高一数学教案:函数的值域的求法

合集下载

高一数学 函数的定义域和值域教案必修一

高一数学 函数的定义域和值域教案必修一

诚西郊市崇武区沿街学校高一数学必修1函数的定义域和值域
教学目的
知识与技能
(1)继续理解函数的概念和记号以及域函数概念相关的定义域、函数值、值域的概念。

(2)掌握两个函数是同一函数的条件。

(3)会求简单函数的定义域和值域。

过程与方法
(1)通过对函数的概念的学习,初步探究客观世界中各种运动域数量间的互相依赖关系。

(2)使学生掌握求函数是=式的值得方法。

(3)培养批判思维才能、自我调控才能、交流与才能。

情感、态度与价值观
(1)懂得变化、联络、制约的辩证唯物主意观点。

(2)学会全面的观察、分析、研究问题。

重点难点
重点:符号“y=f(x)〞的含义。

难点:符号“y=f(x)〞的含义。

教法学法:讨论研究
教学用具:多媒体教学过程
板书设计
教学反思。

高一数学三角函数值域的求法

高一数学三角函数值域的求法

小结
1.本节课涉及到求函数值域(最值)的方法有: ①分离系数法
②反表示法
③判别式法 ④单调性法 ⑤数形结合法
小结
2.树立转化的数学思想锻炼发散思维能力.
排除法
1 y 2 sin x 1
3 sin x 1 y sin x 2
sin x y 2 cos x
y sin x sin x 3
课外练习1、2、3、4、 《数学之友》 P 70
IU酒店 派酒店 喆啡 7天酒店 7天优品 窝趣公寓
知道,爷哪里是查啥啊功课,这分明是要去安抚李姐姐。不过两各大麻烦都离开咯霞光苑,她也算是能清静清静,于是不咸不淡地赶快开口 道:“有姐姐陪着,妾身就不送爷咯。”第壹卷 第323章 后账壹回到烟雨园,淑清壹头倒在他の怀中:“爷,这就是您给妾身主持の公道 吗?就听吟雪那奴才の壹面之辞,妾身连开口の机会都没有,这让妾身の冤屈往哪儿伸啊!妾身就是再不讨爷の喜欢,但好歹也是各主子吧, 反倒被各奴才弄得没脸没面,妾身以后还有啥啊脸面继续在府里呆下去!”“你还没脸没面?爷连福晋都没理会,亲自把你送咯回来,是福 晋の脸面重要,还是壹各奴才の脸面重要?你真是越活越抽抽咯,瞧你比の那人,你不跟福晋比脸面,非跟各奴才比脸面。”淑清本来愤恨 不已地要跟他讨说法,谁知道才壹开口,竟被他壹句话就堵咯壹各哑口无言,半天找不出壹句话。可是她心中の那口气根本咽不下,怎么就 这么不明不白地让那各奴才逃咯处罚?“爷,您怎么会向着怡然居の人说话咯?您这是嫌弃妾身人老珠黄,比不得人家粉嫩水灵?”他被淑 清这番话气得恨不能骂她两句!先是跟奴才争脸面,现在又跟那主子争风吃醋,简直就是蠢到家咯!他要是对水清真有那心思,还用等得到 现在?他这么假门假事地搞咯这各四堂会审,还不都是为咯安抚她李淑清才走の这各过场。现在淑清不但不领情,反而责怪他喜新厌旧,淑 清委屈,他更委屈!而且他最痛恨の就是后院诸人之间の争宠,于是留下“好自为之”四各字后,他直接就回咯书院。没有排字琦の老练圆 滑,没有水清の聪明智慧,直到他走咯以后,她都没有明白爷为啥啊走咯。从来没有为争宠费过心思の淑清,首各回合就是不战自败。壹回 到怡然居,吟雪急急地对水清说道:“仆役!您怎么不告诉爷,您の手,是因为扶锦茵格格才受の伤啊!”“吟雪,你白跟咯我两年多の时 间!今天这阵势,明摆着爷就是为咯给李侧福晋壹各说法,我若是说这手是因为扶大格格受の伤,谁能证明?李侧福晋还不更得以为我这是 存心跟她过意不去,故意伤咯手去诬告她。”“仆役,那,那您就白白地受咯伤,还落咯冤屈?”“冤屈不冤屈,其实,爷根本就没有这各 必要弄啥啊四堂会审,到时候问问锦茵格格不就全知道咯嘛。所以我才说,刚刚这各会审不过是走走过场而已。”听水清说完,吟雪却是扑 通壹下子跪在咯她の面前,让水清惊诧不已:“吟雪,你这是怎么咯?有啥啊话赶快起来再说也不迟。”“仆役,这全是奴婢の错!假如奴 婢不是去扶锦茵格格,也不会被李侧福晋寻咯仆役您の短处,还让您の手也伤咯,奴婢真是该死……”“好咯,好咯,瞧瞧你说の这都是啥 啊话!你不去扶,我不去扶,锦茵格格真の摔倒咯怎么办?那罪过不是更大咯?我の手伤咯,那也是我不小心弄の,跟你有啥啊关系,真是 の,你赶快好好地当差去,别净跟我这儿说这些没用の!”水清の话音刚落,只听月影进屋来禀报:“仆役,张太医来咯。”第壹卷 第 324章 锦茵今天是锦茵格格回门の日子。府里早早就准备妥当,按照规矩,郡主与额附双双向王爷和排字琦敬上谢恩茶。淑清作为格格の亲 额娘,也壹并受礼。礼毕之后,王爷吩咐秦顺领额附到他の书院等候,又让惜月和韵音几各人先行退下,单独将格格留咯下来。。待众人退 下后,屋子里只剩王爷、排字琦、淑清、水清四各主子。然后王爷又将除吟雪以外の所有奴才全都摒退到门外,连红莲都没能留下,更不要 说菊香咯。面对这各安排,锦茵莫名其妙,望向她阿玛の目光中充满咯疑惑不解の神情。对此,他也没有转弯抹角,而是开门见山:“茵茵, 今天是你回门の日子,见到你在婆家壹切都好,阿玛和你额娘都放心咯。”“阿玛,让您担心,女儿深感惭愧。女儿不能侍奉父母,还要父 母大人如此牵挂,实为不孝。女儿真恨不能够永远留在这府里,日日孝敬您们……”“你说の这叫啥啊傻话!男大当婚、女大当嫁,天经地 义の事情,难不成你壹辈子不嫁,留在府里侍奉我们?那不是害咯你壹辈子吗?趁现在额附不在,阿玛也要嘱咐你几句,你在府里是郡主, 嫁到婆家就是媳妇,好好孝敬公婆、姑嫂和睦才是正道儿。咱们这府里就你这么壹各格格,没人跟你争,也没人跟你抢,额娘和姨娘们全都 宠着你。阿玛确实是担心你啊,到咯婆家可就真の不壹样咯。那么多の太爷太婆、姑舅姨侄,全都要好生处着。不要总以为自己是郡主,想 怎么着就怎么着,丢咯规矩,就是丢咯脸面,就是丢咯咱们府里の脸面。”“女儿谨记阿玛の教诲。”“记得就好,当格格和当媳妇还是有 很大不壹样の,你是壹各好格格,阿玛希望你也能做壹各好媳妇,不要等以后哭哭啼啼の时候才想起今天阿玛说の这番话。好咯,这件事情 就先不说咯,阿玛问你壹件事情。成婚那天,听说差点儿摔咯各跟头,连鞋子都坏咯,那是怎么回事儿?”“回阿玛,是女儿走路不小心, 也不知怎么就踩上咯啥啊东西,可能是小石子吧。”“茵茵!你怎么能肯定不是别人推の你?”淑清壹听锦茵说是自己走路不小心,气得心 中直骂这各丫头是各大傻瓜。好好の平地路,怎么就能摔咯跟头?小石子?哪各奴才们当差这么不仔细,连石子都没有清理干净?王爷听咯 锦茵の回答,心里总算是踏实咯,可淑清仍是不依不饶の样子,竟然明目张胆地暗示格格有人推她,他不想在这件事情上纠缠得没完没

函数及定义域、值域求法教案

函数及定义域、值域求法教案

龙文教育一对一个性化辅导教案
学生学校年级高一次数第次科目数学教师侯忠职日期时段
课题函数及定义域、值域求法
教学重点1、理解并掌握函数和映射的概念和它们的异同点
2、理解定义域的概念,会求一些函数的定义域
3、理解值域的概念,会求一些函数的值域
教学难点1、函数与映射的异同点
2、求解函数的定义域和值域
教学目标1、掌握函数与映射的异同点
2、掌握函数定义域和值域的求法
教学步骤及教学内容一、教学衔接:
1、检查学生的作业,及时指点;
2、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。

二、内容讲解:
知识点一:函数与映射
知识点二:函数的定义域
知识点三:函数的值域
拓展提升:高考真题
三、课堂总结与反思:
带领学生对本次课授课内容进行回顾、总结
四、作业布置:
复习教案所讲知识点,完成教案上的作业
管理人员签字:日期:年月日
作业布置1、学生上次作业评价:○好○较好○一般○差
备注:
2、本次课后作业:
见教案




家长签字:日期:年月日。

浅谈函数值域的求法——两题看高一新生求函数值域

浅谈函数值域的求法——两题看高一新生求函数值域

浅谈函数值域的求法——两题看高一新生求函数值域
徐孝慧
【期刊名称】《数学学习与研究:教研版》
【年(卷),期】2012(000)023
【摘要】正对于步入高一,刚学过函数的概念、定义域、值域的学生来说,遇到解函数值域问题时,方法经常会乱套.下面我就对这类学生阐述几种常见的求函数值域的方法.题目求函数y=1/(x~2+x+1)的值域.问题转化成:求函数y=x~2+x+1的值域.1.图像法分析这是一个一元二次函数,要求它的值域,可以先画出它的图像,根据图像写出它的值域,这也是求值域的一种方法,称图像法.2.配方法
【总页数】1页(P100-100)
【作者】徐孝慧
【作者单位】江苏省扬州中学
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.利用向量求两类无理函数的值域——兼谈一对“姐妹函数”值域的探求 [J], 张中发;诸敏
2.和高一新生谈谈函数值域的求法 [J], 吴选根
3.怎样求函数值域?——略谈用对立统一观点求值域 [J], 崔亮;
4.高一函数值域求法策略 [J], 张生德
5.解析几何法在求函数值域与最值中的研究——用斜率法求一类函数的值域与最值[J], 林娟娟;
因版权原因,仅展示原文概要,查看原文内容请购买。

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高一数学函数的定义域与值域的常用方法地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容高一数学求函数的定义域与值域的常用法一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。

例1. 已知,试求。

解:设,则,代入条件式可得:,t≠1。

故得:。

说明:要注意转换后变量围的变化,必须确保等价变形。

2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个程,联立求解。

例2. (1)已知,试求;(2)已知,试求;解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。

(2)由条件式,以-x代x则得:,与条件式联立,消去,则得:。

说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。

例4. 求下列函数的解析式:(1)已知是二次函数,且,求;(2)已知,求,,;(3)已知,求;(4)已知,求。

【题意分析】(1)由已知是二次函数,所以可设,设法求出即可。

(2)若能将适当变形,用的式子表示就容易解决了。

(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。

(4),同时使得有意义,用代替建立关于,的两个程就行了。

【解题过程】⑴设,由得,由,得恒等式,得。

故所求函数的解析式为。

(2),又。

(3)设,则所以。

(4)因为①用代替得②解①②式得。

【题后思考】求函数解析式常见的题型有:(1)解析式类型已知的,如本例⑴,一般用待定系数法。

对于二次函数问题要注意一般式,顶点式和标根式的选择;(2)已知求的问题,法一是配凑法,法二是换元法,如本例(2)(3);(3)函数程问题,需建立关于的程组,如本例(4)。

高一数学例析求函数值域的方法

高一数学例析求函数值域的方法

例析求函数值域的方法曲靖市民族中学 张小琼求函数的值域常和求函数的最值问题紧密相关,是高中数学的重点和难点。

注意:求值域要先求定义域。

虽然没有固定的方法和模式,但常用的方法有:一、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。

例1:求函数1y =+的值域。

0≥11≥,∴函数1y =的值域为[1,)+∞。

二、图像法:对于二次函数在给定区间求值域问题,一般采用图像法。

例2:求函数242y x x =-++([1,1]x ∈-)的值域。

(开口方向;区间与对称轴的关系)三、中间变量法:函数式中含有可以确定范围的代数式。

例3:求函数2211x y x -=+的值域。

解:由函数的解析式可以知道,函数的定义域为R (定义域优先原则),对函数进行变形可得2(1)(1)y x y -=-+,∵1y ≠,(特殊情况优先原则)∴211y x y +=--(x R ∈,1y ≠), ∴101y y +-≥-,∴11y -≤<, ∴函数2211x y x -=+的值域为{|11}y y -≤<例4:求y=525+-x x(1≤X ≤3)的值域。

解:y =525+-x x⇒ x =1255+-y y∵1≤X ≤3 ∴1≤1255+-y y ≤3 (怎么求解?)⇒ y ∈[112,74] 四、分离常数法:分子、分母是一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。

例5:求函数125xy x -=+的值域。

解:(此处要先求定义域)∵177(25)112222525225x x y x x x -++-===-++++, ∵72025x ≠+,∴12y ≠-,∴函数125x y x -=+的值域为1{|}2y y ≠-。

五、换元法:运用代数代换,奖所给函数化成值域容易确定的另一函数,从而求得原函数的值域,形如y ax b =+±a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。

高一数学求函数的定义域与值域的常用方法

高一数学求函数的定义域与值域的常用方法

1、函数的有关概念(1)函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数记作: y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域注意:① “y =f (x )”是函数符号,可以用任意的字母表示,如“y =g (x )”;②函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x .(2)构成函数的三要素是什么?定义域、对应关系和值域(3)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y =ax +b (a ≠0)y =ax 2+b x +c (a ≠0)y =x k (k ≠0) (三)1、如何求函数的定义域例1:已知函数f (x ) =3+x +21+x (1)求函数的定义域;(2)求f (-3),f (32)的值; (3)当a >0时,求f (a ),f (a -1)的值.分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y =f (x ),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.解:例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.分析:小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R .(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)(5)满足实际问题有意义.2、如何判断两个函数是否为同一函数例3、下列函数中哪个与函数y=x相等?(1)y = (x)2 ; (2)y = (33x);x2(3)y =2x; (4)y=x分析:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

函数的定义域和值域4

函数的定义域和值域4

姓名 学生姓名 上课时间 学科 数学 年级 高一 课时计划 第( )次课提交时间 2013-1-31教研组长教管主任签字教学目标:掌握函数的定义域和值域的基本求法,熟知映射的定义。

教学重点:函数的定义域和值域的求法。

教学难点: 值域的求法,复合函数定义域的求法。

教学过程:知识梳理一 ※映射定义:设非空数集A ,B ,若对集合A 中任一元素a ,在集合B 中有唯一元素b 与之对应,则称从A 到B 的对应为映射,记为f :A →B ,f 表示对应法则,b=f(a)。

A 中的元素就叫做原象,B 中的元素就叫做象。

若A 中不同元素的象也不同,且B 中每一个元素都有原象与之对应,则称从A 到B 的映射为一一映射。

在理解映射概念时要注意: ⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。

例题精讲题型一 对映射定义的考查例1.下列对应中,哪些是A 到B 的映射?⑷例2:设:f M N 是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的a b c1 21 2a b c123 ab ab c1 2D 、N 是M 中所在元素的象的集合;变式训练 在映射中B A f →:,},|),{(R y x y x B A ∈==,且),(),(:y x y x y x f +-→,则与A 中的元素)2,1(-对应的B 中的元素为( )(A ))1,3(- (B ))3,1( (C ))3,1(-- (D ))1,3(知识梳理二 函数1、函数定义,即“y=f(x)”的含义:函数f : A →B 是特殊的映射。

函数就是定义在非空数集A ,B 上的映射,此时称数集A 为定义域,象集C={f(x)|x ∈A}为值域。

注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x . ③据此可知函数图像与x 轴的垂线至多有一个公共点,但与y 轴垂线的公共点可能没有,也可能有任意个。

高一数学 函数的值域(1)教案

高一数学 函数的值域(1)教案

江苏省泰州市第二中学 高一数学教案 函数的值域(1)教学目标:理解函数值域的意义,会求简单函数的值域。

教学重点:二次函数值域的求法。

教学过程:一. 问题情境1、函数的概念2、已知函数1)1()(2+-=x x f x ∈A={-1,0,1,2,3}。

(1)求每一个x 所对应的函数值f (x )。

并求这些函数值构成的集合C 。

(2)如B=R ,则函数f (x )=(x-1)2+1,x ∈A={-1,0,1,2,3},则这个对应是函数吗?集合B 和C 有何关系。

如x ∈R 呢?二. 数学建构用自己的语言说值域的定义。

三. 数学应用问题1:已知函数f (x )=3x-6,(i )当(1)x ≥2,(2)x ∈[-1,3],分别求f (x )值域.分析:(1)图象观察(2)代数推理(ii )当函数f(x)的值域为[-1,3],求函数f(x)的定义域。

问题2:试画出函数f(x)=x 2+1的图象,并据图象回答下列问题:(1)比较f(-2),f(1),f(3)的大小;(2)若0<x 1<x 2,试比较f(x 1)与f(x 2)的大小.(3)若x 1<x 2<0,那么f(x 1)与f(x 2)哪个大?(4)若|x 1|<|x 2|,试比较f(x 1)与f(x 2)的大小?问题3: 已知函数f (x )=x 2-2x+3,当定义域分别为下列集合时,求f (x )的值域。

(1)R (2)[2,3] (3)[-3,6]注:给定区间二次函数值域的求法步骤:1.配方画图。

2.确定对称轴和区间的位置,找出最高点和最低点。

3.写解。

思考:已知一个函数的解析式为y=x2,它的值域是[1,4],这样的函数有多少个,试写出其中两个。

四.回顾反思五.练习1、求下列函数的值域(1)y=x +1;(2)y=x2-4x+6;x∈[1,5)(3)(选)y=2x-x-12、P28练习3、求函数值域f(x) =2x2-6x+c x∈[1,3]的值域第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

高一数学函数教案5篇

高一数学函数教案5篇

高一数学函数教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、个人总结、教师总结、学生总结、企业总结、活动总结、党建总结、心得体会、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, personal summaries, teacher summaries, student summaries, enterprise summaries, activity summaries, party building summaries, reflections, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学函数教案5篇认真准备好教案帮助我们更好地掌握学生的学习进度和学习效果,及时调整教学策略和方法,成功的教案应该能够引导学生形成批判性思维和解决问题的能力,下面是本店铺为您分享的高一数学函数教案5篇,感谢您的参阅。

高一数学求函数解析式定义域与值域的常用方法(含答案)

高一数学求函数解析式定义域与值域的常用方法(含答案)

高一数学求函数的定义域与值域的常用方法一. 求函数的定义域与值域的常用方法求函数的解析式,求函数的定义域,求函数的值域,求函数的最值二. 求函数的解析式3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。

(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之;(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。

(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。

高一数学函数的定义域与值域(讲义)(精)

高一数学函数的定义域与值域(讲义)(精)

高一数学函数的定义域与值域一、知识归纳:(一)函数的定义域与值域的定义:函数y=f(x 中自变量x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 的值叫做函数值。

函数值的集合{f(x│x∈A}叫做函数的值域。

(二)求函数的定义域一般有3类问题:1、已知解析式求使解析式有意义的x 的集合常用依据如下: ①分式的分母不等于0; ②偶次根式被开方式大于等于0;③对数式的真数大于0,底数大于0且不等于1; ④指数为0时,底数不等于02、复合函数的定义域问题主要依据复合函数的定义,其包含两类:①已知f[g(x]的定义域为x∈(a,b )求f(x 的定义域,方法是:利用a 求得 g(x 的值域,则 g(x 的值域即是 f(x 的定义域。

②已知f(x 的定义域为x∈(a,b )求f[g(x]的定义域,方法是:由a 求得x 的范围,即为 f[g(x] 的定义域。

3、实际意义的函数的定义域,其定义域除函数有意义外,还要符合实际问题的要求。

(三)确定函数的值域的原则1、当数y=f(x 用表格给出时,函数的值域是指表格中实数y 的集合。

2、当函数y=f(x 图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合。

3、当函数y=f(x 用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定。

常见函数的值域:函数y=kx +b y=ax2+b x+cy=ax y=logax值域 R a>0a<0{y|y ∈R{y|y>R0}且y≠0}4、当函数由实际问题给出时,函数的值域由问题的实际意义确定。

(四)求函数值域的方法:1、观察法,2、配方法,3、判别式法,4、反函数法,5、换元法,6、图象法等二、例题讲解:【例1】求下列函数的定义域(1)(2)(3y=lg(a x-kb x (a,b>0且a,b≠1,k∈R[解析](1)依题有∴函数的定义域为(2依题意有∴函数的定义域为(3)要使函数有意义,则a x-kb x>0,即①当k≤0时,定义域为R②当k>0时,(Ⅰ)若a>b>0,则定义域为{x|}(Ⅱ若0 ,则,定义域为 {x| }(Ⅲ若a=b>0,则当0 时定义域为 R ;当k ≥ 1 时,定义域为空集[评析]把求定义域的问题等价转化为关于x的不等式(组)的求解问题,其关键是列全限制条件(组。

高一数学函数的值域与最值(教师版)

高一数学函数的值域与最值(教师版)

学科教师辅导讲义11222=,故225)4x x x +=+254x +=+显然这样的实数不存在,那么我们就不能使用不等式法来求解了例4、求函数2223(20)()23(03)x x x f x x x x ⎧+--<⎪=⎨--⎪⎩,≤ ≤≤的值域.分析:求分段函数的值域可作出它的图象,则其函数值的整体变化情况就一目了然了,从而可以快速地求出其值域.解:作图象如图所示.(1)(1)4f f -==-∵,(2)3f -=-,(3)0f =,(0)3f =-,∴函数的最大值、最小值分别为0和4-,即函数的值域为[40]-,. 变式练习1:求函数13y x x =-+-的值域.分析: 此题首先是如何去掉绝对值,将其做成一个分段函数.24,(,1],2,(1,3),24,[3,),x x y x x x -+∈-∞⎧⎪=∈⎨⎪-∈+∞⎩在对应的区间内,画出此函数的图像, 如图1所示, 易得出函数的值域为),2[+∞. 变式练习2:求函数224548y x x x x =+++-+的值域。

解:原函数变形为222()(2)1(2)2f x x x =+++-+作一个长为4、宽为3的矩形ABCD ,再切割成 12个单位正方形。

设HK=x ,则EK=2x -,KF=2x +,AK=22(2)2x -+,KC=2(2)1x ++ 。

由三角形三边关系知,AK+KC ≥AC=5。

当A 、K 、C 三点共线时取等号。

∴原函数的知域为{y |y ≥5}。

变式练习3:求函数()225222++-++=x x x x x f 的最大值解:()225222++-++=x x x x x f =()()114122++-++x x=()()()()2222101201-++--++x x ,显然,求f(x)的最大值就是求点A(x,0)分别到B(-1,2),C(-1,1)的距离之差的最大值.如图1所示:()()22201-++x =|AB|,()()22101-++x =|AC|,且|BC|=1.显然f(x)=|AB|-|AC|≥|BC|=1当且仅当A,B,C 三点共线时取到等号,即当X=-1时()[]1max =∴x f . y yB 2 B 2C 1 C 1-1 O 1 x -1 O 1 x图1 图2图1y=-2x+4y=2x-4YX4O231时,x R ∈,函数的值域为[1,92212+++x x x 的值域先将此函数化成隐函数的形式得的一元二0)1≥-,解得略解:易知定义域为1,2⎛⎤-∞ ⎥⎝⎦,而12y x x =--在1,2⎛⎤-∞ ⎥⎝⎦上均为增函数,∴11112222y --=≤,故y ∈1,2⎛⎤-∞ ⎥⎝⎦13、求函数22y x x =-++的值域。

高一数学《函数的值域》的求法

高一数学《函数的值域》的求法

高一数学《函数的值域》的求法《新形势下教育管理理论与实践指导全书》函数的值域是函数的三要素之一,它是函数这部分内容中一个重要的知识点,下面介绍高一数学中求函数值域的几种常见方法。

(1)直接法——从自变量x的范围出发,推出y的取值范围;(2)二次函数法——利用换元法,将函数转化为二次函数求值域(或最值);(3)反函数法——将求函数的值域转化为求它反函数的定义域;(4)判别式法——使用方程思想,依据二次方程有实根,求出y的取值范围;(5)单调性法——利用函数的单调性求值域;(6)图象法——当一个函数图象可作时,通过图象可求其值域(或最值)。

例1、求下列函数的值域:(直接法)(1)y=x2-2x-3,x∈{-1,0,1}解:当x=-1时,y=0当x=0时,y=-3当x=1时,y=-4∴所求值域{0,-3,-4}(2)y=x2-2x-3,x∈[-3,4]解:y=(x-1)2-4当y=-3时,y max=12当x=1时,y min=-4所求值域为[-4,12](3)y=x2-2x-3,x∈R解:y=(x-1)2-4≥-4∴所求值域为[-4,+∞)可改变x的范围,求函数的值域。

如将“x∈R”改为“x∈[-3,2]”;将“x∈R”再改为“x∈[-3,+∞)(4)y=4解:要使原函数有意义,则3+2x-x2≥0-1≤x≤3y=4当x=1时,y min=0当x=-1或3时,y max=4∴所求值域为[0,4](5)y=25243 x x-+解:y=252(2)3 x x-+=252(1)1x -+ ∵2(x -1)2≥0∴2(x -1)2+1≥1∴0<212(1)1x -+≤1 ∴0<252(1)1x -+≤5 ∴所求值域为(0,5]上试中“>0”这个条件很容易被漏掉,讲课时应注意强调。

例2、求下列的值域:(1)y=311x x -+ (2)y=2x (3)y=1x x+,x ∈[1,3] (4)y=22436x x x x +++- (5)y=234x x + 解:(1)方法一(分离变量法)y=431x -+≠3 方法二:(反函数法)由y=311x x -+得x=13y y +- ∴y ≠3所以所求值域为(-∞,3)∪(3,+∞)解:(2)≥0)则x=212t - ∴y=-t 2+t+1=-(t -12)2+54当t=12时,y max =54∴所求值域为(-∞, 54] 解:(3)(利用单调性)可证:y=x+1x在[1,3]为增函数 ∴当x=1时,y min =2当x=3时,y max =103∴所求值域为[2,103] 解:(4)原函数的定义域为{x R ∈|x ≠-3且x ≠2}方法1:(先化简函数)y=(3)(1)131(3)(2)22x x x x x x x +++==++--- ∵x ≠2 ∴y ≠1 又x ≠3 ∴y ≠312x +--即y ≠25所求值域为{y R ∈|y ≠1且y ≠25} 方法2:(判别式法)由y=22436x x x x +++-得 (y -1)x 2+(y -4)x -3(2y+1)=01°当y=1时,x=-3与定义域中x ≠=-3矛盾,∴y ≠12°当y ≠1时,由△=(5y -2)2≥0得y ∈R ,但y ≠1而当y=25时,求得x=-3不合题意∴y ≠25故所求值域为{y ∈R|y ≠1,且y ≠25} 解:(5)(判别式法):由y=234x x +得 y ·x 2-3x+4y=01°当y=0时,x=02°当y ≠0时,∵x ∈R ∴△=32-4y ·y ≥0 -34≤y ≤34且y ≠0 综合以上知所求值域为[-34,34] 注:利用判别式求形如:y=22ax bx c dx ex f++++的值域当化为m(y)x 2+n(y)x+p(y)=0后,要注意: ①分m(y)=0,及m(y)≠0两种情况讨论,只有m(y)≠0时,才能利用判别式;②在求出y 的取值范围后;要注意“=”能否取到,即检验间断点以及△=0时,y 对应x 是否属于定义域。

高一数学求函数的定义域与值域的常用方法北师大版知识精讲

高一数学求函数的定义域与值域的常用方法北师大版知识精讲

高一数学求函数的定义域与值域的常用方法北师大版【本讲教育信息】一. 教学内容:求函数的定义域与值域的常用方法求函数的解析式,求函数的定义域,求函数的值域,求函数的最值二. 学习目标1、进一步理解函数的定义域与值域的概念;2、会应用代换、方程思想求简单的函数解析式;3、会求基本初等函数、简单的复合函数及含参变量函数的定义域、值域和最值;4、会将求函数值域问题化归为求函数的最值问题,重视函数单调性在确定函数最值中的作用;5、会求实际问题中的函数解析式、定义域、值域和最值问题;6、会用集合、区间或不等式表示函数的定义域和值域。

三. 知识要点(一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。

(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t =g(x),以换元法解之;(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。

(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g (x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B的子集;若C=B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结;(四)求函数的最值1、设函数y=f(x)定义域为A,则当x∈A时总有f(x)≤f(x o)=M,则称当x=x o 时f(x)取最大值M;当x∈A时总有f(x)≥f(x1)=N,则称当x=x1时f(x)取最小值N;2、求函数的最值问题可以化归为求函数的值域问题;3、闭区间的连续函数必有最值。

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

高一数学求函数得定义域与值域得常用法一:求函数解析式1、换元法:题目给出了与所求函数有关得复合函数表达式,可将函数用一个变量代换。

例1、 已知,试求。

解:设,则,代入条件式可得:,t ≠1。

故得:。

说明:要注意转换后变量围得变化,必须确保等价变形.2、构造程组法:对同时给出所求函数及与之有关得复合函数得条件式,可以据此构造出另一个程,联立求解。

例2、 (1)已知,试求; (2)已知,试求; 解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。

(2)由条件式,以—x 代x则得:,与条件式联立,消去,则得:.说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数得定义域由解析式确定,不需要另外给出。

例4、 求下列函数得解析式:(1)已知就是二次函数,且,求; (2)已知,求,,; (3)已知,求; (4)已知,求. 【题意分析】(1)由已知就是二次函数,所以可设,设法求出即可。

(2)若能将适当变形,用得式子表示就容易解决了。

(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。

(4),同时使得有意义,用代替建立关于,得两个程就行了。

【解题过程】⑴设,由得, 由,得恒等式,得。

故所求函数得解析式为。

(2)1)1(112)(2)1(22-+=-++=+=+x x x x x x f , 又。

(3)设,则1)1()1(111111)1()(22222+-=-+-+=++=++=+=t t t t x xx x x x x f t f 所以。

(4)因为 ① 用代替得 ② 解①②式得。

【题后思考】求函数解析式常见得题型有:(1)解析式类型已知得,如本例⑴,一般用待定系数法。

对于二次函数问题要注意一般式,顶点式与标根式得选择;(2)已知求得问题,法一就是配凑法,法二就是换元法,如本例(2)(3); (3)函数程问题,需建立关于得程组,如本例(4)。

若函数程中同时出现,,则一般将式中得用代替,构造另一程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的值域
教学目的:
(1)理解函数值域的概念
(2)要求学生掌握利用直接法、二次函数、换元法等求函数的值域。

教学过程:
一、复习函数的定义、定义域及值域的概念。

提出课题:函数的值域
二、新授:
1.直接法:
例1、求下列函数的值域
(1)①y=3x+2(-1≤x ≤1) ②x
y 1=
③“题②”中加上条件:“1>x ”则其值域为 。

④|2||1|-++=x x y
(2)x x f -+=15)(
(3)1
+=
x x y
练习:3
12)(-+=x x x f
(4)上题中加上条件:“4>x ”求此函数的值域
(5)1
|||2|1+-=
x x y
(5)求函数1122+-=x x y 的值域
(6)求函数6
6522-++-=x x x x y 的值域
注:求函数的值域,不但要重视对应法则的作用,而且要特别注意定义域对值
域的制约作用
2.二次函数(在给定区间上)的值域的求法(配方法)
例2 求下列函数的最大值、最小值与值域:
(1)y=x 2-2x-1;
(2)y=x 2-2x-1,x ∈[0,3];
练习:(1)y=x 2-6x-1,x ∈[-2,0]
(2)y=3-4x-2x 2,x ∈[1,2]
(3)3
4252+-=x x y
注:求二次函数在给定区间上求值域时,关键是确定二次函数的对称轴与给定
区间的联系,这个关系弄清后,再借助二次函数的图象求值域
3.换元法
例3 (1)求函数y=x+21-x -2的值域
练习:求函数下列函数的的值域
(1)x x y -+=142 ☆(2)22142x x y -+=
☆(2)求函数2224)
1(5+++=x x x y 的值域
本课自我回顾与反思:
课后作业: 姓名: ⒈求下列函数的最值和值域:
(1)y=2x-3,x ∈[-1,1] (2) y=x+2x -1;
(3)y=
2
1++x x (x>0) (4)y=-x 2+3x-2,x ∈[1,3].
(5)24x x y -= ☆(6)25|12|-+-=x x y
☆2.已知函数f(x)=x 2-4ax+2a+6(a ∈R).
⑴若函数的值域为[0,+∞),求a 的值;
⑵若函数的值.均为非负数...
,求函数f(a)=2-a|a+3|的值域.。

相关文档
最新文档