
2. 复杂几何概型问题的解决思路。

教学准备:
1. PowerPoint课件;
2. 教学板书;
3. 习题集。

教学过程:
一、导入
1. 引入几何概念,让学生了解几何概型在数学中的重要性;
2. 利用实例引导学生思考几何概型问题的解决方法。

二、讲解
1. 介绍几何概型的定义和相关定理;
2. 结合例题详细讲解几何概型问题的解题思路和方法;
3. 强化重点、难点内容。

三、练习
1. 给学生布置一些练习题,让他们独立进行解答;
2. 讲解解题思路,指导学生解决问题的方法。

四、总结
1. 回顾本节课学习的内容,强化重点知识;
2. 结合实例再次强化几何概型问题的解题方法。

五、作业
布置相关作业,巩固学生对几何概型的理解和应用能力。

师生互动:
1. 鼓励学生积极参与课堂讨论,提高学习兴趣;
2. 辅导学生解题思路,帮助他们掌握几何概型的解题方法。

教学反思:
1. 总结本节课教学中存在的问题,及时调整教学策略;
2. 收集学生反馈意见,改进教学方法,提高教学效果。

公开课几何概型教案

公开课几何概型教案

公开课几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握几何概型的特征。

2. 培养学生运用几何概型解决问题的能力。

3. 提高学生对数学的兴趣,培养学生的创新思维。

二、教学内容1. 几何概型的定义及特征2. 几何概型的分类3. 几何概型的应用三、教学重点与难点1. 重点:几何概型的概念、特征及分类。

2. 难点:几何概型的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究几何概型的特征。

2. 利用案例分析法,让学生通过实例理解几何概型的应用。

3. 采用小组讨论法,培养学生合作解决问题的能力。

五、教学过程1. 导入:通过生活中的实例,引导学生思考几何概型的概念。

2. 新课导入:讲解几何概型的定义、特征及分类。

3. 案例分析:分析具体实例,让学生理解几何概型的应用。

4. 课堂练习:设计相关练习题,让学生巩固所学知识。

5. 小组讨论:分组讨论几何概型在实际问题中的应用。

6. 总结与反思:回顾本节课所学内容,让学生分享自己的收获。

7. 作业布置:布置课后练习,巩固所学知识。

六、教学评估1. 课堂提问:通过提问了解学生对几何概型的理解和掌握程度。

2. 练习题:检查学生完成练习题的情况,评估学生对几何概型的应用能力。

3. 小组讨论:观察学生在小组讨论中的表现,评估学生的合作能力和解决问题的能力。

七、教学拓展1. 引导学生思考几何概型在实际生活中的应用,提高学生的实际问题解决能力。

2. 鼓励学生参加数学竞赛或研究项目,提升学生的创新能力。

八、教学资源1. 教学PPT:提供清晰的课件,帮助学生理解几何概型的概念和应用。

2. 练习题库:提供丰富的练习题,帮助学生巩固所学知识。

3. 案例资料:提供相关案例资料,方便学生分析和学习几何概型的应用。

九、教学反馈1. 课堂反馈:课后及时与学生沟通,了解学生在课堂上的学习情况,为后续教学提供参考。

2. 作业反馈:批改学生作业,及时给予反馈,指出学生的错误,帮助学生巩固知识。

《必修三《几何概型》教案

《必修三《几何概型》教案

《必修三《几何概型》教案教案:几何概型一、教学目标1.知识与技能:-了解几何概型的基本概念和相关属性;-掌握计算几何概型的可能性和概率;-能够运用几何概型解决实际问题。

2.态度与价值观:-培养学生对几何概型的兴趣和好奇心;-培养学生合作、探究和创新精神。

二、教学重点和难点1.重点:-几何概型的基本概念和相关属性;-计算几何概型的可能性和概率。

2.难点:-运用几何概型解决实际问题。

三、教学过程1.教学准备:-教师准备PPT、绘制几何概型相关图形。

2.导入与引入:-向学生提问:“大家了解什么是几何概型吗?”-学生回答后,教师进行引导,介绍几何概型的基本概念和相关属性。

3.概念讲解:-讲解几何概型的基本概念,例如:平面上点、线、面,三维空间中体等;-讲解几何概型的相关属性,例如:相似、相等等;-通过示例和图像说明几何概型的应用,如建筑设计、工程测量等。

4.练习与讨论:-让学生通过绘制几何概型图形,进行练习;-学生分组讨论几何概型的相关问题,例如:如何计算不同形状的房屋占地面积等。

5.案例分析:-教师给出一个实际生活中的案例,例如:如何计算一个无规则形状的花坛的面积;-学生利用几何概型的知识和技巧,分析并解决这个问题;-学生分组展示自己的解决过程和答案,并进行讨论。

6.解决问题与拓展:-继续给学生出一些难度适中的问题,让学生运用几何概型的知识和技巧解决;-引导学生思考如何拓展几何概型的应用领域,发现几何概型在日常生活中的其他应用。

四、课堂小结-教师对本课的教学内容和学生的表现进行总结;-检查学生对几何概型的掌握情况,回答学生提出的问题;-引导学生对几何概型的学习进行反思和思考。

五、作业布置-布置相关练习题,要求学生运用几何概型的知识和技巧解答;-要求学生写一篇小结,总结几何概型的基本概念和相关属性。

六、教学反思-分析课堂教学过程中的不足和问题;-总结有效的教学方法和策略,为下一节课的教学做好准备。

几何概型教案

几何概型教案

3-3.3 几何概型一、教材分析在人教版高中数学教材的知识体系中,几何概型被安排在必修3的第三章第三节,是继古典概型后对另一常见概型的学习,是在古典概型基础上进一步的拓展,将等可能事件的概念从有限延伸至无限。

学好此节内容有助于学生全面系统地掌握概率知识和进一步形成辩证思想。

二、学情分析学生已经学习了概率的含义以及古典概型的计算方式,对概率有一定的了解,掌握了一定的概率求解方法,掌握了古典概型的相关知识。

通过对比分辨两种概型的区别与联系,进行几何概型的学习。

三、教学目标1、知识与技能:通过实际操练,使学生从多种维度体验几何概型的实际应用,初步体会几何概型的意义;将古典概型与几何概型进行对比,使学生明确几何概型与古典概型的区别,掌握几何概型概率计算公式的应用,能够运用线性规划等方法解决复杂的几何概型问题。

通过思维拓展,使学生初步了解随机模拟方法的使用及其实际意义。

2、过程与方法:通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯,培养学生实践能力、协调能力、创新意识和处理数据能力以及应用数学意识。

3、情感、态度与价值观:帮助学生养成合作交流的习惯,初步形成建立数学模型的能力,通过学生的实际操作,激发学生学习的兴趣,重视数学在实际生活中的作用。

四、教学重点、难点1.教学重点①正确理解几何概型的定义、特点;②会用几何概型概率公式求解随机事件的概率。

2.教学难点①根据古典概型与几何概型的区别,来判断一个试验是否为几何概型;②将实际问题抽象成几何概型,并灵活运用各类方法解决几何概型问题.五、教法选择“以学生为主体”的探究性教学,讲授法,谈话法六、教学过程本节课的教学,共分为五个部分:一、知识梳理二、情境导入三、问题探究四、思维拓展五、回顾小结七、教学设计一、知识梳理【师】:同学们,上节课我们学习了古典概型,通过以下情景我们来回顾一下。

情景一:区间[0,4]上取一整数,恰好在区间[0,1]上的概率是多少?(板书在右边)这个情境里,基本事件是什么?基本事件有哪些?每一个基本事件发生的可能性为多少?什么情况下事件A发生?【生】:所取得的整数;01234五个;1/5;0,1;2/5【师】:非常好,由此我们可以得出情景一下的概率为2/5.那么由此我们可以知道古典概型有什么特点呢?【生】:基本事件可数,发生的可能性相同。

高中数学必修五教案(精选5篇)

高中数学必修五教案(精选5篇)

高中数学必修五教案(精选5篇)高中数学必修五教案篇一教学目标A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

C、情感目标:(数学文化价值)(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

(2)通过公式的运用,树立学生"大众教学"的思想意识。

(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的。

心理体验,产生热爱数学的情感。

教学重点:等差数列前n项和的公式。

教学难点:等差数列前n项和的公式的灵活运用。

教学方法:启发、讨论、引导式。

教具:现代教育多媒体技术。

教学过程一、创设情景,导入新课。

师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。

提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。

(教师观察学生的表情反映,然后将此问题缩小十倍)。

我们来看这样一道一例题。

例1,计算:1+2+3+4+5+6+7+8+9+10。

这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

高中数学几何概型教案

高中数学几何概型教案

高中数学几何概型教案
教学重点:掌握概型相关概念和性质,能够熟练运用概型解决几何问题。

教学难点:灵活运用概型解决实际问题,结合实际情境进行概型应用。

教学方法:讲授、举例、演示、讨论。

教学资源:教材、黑板、彩色粉笔、计算器。

教学过程:
一、导入(5分钟)
引导学生回顾前一节课的内容,概述几何相关知识,并提出问题引起学生思考。

二、讲解概型概念和性质(15分钟)
1. 讲解概型的定义和基本性质。

2. 举例说明不同类型的概型,引导学生思考。

3. 解释概型在数学中的应用,并讨论实例。

三、练习与讨论(20分钟)
1. 给学生发放练习题,让学生自主练习。

2. 学生互相讨论解题思路,分享解题方法。

3. 收集学生答案,讨论解题过程和答案。

解决学生疑惑。

四、实践运用(10分钟)
1. 提供实际问题,让学生结合几何知识和概型解决问题。

2. 学生在小组中合作,共同讨论解决方案。

3. 学生上台汇报解题过程和答案。

五、总结和作业布置(5分钟)
1. 总结本节课的内容,强调要点。

2. 布置相关练习作业,鼓励学生多练习、巩固知识。

教后反思:本节课主要通过讲解、练习和实践运用,使学生对几何概型有了更深入的理解,并能够运用概型解决实际问题。

在实践运用环节,让学生在小组中合作,培养了学生的团
队合作能力和解决问题的能力。

待下次课程中再次引导学生灵活运用概型解决实际问题。

必修五高中数学教案

必修五高中数学教案

必修五高中数学教案
第一课:直线方程
1. 学习目标:了解直线的方程形式及其基本性质,学会求解直线的方程。

2. 教学内容:直线的方程形式(斜截式、截距式、一般式)、直线方程间的相互转化、求直线方程的方法。

3. 教学重点:直线的方程形式及其基本性质,求解直线的方程。

4. 教学难点:直线方程的转化和应用。

5. 教学过程:
(1)引入直线的方程形式,导入斜截式、截距式、一般式的概念。

(2)讲解直线方程间的相互转化方法,引导学生掌握各种形式的应用场景。

(3)通过实例演练,引导学生运用所学知识求解直线的方程。

(4)作业布置:课后练习,巩固所学内容。

6. 教学评价:观察学生的学习情况和解题能力,及时给予指导和反馈。

7. 拓展延伸:让学生解决实际问题中的直线方程,拓展学生的思维能力和应用能力。

8. 教学资源:教科书、多媒体课件、实例练习题等。

9. 教学反思:及时总结学生的学习情况,为下一节课的教学准备做好充分的准备。

高中数学《几何概型》教案、教学设计

高中数学《几何概型》教案、教学设计

高中数学《几何概型》教案、教学设计
一、教学目标
【知识与技能】
理解几何概型的特点,掌握几何概型的概率计算公式,并能应用公式解决实际问题。

【过程与方法】
经历归纳几何概型的特点以及推导几何概型的概率计算公式的过程,提升抽象概括能力与逻辑推理能力。

【情感、态度与价值观】
体会数学与生活的联系,养成良好的数学思维习惯。

二、教学重难点
【重点】几何概型的特点以及概率计算公式。

【难点】几何概型特点的归纳以及概率计算公式的推导。

三、教学过程
(一)导入新课
回顾古典概型。

出示问题情境:往一方格中投一个石子。

请学生思考石子可能落在哪里,如何求概率。

在学生明确事件所有的可能结果是无限个,无法用古典概型求解的情况下,说明今天这节课将解决这样的问题。

引出课题。

(二)讲解新知
出示问题情境:如图有两个转盘,甲乙两人玩转盘游戏,规定当指针指向
区域时,甲获胜,否则乙获胜。

请学生在两种情况下分别求出甲获胜的概率是多少。

(四)小结作业
小结:今天有什么收获?回顾几何概型的特点以及概率计算公式。

作业:从几何概型的角度思考,是否概率为0的事件都是不可能事件,概率为1的事件都是必然事件?
四、板书设计。

2019-2020年高中数学《几何概型》教案5新人教A版必修3

2019-2020年高中数学《几何概型》教案5新人教A版必修3

2019-2020年高中数学《几何概型》教案5新人教A版必修3教材分析和古典概型一样,在特定情形下,我们可以用几何概型来计算事件发生的概率•它也是一种等可能概型.教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法•与本课开始介绍的P (A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整.这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学•教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为几何概型求概率的问题.教学目标1.通过这节内容学习,让学生了解几何概型,理解其基本计算方法并会运用.2.通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力.3.通过学习,让学生体会试验结果的随机性与规律性,培养学生的科学思维方法,提高学生对自然界的认知水平.任务分析在这节内容中,介绍几何概型主要是为了更广泛地满足随机模拟的需要,因此,教学重点是随机模拟部分•这节内容的教学需要一些实物模型作为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等•教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果•随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动•有条件的学校可以让学生用一种统计软件统计模拟的结果.教学设计一、问题情境如图,有两个转盘•甲、乙两人玩转盘游戏,规定当指针指向E区域时,甲获胜,否则乙获胜.问题:在下列两种情况下分别求甲获胜的概率.(I)(2)W 30 - I、建立模型1.提出问题首先引导学生分析几何图形和甲获胜是否有关系,若有关系,和几何体图形的什么表面特征有关系?学生凭直觉,可能会指出甲获胜的概率与扇形弧长或面积有关•即:字母B所在扇形弧长(或面积)与整个圆弧长(或面积)的比•接着提出这样的问题:变换图中B与N的顺序,结果是否发生变化?(教师还可做出其他变换后的图形,以示决定几何概率的因素的确定性).题中甲获胜的概率只与图中几何因素有关,我们就说它是几何概型.注意:(1)这里“只”非常重要,如果没有“只”字,那么就意味着几何概型的概率可能还与其他因素有关,这是错误的.(2)正确理解“几何因素”,一般说来指区域长度(或面积或体积).2.引导学生讨论归纳几何概型定义,教师明晰------- 抽象概括如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.在几何概型中,事件A的概率的计算公式如下:…、—构成事件A的区域长度《或面积或休积)⑷ _试验的亍部结果构成的区域&度(或1爪积或体积)3.再次提出问题,并组织学生讨论(1)情境中两种情况下甲获胜的概率分别是多少?(2)在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.(3)某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10min 的概率.通过以上问题的研讨,进一步明确几何概型的意义及基本计算方法.三、解释应用[例题]1.假设你家订了一份报纸,送报人可能在早上6: 30〜7: 30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7: 00〜& 00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.乂*离卅童止[.件的时间1*1 30 - 2分析:我们有两种方法计算事件的概率.(1)利用几何概型的公式.(2)利用随机模拟的方法.解法1:如图,方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间•假设随机试验落在方形内任一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A发生,所以6/一罕P{A) =——,—=87. 5%□0解法2 :设X, Y是0〜1之间的均匀随机数.X+ 6.5表示送报人送到报纸的时间,Y+ 7表示父亲离开家去工作的时间.如果Y+ 7> X+ 6.5,即Y>X- 0.5,那么父亲在离开家前能得到报纸•用计算机做多次试验,即可得到P (A).教师引导学生独立解答,充分调动学生自主设计随机模拟方法,并组织学生展示自己的解答过程,要求学生说明解答的依据.教师总结,并明晰用计算机(或计算器)产生随机数的模拟试验•强调:这里采用随机数模拟方法,是用频率去估计概率,因此,试验次数越多,频率越接近概率.2.如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值.解:随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即圆的面积落在岡中的豆了数正方形的面积比落在正方形中的讯『•数假设正方形的边长为2,则圆的面积 _齐止方阳的而积—氏玉—了由于落在每个区域的豆子数是可以数出来的,所以落在圆中的豆子数7’龙*落在正方形中的豆子数4这样就得到了n的近似值.另外,我们也可以用计算器或计算机模拟,步骤如下:(1)产生两组0〜1区间的均匀随机数,a i= RAND b i= RAND(2)经平移和伸缩变换, a =( a i —0.5 ) *2 , b =( b i —0.5 ) *2 ;(3)数出落在圆内a2 + b2v 1的豆子数N,计算(N代表落在正方形中的豆子数).可以发现,随着试验次数的增加,得到n的近似值的精度会越来越高.本例启发我们,利用几何概型,并通过随机模拟法可以近似计算不规则图形的面积.[练习]1.如图30-4,如果你向靶子上射200镖,你期望多少镖落在黑色区域.2.利用随机模拟方法计算图30-5中阴影部分(y= 1和y= x2围成的部分)的面积.閨3门T3.画一椭圆,让学生设计方案,求此椭圆的面积.四、拓展延伸1.“概率为数‘ 0'的事件是不可能事件,概率为1的事件是必然事件”,这句话从几何概型的角度还能成立吗?2.你能说一说古典概型和几何概型的区别与联系吗?3.你能说说频率和概率的关系吗?点评这篇案例设计完整,整体上按知识难易逐渐深入,同时充分调动了学生的积极性,以学生之间互动为主,教师引导为辅.例题既有深化所学知识的,又有应用所学知识的. “拓展延伸”既培养了学生的思维能力,又有利于学生从总体上把握这节课所学的知识.通过对问题的点化,引导学生观察、分析图象的变化,自主地总结出变化规律,有利于突破教学难点,并有利于提高学生的分析归纳能力。

高中数学几何概型优秀教案

高中数学几何概型优秀教案

高中数学几何概型优秀教案
目标:通过本节课的学习,学生能够了解射影几何的概念,掌握相关定理,并能运用所学
知识解决相关问题。

教学重点:射影几何的基本概念、相关定理及应用。

教学难点:理解射影几何的概念及解决相关问题时的思维逻辑。

教具准备:黑板、彩色粉笔、投影仪、幻灯片、教材
教学安排:
一、导入(5分钟)
教师简单介绍射影几何的概念,并通过图像展示让学生初步了解射影几何的特点。

二、课堂讲解及示范(15分钟)
1. 教师讲解射影几何的基本概念,如射影平面、射影圆、射影线等,并通过实例进行说明。

2. 教师讲解射影几何的相关定理,如射影线的夹角定理、射影线与射影圆的位置关系等。

三、学生实践操作(20分钟)
学生们根据教师的示范,自行完成几道射影几何相关问题,加深对射影几何概念的理解,
并培养解决问题的能力。

四、讲解案例及讨论(10分钟)
学生们将自己的解答展示出来,教师进行点评和讲解,通过案例讨论加深学生对射影几何
的理解。

五、课堂总结(5分钟)
教师对本节课的学习内容进行总结,并强化射影几何的重要性。

六、作业布置(5分钟)
布置相关作业,巩固所学知识。

教学方式:板书教学、案例教学、互动探讨
教学评价:学生学习兴趣、参与度、主动性、学习成绩
教学反思:根据学生反馈和实际教学情况,不断优化教学方案,提高教学效果。

最新人教版高中数学必修3第三章《几何概型》教案

最新人教版高中数学必修3第三章《几何概型》教案

最新人教版高中数学必修3第三章《几何概型》教案《几何概型》教案教学目标:1.正确理解几何概型的概念;可以辨别某种概型就是古典概型还是几何概型;掌控几何概型的概率公式;2.发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;3.通过自学与探究活动,体会理论源于课堂教学并应用于课堂教学的辩证唯物主义观点.教学重点难点:1.重点:几何概型的概念、公式及应用领域;2.难点:几何概型与古典概型各自的适用范围.教法与学法:1.教法挑选:使用鼓励辨认出和概括归纳结合的教学方法,通过明确提出问题、分析问题、解决问题等教学过程,观测对照、归纳概括几何概型的概念及其概率公式;2.学法指导:以学生活动为主,引导学生在动手操作、实践探索、合作交流的基础上,充分调动学生学习的积极性和主动性.结合本课的实际需要,作如下指导:对于概念,学会几何概型与古典概型的比较;立足基础知识和基本技能,掌握好典型例题;注意数形结合思想的运用,把抽象的问题转化为熟悉的几何概型.教学过程:一、设置情境,引出概念教学教学过程环节问题开篇以一个游如图,存有两个旋钮.甲、乙两人玩玩旋钮游戏,戏开篇,唤起学规定当指针指向b区域时,甲获得胜利,否则乙获得胜利.生自学兴趣,引发学生的主动教师以游戏开篇,在充分调动学生兴趣的情形下,明确提出问题.设计意图师生活动引人深思问题:在以下两种情况下分别谋甲获得胜利的概率.题中甲获得胜利的概率只与图中几何因素有关,我概念介们就说道它就是几何概型.特别注意:(1)这里“只”非常关键,如果没“只”字,那么就意味著几何概型的概率可能将还与思索.得出概念,学生在认知概教师得出概念的基础上,举念,使学生互相出来适当例子,浅探讨,并派遣代表化认知概念.列举适当例子.绍其他因素有关,这就是错误的.为时程难点并作铺垫(2)正确理解“几何因素”,一般说来指区域长度(或面积或体积)如果每个事件出现的概率只与形成该事件区域的长度(面积或体积)成比例,则表示这样的概率模型为几何概率模型,缩写为几何概型.在几何概型中,事件a的概率的计算公式如下:二、例题揭秘,深化概念教学教学过程环节趁热打例1:假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸通过例题的讲解,深化对事直接点学生回答,教师予以点设计意图师生活动铁深化概念(称为事件a)的概率是多少.件的分类的理解.评.分析:利用几何概型的公式计算事件的概率.解:如图,正方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在正方形内任一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件a发生,所以三、归纳小结,课堂延展教学教学过程环节设计意图师生活动1.几何概型就是区别于古典概型的又一概率模概括小结作业稳固作业布置:课本练型,采用几何概型的概率计算公式时,一定必须特别注意其适用于条件:每个事件出现的概率只与形成该事件区域的长度(面积或体积)成比例.2.几何概型的特点:(1)试验中所有可能将发生稳固新知,由学生谈论体会,师生共同概括总结.础.学打下一定基的结果(基本事件)存有无穷个(2)每个基本事件发生为学生的时程研习的可能性成正比.3.在几何概型中,事件a的概率的计算公式如下:教学设计说明1.教材地位分析:“几何概型”这一节内容是安排在“古典概型”之后的第二类概率模型,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸.此节内容是为更广泛地满足随机模拟的需要而在新课标中增加的,这是与以往教材安排上的最大的不同之处.充分体现了数学与实际生活的紧密关系:来源生活,而又高于生活.同时也暗示了它在概率论中的重要作用,在高考中的题型的转变.2.学生现实分析:由于大部分学生对于数学缺少兴趣,自学数学缺乏主动性,太少动手解题.因此,教学过程中要不断进一步增强学生自学的兴趣,使学生主动自学数学.3.本节课中,从概念的形成到应用建模,再到知识的巩固拓展都是学生在这些活动中完成,教师启发引导下,学生思考、讨论、探究,从而解决问题,充分体现学生的主体地位,而且这种学习方式除了贯穿课堂,也延伸至课外.教师不要一气呵成,而应设计有梯度的问题带动学生学习的积极性,只有学生真正参与课堂,教学效果才是好的,才能教育出真正的人才.。

高中数学人教A版必修3《3.3.1几何概型》教案5

高中数学人教A版必修3《3.3.1几何概型》教案5

必修三课 题:3.3.1 几何概型教学目标:1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.教学方法:讲授法课时安排:1课时教学过程:一、导入新课:1、复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?2、在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.二、新课讲授:提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验 2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P (正,正)=P (正,反)=P (反,正)=P (反,反)=1/4.两次出现相同面的概率为214141=+. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为 3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 于是事件A 发生的概率P(A)=31. 第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B发生,于是事件B发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability),简称几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P(A)=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A.(6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.三、例题讲解:例1 判断下列试验中事件A发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.分析:见教材136页解:(略)变式训练1、某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g ={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g )=53=Ω的长度的长度g . 点评:通过实例初步体会几何概型的意义.2、 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.四、课堂小结:几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.五、课后作业:课本习题3.3A组1、2、3.板书设计课后反思:。

几何概型教学设计高二数学ppt课件教案人教版

几何概型教学设计高二数学ppt课件教案人教版

几何概型教学设计教学内容:人教版《数学必修3》第三章第3.3.1节几何概型。

学情分析:这部份是新增加的内容,介绍几何概型主若是为了更普遍地知足随机模拟的需要,可是对几何概型的要求仅限于初步体会几何概型的意义,因此教科书当选的例题都是比较简单的,随机模拟部份是本节的重点内容。

几何概型是另一类等可能概型,它与古典概型的区别在于实验的结果不是有限个。

本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等,教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性。

几何概型也是一种概率模型,它与古典概型的区别是实验的可能结果不是有限个;它的特点是在一个区域内均匀散布,因此随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关。

教材的地位与作用:概率的初步知识在初中已经介绍,在选修模块的系列2中还将继续学习概率的其他内容,因此,本章在高中时期概率的学习中,起了继往开来的作用。

本章的核心是运用数学方式去研究不确信现象的规律,让学生初步形成用科学的态度、辩证的思想、随机的观念去观看、分析研究客观世界的态度,并获取熟悉世界的初步知识和科学方式;这对全面系统地把握概率知识,关于学生辩证思想的进一步形成具有增进的作用。

教学目标:知识与技术了解几何概型的意义,会运用几何概型的概率计算公式,会求简单的几何概型事件的概率。

进程与方式通过游戏、案例分析,学习运用几何概型的进程,初步体会几何概型的含义,体验几何概型与古典概型的联系与区别。

情感、态度与价值观通过对几何概型的研究,感知生活中的数学,体会数学文化,培育学生的数学素养。

教学重点:几何概型的特点,几何概型的识别,几何概型的概率公式。

教学难点:将现实问题转化为几何概型问题,从实际背景中找几何气宇。

教学进程:一、温习引入一、古典概型的两个大体特点是什么?二、如何计算古典概型的概率?二、创设情景,引入新课一、问题情境⑴、以下图中有两个转盘,甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获?胜,不然乙获胜.在两种情形下别离求甲获胜的概率是多少⑵、取一根长度为3米的绳索,拉直后在任意位置剪断,那么剪得两段的长都不小于1米的概率有多大?(演示绳索)⑶、射箭竞赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色。

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》5

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》5

《几何概型》教学设计沈阳市56中学高永利【教学目标】1.知识与技能:了解几何概型的意义,会运用几何概型的概率计算公式,会求简单的几何概型事件的概率。

2.过程与方法:通过案例分析,初步体会几何概型的含义,学习运用几何概型的过程,体验几何概型与古典概型的联系与区别。

3.情感、态度与价值观:通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。

【学习重点】几何概型的特点,几何概型的识别,几何概型的概率公式。

【学习难点】将现实问题转化为几何概型问题,从实际背景中找几何度量。

【学习过程】自主学习,合作探究,精讲点拨,巩固检测。

无限个。

积的比值来计算只是猜想,我们自然而然地需要一个理论依据去支持这个猜测,从而引入几何概型的概念二、通过类比,形成概念三.自主探究,深化重点游戏1:试验结果等可能、有限个。

游戏2:试验结果等可能、无限个。

游戏2与古典概型的区别在于它的试验结果不是有限个,但是它的试验结果在一个区域内均匀地分布,因此它满足无限性和等可能性的特征。

例1、请学生判断下列几个试验是否为几何概型,并分别计算。

试验1、一个袋中装有10个除颜色外全部相同的小球,其中6个白球,4个黑球,从袋中任取一个,求取出黑球的概率。

试验2、在500m水中有一个草履虫,现从中随机抽取2m水样放到显微镜下观察,求发现草履虫的概率。

试验3、取一根长为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不少于11教师引导学生仿照古典概型的概率公式,用事件包含的基本事件个数与试验的基本事件总数的比例来解决这个问题,那样就会出现“无数比无数”的情况,没有办法求解。

因此,我们需要一个量,来度量事件和,使这个比例式可以操作这个量就称为“几何度量”。

例1,设计为抢答的形式,请学生发表自己见解,教师及时点评。

通过试验3引导学生形成简单的构建数学模型的能力:绳长转化为线段长,剪断的位置化为点,此题转化为长度之比。

引导学生得到了几何概型的概率公式()Ap AμμΩ=1、通过对比巩固学生对几何概型概念和特点的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.1 几何概型课 题:3.3.1 几何概型 教学目标:1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式: P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识. 教学重点:理解几何概型的定义、特点,会用公式计算几何概率. 教学难点:等可能性的判断与几何概型和古典概型的区别. 教学方法: 讲授法 安排: 1 教学过程: 一、导入新课:1、复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?2、在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型. 二、新课讲授: 提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少? (3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么? (4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式? (6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P (正,正)=P (正,反)=P (反,正)=P (反,反)=1/4.两次出现相同面的概率为214141=+. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 于是事件A 发生的概率P(A)=31. 第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的而剪断绳子的点和射中靶面的点是无限的即一个基本事件是有限的,而另一个基本事件是无限的. (4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称几何概型. 几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等. (5)几何概型的概率公式: P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A .(6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.三、例题讲解:例1 判断下列试验中事件A 发生的概率是古典概型,还是几何概型. (1)抛掷两颗骰子,求出现两个“4点”的概率(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.分析:见教材136页 解:(略) 变式训练1、某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a5),记A g ={等车时间少于3分钟},则他到站的时刻只能为g=(a2,a5)中的任一时刻,故P(A g )=53=Ω的长度的长度g .点评:通过实例初步体会几何概型的意义.2、 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.四、课堂小结:几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.五、课后作业:课本习题3.3A组1、2、3.板书设计课后反思:备课资料几何概型是高中数学新增加的内容,其特点鲜明,题目类型较为固定.高中数学学习阶段所出现的几何概型问题总结如下.1.与长度有关的几何概型例1 有一段长为10米的木棍,现要将其截成两段,要求每一段都不小于3米,则符合要求的截法的概率是多大?分析:由于要求每一段都不小于3米,也就是说只能在距两端都为3米的中间的4米中截,这是一道非常典型的与长度有关的几何概型问题.解:记两段木棍都不小于3米为事件A,则P(A)=52103310=--.2.与面积有关的几何概型这里有一道十分有趣的题目:例2 郭靖、潇湘子与金轮法王等武林高手进行一种比赛,比赛规则如下:在很远的地方有一顶帐篷,可以看到里面有一张小方几,要将一枚铜板扔到这张方几上.已知铜板的直径是方几边长的43,谁能将铜板整个地落到方几上就可以进行下一轮比赛.郭靖一扔,铜板落到小方几上,且没有掉下,问他能进入下一轮比赛的概率有多大?分析:这是一道几何概型问题,在几何概型中,样本空间是问题所涉及的整个几何图形,在本题中,样本空间就是小方几的桌面面积.一个事件就是整个几何图形的一部分,这个事件发生的概率就是这部分面积与整个图形的面积比.解:不妨设小方几的边长为1,铜板落到小方几上,也就是铜板的中心落到方几上,而要求整个铜板落到小方几上,也就是要求铜板的中心落到方几中内的一个41×41的小正方形内(如上图),这时铜板中心到方几边缘的距离≥铜板边长的83.整个方几的面积为1×1=1,而中央小正方形的面积为41×41=161,所以郭靖进入下一轮比赛的概率为1611161=.例3 甲、乙两人相约在上午9:00至10:00之间在某地见面,可是两人都只能在那里停留5分钟.问两人能够见面的概率有多大?解:设甲到的时间为(9x )小时,乙到的时间为(9y )小时,则0≤x≤1,0≤y≤1.点(x,y )形成直角坐标系中的一个边长为1的正方形,以(0,0),(1,0),(0,1),(1,1)为顶点(如右图).由于两人都只能停留5分钟即121小时,所以在|xy|≤121时,两人才能会面.由于|xy|≤121是两条平行直线xy=121与yx=121之间的带状区域,正方形在这两个带状区域是两个三角形,其面积之和为(1121)×(1121)=(1211)2.从而带形区域在这个正方形内的面积为1(1211)2=14423,因此所求的概率为14423114423=.3.与体积有关的几何概型例4 在5升水中有一个病毒,现从中随机地取出1升水,含有病毒的概率是多大?分析:病毒在这5升水中的分布可以看作是随机的,取得的1升水可以看作构成事件的区域,5升水可以看作是试验的所有结果构成的区域,因此可能用体积比公式计算其概率. 解:“取出1升水,其中含有病毒”这一事件记作事件A,则P(A)=51=所有水的体积取出的水的体积=0.2.从而所求的概率为0.2.现在我们将这个问题拓展一下:例5 在5升水中有两个病毒,现从中随机地取出1升水,含有病毒的概率是多大?分析:此题目与上一题有一点区别,即现在在5升水中含有两个病毒,我们不妨将这两个病毒分别记作病毒甲和病毒乙.随机地取1升水,由上题我们可知含有病毒甲的概率为51,含有病毒乙的概率也是51,而这两种情况都包括了“既有病毒甲又有病毒乙”的情况,所以应当将这种情况去掉.解:记“取1升水,含有病毒甲”为事件A ;“取1升水,含有病毒乙”为事件B,则“既含有病毒甲又含有病毒乙”为事件AB.从而所求的概率为P=P(A)P(B)P(AB)=P(A)P(B)P(A)P(B)=25951515151=⨯-+=0.36. 4.与角度有关的几何概型例6 在圆心角为90°的扇形中,以圆心为起点作射线OC,求使得∠AOC 和∠BOC 都不小于30°的概率.解:设事件A 是“作射线OC,求使得∠AOC 和∠BOC 都不小于30°”.则μa =90°30°30°=30°,而μΩ=90°,由几何概型的计算公式得P (A )=319030=︒︒=ΩμμA .注意:在高中数学阶段,我们对于与面积有关的几何概型和与体积有关的几何概型要求重点掌握.这里只是列出了几道与几何概型有关的题目,可以说,在高中数学学习阶段,这四种几何概率模型基本上包括了我们所要学习的几何概型,希望能对大家有一点帮助.(设计者:路致芳)。

相关文档
最新文档