精密薄壁零件的加工

合集下载

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析1. 引言1.1 背景介绍薄壁零件是指壁厚较薄,形状复杂的零件,通常用于汽车、航空航天、电子等领域。

随着现代工业的发展,对薄壁零件的需求越来越大,但是薄壁零件的加工过程中容易产生变形、残余应力等问题,给加工工艺提出了更高的要求。

薄壁零件的加工难度主要体现在以下几个方面:一是薄壁零件在加工过程中容易变形,特别是在切削加工过程中会出现振动、共振等问题;二是薄壁零件在加工过程中很容易产生残余应力,影响零件的精度和稳定性;三是薄壁零件通常要求加工精度高,加工表面要求光洁度要求高。

对薄壁零件的机械加工工艺进行深入研究和分析,对提高零件加工质量和效率具有重要意义。

本文将通过对薄壁零件的加工特点、机械加工方法、加工工艺优化、加工设备选择和注意事项等方面进行分析,希望能为薄壁零件的加工提供一些参考和帮助。

1.2 研究目的薄壁零件的机械加工工艺分析本文旨在探讨薄壁零件的机械加工工艺,通过对薄壁零件加工特点、机械加工方法、加工工艺优化、加工设备选择以及加工注意事项等方面进行深入分析,以期为相关行业提供一定的参考和指导。

薄壁零件因其结构特殊、加工难度大、容易变形等特点,在实际生产中存在一定的挑战。

通过对薄壁零件的机械加工工艺进行研究分析,可以帮助企业更加有效地解决加工过程中所面临的问题,提高生产效率、降低生产成本,提升产品质量和市场竞争力。

研究目的的关键在于深入了解薄壁零件的加工特点和加工工艺,找出存在的问题并提出解决方案,为制造工程技术人员提供可行的指导意见和建议。

通过本文的研究,希望能够为薄壁零件的机械加工工艺提供更加系统和全面的分析,为相关领域的技术人员提供参考和借鉴,推动薄壁零件的机械加工技术不断创新和提升。

1.3 研究意义薄壁零件在机械加工领域中起着重要的作用,其加工工艺的优化对于提高产品质量、降低生产成本具有重要意义。

由于薄壁零件的特殊性,其加工过程中容易出现变形、裂纹等问题,因此需要对其加工进行深入研究和优化。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析1. 引言1.1 简介薄壁零件在机械加工领域中起着重要的作用,其加工难度和技术要求较高。

对薄壁零件的机械加工工艺进行深入分析和研究具有重要意义。

本文旨在探讨薄壁零件加工的相关问题,通过对薄壁零件的定义、加工难点以及机械加工工艺的分析,来探讨如何选择合适的加工方案,并对加工工艺进行优化,提高加工效率和产品质量。

在工艺优化的过程中,需要考虑到薄壁零件的特点和加工需求,不断完善工艺流程,优化加工参数,提高加工质量和生产效率。

本文还将讨论工艺优化的重要性以及未来研究方向,以期为薄壁零件的机械加工工艺提供一定的参考和借鉴。

1.2 研究背景薄壁零件在现代工业生产中得到了广泛应用,其轻量化、高强度和高性能的特点使其在航空航天、汽车制造、电子设备等领域发挥着重要作用。

由于薄壁零件的特殊性,其加工难度较大,容易出现变形、裂纹等质量问题,给生产制造带来了挑战。

通过深入分析薄壁零件的机械加工工艺,探讨加工中存在的难点和问题,并提出相应的加工方案和工艺优化措施,对于提高薄壁零件加工质量和效率具有重要意义。

薄壁零件加工的难点主要包括材料轻薄、刚度低、易变形等特点,导致加工过程中容易出现振动、共振、切削变形等问题。

针对这些问题,现有研究主要集中在加工参数优化、刀具选择、切削力控制等方面进行探讨,但仍存在一定的局限性。

有必要对薄壁零件的机械加工工艺进行进一步深入的研究和分析,以期提出更有效的解决方案,实现薄壁零件加工质量的提升和成本的降低。

2. 正文2.1 薄壁零件的定义薄壁零件是指在加工过程中其壁厚相对较薄的零件。

薄壁零件通常用于各种工业领域,包括航空航天、汽车制造、电子设备等。

由于其壁厚较薄,薄壁零件在机械加工过程中常常面临一些特殊的挑战和难点。

薄壁零件的定义可以从几个方面来说明。

薄壁零件的壁厚通常小于其最小尺寸的10%,这就要求在加工过程中需要特别注意避免壁厚过薄导致变形或破裂的问题。

薄壁零件的结构通常比较复杂,需要高精度的加工,以保证零件的质量和性能。

薄壁零件加工工艺方法分析

薄壁零件加工工艺方法分析

薄壁零件加工工艺方法分析什么是薄壁零件?薄壁零件是指壁厚相对较薄,外形也相对复杂,常见于汽车、电子、机械等领域的零件,如汽车车门、电子设备外壳等。

薄壁零件加工的难点薄壁零件加工的难点主要在于以下两个方面:1.零件壁厚薄:由于零件壁厚相对较薄,所以容易产生振动和翘曲等变形现象,而且易热变形,导致加工难度增加。

2.外形复杂:薄壁零件外形通常比较复杂,加工难度也大。

薄壁零件加工的常用方法单点加工法单点加工法是指通过刀具对薄壁零件进行加工的方法。

该方法适用于对平面零件和简单形状的薄壁零件进行加工。

常见的单点加工法包括:1.铣削:用铣刀对薄壁零件进行加工,可实现高速、高效、高精度的加工。

2.钻孔:用钻头对薄壁零件进行加工,也可加工一定程度的凸凹面。

3.车削:用刀具对薄壁零件进行加工,通常适用于对旋转体进行加工。

轧制加工法轧制加工法是指通过轧制的方式对薄壁零件进行加工。

该方法适用于对较大尺寸的薄壁零件进行加工,如汽车车身等。

常见的轧制加工法包括:1.深冲模:利用模具对薄壁零件进行加工,可加工多曲面、异形和复杂形状的零件。

2.拉伸模:利用模具对薄壁零件进行加工,适合加工尺寸大、平面面积较小的零件。

其他加工法除了上述两种方法外,还有一些其他的薄壁零件加工方法,如:1.冷却加工法:通过冷却液对薄壁零件进行加工,可减少热变形和振动。

2.激光加工法:通过激光对薄壁零件进行加工,可实现高精度、高效率的加工。

结论薄壁零件的加工难度比较大,但是通过一些常用的加工方法,如单点加工法和轧制加工法,以及一些其他的加工方法,如冷却加工法和激光加工法,就可以有效地解决加工难题,对薄壁零件进行高精度、高效率的加工。

薄壁零件的加工方法及影响因素

薄壁零件的加工方法及影响因素

薄壁零件的加工方法及影响因素薄壁零件日益广泛地应用在各行各业,所以薄壁零件的加工不能轻易忽视。

以下是店铺为你整理推荐薄壁零件的加工方法及影响因素,希望你喜欢。

薄壁零件的加工方法(1)采用开口套装夹:用开口套改变三爪卡盘的三点夹紧为整圆抱紧,即用三爪卡盘夹持开口套使其变形并均匀抱紧薄壁套后再车削内孔。

(2)采用大弧形软爪装夹:改装三爪卡盘的三个卡爪,在三个通用卡爪上焊接大弧形软爪,增大夹持面积,减小薄壁套的夹紧和车削变形。

注意在把大弧形软爪与原三爪卡盘的三个卡爪焊接后适当放置一段时间,让其自然变形,然后对大弧形软爪应有足够的径向厚度,使其有足够的刚度。

在使用一定时间后,再次进行“白干自”的精密车削,确保精度不变。

(3)直径大、尺寸精度和形位精度要求较高的圆盘薄壁工件,可装夹在花盘上车削。

在花盘上用螺钉固定一个定位盘,注意在固定前要用千分表调整定位盘的外圆与车床主轴同轴,用两个或四个压板轴向压紧薄壁套后就可以车削内孔。

在夹紧时注意不要完全压紧一个压板后,再压紧另一个压板,而是对称地逐渐使各个压板压紧薄壁套,这样不会因夹紧力而使薄壁套变形,车削完整后,也是对称地逐渐松开各个压板。

薄壁零件加工的影响因素影响薄壁零件加工精度的因素有很多,但归纳直来主要有以下三个方面:(1)受力变形因工件壁薄,在夹紧力的作用下容易产生变形,从而影响工件的尺寸精度和形状精度,如图1所示。

(2)受热变形因工件较薄,切削热会引起工件热变形,使工件尺寸难于控制。

(3)振动变形在切削力(特别是径向切削力)的作用下,很容易产生振动和变形,影响工件的尺寸精度、形状、位置精度和表面粗糙度。

薄壁零件的简介薄壁零件已日益广泛地应用在各工业部门,因为它具有重量轻,节约材料,结构紧凑等特点。

但薄壁零件的加工是车削中比较棘手的问题,原因是薄壁零件刚性差,强度弱,在加工中极容易变形,使零件的形位误差增大,不易保证零件的加工质量。

对于批量大的生产,我们可利用数控车床高加工精度及高生产效率的特点,并充分地考虑工艺问题对零件加工质量的影响,为此对工件的装夹、刀具几何参数、程序的编制等方面进行试验,有效地克服薄壁零件加工过程中出现的变形,保证了加工精度,为今后更好的加工薄壁零件提供了好的依据及借鉴。

薄壁件的三种加工方法

薄壁件的三种加工方法

薄壁件的三种加工方法
薄壁件是指壁厚相对较薄的零件,通常用于汽车、电子、航空航天等工业领域。

由于其特殊的结构和加工要求,薄壁件的加工方法也有一些特殊之处。

本文将介绍三种常见的薄壁件加工方法。

一、拉伸法
拉伸法是一种常用的薄壁件加工方法,通过拉伸薄壁板材来改变其形状和尺寸。

该方法适用于形状简单、壁厚均匀的薄壁件加工。

首先,将薄壁板材固定在拉伸机上,然后施加拉力使其产生塑性变形,最终得到所需形状的薄壁件。

这种方法可以快速高效地加工薄壁件,但对板材的材质和加工工艺要求较高。

二、冲压法
冲压法是一种常见的薄壁件加工方法,适用于形状复杂、壁厚较薄的薄壁件加工。

冲压法利用冲压设备将金属板材加工成所需形状的薄壁件。

首先,将金属板材放置在冲压机上,然后通过冲压模具对板材进行冲击,使其产生塑性变形,最终得到所需形状的薄壁件。

冲压法具有加工速度快、精度高的优点,但对冲压设备和模具的要求较高。

三、焊接法
焊接法是一种常用的薄壁件加工方法,适用于薄壁件的连接和修补。

焊接法通过熔化和连接金属材料,将多个薄壁件组合成一个整体。

焊接法可以用于不同材质、不同厚度的薄壁件的连接,具有连接牢固、结构简单的优点。

常见的焊接方法包括电弧焊、气体保护焊、激光焊等。

焊接法的缺点是加工过程中会产生热变形和应力集中等问题,需要通过控制焊接参数和采取适当的焊接工艺来解决。

薄壁件的加工方法包括拉伸法、冲压法和焊接法。

不同的加工方法适用于不同形状、不同壁厚的薄壁件加工。

在实际应用中,需要根据具体的要求和条件选择合适的加工方法,以确保薄壁件的质量和性能。

数控车床加工薄壁零件的工艺及参数选择

数控车床加工薄壁零件的工艺及参数选择

数控车床加工薄壁零件的工艺及参数选择摘要:薄壁类零件本身的结构相对薄弱,加工难度较大,并且在目前数控机床操作环节,对于操作人员而言,最难的问题就是对薄壁零件的加工。

因此在设计过程中采取工装夹具等来分析具体电气设备中的支护件结构,然后利用数控车床进行加工,判断影响其加工精度的相关因素,以优化设计来促进后续加工工作顺利开展。

同时,也需注重后续加工质量的保障措施,提升薄壁类零件的加工精度。

关键词:数控车床;加工薄壁零件;工艺;参数选择引言对于在车削上具有薄壁结构的某些零件,由于零件的薄壁,在夹紧力作用下容易变形,从而影响零件的尺寸精度和形状精度。

在排程中,虽然存在工件和精加工,但工件和精加工通常是分开进行的,首先执行完整的工件加工,然后在精加工之后完成工件加工。

由于切削馀量大、切削力大、变形大,在加工过程中不一定能完全消除过度切削力所造成的变形。

由于前后厚度不同,尺寸很差,很难满足工艺要求如果在编程时合理安排毛坯和精加工路径以及合理分配加工馀量,可以解决零件变形问题的一些不良刚度。

一、薄壁零件简述薄壁零件是由厚度和内径曲率比小于5%的薄板和加强筋组成的轻元件,它们使用少量材料并产生低质量的产品。

薄壁零件的结构本身相对紧凑,硬度和刚度不足,易于在生产过程中变形和修复,这影响了薄壁零件的方向,但也影响了薄壁零件的使用效果。

薄壁零件具有特殊的尺寸和形状,即使是特殊材料,最常用的薄壁加工材料也是钛合金和复合材料,它们是在不同的生产场景和场景中制造的。

从分析薄壁零件的加工和工艺角度来看,薄壁零件的最终加工效果反映了加工等级,薄壁零件通常应用于高精度领域,加工等级直接影响下一个装配产品的质量。

从车削过程的角度来看,夹具的切削量和材料以及几何参数会影响薄壁加工的质量。

二、影响薄壁零件质量的因素分析(一)切割方式的选择切割薄壁零件时,必须选择适当的切割方法以避免影响零件过程的质量。

因此,结合薄壁零件的实际要求,应选择科学的加工方法来提高零件的切削精度。

薄壁零件的加工工艺

薄壁零件的加工工艺

薄壁零件的加工工艺嘿,朋友!说起薄壁零件的加工工艺,这可真是个有趣又有挑战的事儿!你想想,薄壁零件就像个脆弱的小宝宝,稍微不小心,就容易受伤变形。

那怎么才能把这个“小宝宝”照顾好,让它乖乖地变成我们想要的样子呢?先来说说材料的选择吧。

这就好比给小宝宝选衣服,得选那种柔软又有韧性的布料,材料得有良好的力学性能,不然在加工过程中,它就容易“发脾气”,出各种问题。

比如说,如果选了太脆的材料,加工的时候一不小心就可能裂开,那可就糟糕啦!然后是刀具的选择。

这刀具就像是我们照顾薄壁零件的“小工具”,可不能马虎。

刀具得锋利,就像一把快刀能轻松地切开豆腐一样,这样在加工的时候才能减少切削力,降低零件变形的风险。

要是刀具不锋利,那加工起来就像用钝刀砍骨头,费劲不说,还容易把零件弄伤。

再说说切削参数。

这可太重要啦!切削速度、进给量和切削深度,就像是做饭时的火候、放盐量和加水的多少,得把握得恰到好处。

速度太快,零件会热得受不了,变形啦;进给量太大,零件会被“啃”得坑坑洼洼;切削深度太深,零件可能直接就“崩溃”了。

还有装夹方式呢!装夹就像给小宝宝系安全带,太紧了会勒得难受,太松了又不安全。

得选合适的夹具,均匀地施加夹紧力,不然零件会被夹得变形,那可就前功尽弃了。

加工顺序也有讲究哦!就像搭积木,得先搭好基础,再一层一层往上盖。

先加工容易变形的部位,再加工相对稳定的部分,这样才能保证零件的整体精度。

在加工过程中,冷却润滑也不能忽视。

这就好比大热天给小宝宝扇扇子、擦汗,能让零件保持冷静,减少热变形。

最后,别忘了加工后的处理。

就像给小宝宝洗完澡要擦干、穿好衣服一样,对加工好的薄壁零件进行去毛刺、抛光等处理,让它变得更加光滑漂亮。

总之,薄壁零件的加工工艺就像是一场精心策划的演出,每一个环节都要考虑周全,不能有丝毫的马虎。

只有这样,才能让薄壁零件这个“小宝宝”健康成长,变成我们理想中的样子!你说是不是这个理儿?。

薄壁零件加工中存在的问题

薄壁零件加工中存在的问题

薄壁零件加工中存在的问题在薄壁零件加工中,可能会面临一些常见的问题。

解决这些问题需要仔细分析每个步骤,并采取相应的措施。

以下是一些可能存在的问题和解决建议:1.变形问题:原因:薄壁零件在加工中容易发生变形,主要是由于切削力引起的材料内应力释放。

解决方案:选择合适的切削参数,采用适当的刀具,减小切削力。

可以考虑采用工艺补偿或者后续的校正工序。

2.毛刺和切屑:原因:薄壁零件的切屑很容易残留在切削区域,形成毛刺。

解决方案:采用适当的切削速度和进给速度,选择合适的切削刃具。

可以考虑添加冷却液以减少热影响,避免切削区域积聚切屑。

3.表面质量问题:原因:薄壁零件的加工可能导致表面粗糙度增加或表面平整度降低。

解决方案:使用高精度的加工设备和刀具。

确保刀具磨损良好,避免振动和共振问题。

定期检查和维护设备。

4.工艺稳定性问题:原因:薄壁零件的加工可能受到环境温度、湿度等因素的影响,导致工艺不稳定。

解决方案:控制加工环境的温湿度,采用合适的工艺参数。

在加工之前,对材料和设备进行预热,确保加工过程中的稳定性。

5.材料选择问题:原因:不同的材料对于薄壁零件加工的难度不同。

解决方案:在设计阶段选择适合加工的材料,考虑材料的强度、塑性等特性。

必要时,进行材料热处理以提高加工性能。

6.加工成本问题:原因:薄壁零件的加工可能涉及到高难度的工艺,导致加工成本增加。

解决方案:寻找合适的工艺和设备,优化刀具选择和切削参数,以降低加工成本。

考虑批量生产以提高效益。

通过综合考虑材料、工艺、设备和人员等因素,可以有效解决薄壁零件加工中可能出现的问题,提高加工质量和效率。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析薄壁零件是指在工程结构中壁厚很薄的零件,其壁厚一般小于3mm。

薄壁零件因其壁厚薄,加工难度大,所以在工艺上有着独特的要求。

本文将对薄壁零件的机械加工工艺进行分析,希望能够为相关行业提供参考。

一、薄壁零件的特点1. 壁厚薄:薄壁零件的壁厚一般小于3mm,有的甚至只有几毫米,这就要求在加工过程中必须考虑到其薄壁的性质,避免因加工引起的变形和破裂。

2. 结构复杂:由于薄壁零件在工程结构中常常承担比较复杂的功能,因此结构也相对复杂,这就对加工工艺提出了更高的要求。

3. 材质优质:为了保证薄壁零件的承载能力和使用寿命,通常采用高强度、优质的金属材料进行加工,如不锈钢、铝合金等。

4. 精度要求高:薄壁零件通常用于精密仪器、汽车零部件等领域,对其加工精度要求也很高,所以加工工艺更要精益求精。

二、薄壁零件的机械加工工艺1. 工艺规划:在进行薄壁零件的机械加工之前,必须进行详细的工艺规划和制定加工工艺流程。

根据零件的结构特点和加工要求,合理确定加工顺序、刀具选择、切削参数等,确保在加工过程中能够保持零件的尺寸、形状和表面质量。

2. 材料选择:针对不同的薄壁零件,需选择合适的材料进行加工。

常用的材料有铝合金、不锈钢、镁合金等,其机械性能和切削性能各不相同,需要根据实际情况进行选择。

3. 加工工艺控制:在进行薄壁零件的机械加工过程中,必须严格控制加工工艺。

尤其是在切削过程中要注重刀具的刀具形状和刃口状态、切削速度、进给量和切削深度等参数的合理选择和控制,避免因切削引起的变形和表面质量问题。

4. 刀具选择:薄壁零件的机械加工过程中,需要选择合适的刀具进行加工。

通常情况下,采用高硬度、高强度的硬质合金刀具或刻线刀具,以保证加工效率和加工质量。

5. 夹紧与支撑:薄壁零件在加工过程中要进行合理的夹紧和支撑,避免因切削引起的振动和变形问题,提高加工稳定性和精度。

6. 加工检测:在薄壁零件的机械加工过程中,需要进行合理的加工检测工序。

数控车床薄壁件加工技巧和方法

数控车床薄壁件加工技巧和方法

数控车床薄壁件加工技巧和方法一、概述薄壁件是指壁厚小于2mm的机械零件,具有重量轻、节省材料、结构紧凑等特点。

数控车床是现代加工制造业中应用广泛的设备,对于薄壁件的加工具有独特优势。

本文将重点介绍数控车床在薄壁件加工中的技巧和方法,以提高加工效率和产品质量。

二、材料选择与装夹方式1.材料选择:薄壁件常用的材料有铝合金、钛合金、不锈钢等,这些材料具有较好的塑性和切削性能。

在选择材料时,应充分考虑其物理性能和加工工艺性。

2.装夹方式:针对薄壁件易变形的特点,应采用合适的装夹方式,如真空吸附、专用夹具等,以保证工件在加工过程中保持稳定。

三、刀具选择与切削参数优化1.刀具选择:针对薄壁件的加工特点,应选用锋利、耐磨的刀具,如硬质合金刀具、涂层刀具等。

同时,刀具的几何参数对切削力、切削热等方面都有影响,应根据工件材料和加工要求进行合理选择。

2.切削参数优化:切削参数的合理选择对于薄壁件的加工至关重要。

应综合考虑切削深度、进给速度、切削速度等参数,以减小切削力、切削热对工件的影响,防止工件变形。

四、加工技巧1.轻切快走:在加工过程中,应采用轻切快走的加工方式,以减小切削力对工件的影响。

同时,合理使用切削液,降低切削温度。

2.分层加工:对于厚度较大的薄壁件,可以采用分层加工的方式,减小各层之间的切削力,避免工件变形。

3.工艺优化:在编制加工程序时,应充分考虑工件的形状、材料特性等因素,合理安排粗加工、半精加工和精加工的顺序,以提高加工效率和产品质量。

4.热处理:在加工过程中,可对工件进行适当的热处理,以提高其硬度和耐磨性。

同时,合理安排热处理工艺参数,防止工件变形或开裂。

5.检测与修正:在加工过程中,应定期检测工件的尺寸和形位公差,如有偏差应及时修正。

同时,对加工过程中出现的问题进行分析和总结,不断优化加工方法和工艺参数。

五、结论通过以上分析可知,数控车床在薄壁件加工中具有独特优势。

在实际生产中,应根据具体情况选择合适的材料、装夹方式、刀具和切削参数。

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺一、加工工艺概述在现代机械加工中,数控铣削技术已经成为广泛采用的一种加工方式。

它具有高效率、高精度、高稳定性等诸多优点,能够满足各种复杂形状的零部件加工需求。

而在制造业中,薄壁零件的加工一直以来都是一个难点,因为它们具有较大的面积,容易发生振动和变形,导致加工质量不佳。

因此,采用数控铣削加工工艺来生产薄壁零件,显得尤为重要。

1. 材料准备首先需要选定适合薄壁零件加工的材料,一般采用铝合金、镁合金、钛合金等轻合金材料。

然后进行材料的切割、碾磨等预处理工作,以优化后续加工的效果。

2. CAD制图在进行数控铣削加工前,需要对零件进行三维模型设计,以制定详尽的加工工艺方案。

在CAD制图过程中,需要考虑加工精度、表面质量、加工时间等多个因素,确定好各种加工参数,包括加工路径、刀柄发生器等。

3. CAM编程在CAD制图完成后,需要进行CAM编程,将机器指令和实际加工过程相一致。

在CAM编程中,需要考虑加工路径,以及刀柄进给速度、切削进给速度等参数,调整加工节奏和刀具尺寸等。

4. 加工调试CAM编程完成后,需要先进行一次加工调试。

调试过程中,需要不断调整加工参数,以充分发挥数控铣削加工的优势,并保证加工精度和表面光洁度达到标准要求。

5. 实际加工过程综合考虑加工条件、切削速度、进给速率等因素,进行实际的数控铣削加工。

在加工过程中,需要密切关注加工状态,调整加工参数,以保证产品精度和表面质量。

三、关键问题控制1.加工稳定性的控制薄壁零件加工面积较大,容易发生振动和变形,因此需要掌握加工稳定性的控制方法。

首先要选择合适的工件夹持方式,确保工件在加工过程中不产生任何变形。

同时,合理设计加工刀具尺寸和结构,采用具有高刚性的刀具,以提高加工精度和稳定性。

2.表面光洁度的控制薄壁零件加工表面质量要求较高,表面光洁度是一个很关键的指标。

因此,在加工过程中需要选用具有高刚度、高切削能力的刀具,并适当降低装夹紧密度,避免过度压缩,从而保证零件表面光滑克服表面氧化和氧化皮的形成。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析在机械制造加工过程中,薄壁零件是一类机械加工工艺的难点。

其具有结构精细、形状复杂、壁厚薄等特点,而在加工过程中容易出现变形、翘曲和表面质量不良等问题,加工难度较大。

针对这些问题,需要进行全面分析和合理处理。

1. 薄壁零件的特点薄壁零件是指对称薄壁结构且壁厚小于零件直径的零件。

其具有结构精细,形状复杂,尺寸精度高,要求壁厚均匀,一般采用双面加工。

同时,由于其壁厚薄,容易出现变形、翘曲的现象,对加工设备要求严格,加工难度大,因此在进行薄壁零件加工时需要特别注意。

对于薄壁零件的机械加工工艺,需要选用适当的切削工具和加工方法,合理处理变形和翘曲问题。

常用的加工工艺如下:(1) 选择合适的加工方法为防止薄壁零件在加工过程中变形,应尽可能采用高温加工、低速加工来避免过硬的工具或高速切削,避免形成热疲劳和振动等现象。

一般采用割线式铣削、缩径技术、调整切削参数和切削力、减小表面靠刀量等加工方法,以保证加工质量。

为提高薄壁零件的加工质量,需要选用合适的刀具和磨具,以保证加工精度和表面质量。

在薄壁零件的加工中,一般使用不锈钢刀片、高速钢刀片或金刚石刀片等,切削刃要锋利,刀片要光滑,避免刀身过硬或影响加工效率。

(3) 加强加工设备的稳定性为防止薄壁零件在加工过程中变形、翘曲、抖动等现象,需要加强加工设备的稳定性,调整加工速度、切削力和落刀深度等参数,以保证加工设备的稳定性和减小变形的发生。

(4) 控制加工过程的温度为提高薄壁零件的加工质量,需要控制加工过程的温度,以避免过高或过低的温度对零件的影响。

一般采用水冷或喷水冷却器来降低温度,以达到保证加工质量的目的。

综上所述,对于薄壁零件的机械加工工艺分析,需要选择适当的加工方法和切削工具,加强对加工设备的稳定性,控制加工过程的温度,以保证加工质量和提高效率。

同时,还需要加强对加工过程中的变形和翘曲等问题的预处理和特殊控制,以达到更好的加工效果。

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺薄壁零件是指壁厚相对较薄的零件,通常包括薄壁壳体、薄壁盒体、薄壁结构等。

薄壁零件的加工工艺相对来说比较复杂,需要采用特殊的工艺和设备来保障加工质量。

下面我将介绍一种典型的薄壁零件数控铣削加工工艺。

1. 材料选择:首先要选择适合加工薄壁零件的材料,常见的有铝合金、不锈钢、钛合金等。

材料的选择要考虑到零件的性能要求和加工难度,一般来说,薄壁零件要求材料的刚度和强度较高。

2. 工件夹紧与定位:薄壁零件在加工过程中容易变形,因此在夹紧与定位时要采用合适的方法,以避免变形。

可以使用夹具来加固工件,同时通过调整夹具的力度和位置来控制工件的变形。

3. 刀具选择:薄壁零件的加工需要使用特殊的刀具,一般选用硬质合金切削刃,其刀具尺寸和刃数要根据零件的形状和尺寸来选择。

要保证刀具的锋利度和良好的自清洁性,以减少切削力和表面的热变形。

4. 加工参数:薄壁零件的加工参数要细心调整,以保证加工过程中的切削质量和表面光洁度。

一般来说,要注意控制切削速度、进给量和切削宽度等参数,以避免过大的切削力和热变形。

5. 加工策略:在数控铣削加工中,采用合适的加工策略对薄壁零件进行加工。

一般来说,可以采用小范围高速切削技术、切中法加工、螺旋进给等方法,以减少切削力和振动,提高加工质量。

6. 加工表面处理:薄壁零件的表面处理要根据零件的要求,可以采用研磨、抛光、喷涂等方法,以提高零件的外观质量和表面性能。

通过采用以上典型的薄壁零件数控铣削加工工艺,可以有效地保证薄壁零件的加工质量和加工效率。

还可以采用先进的数控铣床和CAD/CAM软件,实现对薄壁零件的精确加工和自动化加工,提高加工的精度和一致性。

薄壁零件的加工工艺具有很大的挑战性,需要不断的探索和改进,以满足工业发展的需求。

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺
随着数控技术的不断发展和普及,传统的机械加工方式已逐渐被数控加工所取代。


有复杂形状的零件加工越来越受到重视,薄壁零件的加工也成为数控铣削加工中的一个重
要领域。

本文将介绍几种常见的典型薄壁零件数控铣削加工工艺。

一、空间曲面薄壁零件的加工
1. 先导铣削法:先导铣削法是指在进行数控铣削之前,通过手工或其他加工方式,
先将工件的主要外形进行加工,以便在数控铣削中能够准确定位和定位,确保加工精度。

这种方法通常适用于工件的结构单一,不涉及过多曲面的薄壁零件。

2. 内壁铣削法:对于空间曲面薄壁零件的加工,往往会涉及到一些内壁的加工。


壁铣削法是指利用特殊形状的刀具进行内壁加工,通常采用搅拌刀或球头刀进行加工。


种方法相比传统的刀具在内壁加工过程中更容易掌握,提高加工质量和效率。

3. 全固定装夹法:对于薄壁零件的加工来说,固定装夹是一个非常关键的环节,直
接关系到加工精度和质量。

全固定装夹法是指在加工过程中,将工件的切削力用于装夹上,使其实现稳定加工。

这种方法适用于一些形状复杂、精度要求高的薄壁零件。

典型薄壁零件的数控铣削加工工艺有很多种,根据不同的零件形状和要求,选择合适
的加工工艺能够提高加工效率和质量,满足工程的需求。

随着数控技术的不断发展和应用,相信在将来的发展中,还会出现更多的创新加工工艺,以适应各种需要。

数控机床加工薄壁零件的技巧与要点

数控机床加工薄壁零件的技巧与要点

数控机床加工薄壁零件的技巧与要点在现代制造业中,薄壁零件被广泛应用于各个领域,如航空航天、汽车、电子等。

而数控机床作为一种高精度、高效率的机械加工设备,被广泛应用于薄壁零件的加工过程中。

然而,由于薄壁零件具有材料薄、结构复杂等特点,因此在数控机床加工薄壁零件时,需要掌握一些技巧和注意要点,以确保加工质量和效率。

本文将着重介绍数控机床加工薄壁零件的技巧与要点。

首先,数控机床加工薄壁零件需要注意选择合适的切削参数。

由于薄壁零件的材料相对较薄,容易产生振动和变形,因此在切削过程中需要采用合适的切削参数。

一方面,要根据零件材料的硬度、切削刀具的材料和类型,合理选择切削速度、进给速度和切削深度,以确保切削过程的稳定性和切削效果的良好。

另一方面,要注意控制切削温度,避免因过高的切削温度而导致零件表面的变形和质量下降。

其次,数控机床加工薄壁零件需要采用合适的夹紧和支撑方式。

由于薄壁零件在加工过程中容易发生振动和变形,因此需要采用合适的夹紧和支撑方式来提高零件的稳定性。

一方面,可以采用专门设计的夹具来夹紧薄壁零件,以确保零件在加工过程中的稳定性和精度。

另一方面,可以采用支撑装置来支撑薄壁零件的中间部分,以减少零件的振动和变形。

同时,还可以采用合适的切削方向和进给方向,以减少加工过程中对薄壁零件的影响。

再次,数控机床加工薄壁零件需要注意刀具的选择和切削路径的确定。

由于薄壁零件的材料相对较薄,切削过程中容易发生变形和损坏,因此需要选择合适的刀具来进行加工。

一方面,要选择刚性好、切削效果好的刀具,以提高切削效率和加工质量。

另一方面,要合理确定切削路径,避免在切削过程中过多的刀具进给和回程,以减少对薄壁零件的影响。

同时,还可以采用刀具的铺排技术,将切削力分散到多个刀具上,以减少对单个刀具的负荷。

最后,数控机床加工薄壁零件需要注意加工过程的监测和调整。

由于薄壁零件的特殊性,加工过程中可能会发生变形、振动等问题,因此需要及时监测和调整加工过程。

航空薄壁零件的加工工艺

航空薄壁零件的加工工艺

航空薄壁零件的加工工艺航空薄壁零件的加工工艺是指将给定的材料通过一系列工艺处理和加工,使得最终成品符合航空行业中对零件质量、尺寸、精度要求,并适用于飞机等航空器件的装配和使用。

航空薄壁零件加工工艺通常包括以下几个步骤:1. 材料准备:航空薄壁零件通常使用高强度、轻质的材料,如铝合金、钛合金等。

在加工之前,首先需要对材料进行处理和准备,如材料的切割、热处理、表面清洁等。

材料的处理和准备对最终产品的质量和性能影响很大,因此必须严格控制每个步骤的工艺参数。

2. 零件加工:航空薄壁零件的加工通常采用数控机床进行,因为数控机床具有高精度、高效率和稳定性好等优点。

加工工艺通常包括车削、铣削、钻削、铆接、切割等。

在加工过程中,需根据零件的设计要求和工艺要求,合理选择刀具、工艺参数和加工路径,并严格控制加工过程中的加工质量和尺寸精度。

3. 表面处理:航空薄壁零件的表面处理对于提高零件的耐腐蚀性、耐磨性和表面光洁度非常重要。

常见的表面处理方法包括阳极氧化、电镀、喷涂、磷化等。

表面处理工艺需要根据零件材料的特性选择合适的方法,并控制处理参数和工艺流程,以保证表面处理效果和质量。

4. 检验与质量控制:航空薄壁零件的加工过程中需要进行严格的检验和质量控制,以确保产品的质量和性能满足航空行业的要求。

常见的检验方法有尺寸测量、外观检查、力学性能测试等。

质量控制包括对每个加工步骤和工艺参数进行监测和调整,以保证零件的尺寸精度、表面质量和机械性能。

在航空薄壁零件的加工过程中,还需要注意以下几个方面:1. 工艺规划和优化:在加工之前,需要对零件的结构和要求进行详细分析,从而制定合理的加工工艺流程和步骤,并对工艺进行持续优化,以提高加工效率和质量。

2. 设备与刀具选择:根据零件的特性和加工要求,需要选择合适的数控机床、刀具和夹具。

设备的选型和使用对加工质量和效率具有重要影响。

3. 清洁与防护:在加工过程中,需要保持加工设备和工作环境的清洁和整洁,防止杂质和污染物对零件质量的影响。

薄壁零件加工的定位与夹紧

薄壁零件加工的定位与夹紧

为满足飞机设计的减重要求,不少零件采用薄壁结构,图1所示是飞机前起落架减震支柱上的衬套, 该零件材料为30Cr Mn S iA ,其特点是薄壁,尺寸精度、位置精度要求很高。

以往按一般方法加工,产品合格率很低。

其加工路线是:(1) 粗车:车内孔Ø33 H8 ,长度36f 9 留磨量,端面A 与内孔一次车成,为以后工序作定位基准。

(2) 粗铣:以A 面为基准( 精密虎钳夹紧) , 铣D , E 两平面, 36h8 留磨量。

(3) 粗磨:磨D , E 两平面( 用精密虎钳装夹磨出任一面, 然后吸在平台上磨另一面) , 留出精磨余量, 保证D 与A 面的垂直度0 .05mm 。

(4) 钳制:以A 面定位( 用专用钻模) , 钻铰Ø18 H8 孔,留磨量,保证孔轴线与B 面的垂直度要求。

( 5) 铣削:铣外型面。

( 6) 热处理:等温淬火σb = 1175M P a ±100M P a 。

( 7) 磨削:以A 面定位, 精磨C 面, 保证尺寸。

( 8) 磨削: 粗磨D , E 两平面, 保证与A 面的垂直度误差0 .05mm 。

(9) 磨削:精磨内孔Ø33 H8 , Ø18 H8 。

按上述常规工艺路线加工的产品, 合格率仅为80 %左右。

经过反复加工、试验,断定装夹方法是造成产品报废的关键。

因为这个工艺路线以A 面作定位基准, C 面压紧。

其磨床专用夹具如图2 所示。

在定位—夹紧—磨削过程中, 由于零件刚度低, 装夹以两点接触, 夹紧时受力不均, 迫使具有薄壁多孔特征的零件变形。

经磨削后, 检验员在夹具上测量孔径Ø33 H8 , 千分表读数是合格的, 但当零件从夹具上取下后再测量孔径时, 圆度误差往往超差, 见图3 。

经工艺分析认为, 从夹具的定位夹紧形式看, 定位基准只选择了A 面, 报据工件的六点定位原理, 仅限制了3 个方向的自由度, 沿Z 轴和Y 轴的移动没有受到限制, 加工时由于磨削力图2 磨床专用夹具Fig. 2 S p ecial fixt u re o n grind ing machine图3 零件从夹具卸下前后的变化Fig. 3 Change befo re and af t er rem o ving p art f r o m fixt u re的作用点不断改变而引起工件振动, 而且夹紧时支承面是2 点,工件夹紧不稳定, 所以本工序最终的加工要求难以保证。

薄壁件加工注意事项

薄壁件加工注意事项

薄壁件加工注意事项薄壁件是指厚度相对较薄的零件,通常用于汽车、电子产品、家电等行业。

薄壁件加工是一项技术复杂、要求高度精密的加工过程。

为了确保薄壁件的加工质量和使用寿命,下面将介绍一些薄壁件加工的注意事项。

薄壁件加工过程中需要注意材料的选择。

薄壁件通常使用的材料有铝合金、不锈钢、塑料等,这些材料的选择应根据薄壁件的具体用途和要求来确定。

同时,材料的质量要保证,避免出现杂质和缺陷,影响薄壁件的加工和使用。

薄壁件加工中需要注意刀具的选择和使用。

由于薄壁件的厚度相对较薄,切削过程中容易产生振动和变形,因此选用合适的刀具至关重要。

刀具的硬度、刃角、刃尖半径等参数应根据薄壁件材料和加工要求来选择,以确保切削过程的稳定性和加工质量。

第三,薄壁件加工中需要注意加工工艺的控制。

薄壁件的加工过程中,尺寸和形状的精度要求较高,因此需要严格控制加工工艺。

合理的加工顺序、合适的加工速度和进给量、适当的切削液等都会对加工效果产生影响。

同时,要注意加工过程中的温度控制,避免因过高的温度而导致薄壁件的变形和质量问题。

第四,薄壁件加工中需要注意加工设备的选择和调试。

薄壁件加工通常需要使用高精度的加工设备,如数控机床、激光切割机等。

在使用这些设备之前,需要对其进行调试和校准,以确保其精度和稳定性。

另外,要注意加工设备的刚性和稳定性,避免因设备本身的问题而影响加工质量。

薄壁件加工中还需要注意人员的技术水平和操作规范。

薄壁件加工是一项高难度的工作,需要操作人员具备较高的技术水平和经验。

操作人员应熟悉加工工艺和设备的使用方法,严格按照操作规范进行操作,避免因操作不当而引起的问题。

薄壁件加工是一项技术复杂、要求高度精密的加工过程。

在薄壁件加工中,需要注意材料的选择、刀具的选择和使用、加工工艺的控制、加工设备的选择和调试以及人员的技术水平和操作规范。

只有在这些方面都做好的情况下,才能保证薄壁件的加工质量和使用寿命。

精密薄壁零件的加工

精密薄壁零件的加工

精密薄壁零件的加工作者:封金徽娄嘉俊连碧华来源:《科技资讯》 2014年第20期封金徽娄嘉俊连碧华(南京机电职业技术学院江苏南京 211135)摘要:随着加工技术的发展,很多复杂、工艺性很强的零件都被一一的制造出来。

薄壁零件在这些零件中具有很强的典型性,本文的主要内容是针对精密薄壁零件的加工展开讨论,分析了加工过程中对薄壁零件的影响因素,同时还给出了如何解决这些问题的方法。

使加工者能更好的利用这些经验和方法加工出更加精密的薄壁零件。

关键词:精密零件薄壁零件影响因素加工方法中图分类号:TG506 文献标识码:A 文章编号:1672-3791(2014)07(b)-0084-01由于电子信息技术和机械加工技术的发展,机械制造业的迅猛发展,目前数控机床能加工出各种高精密零件的零件,比如:细长轴、曲轴、丝杠、薄壁、复杂腔体等零件。

而其中的薄壁类零件的加工具有典型性,由于它的特点,需要加工者精通加工工艺知识,比如:切削三要素、切削力、机床刚性、切削热、夹具、刀具等多种因素。

本文就以精密薄壁零件在加工中的难点展开论述。

1 薄壁零件加工质量受多种因素影响薄壁零件在加工时最大的难点就是加工变形,在加工过程种有很多因素导致这个问题的出现,下面做简单分析。

(1)切削力。

在零件加工过程中,一般采用的90°外圆车刀在粗加工时由于加工余量的问题会引起较大的切削力、径向和轴向切削力,这三种力可使工件产生圆度和同轴度方面的误差。

另外,零件加工中会出现加工残余应力,这是由于刀具在零件加工时发生的挤压形成的,同时如果加工过程中排屑不通畅,也会造成前刀面和后面跟工件摩擦,切削力、轴向力、径向力的合力以及工件残余应力很容易造成零件的变形。

(2)切削热。

切削过程中的变形、摩擦所消耗的功转变为热能。

切削热传入刀具、切屑、工件和周围介质中,使他们温度升高,引起工件和刀具的热变形。

切削热通过对切削温度的影响来影响切削过程,切削温度的高低取决于产生热量的多少及热传散的快慢,切削温度对工件的热变形影响很大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精密薄壁零件的加工
摘要:随着加工技术的发展,很多复杂、工艺性很强的零件都被一一的制造出来。

薄壁零件在这些零件中具有很强的典型性,本文的主要内容是针对精密薄壁零件的加工展开讨论,分析了加工过程中对薄壁零件的影响因素,同时还给出了如何解决这些问题的方法。

使加工者能更好的利用这些经验和方法加工出更加精密的薄壁零件。

关键词:精密零件薄壁零件影响因素加工方法
由于电子信息技术和机械加工技术的发展,机械制造业的迅猛发展,目前数控机床能加工出各种高精密零件的零件,比如:细长轴、曲轴、丝杠、薄壁、复杂腔体等零件。

而其中的薄壁类零件的加工具有典型性,由于它的特点,需要加工者精通加工工艺知识,比如:切削三要素、切削力、机床刚性、切削热、夹具、刀具等多种因素。

本文就以精密薄壁零件在加工中的难点展开论述。

1 薄壁零件加工质量受多种因素影响
薄壁零件在加工时最大的难点就是加工变形,在加工过程种有很多因素导致这个问题的出现,下面做简单分析。

(1)切削力。

在零件加工过程中,一般采用的90°外圆车刀在粗加工时由于加工余量的问题会引起较大的切削力、径向和轴向切削力,这三种力可使工件产生圆度和同轴度方面的误差。

另外,零件加工中
会出现加工残余应力,这是由于刀具在零件加工时发生的挤压形成的,同时如果加工过程中排屑不通畅,也会造成前刀面和后面跟工件摩擦,切削力、轴向力、径向力的合力以及工件残余应力很容易造成零件的变形。

(2)切削热。

切削过程中的变形、摩擦所消耗的功转变为热能。

切削热传入刀具、切屑、工件和周围介质中,使他们温度升高,引起工件和刀具的热变形。

切削热通过对切削温度的影响来影响切削过程,切削温度的高低取决于产生热量的多少及热传散的快慢,切削温度对工件的热变形影响很大。

(3)机床性能、切削振动。

机床的刚度、机床夹具会直接影响薄壁零件的受力情况。

工件与刀具之间也会由于机床刚度的原因发生强烈的相对振动,这种振动在薄壁零件加工时不仅影响表面粗糙度的增大或产生明显的波纹。

严重恶化了表面质量和加工零件的形变。

为了避免产生振动,常常不得不降低切削用量,致使刀具和机床的性能得不到充分发挥,限制了生产率的提高。

(4)刀具。

刀具几何角度对工件变形有显著的影响,刀具的前角、后角、主偏角的大小直接影响加工力的大小。

另外刀具材料的不同在加工过程中产生的切削力的大小也不相同,薄壁零件加工中,刀具材料选择较为关键。

(5)零件材料。

零件材料分为金属材料和非金属材料,脆性材料和
塑性材料。

不同的材料所适用的切削参数、切削刀具参数都是不一样的。

不同的零件材料对薄壁零件加工参数的选择也不同。

2 减小以上影响因素的措施
在薄壁零件加工过程中,出现了如此多的影响因素,加工者如何去改变这些因素对薄壁零件加工的影响呢?可以通过以下方式来解决这些问题。

(1)高速切削时热量大部分被切屑带走,只有少量的热量传入到工件。

薄壁零件加工可以选用高速机床进行,高速机床高速运转对零件的变形影响很小。

在切削过程中,还可以通过判断切屑的颜色来判断热量的大小。

可以通过选择合理的切削参数、刀具角度、刀具寿命指标来控制温度。

机床上充分而合理的冷却液选择也很重要,加工过程中,大量的热量由冷却液带走,冷却充分,热量带走充分,切削热对薄壁零件的加工变形就会减小。

(2)薄壁零件加工时外圆刀具的前角要大,这样才能减少切削变形,加工硬化程度及深度,同时可抑制或消除积屑瘤,并使切削分力显著下降,有利于消除振动,从而减小表面变形。

薄壁零件加工时,刀具的刃口要锋利,除了采用较大前角外,还要有较大的主偏角,此时注意角度的合理性,不然会因为刀头体积过小而影响刀具的强度和刚度,使热量无法及时散出,影响工件产生变形。

当然,刀具角度的选择同时要遵循工件的材料,机床刚性,自身材料的特点。

(3)由于薄壁零件的加工难度随着壁厚的减少而增大,为了避免振动引起的加工变形,我们必须增加工艺系统的抗振性,增加工艺系统的刚度,对于减小振动有很大的作用。

比如可以利用薄壁零件的未加工表面,这部分由于存在较大的余量,可以形成很大的工艺支撑,例如:在加工薄壁类轴类零件时,可以将零件装夹部分毛坯增长,加工时用车刀从外部向内部递进进刀,从而降低径向力对薄壁的压力,由中间向周边直至薄壁。

如果孔的深度大,此时要先用小杆镗刀先将孔镗大,然后更换大刀杆的刀具进行镗切,这样可以大大降低切削过程中的变形,更换大刀杆可以有效地降低加工过程中出现的振动现象。

(4)根据薄壁零件加工的影响因素,在装夹工件时要格外注意,加工前的工艺分析应该更多的考虑最少装夹次数为先,加工时一定要选择最佳装夹点,在夹紧力的给力方面要恰到好处,既要能将工件牢固的加紧,又能不使工件产生变形。

所以加工时最好能借助量具辅助装夹。

(5)通过设计辅助工艺工装来加强薄壁零件的强度,对于薄壁套筒零件来说,可以根据图纸要求先加工一根长轴,长轴的外径尺寸要求最好能实现跟薄壁零件的间隙配合,薄壁零件在工艺设计时,选择较大余量的毛坯,先将孔径做好,然后将预先做好的心轴插入其中,此时的薄壁已经变成了实体零件,然后在加工薄壁零件的外圆部分,加工结束之后再将工艺心轴拔出。

通过这样的设计,就无需考虑机床夹具夹紧力过大而使得薄壁零件发生变形,但是,这一方法的局限性就是以牺牲材料为代价。

当然,薄壁套类零件的加工不仅仅可以通过加工辅助心轴
的方式,还可以通过填充的方式,比如:石蜡等,等零件加工结束后,再将石蜡融化去除,同时,石蜡还能重复利用,经济环保。

(6)可以通过分层次切削的方式来减少薄壁零件在加工中的变形。

同样以套类薄壁零件为例,在加工过程中可以通过轮流加工的方式来进行加工,即在内腔去除掉一定的余量后,在外圆部分去除同样厚度的余量,这种加工方式的好处就是可以最大减小零件的残余应力,零件残余应力能得到彻底释放,随之零件变形变小,零件质量提高。

经过以上分析,使我们了解了薄壁零件在加工中会出现的问题,分析了影响零件最大的因素就是力的存在,全文通过比较多的文字提出了解决薄壁零件加工中出现的问题,当然,薄壁零件的形状丰富,不可能通过某一种具体的方法能解决这些问题,还需要具体问题具体分析,这样才能使薄壁零件的加工更加“精密”。

参考文献
[1] 文少波.薄壁零件加工的工艺措施[J].机电一体化,2013(7).
[2] 余得华.薄壁零件受力计算与分析[J].机械加工,2012(8).
[3] 贺曙新.数控加工工艺[M].化学工业出版社,2007,3.
[4] 张思弟.精密薄壁零件加工研究[J].数字技术与应用,2010(10).。

相关文档
最新文档