多级放大电路

合集下载

多级放大电路

多级放大电路
第3章 多级放大电路
3.1 多级放大电路
3.1.1 多级放大电路的组成
1. 多级放大电路的组成 将两级或两级以上的单管放大电路连接起来就组成了
多级放大电路,其组成可用图3.1.1所示的框图来表示。
信号源

输入级
电压 放大级
电压 放大级
推动级
负 载 功率 输出级
图3.1.1 多级放大电路的组成方框图
3.1.1 多级放大电路的组成
3.3.2 乙类互补对称功率放大电路
3.乙类功放的交越失真
交越失真产生+U的CC 原因:
在线于性T1 晶,体ui <i管cu1 T特时性晶存体在管非截
止。
+
iL
因会此出T在现2 正一、些ic2负非半线R周性L 交失u-o替真过,零这处种
失真称为交越失真。如图所示。 —UCC
温度漂移是直接耦合放大器存在的最主要问题。一般来说,直 接耦合放大器的级数愈多,放大倍数愈高,则零点漂移问题愈严重。 而控制第一级的漂移问题是最为重要的。
3.2.1 基本差分放大电路
1. 差分放大电路的结构
+ UCC
RC
RB T1 + ui1 -
+ uo -
+
+
u01
uo2


RC
T2 RB +
ui2
- UEE

图3.2.1 基本差分放大电路
该电路采用两 个相同参数的 BJT,其外围电 路完全相同,即 电路两边完全对 称。
ui ui1 ui2
uo uo1 uo2
3.3 功率放大电路
3.3.1 功率放大器的特点和分类

什么是多级放大电路如何设计一个多级放大器

什么是多级放大电路如何设计一个多级放大器

什么是多级放大电路如何设计一个多级放大器多级放大电路是指由多个放大器级联组成的电路,用于提高输入信号的幅度,并有较大增益的电子设备。

在设计一个多级放大器之前,我们需要了解多级放大器的基本原理以及设计要点。

一、多级放大器的原理多级放大器是通过将多个放大器级联连接起来,以便连续放大信号的电压或功率。

它由输入级、中级和输出级组成。

1. 输入级:输入级负责接收输入信号并将其转化为电压或电流信号。

它通常包含一个低噪声放大器,其作用是增加输入信号的幅度,并将它传递给中级放大器。

2. 中级:中级放大器是多级放大器的核心部分,它的作用是增加电压或功率的增益。

中级通常包含多个级别的放大器,其中每个级别都提供一定的增益。

3. 输出级:输出级负责将信号放大到所需的幅度,并驱动负载电阻或其他负载。

输出级通常包含高功率放大器,以确保输出信号具有足够的驱动能力。

二、多级放大器的设计要点在设计一个多级放大器时,需要考虑以下几个要点:1. 增益和带宽:多级放大器的设计目标之一是在实现所需增益的同时保持足够的带宽。

增益与带宽的折衷是设计的关键考虑因素之一。

2. 输入和输出阻抗匹配:为了最大限度地传递信号并减少反射,需要确保输入和输出阻抗与信号源和负载的阻抗相匹配。

3. 稳定性:多级放大器必须具有良好的稳定性,以确保不会出现自激振荡或非线性失真。

这可以通过使用稳定的放大器设计和适当的负反馈技术来实现。

4. 噪声:多级放大器的设计应尽可能减少噪声的引入,并提供清晰的信号放大。

5. 功率供应:多级放大器需要合适的功率供应以保证其正常工作。

供应电压和电流必须满足放大器的工作要求,并且应提供稳定和纹波较小的电源。

三、一个多级放大器的示例设计以下是一个四级放大器的示例设计,以演示多级放大器的设计过程:1. 输入级:- 使用低噪声MOSFET放大器作为输入级,以提供高增益和低噪声。

- 输入级的增益设置为10倍,输入阻抗为50欧姆。

2. 中级:- 选择两个通用增益放大器级别级联,每个级别的增益为5倍。

多级放大电路

多级放大电路

若求Aus:
Aus
=
ri1 Rs + ri1
Au
ri1 =rbe1 // Rb1 // Rb2 =2.88//51//20=2.4k
Aus
=
ri1 Rs + ri1
Au
2.4 9891 1 2.4
6982
11
26 I E2
200 101 26 1.1
2.6 kΩ
Au1
=
(Rc1 //
rbe1
ri2 )
100 (5.1 // 2.6) 2.88
59.8
式中 ri2 rbe2
10
Au2
=
(Rc2 //
rbe2
RL )
100 4.3 2.6
165.4
Au Au1Au2 59.8(165.4) 9891
放大电路中第一级对整个放大电路的零漂影响 最大,且级数越多,零漂越严重。
抑制零漂的措施: 1)引入直流负反馈稳定工作点; 2)利用热敏元件补偿放大电路的零漂; 3)采用差分放大结构,使输出端的零漂相互抵消。5
2.7.2 多级放大电路的分析
1、多级放大电路的增益
Au
uo ui
uo1 ui
uo2 uo
共发射极放大电路 (NPN管)
共发射极放大电
路(PNP管)
7
(1)求静态工作点
UB1
Rb2 Rb1 Rb2
VCC
20 12 3.38V
51 20
IBQ
1
=
UB (1 +
UBE
) Re1
e2
e1
c2
=
3.38 0.7 (1 + 100) 2.7

放大电路多级设计

放大电路多级设计

放大电路多级设计I. 引言放大电路是电子设备中常见的一种电路结构,用于将信号放大以增强其幅度或功率。

在某些应用中,单级放大电路可能无法满足要求,因此需要通过多级放大电路进行设计。

本文将探讨放大电路多级设计的原理和方法,以及其在实际应用中的一些考虑因素。

II. 基本放大电路在开始讨论多级设计之前,我们先回顾一下基本的放大电路。

放大电路通常由放大器、输入电路和输出电路组成。

其中放大器负责将输入信号放大,输入电路负责对输入信号进行预处理,输出电路负责将放大后的信号传递给外部载荷。

III. 多级放大电路设计原理多级放大电路通过将多个放大器级联来实现更高的增益。

每个放大器级别都增加了总体放大电路的增益,并且可以实现更高的带宽。

多级放大电路的设计要考虑以下几个因素:1. 总增益要求:根据具体应用的需求,确定所需的总增益。

随着级数的增加,总增益也会相应增加。

2. 频率响应:多级放大电路的频率响应应该与应用场景的要求相匹配。

因此,在设计过程中要考虑各级放大器的带宽以及相位延迟等参数。

3. 稳定性:在级联放大器时,必须考虑反馈和补偿电路的设计,以确保整个放大电路的稳定性。

IV. 多级放大电路设计方法多级放大电路的设计可以通过以下步骤进行:1. 确定总增益要求:根据应用需求确定所需的总增益。

2. 选择放大器类型:选择适合应用需求的放大器类型,如共射放大器、共基放大器或共集放大器等。

3. 确定各级增益:根据总增益要求和放大器性能参数,计算每个级别的增益。

4. 考虑稳定性:设计反馈和补偿电路以确保整个放大电路的稳定性。

5. 考虑频率响应:根据应用的频率要求,选择适当的带宽和延迟参数。

V. 实际应用考虑因素在实际应用中,多级放大电路的设计还需要考虑以下几个因素:1. 电源供电:选择合适的电源供电电压和容量,以确保放大电路的正常工作。

2. 噪声:多级放大电路的设计要考虑电路内部和外部噪声的影响,并采取相应的措施进行抑制。

3. 温度稳定性:温度对电子元件性能有较大的影响,因此设计中需要考虑温度对放大电路的稳定性的影响,并采取相应的温度补偿措施。

模电3-多级放大电路

模电3-多级放大电路

)U BE5
动态时:ub1 ub3 ui
§3.5 直接耦合多级放大电路读图
一、放大电路的读图方法 二、例题
一、放大电路的读图方法
1. 化整为零:按信号流通顺序将N级放大电路分
为N个基本放大电路。
2. 识别电路:分析每级电路属于哪种基本电路,
有何特点。
3. 统观总体:分析整个电路的性能特点。 4. 定量估算:必要时需估算主要动态参数。
解决方法:采用电流源取代Re!
具有恒流源差分放大电路的组成
等效电阻 为无穷大
近似为 恒流
I2
IB3,IE3
R2 R1 R2
VEE UBEQ R3
六、差分放大电路的改进
1. 加调零电位器 RW
1) RW取值应大些?还是小些? 2) RW对动态参数的影响? 3) 若RW滑动端在中点,写出Ad、 Ri的表达式。
输入差模信号的同时总是伴随着共模信号输入:
uId uI,uIc uI / 2
2. 单端输入双端输出
问题讨论: (1)UOQ产生的原因? (2)如何减小共模输出 电压?
静态时的值
测试:
uO
Ad
uI
Ac
uI 2
U OQ
差模输出 共模输出
3. 四种接法的比较:电路参数理想对称条件下
输入方式: Ri均为2(Rb+rbe);双端输入时无共模信号输入, 单端输入时有共模信号输入。
共模信号:大小相等,极性相同。
差模信号:大小相等,极性相反.
典型电路
在理想对称的情况下: 1. 克服零点漂移; 2. 零输入零输出; 3. 抑制共模信号; 4. 放大差模信号。
I BQ1 I BQ2 I BQ ICQ1 ICQ2 ICQ I EQ1 I EQ2 I EQ U CQ1 U CQ2 U CQ uO U CQ1 U CQ2 0

第三章 多级放大电路

第三章 多级放大电路

当 f >> fH 时,
f = 100 f H | AU |≈ 0.01
| AU |=
1 1 + ( f / fH )
2
≈ fH / f
斜率为 -20dB/十倍频程 的直线 十倍频程
f = f H | AU |=
1 ≈ 0.707 20 lg | AU |= 3dB 2
20 lg | AU |= 20 lg( f H / f )
)
2
0 -20 -40
f
当 f << f H 时,
| AU |=
1 1 + ( f / fH )
2
≈1
20 lg | AU |= 20 lg 1 ≈ 0 dB
f = 10 f H
| AU |≈ 0 .1
0分贝水平线 分贝水平线
20 lg | AU |= 20 dB 20 lg | AU |= 40 dB
+
- 20k
Re1
2.7k Ce1
Rc2
4.3k u o
-
+
I B1 = I C1 / β = 9 .9 uA
UC1 = UB2 = Vcc IC1Rc1 = 12 0.99× 5.1 = 7.2 V
UCE1 ≈ Vcc IC1(Rc1 + Re1) = 12 0.99× 7.8 = 4.6 V
R e2 T2
+ V CC + uo
- V EE
3. 变压器耦合
级与级之间利用变压器传递交流信号。 (1)优点:匹配好、耗能少、Q点独立、可阻抗转换
' β RL Au = rbe
(2)缺点:频带窄、体积大、笨重、非线性失真大、只传 递交流、无法集 成

三极管及放大电路—多级放大电路(电子技术课件)

三极管及放大电路—多级放大电路(电子技术课件)
ሶ = ෍ 20

20 ሶ = 20 1
=1
3.单级放大器频率特性
下限频率fL
上限频率fH
通频带BW = fH - fL≈fH
4.两级相同放大器的幅频率特性
绘制多级放大电路的
频率特性曲线时,只要将
各级对数频率特性在同一
横坐标上频率所对应的电
压增益相加,即为幅频特
性。
5.两级相同放大器的相频率特性
绘制多级放大电路的相
频特性曲线时,只要将各级
对数频率特性在同一横坐标
上频率所对应的相位差相加
,即为相频特性。
多级放大电路组成及耦合方式
2.6.1 多级放大电路组成及耦合方式
一、多级放大电路的组成
多级放大电路的组成框图如图所示,第一级的输入为电路总的输入,前级输出
工作点的相互影响。
直接耦合的两级共射放大电路
常用的解决电路形式
(a)
(b)
(a)采用电阻Re2提高VT2发射极电位,从而提高VT1集电极电位,避免
VT1进入饱和区。
(b)采用电阻R、稳压管VZ构成稳压电路,提高VT2发射极电位,从而
提高VT1集电极电位,避免VT1进入饱和区。
常用的解决电路形式
(c)
=
(−1)
总电压放大倍数为:
1 2

AU =
=

∙⋯
= AU1 ∙ AU2 ∙ ⋯ ∙ AUN
1
1 1
(−1)
二、多级放大电路的级间耦合方式
多级放大器级间耦合方式一般有:阻容耦合,变压器耦合,直接耦合三种。
1.阻容耦合
前级输出信号通过电容、下
级输入电阻,传递到下一级的连

模拟电路课件第三章多级放大电路

模拟电路课件第三章多级放大电路

直接耦合多级放大电路的调试与优化
01
调整偏置电路,减小静态工作点 漂移。
02
引入负反馈,改善电路的稳定性 。
阻容耦合多级放大电路的调试与优化
阻容耦合多级放大电路的调试 检查各级放大器的输入和输出阻抗,确保匹配。
调整耦合电容和旁路电容,避免信号失真。
阻容耦合多级放大电路的调试与优化
检查反馈电路,避免自激振荡。 阻容耦合多级放大电路的优化
分析时需要计算各级的电压增益和总 电压增益,并考虑信号的相位和频率 响应。
变压器耦合多级放大电路的分析方法
变压器耦合多级放大电路中,各级通过变压器进行耦合,可以实现阻抗变换和电平 移动。
分析时需要计算各级的电压增益和总电压增益,并考虑变压器的匝数比和信号的相 位和频率响应。
变压器耦合多级放大电路的优点是具有阻抗变换和电平移动功能,缺点是结构复杂、 体积较大。
04
多级放大电路的设计与实现
直接耦合多级放大电路的设计与实现
设计要点
选择合适的晶体管、电阻和电容元件,以实现信号的放大和 传输。同时,需要考虑零点漂移和噪声干扰等问题,采取相 应的措施进行抑制。
实现难点
直接耦合多级放大电路的零点漂移问题较为突出,需要采取 有效的措施进行抑制,以保证电路的稳定性和可靠性。
模拟电路课件第三章多级 放大电路
• 多级放大电路概述 • 多级放大电路的工作原理 • 多级放大电路的分析方法 • 多级放大电路的设计与实现 • 多级放大电路的调试与优化
01
多级放大电路概述
多级放大电路的定义与组成
定义
多级放大电路是由两个或两个以 上的单级放大电路按照一定的拓 扑结构组合而成的电路系统。
益和带宽。
直接耦合多级放大电路的优点是 结构简单、易于集成,缺点是级 间耦合较复杂,容易产生零点漂

多级放大电路

多级放大电路

四.多级放大电路在多数情况下,电子设备处理的交流信中与是很微弱的,由于单级放大电路放大能力有限,往往不能将微弱信号放大到要求的幅度,所以电子设备中常常将多个放大电路连接起来组成多级放大电路。

根据各个放大电路和之间的耦合方式(连接和传递信号方式)不同,多级放大电路可分为直接耦合放大电路、阻容耦合放大电路和变压器耦合放大电路。

1.阻容耦合放大电路:阻容耦合放大电路是指各放大电路之间用电容连接起来的多级放大电路。

阻容耦合放大电路如图A所示,交流信号经耦合电容C1送到第一级放大电路的三极管VT1基极,放大后从集电极输出,再经耦合电容C2送到第二级放大电路的VT2基极,放大后从集电极输出通过耦合电容C3送往后级电路。

阻容耦合的特点是:①由于耦合电容的隔直作用,各放大电路的直流工作点互不影响,所以设计各放大电路直流工作点比较容易;②因为各电路和独立,采用元器件数量比较多;③由于电容对交流信号有一定的阻碍,交流信号会在耦合电容上有一定的损耗,频率越低,这种损耗越大,不过这种损耗可以通过采有大容量的耦合电容来减小。

2.直接耦合放大电路:直接耦合放大电路是指各放大电路之间直接用导线连接起来的多级放大电路。

直接耦合放大电路如图所示,交流信号送到第一级放大电路的三极管VT1基极,放大后从集电极输出,直接送到第二级放大电路的VT2基极,放大后从集电极输出去后级电路。

直接耦合的特点是:①这种电路采用元件较少;②因为电路之间直接连接,所以各放大电路直流工作点会互相影响,设计这种电路要考虑到前级电路对后级电路的影响,有一定的难度;③由于各电路之间是直接连接,对交流信号没有损耗;这种耦合电路还可以放大直流信号,故又称为直流放大器。

3.变压器耦合放大电路:变压器耦合放大电路是指各放大电路之间用变压器连接起来的多级放大电路。

变压器耦合放大电路如图C所示,交流信号送到第一级放大电路的三极管VT1基极,放大后从集电极输出送到变压器T1的初级线圈,再感应到次级线圈,然后送到第二级放大电路VT2的基极,放大后从集电极输出通过变压器T2送往后级电路。

多级放大电路

多级放大电路
Au Au1 Au2 Aun
多级放大电路的输入电阻ri等于从第一级放大电路的输入 端所看到的等效电阻,也就是第一级的输入电阻,即
ri ri1
多级放大器的输出电阻ro等于从最后一级放大电路的负载 两端(不含负载)所看到的等效电阻,也就是最后一级的输
出电阻,即
ro ron

级放
放大
大倍
电 路
数 的 分




1.4
第9页
当多级放大电路级数较多时,电压放大倍数的计算和表示都很不方便。 在实际工程中,电压放大倍数常用分贝(dB)表示,称为增益,即

Au
20 lg
Uo

(dB)
Ui
用增益表示多级放大电路的总电压放大倍数时,总增益应为各级增益之 和,即
Au (dB) Au1(dB) Au2 (dB) Aun (dB)
图10-14 直接耦合两级放大电路
第5页
多多
级级
放放
大大
电 路
电 路 的




1.2
1 直接耦合
但直接耦合电路中存在以下两个问题: ① 级与级之间的直接相连导致静态工作点之间相互影响,不利于电路的 设计、调试和维修。抑制措施主要有两个:抬高后级发射极电位、用PNP和 NPN管配合实现电平移动。 ② 直接耦合电路中存在零点漂移现象。零点漂移现象是指输入电压为零 时,输出电压偏离零值变化的现象。产生零点漂移现象的主要原因是晶体管 的参数随温度的变化而变化,从而引起各级静态工作点发生变动,因此,零 点漂移又称为温度漂移。直接耦合电路中,第一级的漂移对输出的影响最大, 所以,零点漂移的抑制着重在第一级。
采用分贝表示法的好处是它能从分贝的数值上直观表示出放大电路对信 号增益的增加或衰减,给计算和使用带来很多方便。

《多级放大电路》课件

《多级放大电路》课件
计算方法
电压放大倍数等于输出电压与输入电压的比值,即A=Uo/Ui。
03
影响因素
影响电压放大倍数的因素包括晶体管的参数、电路元件的参数以及电路
的连接方式等。
输入输出电阻
输入电阻
输入电阻是指多级放大电路对信号源所呈现的电阻,反映 了电路对信号源的负载能力。输入电阻越大,信号源的有 效功率越大,电路的性能越好。
稳定性问题
总结词
稳定性问题是指多级放大电路在工作过程中,由于各种原因导致电路性能的不稳定,出现波形失真、增益下降等 现象。
详细描述
稳定性问题可能是由于电路中元器件的参数变化、温度和湿度等环境因素的影响、电源电压的波动等原因引起的。 解决稳定性问题需要采取一系列措施,如改善电路的散热条件、减小环境因素的影响、稳定电源电压等,以保证 多级放大电路的稳定可靠运行。
音频放大器性能指标
音频放大器的性能指标包括频率响应、失真度、信噪比和输出功率 等。
功率放大器
功率放大器概述
功率放大器是一种将微弱的信号放大到足够大的功率,以驱动负 载的电子设备。
功率放大器电路组成
功率放大器通常由输入级、中间级和输出级等部分组成。
功率放大器性能指标
功率放大器的性能指标包括功率增益、效率、失真度和带宽等。
稳定性
稳定性
稳定性是指多级放大电路在各种工作条件下保持性能稳定的 能力。稳定性是多级放大电路的重要性能指标之一。
影响因素
影响稳定性的因素包括温度、电源电压的变化、晶体管的参 数变化以及电路元件的老化等。为了提高稳定性,可以采用 负反馈、温度补偿、选用性能稳定的晶体管等措施。
03
多级放大电路的设计与实现
带宽原则
根据信号频率范围,选 择合适的元件和电路拓 扑,保证电路具有足够

多级放大电路概述

多级放大电路概述

多级放大电路概述多级放大电路是由多个放大器级联组成的电路,用来增强输入信号的幅度。

每个放大器级别在前一级输出信号的基础上继续放大,从而实现整个电路的放大功能。

多级放大电路常用于音频助听器、放大器、无线电接收器等各种电子设备中。

输入级是多级放大电路的第一级,通常采用低噪声、高增益的放大器。

其主要功能是将输入信号增大到中间级能够处理的幅度,并对输入信号进行初步处理,如去除直流偏置、滤波等。

中间级是多级放大电路的中间环节,其主要任务是逐级放大信号幅度,并对信号频率进行调整。

中间级的放大器通常具有较高的功率放大能力和较宽的频率响应范围,以确保信号能够稳定、准确地传递到输出级。

输出级是多级放大电路的最后一级,其主要功能是放大信号的幅度,并驱动输出负载。

输出级的放大器通常具有较大的输出功率和较强的驱动能力,能够将信号送达到最终需要的位置。

多级放大电路的性能受到多个因素的影响。

其中,放大器的增益、带宽和失真是影响多级放大电路性能的主要因素。

增益表示电路对输入信号的放大倍数,带宽表示电路能够传递的频率范围,失真表示信号在放大过程中产生的形变。

通过优化放大器的设计和选择合适的放大器参数,可以提高多级放大电路的性能。

此外,多级放大电路还需要考虑功耗、稳定性、噪声等因素。

功耗是指电路在工作过程中消耗的电能,需要在满足放大要求的前提下尽量减小功耗。

稳定性是指电路对输入信号变化的响应能力,需要确保电路能够稳定地工作在设计要求的范围内。

噪声是指电路输出信号中除了输入信号以外的无用信号,需要通过合理的设计和选择低噪声的放大器来降低噪声水平。

总之,多级放大电路是一种常用的电子电路结构,用于增强输入信号的幅度。

通过合理的设计和优化,可以实现高增益、宽带宽和低失真的多级放大电路,满足各种电子设备的放大需求。

多级放大电路及集成运算放大器

多级放大电路及集成运算放大器
上题用分贝可表示为 输入电阻、输出电阻
1.共集-共射极组合电路
如图3.7所示,电路增益主要由共射极电路提供,共集电极电路主要用来提高输入电阻。 输入电阻
3.1.3组合放大电路
根据前面分析:三种基本组态电路的性能各有特点,根据三种组态电路不同的特点,将其中任意两种组态相组合,可以构成不同的放大电路,使其更适合实际电路的需要。下面介绍几种常见的组合放大电路。
变压器耦合 变压器耦合是利用变压器将前级的输出端与后级的输入端连接起来,这种耦合方式称为变压器耦合,如图3.3所示。将V1的输出信号经过变压器T1送到V2的基极和发射极之间。V2的输出信号经T2耦合到负载RL上。Rb11、Rb12和Rb21、Rb22分别为V1管和V2管的偏置电阻,Cb2是Rb21和Rb22的旁路电容,用于防止信号被偏置电阻所衰减。
高频区放大倍数的下降原因是由于三极管结电容和杂散电容的容抗随频率增加而减小所引起。结电容通常为几十到几百皮法,杂散电容也不大,因而频率不高时可视为开路。在高频时输入的电流被分流,使得IC减小,输出电压降低,导致高频区电压增益下降,如图3.10所示。
图3.10 高频通路
通频带 把放大倍数Aum下降到 时对应的频率称为下限频率fL和上限频率fH,夹在上限频率和下限频率之间的频率范围称为通频带fBW。
幅频特性 共射极放大电路的幅频特性如图3.9所示。从幅频特性曲线上可以看出,在一个较宽的频率范围内,曲线平坦,这个频率范围称为中频区。在中频区之外的低频区和高频区,放大倍数都要下降。 引起低频区放大倍数下降的原因是由于耦合电容C1、C2及Ce的容抗随频率下降而增大所引起。
图3.9共射极放大电路的幅频特性 电路; (b)幅频特性
共模抑制比
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。正如我们都希望改变世界,希望给别人带去光明,但更多时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容到达这个限度时,或许已经不纯粹作用于演示,极大可能运用于阅读领域;无论是传播观点、知识分享还是汇报工作,内容的详尽固然重要,但请一定注意信息框架的清晰,这样才能使内容层次分明,页面简洁易读。如果您的内容确实非常重要又难以精简,也请使用分段处理,对内容进行简单的梳理和提炼,这样会使逻辑框架相对清晰。

多级放大电路

多级放大电路
电压增益
( Rc1 // Ri2 ) 100 (5.1 // 2.8) Av1 = 58.3 , rbe1 3.1
Av 2 =
式中Ri2 rbe2
( Rc2 // RL )
rbe2
100 4.3 153.6 2.8
现以图07.03的两级放大电路为例加以说明, 有关参数示于图07.05中。三极管的参数为
1=2==100,VBE1=VBE2=0.7 V。计算总电压
放大倍数。 用输入电阻法 计算。
图07.05 两级放大电路计算例
用输入电阻法求电压增益
(1)求静态工作点
V 'CC VBE 3.38 0.7 I BQ1 = mA ( Rb1 // Rb2 ) + (1+ ) Re1 (51// 20) 101 2.7 = 0.0093mA = 9.3 A
3.1.2 零点漂移
零点漂移
是三极管的工作点随时间而 逐渐偏离原有静态值的现象。 产生零点漂移的主要原因是温度的影响, 所以有时也用温度漂移或时间漂移来表示。 工作点参数的变化往往由相应的指标来衡量。 一般将在一定时间内,或一定温度变化 范围内的输出级工作点的变化值除以放大倍数, 即将输出级的漂移值归算到输入级来表示的。 例如 V/C 或 V/min 。
第3章 多级放大电路
3.1 多 级 放 大 电 路 概 述 3.2 直接耦合多级放大电路 3.3 多级放大电路电压放大倍数的计算
3.4 变压器耦合的特点
3.1 多级放大电路概述
[问题提出] 前面所述的单管放大电路,在实际运用中各 项性能指标很难满足要求,所以需要采用多级放 大电路,来满足实际要求。 多级放大器级间耦合的条件是把前级的输出 信号尽可能多地传给后级,同时要保证前后级晶 体管均处于放大状态,实现不失真的放大。 多级放大电路的放大倍数: A A1 A2 A3 An Ai

多级放大电路

多级放大电路

第五章多级放大电路第一节多级放大电路在实际工作中,为了放大非常微弱的信号,需要把若干个基本放大电路连接起来,组成多级放大电路,以获得更高的放大倍数和功率输出。

多级放大电路内部各级之间的连接方式称为耦合方式。

常用的耦合方式有三种,即阻容耦合方式、直接耦合方式和变压器耦合方式。

1.多级放大电路的耦合方式1.1阻容耦合通过电容和电阻将信号由一级传输到另一级的方式称为阻容耦合。

图所示电路是典型的两级阻容耦合放大电路。

优点:耦合电容的隔直通交作用,使两级Q相互独立,给设计和调试带来了方便;缺点:放大频率较低的信号将产生较大的衰减,不适合传递变化缓慢的信号,更不能传递直流信号;加之不便于集成化,因而在应用上也就存在一定的局限性。

1.2直接耦合多级放大电路中各级之间直接(或通过电阻)连接的方式,称为直接耦合。

直接耦合放大电路具有结构简单、便于集成化、能够放大变化十分缓慢的信号、信号传输效率高等优点,在集成电路中获得了广泛的应用。

直接耦合放大电路存在的最突出的问题是零点漂移问题。

所谓零点漂移是指把一个直接耦合放大电路的输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。

1.3变压器耦合变压器耦合放大电路如图所示。

这种耦合电路的特点是:级间无直流通路,各级Q独立;变压器具有阻抗变换作用,可获最佳负载;变压器造价高、体积大、不能集成,其应用受到限制。

1.4级间耦合的优、缺点及应用比较2.直接耦合放大电路的特殊问题——零点漂移2.1零点漂移所谓零点漂移是指当把一个直接耦合放大电路的输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。

产生零点漂移的原因很多。

如晶体管的参数随温度的年华、电源、电压的波动等,其中,温度的影响是最重要的。

在多级放大电路中,又已第一、第二级的漂移影响最为严重。

因此,抑制零点漂移着重点在第一、第二级。

2.2差分式放大电路(观看视频)在直接耦合多级放大电路中抑制零点漂移最有效的电路结构是差动放大电路。

多级放大电路知识点

多级放大电路知识点

多级放大电路知识点一、知识概述《多级放大电路知识点》①基本定义:多级放大电路呢,就是好几个单级放大电路串起来工作的电路。

简单说就是把微弱的小信号通过好几个放大步骤变得很强很大的电路。

②重要程度:在电子学学科里那可是相当重要的。

很多电子设备需要把信号从很小放大很多倍才能用,像收音机接收很微弱的信号要变成能让人听到的声音就得靠多级放大电路。

③前置知识:首先得了解单级放大电路的一些基础知识,像三极管怎么工作,什么是放大倍数这些概念得先明白。

还有电路里的基本元件,电阻、电容这些东西的特性也得知道。

④应用价值:实际应用太多了。

就说手机吧,接收到基站的微弱信号要放大好多级才能让你正常打电话、上网。

还有在音响设备里,把唱片或者蓝牙传来的小信号放大到能推动大喇叭发声,多级放大电路就在默默发挥作用。

二、知识体系①知识图谱:它在模拟电子技术这个大的知识体系里面算是比较核心的一部分了。

和其他的像电源电路、滤波电路这些都是平级繁荣关系,但是很多时候,比如在一个完整的信号处理设备里,多级放大电路后面可能接着滤波电路这些。

②关联知识:和单级放大电路那肯定息息相关了,是在单级的基础上搭建的。

还和反馈电路有点关系,有时候多级放大电路会用到反馈电路来稳定它的放大倍数之类的。

③重难点分析:掌握难度主要在于每一级之间的耦合方式。

这就像是把一个个单独的环节连接起来,不同的耦合方式有不同的优缺点。

关键点是要理解怎么设置各级的放大倍数和输入输出电阻这些参数。

④考点分析:在考试里挺重要的。

考查方式可能是让你计算多级放大电路的总放大倍数,或者给你一些现象,比如放大后的信号失真了,让你分析可能是哪一级的问题。

三、详细讲解【理论概念类】①概念辨析:多级放大电路核心就是把多个单级放大电路组合起来。

就像一群人接力跑一样,第一级先把信号稍微放大一点,然后传给下一级,下一级再接着放大。

而且每一级周围还有些电阻电容等元件来配合它工作。

②特征分析:它的主要特点就是可以把信号放得很大。

多级放大电路

多级放大电路

逻辑题

一个小岛上住着说谎的和说真话的两种人,说谎 话的人句句说谎,说真话的人句句是实话。假想 某一天你去小岛探险,碰到了岛上的三个人 A , B , C,相互交谈中,有这样一段对话:

A说:B和C两人都说谎
B说:我没有说谎 C说:B确实在说谎。 请问,三人中,有几人在说谎,几个人说真话?

Au=Au1Au2Au3…Aun
【输入电阻Ri】多级放大电路的输入电阻Ri 等于从第一级放大电路的输入端所看到的等效 输入电阻Ri1 即:


Ri=Ri1

2.多级放大器的简单分析
【输出电阻Ro】多级放大电路的输出电 阻 R o 等于从最后一级(末级)放大电路 的输出端所看到的等效电阻Ron即:

3. 分压式偏置电路的主要作用就是稳 定静态工作点,以保证放大器不失真 的放大交流信号。 4. 多级放大电路是由两个或两个以上 的单级放大电路所组成的,电压放大 倍数等于各单级放大电路电压放大倍 数的乘积。


课堂小游戏
揪人 : 通过描述一个人的信息,让别人 才你描述的是谁。 游戏规则:首先老师确实谁第一个上台, 让该同学描述课堂里其他的同学,比如 衣服的颜色,头发的样式等等,让课堂 下的人猜他描述的是谁,然后,被猜出 来的描述的人上台,如此循环。
特点

阻容耦合:
(1)只用一只容量足够大的耦合电容, 要求耦合电容对信号的容抗接近零。信 号频率高时耦合电容容量可以小,反之 电容容量大 (2)低频特性不很好,不能用于直流 放大器中 (3)前级和后级放大器之间的直流电 路被隔离,电路设计和故障维修难度下 降
特点

变压器耦合:
(1)采用变压器耦合,成本较高

第三章 多级放大电路

第三章 多级放大电路
微变等效电路 Ib
RS
UGS Id
R1 R2
RD

rbe
Ic
Ui

RC
Us
R3 R4

RL U o
ri
ri2
ro
首先计算第二级的输入电阻
ri2= R3// R4// rbe=82//43//1.7=1.7 k
第二步:计算各级电压放大倍数
Ib
RS
UGS Id
R1 R2
RD

rbe
Ic
Ui

Us
R3 R4
对耦合电路要求:
耦合电路:
静态:保证各级Q点设置
要求
动态: 传送信号
波形不失真 减少压降损失
1. 直接耦合 直接耦合放大电路
直接耦合放大电路的特点
(1) 没有电容的隔直作用,各级放大器的静态工作 点相互影响,不能分别估算。
(2) 前一级的输出电压是后一级的输入电压,后一 级的输入电阻是前一级的交流负载电阻。

RC RL U o
ri
ri2
ro
Au1=- gmRL1=-gm (RD //ri2)=-3(10//1.7)=-4.4
Au2

RL rbe
=-
RC2//RL rbe
=-50(10//10)/1.7=-147
第三步:计算输入电阻、输出电阻
Ib
RS
UGS Id
R1 R2
RD

rbe
Ic
Ui

1. 静态: Q点同单级。 2. 动态性能:
关键:考虑级间影响。R1
1M
R2 RC2 C2 82k 10k
+UCC (+24V)

多级放大电路

多级放大电路
Ri Ri1 Ro Ron
计算机电路基础
变压器耦合电路的缺点是:不能传递 直流信号及变化缓慢的信号;频带比较窄; 体积大,质量重,价格较贵,不能实现集 成化。
变压器耦合多级放大电路
将放大电路的前一级输出端直接连接到 后一级的输入端,这种连接方式称为直接耦 合方式。直接耦合多级放大电路如右图所示。
直接耦合电路的优点是:既能放大交流 信号,又能放大直流信号和低频率信号;便 于集成,集成电路都采用直接耦合方式。
阻容耦合多级放大电路
将放大电路的前级输出端通过变压器 接到后级输入端或负载电阻上,这种连接 方式称为变压器耦合方式。变压器耦合多 级放大电路如右图所示。
变压器耦合电路的优点是:由于变压 器隔断了直流,所以各级的静态工作点也 是相互独立的;在传输信号的同时,变压 器还有阻抗变换作用,以实现阻抗匹配。
Au
uo ui
uo1 ui1
uo2 ui2

uon uin
Au1Au2 … Aun
式中:n为放大电路的级数。 可见,多级放大电路的电压放大倍数等于各级电路电压放大倍数之积。注意,
在计算每一级电压放大倍数时,都要把后一级的输入电阻作为前一级的负载。
根据放大电路输入电阻和输出电阻的物理意义,可知多级放大电路的输 入电阻就是第一级的输入电阻,多级放大电路的输出电阻就是最后一级的输 出电阻,即
计算机电路基础
在许多应用场合,要求放大电路有较大的放大倍数,以满足系统的要求。然 而,单级放大电路的放大倍数一般只有几十倍,通常难以满足要求。因此,实际 应用中,常常需要将多个单级放大电路串接起来,构成多级放大电路。
多级放大电路的组成框图如图3-16所示,包括输入级、中间级、输出级三个 部分。输入级是与信号源相连接的第一级放大电路;中间级是输入级与输出级之 间的放大电路;输出级是与负载相连接的末级放大电路。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多级放大电路
12级电工
一:电路的设计
1、我们需要做一个带宽为10MHz ,增益>1000的放大电路,我们将其设定为两极,带宽为10MHz ,增益初步设定为50x50,每一级采用同相运算放大电路。

2、为什么要设为两极?
事实上,满足要求最简单的方法,我们可以找一个增益带宽积为10000的芯片,让增益为1000,则带宽便为10M ,但这样做电路的增益过大,电路的稳定性较差,由于放大电路的整体增益是等于各级增益之积,所以我们想到可以将电路做成两极,我们让每一级的增益为40,两极增益变为1600,这样不仅能达到老师的要求,电路的稳定性也将大大提高。

4、所需材料:电阻若干,增益带宽积为500的芯片两个个,型号为OPA690
5、相关计算 由于两极过后,增益会下降2,所以我们先将带宽确定为 :
210BW =,35225210500Av ===
两级:12253535Av =⨯= 同相放大电路:1
f R R 1Av +=, 所以:R 1=1K Ω R f =34K Ω
5、电路图:
6、仿真分析
我们采用multisim元件库中的OPA系列芯片进行仿真,用函数信号发生器输入1mV的电压,在输出端的到1.732V的电压,可知增益为1732倍,与理论值1600相差不很大,证明实验是正确的。

二:集成运放相关的知识
1、分类
1)、通用型运算放大器
通用型运算放大器就是以通用为目的而设计的。

这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。

例mA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356 都属于此种。

它们是目前应用最为广泛的集成运算放大器。

2)、高阻型运算放大器
这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012)W,IIB 为几皮安到几十皮安。

实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。

用FET 作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。

常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。

3)、低温漂型运算放大器
在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。

低温漂型运算放大器就是为此而设计的。

目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET 组成的斩波稳零型低漂移器件ICL7650 等。

4)、高速型运算放大器
在快速A/D 和D/A 转换器、视频放大器中,要求集成运算放大器的转换速率SR 一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。

高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。

常见的运放有LM318、mA715 等,其SR=50~70V/ms,BWG>20MHz。

5)、低功耗型运算放大器
由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。

常用的运算放大器有TL-022C、TL-060C 等,其工作电压为±2V~±18V,消耗电流为50~250mA。

目前有的产品功耗已达微瓦级,例如ICL7600 的供电电源为1.5V,功耗为10mW,可采用单节电池供电。

6)、高压大功率型运算放大器
运算放大器的输出电压主要受供电电源的限制。

在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。

若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。

高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。

2、使用时注意事项
(1).集成运放的电源供给方式
集成运放有两个电源接线端+VCC和-VEE,但有不同的电源供给方式。

对于不同的电源供给方式,对输入信号的要求是不同的。

1)对称双电源供电方式
运算放大器多采用这种方式供电。

相对于公共端(地)的正电源(+E)与负电源(-E)分别接于运放的+VCC和-VEE管脚上。

在这种方式下,可把信号源直接接到运放的输入脚上,而输出电压的振幅可达正负对称电源电压。

2)单电源供电方式
单电源供电是将运放的-VEE管脚连接到地上。

此时为了保证运放内部单元电路具有合适的静态工作点,在运放输入端一定要加入一直流电位,如图3.2.1所示。

此时运放的输出是在某一直流电位基础上随输入信号变化。

对于图3.2.1交流放大器,静态时,运算放大器的输出电压近似为VCC/2,为了隔离掉输出中的直流成分接入电容C3。

(2).集成运放的调零问题
由于集成运放的输入失调电压和输入失调电流的影响,当运算放大器组成的线性电路输入信号为零时,输出往往不等于零。

为了提高电路的运算精度,要求对失调电压和失调电流造成的误差进行补偿,这就是运算放大器的调零。

常用的调零方法有内部调零和外部调零,而对于没有内部调零端子的集成运放,要采用外部调零方法
3、输入电阻和输出电阻
输入电阻是从放大电路输入端看进去的等效电阻,定义为输入电压有效值Ui和输入电流有效值Ii之比,即Ri,Ri越大,表明放大电路从信号源索取的电流越小,放大电路所得到的输入电压Ui越接近信号源电压Us。

然而,若信号源内阻
Rs是常量,为使输入电流大一些,则应使Ri小一些。

因此,放大电路输入电
阻的大小要视需要而设计。

R


i
放大电路输入信号是比较弱的,都要经过放大和处理后,再输出使用,输出信号的方式有多种,当输出信号流经一个电阻,则在电阻上产生压降,当这个电阻上的电压是传输给下一级或是直接使用时,那么这个电阻就称为输出电阻
R
=
o
三、感言:
我们在做电路的过程中,不仅要注意相关的要求,还要注意电路的稳定性问题,尽可能在达到要求的情况下提高电路的稳定性;理论分析和实际是有一定差距的,所以我们在做出成品后要进行调试,找出误差并修正;科学研究是一个严谨的过程,我们需要有严谨的态度,认真对待每一个细节。

相关文档
最新文档