重庆八中2019-2020学年高一上学期期末数学试题

合集下载

重庆市八中2020-2021学年高一数学上学期期末考试试题(含解析)

重庆市八中2020-2021学年高一数学上学期期末考试试题(含解析)

重庆市八中2020-2021学年高一数学上学期期末考试试题(含解析)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知全集{}*|4U x N x =∈≤,集合{1,2},{2,4}A B ==,则()U A C B =( )A. {}1B. ()1,3C. {}1,2,3D. {}0,1,2,3【答案】C 【解析】 【分析】由集合,,U A B ,根据补集和并集定义即可求解. 【详解】因为{}*|4U x N x =∈≤,即{}1,2,3,4U =集合{1,2},{2,4}A B == 由补集的运算可知{}1,3U C B = 根据并集定义可得(){}{}{}1,21,31,2,3U A C B ==故选:C【点睛】本题考查了补集和并集的简单运算,属于基础题. 2.下列函数在其定义域内既是奇函数又单调递减的是( ) A. ||y x =- B. y x = C. 1y x -= D. 3y x =-【答案】D 【解析】 【分析】根据函数解析式,即可判断函数的奇偶性和单调性. 【详解】对于A,||y x =-为偶函数,所以A 错误;对于B,y x =为奇函数,且在R 上为单调递增函数,所以B 错误;对于C,1y x -=是奇函数,在定义域()(),0,0,-∞+∞内不具有单调性,所以C 错误;对于D,3y x =-为奇函数,在R 上为单调递减函数,所以D 正确. 综上可知,D 为正确选项. 故选:D【点睛】本题考查了根据函数的解析式,判断函数的奇偶性及单调性,属于基础题. 3.已知tan 2,tan 5αβ==,则tan()αβ+=( )A. 79B.711 C. 79-D. 711-【答案】C 【解析】 【分析】根据正切函数的和角公式,代入即可求解. 【详解】由正切函数的和角公式()tan tan tan 1tan tan αβαββ++=-⋅因为tan 2,tan 5αβ==,代入可得()257tan 1259αβ++==--⨯故选:C【点睛】本题考查了正切函数和角公式的简单应用,属于基础题. 4.设2log 0.2a =,0.23b -=,0.22c =,则( ) A. a b c >> B. c b a >> C. c a b >> D. b c a >>【答案】B 【解析】 【分析】根据指数函数与对数函数的图像与性质,可通过中间值法比较大小,即可得解. 【详解】由指数函数与对数函数的图像与性质可知22log 0.2log 10a =<=0.203310b -<<== 0.20221c =>=所以c b a >> 故选:B【点睛】本题考查了指数、对数图像与性质的简单应用,函数值大小的比较,属于基础题. 5.在ABC 中,D 是AC 的中点,P 是BD 的中点,若(,)BP BA BC R λμλμ=+∈,则λμ=( )A. 116B.118 C. 14D. 12【答案】A 【解析】 【分析】根据平面向量线性的加法运算,即可求解.【详解】在ABC 中,D 是AC 的中点,P 是BD 的中点 由平面向量的线性加法运算,可知()111222BP BD BA BC ⎡⎤==+⎢⎥⎣⎦()14BA BC =+ 1144BA BC =+ 因为(,)BP BA BC R λμλμ=+∈ 所以11,44λμ== 则116λμ= 故选:A【点睛】本题考查了平面向量的线性加法运算,属于基础题. 6.函数()[]sin ,,f x x x x ππ=∈-的大致图象是( )A. B.C. D.【答案】A 【解析】 【分析】利用奇偶性定义可知()f x 为偶函数,排除,B C ;由02f π⎛⎫> ⎪⎝⎭排除D ,从而得到结果. 【详解】()()()sin sin f x x x x x f x -=--==()f x ∴为偶函数,图象关于y 轴对称,排除,B C又sin 02222f ππππ⎛⎫==>⎪⎝⎭,排除D 故选:A【点睛】本题考查函数图象的识别,对于此类问题通常采用排除法来进行排除,考虑的因素通常为:奇偶性、特殊值和单调性,属于常考题型. 7.函数()2()ln 32f x x x =-+的单调递增区间为( )A. 3,2⎛⎫+∞⎪⎝⎭B. 3,2⎛⎫-∞ ⎪⎝⎭C. (2,)+∞D. (,1)-∞【答案】C 【解析】 【分析】先求得函数的定义域,根据复合函数单调性的性质即可求解. 【详解】函数()2()ln 32f x x x =-+所以定义域为2320x x -+>,解得2x >或1x <由复合函数“同增异减”的性质,可知函数()2()ln 32f x x x =-+的单调递增区间为2x > 即(2,)x ∈+∞为函数()f x 的单调递增区间 故选:C【点睛】本题考查了对数函数的定义域求法,复合函数单调性的性质,属于基础题. 8.若直线6x π=是函数()cos(2)(0)f x x ϕπϕ=+-<<图象的一条对称轴,则ϕ=( )A. 6π-B. 3π-C. 23π-D. 56π-【答案】B 【解析】 【分析】根据余弦函数的图像与性质,可求得()cos(2)f x x ϕ=+的对称轴,结合6x π=及0πϕ-<<即可求得ϕ的值.【详解】函数()cos(2)f x x ϕ=+由余弦函数的图像与性质可知,其对称轴为2,x k k Z ϕπ+=∈ 而6x π=为其一条对称轴,所以2,6k k Z πϕπ⨯+=∈解得,3k k Z πϕπ=-+∈因为0πϕ-<< 所以当0k =时,解得3πϕ=-故选:B【点睛】本题考查了余弦函数的图像与性质,根据余弦函数的对称轴求参数,属于基础题. 9.已知函数()sin (0)36f x A x A ππ⎛⎫=+>⎪⎝⎭的最大值为2,则(1)(2)(2020)f f f ++=( )A. -2B. 0C. 2D. 3【答案】B 【解析】 【分析】根据函数的最大值,可求得函数的解析式.由周期公式可得函数的周期,即可求得(1)(2)(2020)f f f ++的值.【详解】函数()sin (0)36f x A x A ππ⎛⎫=+>⎪⎝⎭的最大值为2所以()2sin 36f x x ππ⎛⎫=+⎪⎝⎭由周期公式2T πω=,代入可得263T ππ==则(1)(2)(3)(4)+(5)(6)f f f f f f ++++()()()2112110=++-+-+-+=而202033664=⨯+ 所以(1)(2)(2020)(1)(2)(3)(4)f f f f f f f ++=+++而(1)2sin 1236f ππ⎛⎫=⨯+=⎪⎝⎭(2)2sin 2136f ππ⎛⎫=⨯+= ⎪⎝⎭(3)2sin 3136f ππ⎛⎫=⨯+=- ⎪⎝⎭(4)2sin 4236f ππ⎛⎫=⨯+=- ⎪⎝⎭所以()()(1)(2)(3)(4)21120f f f f +++=++-+-= 即(1)(2)(2020)(1)(2)(3)(4)0f f f f f f f ++=+++=故选:B【点睛】本题考查了正弦函数的周期性,根据正弦函数的周期性求值,属于基础题.10.已知实数0a >且1a ≠,若函数6,2(),2xx x f x a x -≤⎧=⎨>⎩的值域为[4,)+∞,则a 的取值范围是( ) A.()1,2B. (2,)+∞C. (0,1)(1,2]⋃D. [2,)+∞【答案】D 【解析】 【分析】分类讨论01a <<和1a >两种情况.结合函数的值域为[4,)+∞,即可求得a 的取值范围. 【详解】实数0a >且1a ≠,若函数6,2(),2xx x f x a x -≤⎧=⎨>⎩的值域为[4,)+∞, 当01a <<时,当2x >时,()f x 的值域为()20,a ,与值域为[4,)+∞矛盾,所以01a <<不成立当1a >时,对于函数()6f x x =-,2x ≤,函数的值域为[4,)+∞.所以只需当2x >时值域为[4,)+∞的子集即可.即24a ≥,解得2a ≥(舍去2a ≤-)综上可知a 的取值范围为[2,)+∞ 故选:D【点睛】本题考查了指数函数的单调性与值域的综合应用,分类讨论思想的应用,属于中档题. 11.若3,22ππα⎛⎫∈⎪⎝⎭,且2sin cos 3αα+=,cos2=α( )B. C. 59-D.59【答案】B 【解析】 【分析】将2sin cos 3αα+=平方后化简,结合3,22ππα⎛⎫∈ ⎪⎝⎭即可进一步确定α及2α的取值范围.再根据正弦的二倍角公式及同角三角函数关系式,求得cos2α的值. 【详解】因为2sin cos 3αα+=,两边同时平方可得 224sin 2sin cos cos 9αααα++=,即52sin cos 9αα=-则sin ,cos αα异号 又因为2sin cos 03αα+=>,3,22ππα⎛⎫∈ ⎪⎝⎭可知3,24ππα⎛⎫∈ ⎪⎝⎭,所以32,2παπ⎛⎫∈ ⎪⎝⎭所以cos20α<由正弦的二倍角公式可知52sin cos sin 29ααα==-根据同角三角函数关系式可得cos 29α===- 故选:B【点睛】本题考查了同角三角函数关系式的应用,正弦二倍角公式的化简与应用,关键在与确定角的取值范围,属于中档题. 12.已知函数12()21x f x e x x -=+-+,则使得不等式(2)(1)f m f m <+成立的实数m 的取值范围是( ) A. 1,13⎛⎫ ⎪⎝⎭B. 1,13⎛⎫- ⎪⎝⎭C. 1,(1,)3⎛⎫-∞-⋃+∞ ⎪⎝⎭D. 1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭【答案】A 【解析】 【分析】将函数解析式变形,即可判断出其对称轴.结合函数的单调性及不等式,即可得关于m 的不等教育文档 可修改 欢迎下载式,解不等即可求得m 的取值范围. 【详解】函数|1|2()21x f x ex x -=+-+,变形后可得()()2|1|1x f x e x -=+-所以()f x 的图像关于1x =对称由函数单调性可知,当1x >时,函数()f x 单调递增 因为(2)(1)f m f m <+ 所以满足|21|||m m -<变形可得()2221m m -<,展开可知23410m m -+< 因式分解可得()()3110m m --< 解不等式可得113m << 即实数m 的取值范围为1,13⎛⎫ ⎪⎝⎭故选:A【点睛】本题考查了函数对称性及单调性的综合应用,根据单调性解不等式,绝对值不等式的解法.关键在于对函数解析式进行变形及判断出对称轴,属于中档题.二.填空题:本大题共4小题,每小题5分,共20分,把答案填写在答题卡相应位置 13.设向量,a b 不平行,向量2a b λ-与2a b +平行,则实数λ=___________. 【答案】4- 【解析】 【分析】根据平面向量共线基本定理,可设()22a b a b λμ-=+,即可求得λ的值. 【详解】因为向量,a b 不平行,向量2a b λ-与2a b +平行 由平面向量共线基本定理可设()22a b a b λμ-=+则根据向量数乘运算可得22μλμ=⎧⎨-=⎩解得4λ=- 故答案为:4-教育文档 可修改 欢迎下载【点睛】本题考查了平面向量共线基本定理的简单应用,由平面向量共线求参数,属于基础题. 14.计算:23348log 4log 9-⨯=___________.【答案】2 【解析】 【分析】根据指数幂的运算及对数的换底公式,化简即可得解. 【详解】由指数幂的运算及对数的换底公式,化简可得23348log 4log 9-⨯()233333log 92log 4log 4=-⨯422=-=故答案为:2【点睛】本题考查了指数幂及对数换底公式的应用,属于基础题.15.若函数()f x 是定义在R 上的偶函数,(4)()f x f x +=,且22,01()42,12x x f x x x ⎧≤<=⎨-≤≤⎩,则函数1()()13g x f x x =--的零点个数为___________. 【答案】6 【解析】 【分析】根据()f x 为偶函数且周期为4,结合解析式可画出函数()f x 的图像.由零点定义可知,令1()()103g x f x x =--=,可得1()13f x x =+.画出()113h x x =+的图像,通过判断()f x 与()h x 图像交点个数即可判断()g x 的零点个数.【详解】因为(4)()f x f x +=,即()f x 是周期为4的周期函数()f x 为偶函数,且22,01()42,12x x f x x x ⎧≤<=⎨-≤≤⎩,画出函数图像如下图所示:令1()()103g x f x x =--= 可得1()13f x x =+. 画出()113h x x =+的图像如上图所示: 由图像可知,()f x 与()h x 图像共有6个交点 所以1()()13g x f x x =--共有6个零点 故答案为:6【点睛】本题考查了函数奇偶性及单调性的综合应用,函数零点的概念及函数图像的画法,属于中档题.16.将函数()2sin (0)3f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移3πω个单位,得到函数()y g x =的图象.若()y g x =在区间,63ππ⎡⎤-⎢⎥⎣⎦上为增函数,则ω的取值范围是___________. 【答案】30,2⎛⎤ ⎥⎝⎦【解析】 【分析】根据函数图象的平移变换求得()y g x =的解析式.根据()y g x =在区间,63ππ⎡⎤-⎢⎥⎣⎦上为增函数,可得关于ω的不等式组,解不等式组即可求得ω的取值范围. 【详解】由题意可知将函数()2sin (0)3f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移3πω个单位可得2sin ()sin 332x g x x ππωωω⎡⎤⎛⎫=+-⎪=⎢⎥⎝⎭⎣⎦若()g x 在,63ππ⎡⎤-⎢⎥⎣⎦上为增函数,且()g x 过原点 于是6232ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩解不等式组可得302ω<≤,即30,2ω⎛⎤∈ ⎥⎝⎦故答案为: 30,2⎛⎤⎥⎝⎦【点睛】本题考查了三角函数的平移变换,根据三角函数的单调性求参数的取值范围,属于中档题.三.解答题:本大题共6小题,共70分、请在答题卡相应作答,解答应写出文字说明、证明过程或演算步骤.17.设α为第二象限角,sin α. (1)求tan α的值;(2)求222sin(2)2sin sin 2παπαα-⎛⎫+- ⎪⎝⎭的值.【答案】(1)12-(2)43-【解析】 【分析】(1)根据同角三角函数关系式,结合角α为第二象限角,即可求得tan α的值.(2)由诱导公式化及正弦二倍角公式,结合齐次式形式的化简,根据(1)中的结论,代入即可求解.【详解】(1)由于,,sin 2παπα⎛⎫∈=⎪⎝⎭由同角三角函数关系式22sin cos 1αα+=于是cos α= 所以sin 1tan cos 2ααα==- (2)由诱导公式化及正弦二倍角公式,结合齐次式形式的化简可得222sin(2)2sin sin 2παπαα-⎛⎫+- ⎪⎝⎭222sin 22sin cos ααα=+224sin cos 2sin cos αααα=+24tan 2tan 1αα=+ 由(1)可知1tan 2α=-所以22144tan 422tan 131212αα⎛⎫⨯- ⎪⎝⎭==-+⎛⎫⨯-+ ⎪⎝⎭【点睛】本题考查了同角三角函数关系式的应用,诱导公式及正弦二倍角公式的综合应用,属于基础题.18.已知函数()1(1)xf x a a =+>在区间[]0,2上的最大值与最小值之差为3.(1)求a 的值;(2)证明:函数()()()F x f x f x =--是R 上的增函数. 【答案】(1)2a =(2)见解析 【解析】 【分析】(1)根据指数函数的单调性,由最大值与最小值之差为3代入即可求得a 的值. (2)先求得()F x 的解析式,再根据定义设12x x <,利用作差法即可证明函数的单调性.【详解】(1)由于1a >,所以()1xf x a =+在定义域内单调递增, 于是()f x 在区间[]0,2的最大值与最小值之差为()()203f f -= 即213a -= 又1a >,解得2a =(2)证明:()()()22xxF x f x f x -=--=-,不妨设12x x <,则()()()12122211121122222222x x x x x x x x f x f x ---=---=-+- ()121212212122122221222x x x x x x x x x x +-⎛⎫=-+=-+ ⎪⋅⎝⎭由于12x x <,所以12220x x -<,211102x x ++>于是()()120f x f x -<,即()()12f x f x < 所以()()()F x f x f x =--是R 上的增函数【点睛】本题考查了指数函数的单调性应用,根据定义证明函数单调性的方法,属于基础题.19.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)若8253f απαπ⎛⎫⎛⎫=<<⎪ ⎪⎝⎭⎝⎭,求sin α的值.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭(2)3sin 10α+= 【解析】 【分析】(1)由图像即可求得A 和T ,进而得ω.得到函数()f x 的解析式,将最高点,26π⎛⎫⎪⎝⎭代入解析式,即可求得ϕ的值,即可求得函数()f x 的解析式;(2)将2α代入解析式,即可得4sin 65πα⎛⎫+= ⎪⎝⎭,利用正弦的和角公式变形即可求得sin α的值.【详解】(1)由函数图象可知2A =,44T π=,即T π=, 所以22Tπω==,从而函数()2sin(2)f x x ϕ=+ 将,26π⎛⎫⎪⎝⎭代入()f x 解析式得232k ππϕπ+=+,26k πϕπ=+,又||2ϕπ<,故6π=ϕ 所以函数解析式()2sin 26f x x π⎛⎫=+ ⎪⎝⎭(2)因为82sin 265f απα⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭ 所以4sin 65πα⎛⎫+= ⎪⎝⎭, 又,3παπ⎛⎫∈ ⎪⎝⎭,从而7,626πππα⎛⎫+∈ ⎪⎝⎭所以3cos 65πα⎛⎫+=- ⎪⎝⎭,于是sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦4313525210+⎛⎫=⨯--⨯=⎪⎝⎭,即3sin 10α+=. 【点睛】本题考查了已知部分图像求三角函数解析式的方法,正弦和角公式的简单应用,属于基础题.20.已知函数2()cos cos 6f x x x x π⎛⎫=⋅-- ⎪⎝⎭.(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.【答案】(1)π (2)最大值为0;最小值为12- 【解析】 【分析】(1)由余弦的差角公式及余弦的二倍角公式展开,结合余弦的降幂公式及辅助角公式展开化简,由正弦函数的周期公式即可得解. (2)根据自变量x 的取值范围为,43ππ⎡⎤-⎢⎥⎣⎦,求得23x π-的范围,结合正弦函数的图像与性质即可求得函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 【详解】(1)根据余弦的差角公式及余弦的二倍角公式,结合余弦的降幂公式和辅助角公式,展开化简可得2()cos cos 6f x x x x π⎛⎫=⋅- ⎪⎝⎭21cos sin 22x x x x ⎛⎫=⋅+- ⎪ ⎪⎝⎭21sin cos 2x x x =-1sin 2cos 2444x x =--1sin 2234x π⎛⎫=--⎪⎝⎭ 所以由周期公式可知222T πππω=== 即最小正周期为π (2)因为,43x ππ⎡⎤∈-⎢⎥⎣⎦ 则52,363x πππ⎡⎤-∈-⎢⎥⎣⎦由正弦函数的图像与性质可知sin 21,32x π⎡⎛⎫-∈-⎢⎪⎝⎭⎣⎦所以11sin 223424x π⎡⎤⎛⎫----⎢⎥ ⎪⎝⎭⎣⎦ 即函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最大值为0函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最小值为12- 【点睛】本题考查了余弦的差角公式及余弦的二倍角公式,余弦的降幂公式和辅助角公式,正弦函数的图像与性质的综合应用,属于基础题.21.已知函数44()log 2x xmf x +=为偶函数. (1)求m 的值;(2)若()4()log 2xf x a a ≥⋅-在区间(1,2]上恒成立,求a 的取值范围.【答案】(1)1m =(2)170,12⎛⎤⎥⎝⎦【解析】 【分析】(1)根据偶函数定义()()f x f x =-,代入化简即可求得m 的值;(2)根据不等式恒成立,分离参数a 可得()211221x x x a +≤+-,并构造函数()()211221x x x y g x +==+-.用换元法,令21(35)x t t =+<≤,化简为打勾函数形式,根据函数单调性即可求得a 的范围;同时,满足对数函数的定义域要求,综合上述条件即可求得a 的取值范围.【详解】(1)44()log 2x x m f x --+-=,由于函数44()log 2x xmf x +=为偶函数 所以()()f x f x =-代入可得4444log log 22x x x x m m--++= 即4422x x x xm m --++=,化简可得()2222x x x xm --=-- ∴1m =(2)由题得()4441log log 22x xxa a +≥⋅-恒成立, 即4122x x xa a +≥⋅-恒成立, 所以()211221x x x a +≤+-恒成立,令()()211221x x x y g x +==+-,令21(35)xt t =+<≤则2()1123213t y h t t t t t==+=+-++-,由于函数()h t 在(]3,5上单调递减,故()()min 17512h t h == ∴1712a ≤又()210xa ->在(]1,2x ∈上恒成立 所以0a >,于是a 的取值范围是170,12⎛⎤⎥⎝⎦【点睛】本题考查了偶函数的定义及指数形式的化简,对数不等式的解法,分离参数及构造函数法求参数的取值范围,打勾函数在求最值中的应用,属于中档题. 22.设函数()cos 2sin f x x a x a =++.(1)当1a =时,求函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的值域; (2)设函数()x ϕ的定义域为I ,若0x I ∈,且()1x ϕ=,则称0x 为函数()y x ϕ=的“壹点”,已知()f x 在区间[0,2]π上有4个不同的“壹点”,求实数a 的取值范围.【答案】(1)117,28⎤⎥⎣⎦(2)01a << 【解析】 【分析】(1)由同角三角函数关系式化简()f x ,代入1a =,利用换元法将()f x 化为二次函数形式,即可根据二次函数的单调性求得在区间0,3π⎡⎤⎢⎥⎣⎦上的值域. (2)根据题意,将函数化为2()2sin sin y g x x a x a ==-++在区间[]0,2π上有4个零点.利用换元法将函数转化为二次函数形式,通过分离讨论即可求得a 的取值范围. 【详解】(1)2()cos 2sin 2sin sin 1f x x a x a x a x a =++=-+++当1a =时,2()2sin sin 2y f x x x ==-++,令sin 0t x t ⎛=<≤ ⎝⎭则2()22y g t t t ==-++所以函数()g t 在10,4⎛⎫⎪⎝⎭上单调递增,1,42⎛ ⎝⎭上单调递减∴min 3122y g ⎛⎫==⎪⎝⎭,max 11748y g ⎛⎫== ⎪⎝⎭ 所以函数()f x 在0,3π⎡⎤⎢⎥⎣⎦的值域为117,28⎤⎥⎣⎦ (2)由题意22sin sin 11x a x a -+++=在区间[]0,2π有四解,令2()2sin sin y g x x a x a ==-++,则()y g x =在区间[]0,2π上有4个零点,令sin [1,1]t x =∈-,则2()2y h t t at a ==-++.(i )若()h t 在()1,1-上有两个非零 ,则2(1)0(1)0801114(0)0h h a a a a h -<⎧⎪<⎪⎪∆=+⇒<<⎨⎪-<<⎪⎪≠⎩(ii )若()h t 的两个零点为0,1,则012a a =⎧⎪⎨=⎪⎩,无解,故舍去;(iii )若()h t 的两个零点为0,-1,则012a a =⎧⎪⎨=-⎪⎩,无解,故舍去.综上:01a <<【点睛】本题考查了三角函数式的化简变形及应用,换元法在三角函数中的应用,二次函数的综合应用,属于中档题.。

重庆市第八中学2020-2021学年高一上学期期末数学试题及答案

重庆市第八中学2020-2021学年高一上学期期末数学试题及答案

绝密★启用前重庆市第八中学2020-2021学年高一上学期期末数学试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题 1.函数cos 23y x π⎛⎫=- ⎪⎝⎭的最小正周期为( ) A .π-B .πC .2πD .4π2.若命题p :2,210x R x x ∃∈++≤,则命题p 的否定为( ) A .2,210x R x x ∃∉++> B .2,210x R x x ∃∈++< C .2,210x R x x ∀∉++>D .2,210x R x x ∀∈++>3.在0~360范围内,与70-终边相同的角是( ) A .70B .110C .150D .2904.下列函数定义域与值域相同的是( ) A .3x y = B .12log y x =C .3y x =D .tan y x =5.已知cos167m ︒=,则tan193︒=( )AB .mC .m- D .6.设函数()f x 是定义在R 上的偶函数,且当0x ≥时,3()8f x x =-,则(){}20x f x ->=( )A .{2x x <-或4}x >B .{0x x <或4}x >C .{0x x <或6}x >D .{2x x <-或2}x >7.函数()()cos f x x ωϕ=+的部分图象如图所示.将()f x 图象上所有的点向右平移1个单位长度,所得图象的函数解析式是( )A .cos 4y x ππ⎛⎫=-⎪⎝⎭B .sin 4y x ππ⎛⎫=-+⎪⎝⎭C .1cos 24y x ⎛⎫=-⎪⎝⎭D .1sin 24y x ⎛⎫=-+⎪⎝⎭8.区块链作为一种革新的技术,已经被应用于许多领域,包括金融、政务服务、供应链、版权和专利、能源、物联网等.在区块链技术中,若密码的长度设定为256比特,则密码一共有2562种可能,因此,为了破解密码,最坏情况需要进行2562次哈希运算.现在有一台机器,每秒能进行112.510⨯次哈希运算,假设机器一直正常运转,那么在最坏情况下,这台机器破译密码所需时间大约为( )(参考数据lg 20.3010≈,lg30.4771≈)A .734.510⨯秒B .654.510⨯秒C .74.510⨯秒D .28秒二、多选题9.下列各式的值小于1的是( ) A .tan15 B .4sin15cos15 C .22cos 22.51-D .2tan 22.51tan 22.5-10.下列关于函数sin 23y x π⎛⎫=- ⎪⎝⎭说法正确的是( ) A .周期为π B .增区间是5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C .图像关于点,03π⎛-⎫⎪⎝⎭对称 D .图象关于直线23x π=对称后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若小融从家到学校往返的速度分別为a 和(0)b a b <<,其全程的平均速度为v ,则下列选项正确的是( )A .a v <<B .v =C 2a bv +<<D .2abv a b=+ 12.对于函数()sin cos k k f x x x =+,k N +∈,下列说法正确的是( ) A .对任意的k ,()f x 的最大值为1 B .当2k =时,()f x 的值域中只有一个元素 C .当3k =时,()f x 在0,2内只有一个零点D .当4k =时,()f x 的值域为1,12⎡⎤⎢⎥⎣⎦三、填空题13.已知幂函数()y f x =的图像过点(2,2,则(16)f =____________. 14.已知3cos 5θ=-,,2πθπ⎛⎫∈⎪⎝⎭,则sin 3πθ⎛⎫+= ⎪⎝⎭___________.15.在周长为4π的扇形中,当扇形的面积最大时,其弧长为___________.16.已知,0,2παβ⎛⎫∈ ⎪⎝⎭,223παβ+=,tan tan 32αβ+=,则αβ-=___________.四、解答题17.已知集合{}211A x m x m =-<<+,{}24B x x =<. (1)当2m =时,求AB ,A B ;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.18.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边与单位圆交点为43(,)55P -.(1)求cos πα⎛⎫+⎪ 和sin 2α的值;(2)求3sin 2cos 5cos 3sin αααα-+的值.19.某跨国饮料公司在对全世界所有人均GDP (即人均纯收入)在0.5~8千美元的地区销售该公司A 饮料的情况调查时发现:该饮料在人均GDP 处于中等的地区销售量最多,然后向两边递减.(1)下列几个模拟函数:①2y ax bx =+;②y kx b =+;③log a y x b =+;④x y a b =+(x 表示人均GDP ,单位:千美元,y 表示年人均A 饮料的销售量,单位:L ).用哪个模拟函数来描述人均A 饮料销售量与地区的人均GDP 关系更合适?说明理由; (2)若人均GDP 为1千美元时,年人均A 饮料的销售量为2L ,人均GDP 为4千美元时,年人均A 饮料的销售量为5L ,把(1)中你所选的模拟函数求出来,并求出各个地区年人均A 饮料的销售量最多是多少. 20.已知函数()33x x f x a -=-⋅为奇函数. (1)求a 的值并判断()f x 的单调性; (2)若()813f x ->,求x 的取值范围. 21.设0a >,()0,1x ∈,函数2()log ()f x x a =+,21()log (3)2g x x a =+. (1)当1a =时,求()()f x g x -的最小值; (2)若()()f x g x <,求a 的取值范围.22.已知函数()cos 14f x x x π⎛⎫=+- ⎪⎝⎭. (1)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域; (2)是否同时存在实数a 和正整数n ,使得函数()()g x f x a =-在[]0,x n π∈上恰有2021个零点?若存在,请求出所有符合条件的a 和n 的值;若不存在,请说明理由.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

2019-2020学年重庆市第八中学高一上学期期末模拟卷(三)数学试题(解析版)

2019-2020学年重庆市第八中学高一上学期期末模拟卷(三)数学试题(解析版)
【答案】C
【解析】利用指数函数的图像即可求解。
【详解】
函数 为减函数,且图像不经过第一象限, ,即 ,故选C.
【点睛】
本题考查指数函数图像的应用,需熟记指数函数的大致图像。
5.已知函数 , 为其图象的对称中心, 、 是该图象上相邻的最高点和最低点,若 ,则 的解析式为( ).
A. B.
C. D.
【答案】C
二、填空题
13.已知 , 均为单位向量,它们的夹角为 ,那么 __________.
【答案】 .
【解析】分析:由 , 均为单位向量,它们的夹角为 ,求出数量积,先将 平方,再开平方即可的结果.
详解:∵
,故答案为 .
点睛:平面向量数量积公式有两种形式,一是 ,二是 ,主要应用以下几个方面:(1)求向量的夹角, (此时 往往用坐标形式求解);(2)求投影, 在 上的投影是 ;(3) 向量垂直则 ;(4)求向量 的模(平方后需求 ).
则 在 上为减函数,
由 ,得 ,
所以 ,
所以 ,
整理得: ,解得: 或 .
所以 .
故答案为:
【点睛】
本题考查偶函数的性质,函数的单调性,不等式求解.
15. _________________.
【答案】
【解析】由题意可得f(1)=e1﹣1=1,从而化简可得f(a)=1;再分类讨论求a的所有可能值.
【详解】
且 ,即 ,因此, ,故选A.
【点睛】
本题考查比较数的大小,这三个数的结构不一致,这些数的大小比较一般是利用中间值法来比较,一般中间值是 与 ,步骤如下:
①首先比较各数与零的大小,确定正负,其中正数比负数大;
②其次利用指数函数或对数函数的单调性,将各数与 进行大小比较,或者找其他中间值来比较,从而最终确定三个数的大小关系.

【精准解析】重庆市江北区2019-2020学年高一上学期期末考试数学试题

【精准解析】重庆市江北区2019-2020学年高一上学期期末考试数学试题

0
1
, 23
log 3
2
log 2
1 3

f x 是 R 上的减函数, a b c .
故选:A.
【点睛】本题考查利用函数的单调性比较大小,重点考查指对数比较大小,属于简单题型.
8.若不等式 log2 (x2 ax 5) 0 在 x [4, 6] 上恒成立,则 a 的取值范围是(
)
A. (, 4) ) C. (,5)
B. b a c
C. a c b
D. c b a
【答案】A
【解析】
【分析】
首先判断
1
23
, log 3
2

log
2
1 3
的大小关系,然后根据函数的单调性,判断
a,
b,
c
的大小关系.
1
1
【详解】 23 20 1,23 1 ,
0
log3
2
log3
3
1,0
log3
2
1, log2
1 3
A. 3,5,6,8
B. 2,3,7,8
C. 2,7
D. {5,6}
【答案】C
【解析】
【分析】
先求 A B ,再求 ðU A B .
【详解】由题意可知 A B 3,5, 6,8 ,ðU A B 2, 7 .
故选:C.
【点睛】本题考查集合的交并补,属于简单题型.
2.已知 为第二象限角,且 cos 3 ,则 tan 的值为(
2019—2020 学年(上)期末考试高 2022 级数学试题
一、选择题:(本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个备选选项中,只

2019-2020学年重庆八中高一(上)期中数学试卷试题及解析

2019-2020学年重庆八中高一(上)期中数学试卷试题及解析

2019-2020学年重庆八中高一(上)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项中,只有-项是符合题目要求的.1.已知集合{|42}M x x =-<<,{|23}N x x =-<<,则(M N = )A .{|43}x x -<<B .{|42}x x -<<-C .{|22}x x -<<D .{|23}x x <<2.函数1()3f x x =+的定义域为( ) A .(3-,0]B .(3-,1]C .(-∞,3)(3--⋃,0]D .(-∞,3)(3--⋃,1]3.已知函数2log ,0()2,0x x x f x x >⎧=⎨⎩…,若f (a )12=,则实数a 的值为( )A .1-BC .1-D .1或4.设()f x 是定义城为R 的偶函数,且在区间(0,)+∞上单调递减,则( ) A .(2)f f ->(1)f >(3) B .(2)f f ->(3)f >(1) C .f (1)(2)f f >->(3) D .f (3)f >(1)(2)f >-5.函数()f x x =,则( ) A .函数的最小值是0.无最大值 B .函数的最大值是1,无最小值 C .函数的最小值是0,最大值为1D .函数无最大值,也无最小值6.若()f x 为奇函数,当0x >时,2()f x x x =-+,则当0x <时,()(f x = ) A .2x x --B .2x x -C .2x x +D .2x x -+7.设120.6a =,130.6b =,2log 0.6c =,则a ,b ,c 之间的大小关系是( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>8.若函数3()()g x f x x =+是偶函数且(1)2f -=,则f (1)(= ) A .0B .1C .2D .39.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:那么方程32220x x x +--=的一个近似根(精确到0.1)为( ) A .1.2B .1.3C .1.4D .1.510.幂函数()()f x x R αα=∈的图象过点(8,4),则幂函数()f x 的大致图象是( )A .B .C .D .11.在天文学中,天体的明暗程度可以用星等或亮度来描述,两颗星的星等与亮度满足121252Em m lg E -=,其中星等为1m 的星的亮度为1E ,星等为2m 的星的亮度为2E .已知太阳的星等是26.7-,小熊座λ星的星等是6.55,则太阳与小熊座λ星的亮度的比值为( ) A .13.3B .13.310C .13.3lnD .13.3lg12.己知函数()|(1)|(01)x f x lg x a a =--<<有两个零点1x ,2x ,则有( ) A .121x x <B .1212x x x x <+C .1212x x x x =+D .1212xx x x >+二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上. 13.已知集合{|20}A x x a =+>,若1A ∉,则实数a 的取值范围是 . 14.计算42log2= .15.函数y =的增区间是 .16.已知函数27()()1x ax f x a R x ++=∈+.若对于任意的(0x ∈,)()3f x +∞…恒成立,则a 的取值范围是 .三、解答题:共70分解答应写出文字说明、证明过程或演算步骤. 17.已知集合{|14}A x x =剟,3{|log 1}B x x =>,全集为R .(Ⅰ)()R AB ð,(Ⅱ)已知集合{|1}M x x a =<<,若M A M =,M ≠∅,求实数a 的取值范围.18.已知二次函数()f x 的图象关于直线1x =对称,且(0)0f =,且()f x 的最大值为1. (Ⅰ)求()f x 的解析式:(Ⅱ)求()f x 在区间[0,](0)a a >上的最大值.19.已知函数2()4xx f x a =+在R 上总有()()f x f x -=成立.(Ⅰ)求a 的值,(Ⅱ)求()f x 在[1,2]上的值域.20.已知函数2()21()f x x ax a R =++∈. (Ⅰ)当1a =时,解不等式()4f x >,(Ⅱ)若方程()0f x =有两个不相等实根1x ,2x ,且12214x x x x +<,求实数a 的取值范围.21.已知函数212,(0,1)2()(),[1,)x mx x f x m R m x x x ⎧+-∈⎪⎪=∈⎨⎪+∈+∞⎪⎩(Ⅰ)当2m =时,判断()f x 的零点个数并说明理由:(Ⅱ)若()f x 在区间(0,)+∞上为增函数,求实数m 的取值范围.22.已知函数222()log ()(0a f x x a a =->且1)a ≠. (Ⅰ)当2a =时,解不等式f (3)(3)f x <-,(Ⅱ)关于x 的方程(2)log (2)x x a f at =-有解,求实数t 的取值范围.2019-2020学年重庆八中高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项中,只有-项是符合题目要求的.1.已知集合{|42}M x x =-<<,{|23}N x x =-<<,则(M N = )A .{|43}x x -<<B .{|42}x x -<<-C .{|22}x x -<<D .{|23}x x <<【解答】解:集合{|42}M x x =-<<,{|23}N x x =-<<, 则{|43}MN x x =-<<.故选:A .2.函数1()3f x x =+的定义域为( ) A .(3-,0]B .(3-,1]C .(-∞,3)(3--⋃,0]D .(-∞,3)(3--⋃,1]【解答】解:由题意1030x x -⎧⎨+≠⎩…,解得1x …且3x ≠-,故选:D .3.已知函数2log ,0()2,0x x x f x x >⎧=⎨⎩…,若f (a )12=,则实数a 的值为( )A .1-BC .1-D .1或【解答】解:当0x >时,21log 2x =,x ∴= 当0x …时,122x =,1x ∴=-.则实数a 的值为:1- 故选:C .4.设()f x 是定义城为R 的偶函数,且在区间(0,)+∞上单调递减,则( ) A .(2)f f ->(1)f >(3) B .(2)f f ->(3)f >(1) C .f (1)(2)f f >->(3)D .f (3)f >(1)(2)f >-【解答】解:根据题意,()f x 是定义城为R 的偶函数,则(2)f f -=(2), 又由()f x 在区间(0,)+∞上单调递减,则f (1)f >(2)f >(3),则有f (1)(2)f f >->(3), 故选:C .5.函数()f x x =,则( ) A .函数的最小值是0.无最大值 B .函数的最大值是1,无最小值 C .函数的最小值是0,最大值为1D .函数无最大值,也无最小值【解答】解:函数()f x x =,1()2x …,令t =,(0)t …,则221t x =-, ∴21122x t =+, 那么()f x 转化为22111()(1)222g t t t t =-+=-,可知()g t 的最小值为0,没有最大值, 故选:A .6.若()f x 为奇函数,当0x >时,2()f x x x =-+,则当0x <时,()(f x = ) A .2x x --B .2x x -C .2x x +D .2x x -+【解答】解:当0x <时,0x ->,则 由当0x >时,2()f x x x =-+, 即有2()f x x x -=--,又()f x 为奇函数,则()()f x f x -=-, 则有2()f x x x =+,(0)x >. 故选:C .7.设120.6a =,130.6b =,2log 0.6c =,则a ,b ,c 之间的大小关系是( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>【解答】解:00.61<<,∴指数函数0.6x y =在(,)-∞+∞单调递减,11023>>,1132006061∴<<<, 01a b ∴<<<,21>,∴对数函数2log y x =在(0,)+∞单调递增,0.61<,22log 0.6log 10∴<=, 0c ∴<, c a b ∴<<,故选:B .8.若函数3()()g x f x x =+是偶函数且(1)2f -=,则f (1)(= ) A .0B .1C .2D .3【解答】解:若函数3()()g x f x x =+是偶函数, 则()()g x g x -=, 即33()()f x x f x x --=+, 则(1)1f f --=(1)1+, 得21f -=(1)1+, 得f (1)0=, 故选:A .9.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:那么方程32220x x x +--=的一个近似根(精确到0.1)为( ) A .1.2B .1.3C .1.4D .1.5【解答】解:由表中数据中结合二分法的定义得零点应该存在于区间(1.4065,1.438)中,观察四个选项,与其最接近的是C , 故选:C .10.幂函数()()f x x R αα=∈的图象过点(8,4),则幂函数()f x 的大致图象是( )A .B .C .D .【解答】解:幂函数()()f x x R αα=∈的图象过点(8,4), 48α∴=,解得23α=,21233()()f x x x ∴==,由幂函数的图象可知C 正确, 故选:C .11.在天文学中,天体的明暗程度可以用星等或亮度来描述,两颗星的星等与亮度满足121252Em m lg E -=,其中星等为1m 的星的亮度为1E ,星等为2m 的星的亮度为2E .已知太阳的星等是26.7-,小熊座λ星的星等是6.55,则太阳与小熊座λ星的亮度的比值为( ) A .13.3B .13.310C .13.3lnD .13.3lg【解答】解:设太阳的星等是126.7m =-,天狼星的星等是2 6.55m =, 1256.5526.72Elg E ∴+=,1213.3E lg E ∴=, ∴13.31210E E = 故选:B .12.己知函数()|(1)|(01)x f x lg x a a =--<<有两个零点1x ,2x ,则有( ) A .121x x <B .1212x x x x <+C .1212x x x x =+D .1212x x x x >+【解答】解:因为函数()f x 有两个零点,故方程|(1)|(01)x lg x a a -=<<有两个解1x ,212()x x x <.设函数()|(1)|g x lg x =-,函数()x h x a =,则()|(1)|g x lg x =-与()x h x a =的图象有两个交点, 由图象知,1202x x <<<,所以11(1)x lg x a --=,22(1)x lg x a -=,因为01a <<,所以12x x a a >,得12(1)(1)lg x lg x -->-,12(1)(1)0lg x x --<,即12(1)(1)1x x --<,整理得,1212x x x x <+. 故选:B .二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上. 13.已知集合{|20}A x x a =+>,若1A ∉,则实数a 的取值范围是 (-∞,2]- . 【解答】解:由题意可得 集合A 的解集为{|}2a x x >-,又1A ∉, 由此解得12a-…,解得2a -…,故答案为:(-∞,2]-. 14.计算42log2= 16 .【解答】解:42log42216==.故答案为:16.15.函数y =的增区间是 1[1,]2- .【解答】解:令22192()24t x x x =-++=--+,由0t …可得12t -剟,函数u =[1-,1]2,减区间是1[2,2],2u y =在R 上单调递增,∴函数y =[1-,1]2,故答案为:[1-,1]2.16.已知函数27()()1x ax f x a R x ++=∈+.若对于任意的(0x ∈,)()3f x +∞…恒成立,则a 的取值范围是 [1-,)+∞ .【解答】解:根据题意及0x >,则由()3f x …,得2733x ax x +++…, 整理得4()3a x x-++…,由函数4()y x x=-+的最大值为4-,得[1a ∈-,)+∞.故答案为:[1-,)+∞.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤. 17.已知集合{|14}A x x =剟,3{|log 1}B x x =>,全集为R . (Ⅰ)()R AB ð,(Ⅱ)已知集合{|1}M x x a =<<,若M A M =,M ≠∅,求实数a 的取值范围.【解答】解:(Ⅰ){|14}A x x =剟,{|3}B x x =>, {|3}R B x x ∴=…ð,(){|13}R AB x x =剟ð;(Ⅱ)M A M =,M A ∴⊆,且M ≠∅,{|1}M x x a =<<, 14a ∴<…,∴实数a 的取值范围为(1,4].18.已知二次函数()f x 的图象关于直线1x =对称,且(0)0f =,且()f x 的最大值为1. (Ⅰ)求()f x 的解析式:(Ⅱ)求()f x 在区间[0,](0)a a >上的最大值.【解答】解(1)由已知设2()(1)1(0)f x m x a =-+<,又(0)10f m =+=,则1m =-,2()2f x x x ∴=-+;(2)由题知:()f x 的对称轴为1x = ①当01a <<时,2()()2max f x f a a a ==-+;②当1a …时,()max f x f =(1)1=. 19.已知函数2()4xx f x a =+在R 上总有()()f x f x -=成立.(Ⅰ)求a 的值,(Ⅱ)求()f x 在[1,2]上的值域. 【解答】解(1)()()f x f x -=恒成立,即2222414444141x x x xx x xx xx a a a a a --=⇒=⇒+=+++++, 1a ∴=;(2)令2x t =,则24t 剟, 则11y t t=+,1h t t =+在[2t ∈,4]上为增函数,∴1517[,]24t t +∈,故所求值域为42[,]175.20.已知函数2()21()f x x ax a R =++∈. (Ⅰ)当1a =时,解不等式()4f x >,(Ⅱ)若方程()0f x =有两个不相等实根1x ,2x ,且12214x x x x +<,求实数a 的取值范围. 【解答】解:(1)由题及1a =,得2230x x +->,解得1x >或3x <-,则不等式()4f x >的解集为(-∞,3)(1-⋃,)+∞.(2)由方程2210x ax ++=有两个不相等实根1x ,2x ,则△2440a =->,即21a >,得122x x a +=-,121x x =,因为12214x x x x +<,得2212124x x x x +<, 化简得22124x x +<,即21212()24x x x x +-<,代入得232a <. 综上,2312a <<,则实数a的取值范围6(1)(1,)-.21.已知函数212,(0,1)2()(),[1,)x mx x f x m R m x x x ⎧+-∈⎪⎪=∈⎨⎪+∈+∞⎪⎩(Ⅰ)当2m =时,判断()f x 的零点个数并说明理由: (Ⅱ)若()f x 在区间(0,)+∞上为增函数,求实数m 的取值范围.【解答】解(Ⅰ)当2m =时,214,(0,1)2()2,[1,)x x x f x x x x ⎧+-∈⎪⎪=⎨⎪+∈+∞⎪⎩, 2219()4(2)22f x x x x =+-=+-,故当01x <<,在(0,1)上单增,且1(0)02f =-<,9(1)02f =>. 由零点存在性定理,21()42f x x x =+-在(0,1)上有一个零点. 当1x >时,()0f x >.综上,()f x 有一个零点.(Ⅱ)由()f x 在区间(0,)+∞上为增函数,0001,1212m m m m m m ⎧-⎪⎪=⎨⎪⎪++⎩或或…… 解得102m 剟. 22.已知函数222()log ()(0a f x x a a =->且1)a ≠.(Ⅰ)当2a =时,解不等式f (3)(3)f x <-, (Ⅱ)关于x 的方程(2)log (2)x x a f at =-有解,求实数t 的取值范围.【解答】解:(1)当2a =时,()f x 是偶函数,在(2,)+∞上单增,由f (3)(3)f x <-,得f (3)(|3|)f x <-进而3|3|x <-,得6x >或0x <,所以不等式的解集为(-∞,0)(6⋃,)+∞;(2)因为关于x 的方程(2)log (2)x x a f at =-有解, 所以22(4)(2)x x a a log a log at -=-,化简得22log (4)log (2)x x a a a at -=-,得2224(2)4020x x x x a at a at ⎧-=-⎪->⎨⎪->⎩,因为224(2)x x a at -=-,则22(1)22x t a at +=, 所以0t >,因为0a ≠,所以22(1)222x t a t at +=>, 解得2212t t +>,即01t <<.。

重庆市第八中学2020-2021学年高一上学期期末数学试题

重庆市第八中学2020-2021学年高一上学期期末数学试题

重庆市第八中学【最新】高一上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.方程组326x y x y -=⎧⎨+=⎩的解构成的集合为( )A .{}3,0x y ==B .(){}3,0C .{}3,0D .{}0,32.点C 在线段AB 上,且23AC CB =若AB BC λ=,则λ=( ) A .23B .23-C .53D .53-3.()sin 2019-=( )A .sin39B .sin39-C .cos39D .cos39-4.已知函数2()22f x x x =-+的定义域和值域均为()[1,1]b b >,则b =( ) A .2B .3C .4D .55.若()()sin cos 0θθ-⋅-<,则θ在第( )象限. A .一、二B .二、三C .一、三D .二、四6.把函数sin3y x =的图象向左平移6π,可以得到的函数为( ) A .sin(3)6y x π=+ B .sin(3)6y x π=-C .cos3y x =D .cos(3)6y x π=+7.函数11()11f x n x x =+-的零点所在的区间为( ) A .()1,2B .()2,3C .()3,4D .()4,58.若()sin cos f x x x =+在[,]a a -是增函数,则a 的最大值是( )A .4πB .2π C .34π D .π9.函数()()log 10,1a y ax a a =->≠在定义域[]1,2上为增函数,则a 的范围( ) A .(0,1)B .(1,2)C .1[0,]2D .1(0,)210.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若0.52(log 0.2),(2),(4)a g b g c g ===,则,,a b c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .a b c <<11.下列函数中,既没有对称中心,也没有对称轴的有( )①51x y x -=+②3sin 4cos y x x =-③1)y =④21xy =- A .3个B .2个C .1个D .0个12.设正实数a,b 均不为1且log a 2>log b 2,则关于二次函数f(x)=(x −a)(x −b)+(x −b)(x −1)+(x −1)(x −a),下列说法中不正确的是( ) A .三点(1,f(1)),(a,f(a)),(b,f(b))中有两个点在第一象限 B .函数f(x)有两个不相等的零点 C .f(a+b+13)≤f(a)+f(b)+f(1)3D .若a >b ,则f(0)>f(2)二、填空题13.已知幂函数y x α=的图象过点(14,2),则α=________. 14.计算:4839(log 3log 27)(log 2log 4)+⋅+=________. 15.设3sin(),452ππαα+=<,则cos2=α________. 16.已知OPQ 是半径为1,圆角为6π扇形,C 是扇形弧上的动点,ABCD 是扇形的接矩形,则2AB AD +的最大值为________.三、解答题17.设集合{}2320A x x x =-+<,集合2}{0|21x a B x x -=>+.(1)若a =求A B ;(2)若A B B ⋃=,求实数a 的取值范围.18.已知5sin()cos tan()2()tan sin()2f πααπααπαα+⋅⋅-=⋅-. (1)求()3f π的值;(2)若1(0,),sin()263ππαα∈-=求()f α的值. 19.已知函数3()31x x mf x -=+是定义在实数集R 上奇函数.(1)求实数m 的值;(2)若x 满足不等式45240x x -⋅+≤,求此时()f x 的值域.20.已知定义在R 上的函数()()2sin 0,0,0()x A f x ωϕωϕπ=+>><<,()y f x =图象上相邻两个最低点之间的距离为π,且()012f π=.(1)求()f x 的解析式; (2)若2()4sin 20,(0,)62f x x x m x ππ--++≥∈恒成立,求实数m 的取值范围.21.已知函数()()2log f x mx n =+的图象经过点()(),1,04,2P Q .(1)求函数()y f x =的表达式;(2)如图所示,在函数()f x 的图象上有三点()()()()()(),,1,1,2,2A a f a B a f a C a f a ++++,其中2a ≥,求ABC ∆面积S 的最大值.22.设两实数,a b 不相等且均不为0.若函数()y f x =在[],x a b ∈时,函数值y 的取值区间恰为11[,]b a,就称区间[],a b 为()f x 的一个“倒域区间”.已知函数()222,[2,0)2,[0,2]x x x g x x x x ⎧+∈-=⎨-+∈⎩.(1)求函数()g x 在[]1,2内的“倒域区间”;(2)若函数()g x 在定义域[]22-,内所有“倒域区间”的图象作为函数()y h x =的图象,是否存在实数m ,使得()y h x =与22(2)3,(0)tan 2tan ,(0)2x m x x y x x x π⎧+-+≥⎪=⎨--<<⎪⎩恰好有2个公共点?若存在,求出m 的取值范围:若不存在,请说明理由.参考答案1.B 【分析】解方程组,可得方程组的解,再表示成集合即可. 【详解】因为方程组326x y x y -=⎧⎨+=⎩解方程可得30x y =⎧⎨=⎩表示成集合形式为(){}3,0故选:B 【点睛】本题考查了方程解的集合表示形式,注意要写成点坐标,属于基础题. 2.D 【分析】根据点C 在线段AB 上,且23AC CB =,可得C 与AB 的位置关系,进而根据AB BC λ=即可得λ的值. 【详解】因为点C 在线段AB 上,且23AC CB =所以A 、B 、C 的位置关系如下图所示:因为AB BC λ=则53AB BC =- 所以53λ=-故选:D 【点睛】本题考查了向量的数乘运算及线段关系的判断,根据题意画出各个点的位置是关键,属于基础题。

重庆八中2019-2020学年高一上学期期末数学试卷 (有解析)

重庆八中2019-2020学年高一上学期期末数学试卷 (有解析)

重庆八中2019-2020学年高一上学期期末数学试卷一、选择题(本大题共12小题,共60.0分)1. 已知全集U ={x|x ≤9,x ∈N +},集合A ={1,2,3},B ={3,4,5,6},则∁U (A ∪B)=( )A. {3}B. {7,8}C. {7,8,9}D. {1,2,3,4,5,6}2. 下列函数中既是奇函数又在区间,[−1,1]上单调递减的是( )A. y =sinxB. y =−|x +1|C. y =ln 2−x 2+xD. y =12(2x +2−x ) 3. 若tanα=13,tan(α+β)=12,则tanβ=( )A. 17B. 16C. 57D. 56 4. 设a =log 0.70.8,,则( ) A. b >a >0 B. a >0>b C. a >b >0 D. b >0>a5. 在△ABC 中,D 为AB 中点,E 为CD 中点,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,若AE ⃗⃗⃗⃗⃗ =λa ⃗ +μb ⃗ ,则λμ的值是( )A. 14B. 12C. 2D. 46. 函数f(x)=xsinx 的图象大致是( )A. B.C. D.7. 若函数f(x)=log 12(−x 2+4x +5)在区间(3m −2,m +2)内单调递增,则实数m 的取值范围为( )A. [43,3]B. [43,2]C. [43,2)D. [43,+∞)8.函数f(x)=cos(2x+π6)的一条对称轴为()A. π6B. 5π12C. 2π3D. −2π39.函数f(x)=sin(x+π12)+sin(x+5π12)最大值是()A. 2B. 32C. √3D. 2√310.已知函数,,若对任意x1∈[2,+∞),总存在x2∈R,使f(x1)=g(x2),则实数a的取值范围是()A. B. C. D. [1,32]∪[74,2]11.已知cosα=35,α∈(−π2,0),则sin2α的值为()A. −1225B. −2425C. 1225D. 242512.已知函数f(x)=e x−e−x,若,则实数m的取值范围是()A. (1,2)B. (1,32) C. (0,1) D. (0,2)二、填空题(本大题共4小题,共20.0分)13.已知a⃗=(3,2),b⃗ =(2,−1),若λa⃗+b⃗ 与a⃗+λb⃗ 平行,则λ=______ .14.计算:lg25+2lg2+823=______.15.已知定义在R上的偶函数y=f(x),当x≥0时,f(x)=lg(x2−3x+3),则f(x)在R上的零点个数为________.16.设函数y=sinωx(ω>0)在区间[−π5,π3]上是增函数,则ω的取值范围为__________.三、解答题(本大题共6小题,共70.0分)17.已知sinα=√55,且α是第一象限角(Ⅰ)求cosα的值(Ⅱ)求tan(π+α)cos(π−α)−sin(π2+α)的值.18.已知函数f(x)=a x(a>0且a≠1)的图象过点(−2,4).(1)求函数f(x)的解析式;(2)若f(2m+5)<f(3m+3),求m的取值范围.19.设函数f(x)=Acos(ωx+φ)(A,ω,φ为常数,且A>0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f(x)的表达式;(2)当−π12⩽α⩽5π12时,求f(a)的取值范围.20. 已知函数f (x )=−√2sin (2x +π4)+6sinxcosx −2cos 2x +1,x ∈R(1)求f (x )的最小正周期;(2)求f (x )在区间[0,π2]上的最大值和最小值.21. 已知函数f(x)的定义域为R ,且对于∀x ∈R ,都有f(−x)=f(x)成立.(1)若x ≥0时,f(x)=(12)x ,求不等式f(x)>14的解集;(2)若f(x +1)是偶函数,且当x ∈[0,1]时,f(x)=2x ,求f(x)在区间[2015,2016]上的解析式.22. 已知函数f(x)=2asin (2x −π3)+b 的定义域为[0,π2],函数的最大值为1,最小值为−5,求a和b 的值.-------- 答案与解析 --------1.答案:C解析:解:全集U={x|x≤9,x∈N+}={1,2,3,4,5,6,7,8,9},集合A={1,2,3},B={3,4,5,6},A∪B={1,2,3,4,5,6};∴∁U(A∪B)={7,8,9}.故选:C.化简全集U,根据并集与补集的定义,写出运算结果即可.本题考查了集合的化简与运算问题,是基础题.2.答案:C解析:解:y=sinx是奇函数,但是,[−1,1]上单调增函数.y=−|x+1|不是奇函数,对于y=ln2−x2+x ,因为f(−x)=ln2+x2−x=−ln2−x2+x=−f(x),所以y=ln2−x2+x是奇函数,y=ln2−x2+x=ln(42+x−1)在[−1,1]上单调减函数,y=12(2x+2−x)是偶函数,[−1,1]上单调递增.故选:C.判断函数的奇偶性,以及函数的单调性推出结果即可.本题考查函数的单调性以及函数的奇偶性的应用,考查计算能力.3.答案:A解析:tanβ=tan[(α+β)−α]=tan(α+β)−tanα1−tan(α+β)tanα=12−131+12×13=17.4.答案:B解析:本题考查对数的比较大小问题,属于基本题型.根据对数函数的单调性可知a,b的大小.解:因为0.7<1, 函数在定义域上单调递减, 所以.因为1.1>1, 函数在定义域上单调递增, 所以, 所以a >0>b .故选B . 5.答案:B解析:本题考查了平面向量的基本定理,属于基础题.用AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 表示出AE ⃗⃗⃗⃗⃗ ,得出λ,μ的值即可得出答案.解:∵D 为AB 中点,E 为CD 中点,∴AE ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ +14AB ⃗⃗⃗⃗⃗ =12b ⃗ +14a ⃗ ,∴λ=14,μ=12,∴λμ=12. 故选:B .6.答案:A解析:解:函数f(x)=xsinx 满足f(−x)=−xsin(−x)=xsinx =f(x),函数的偶函数,排除B 、C , 因为x ∈(π,2π)时,sinx <0,此时f(x)<0,所以排除D ,故选:A .利用函数的奇偶性排除选项,然后利用特殊值判断即可.本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力. 7.答案:C解析:本题主要考查合函数的单调性.解题时需结合二次函数的单调性,注意定义域. 解:设,−1<x <5,因为函数f(x)=log 12(−x 2+4x +5)在区间(3m −2,m +2)内单调递增, 所以3m −2≥−1且m +2≤5,且根据复合函数的单调性,可得:{3m −2≥23m −2<m +2. ∴43≤m <2 故选C .8.答案:B解析:本题主要考查余弦函数的图象的对称性,属于基础题.由条件利用余弦函数的图象的对称性,得出结论.解:对于函数y =cos(2x +π6),令2x +π6=kπ,求得x =12kπ−π12,k ∈Z ,故当k =1时,它的图象的一条对称轴方程为x =5π12.故选:B . 9.答案:C解析:本题考查诱导公式的应用,三角函数的最值,正弦函数的有界性,考查计算能力,利用诱导公式化简函数的解析式,通过正弦函数的最值求解即可,解:函数.故选C10.答案:C解析:本题考查求函数值域,以及存在性问题,恒成立问题求参数的取值范围,难度较大.解:函数,,当x∈[2,+∞)时,f′(x)>0,f(x)在x∈[2,+∞)上为增函数,值域为[1,+∞);,当x≥0时,g(x)∈[2−a,2+a];当x<0时,g(x)∈[2a,+∞),由题意得2a<1或{2+a≥2a2−a≤1,所以a应满足.故选C.11.答案:B解析:解:∵cosα=35,α∈(−π2,0),∴sinα=−√1−cos2α=−45.∴sin2α=2sinαcosα=2×35×(−45)=−2425.故选:B.由已知利用同角三角函数基本关系式可求sinα,进而利用二倍角的正弦函数公式即可计算得解.本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,属于基础题.12.答案:D解析:本题考查函数的奇偶性和单调性的综合应用.首先利用函数的奇偶性和单调性的定义,判断函数f(x)的奇偶性和单调性,得到,解不等式,得到答案.解:因为f(−x)=e−x−e x=−f(x),所以f(x)是奇函数,且单调递增,所以,即,得,所以0<m<2.故选D.13.答案:±1解析:解:∵a⃗=(3,2),b⃗ =(2,−1)∴λa⃗+b⃗ =(3λ+2,2λ−1),a⃗+λb⃗ =(3+2λ,2−λ)∵λa⃗+b⃗ //a⃗+λb⃗∴(3λ+2)(2−λ)=(2λ−1)(3+2λ)解得λ=±1故答案为:±1利用向量的运算法则求出两个向量的坐标,再利用向量共线的充要条件列出方程,解方程得值.本题考查向量的坐标形式的运算法则、向量平行的坐标形式的充要条件.14.答案:6解析:解:原式=lg(25×22)+23×23=2+4=6.故答案为:6.利用指数与对数运算性质即可得出.本题考查了指数与对数运算性质,考查了推理能力与计算能力,属于基础题.15.答案:4解析:本题考查函数的零点的个数的求法,函数的奇偶性的应用,考查计算能力.利用函数是偶函数求出xx≥0时,函数的零点个数,即可得到结果.解:当x ≥0时,f(x)=lg(x 2−3x +3),函数的零点由:lg(x 2−3x +3)=0,即x 2−3x +3=1,解得x =1或x =2.因为函数是定义在R 上的偶函数y =f(x),所以函数的零点个数为:4个.故答案为4.16.答案:(0,32]解析:本题考查正弦函数的性质,结合正弦函数的性质得[−π5ω,π3ω]⊆[−π2,π2],可得结果.解:∵x ∈[−π5,π3],∴ωx ∈[−π5ω,π3ω];因为函数y =sinωx(ω>0)在区间[−π5,π3]上是增函数,所以[−π5ω,π3ω]⊆[−π2,π2],则{−π5ω≥−π2π3ω≤π2, 即{ω≤52ω≤32,又ω>0, 所以ω的取值范围为(0,32].故答案为(0,32].17.答案:解:(Ⅰ)sinα=√55,且α是第一象限角 cosα=√1−sin 2α=2√55 (Ⅱ)tanαcos(π−α)−sin(π2+α)=−tanαcosα−cosα=−sinα−cosα=−√55−2√55=−3√55.解析:(Ⅰ)利用同角三角函数的基本关系式直接求cosα的值(Ⅱ)通过弦切互化以及诱导公式直接求tan(π+α)cos(π−α)−sin(π2+α)的值即可.本题考查诱导公式的应用,同角三角函数的基本关系式,考查计算能力. 18.答案:解:由题意可得f(−2)=a −2=4,其中a >0且a ≠1,解得a =12,所以f (x )=(12)x ; (2)由(1)可知f(x)在R 上是减函数,因为f(2m+5)<f(3m+3),所以2m+5>3m+3,解得m<2,所以m的取值范围为(−∞,2).解析:本题考查了函数的单调性,指数函数,属于基础题.(1)直接代入点即可得出f(x)解析式;(2)根据函数的单调性计算即可.19.答案:解:(1)由题图知A=√3,又因为3T4=7π12−(−π6)=3π4,ω>0,所以T=π=2πω,即ω=2,所以f(x)=√3sin(2x+φ),将点(7π12,−√3)代入,得2×7π12+φ=3π2+2kπ(k∈Z),所以φ=π3+2kπ(k∈Z),又−π2<φ<π2,所以φ=π3,所以f(x)=√3sin(2x+π3);(2)当α∈[−π12,5π12]时,2α+π3∈[−π6,7π6],所以sin(2α+π3)∈[−12,1],即f(α)的取值范围为[−√32,√3].解析:本题主要考查由函数的图象求函数解析式的方法,考查函数y=Asin(ωx+φ)、正弦函数的图象和性质.(1)由图象知A、周期T,利用周期公式可求ω,由点(7π12,−√3)在函数图象上,结合范围−π2<φ<π2,可求φ,从而解得函数解析式;(2)由α∈[−π12,5π12],可求2α+π3∈[−π6,7π6],利用正弦函数的图象和性质,即可求得f(α)的取值范围.20.答案:解:(1)∵函数,∴它的最小正周期为2π2=π.(2)因为x∈[0,π2]上,2x−π4∈[−π4,3π4],故当2x−π4=−π4时,f(x)取最小值−2,当2x−π4=π2时,f(x)取最大值2√2,故函数f(x)在区间[0,π2]上的最大值为2√2,最小值为−2.解析:本题主要考查三角恒等变换,正弦函数的周期性、定义域和值域,属于中档题.(1)由条件利用三角恒等变换求得f(x)的解析式,再利用正弦函数的周期性求得f(x)最小正周期.(2)由条件利用正弦函数的定义域和值域,求得f(x)在区间[0,π2]上的最大值和最小值.21.答案:解:由题意:函数f(x)的定义域为R,且对于∀x∈R,都有f(−x)=f(x)成立.∴f(x)是偶函数.(1)当x≥0时,f(x)=(12)x,那么:x <0时,则−x >0,f(−x)=(12)−x , ∵f(−x)=f(x),故得x <0时,f(x)=(12)−x ,∴f(x)在定义域为R 上的解析式f(x)=(12)|x|,不等式f(x)>14转化为:(12)|x|>(12)2,∴|x|<2,解得:−2<x <2,∴不等式f(x)>14的解集为{x|−2<x <2}.(2)由f(x +1)是偶函数,可得f(x)是周期为1的函数.即f(x +1)=f(x),当x ∈[0,1]时,f(x)=2x , ∵x ∈[2015,2016]上,那么:x −2015∈[0,1]上;∴f(x)=2x−2015;故得f(x)在区间[2015,2016]上的解析式f(x)=2x−2015;解析:(1)由题意求出f(x)在定义域为R 上的解析式,再求解f(x)>14的解集;(2)由f(x +1)是偶函数,可得f(x)是周期为1的函数.当x ∈[0,1]时,f(x)=2x ,可以得出f(x)在区间[2015,2016]上的解析式.本题考查了函数的奇偶性的运用和周期函数解析式的求法.属于基础题. 22.答案:解:由题意可得a ≠0,因为0≤x ≤π2,所以−π3≤2x −π3≤2π3,所以−√32≤sin (2x −π3)≤1. 若a >0,则{2a +b =1−√3a +b =−5, 解得{a =12−6√3b =−23+12√3; 若a <0,则{2a +b =−5−√3a +b =1, 解得{a =−12+6√3b =19−12√3;综上知{a =12−6√3b =−23+12√3或{a =−12+6√3b =19−12√3.解析:本题考查了三角函数的图象与应用问题,解题时应根据三角函数的最值与值域的关系,利用分类讨论的方法,求出a 和b 的值,属于基础题.由x 的取值范围,求出2x −π3的取值范围,从而求出sin(2x −π3)的取值范围;讨论a >0、a <0时,函数f(x)的最值问题,从而求出a 和b 的值.。

2019-2020学年重庆八中高一(上)期中数学试卷 (含答案解析)

2019-2020学年重庆八中高一(上)期中数学试卷 (含答案解析)

2019-2020 学年重庆八中高一(上)期中数学试卷一、选择题(本大题共 12 小题,共 60.0 分) 1. 已知集合 => 0}, =− 4 ≥ 0},则∪ = ( )2 A. B. (−∞, −2] ∪ (0,+∞) (−∞, −2] ∪ [2, +∞) C. D. [3, +∞)(0, +∞)2.= √ + 4 +1的定义域为( )2−4A. C.B. [−4, +∞) ≥ −4且 ≠ ±2} D.≥ −4且 ≠ 2} ≥ 2} 2 , < 13. 已知= { − 1), ≥ 1,则27) = ()C. D. A. B. 74727874. 若函数 =解集是( )是定义在 上的偶函数,且在(−∞, 0]上单调递减,= 0,则 − > 0的R A. B. (−2,2) (−∞, 1) ∪ (5, +∞) C. D. (1,5)(−∞, −2) ∪ (2, +∞)5. 函数= − 1 + 3 −的最大值是( )√ √ A. B. C. C. D. 23√3√2=+ 1,则ℎ(−1)等于 ( )6. 已知函数为奇函数,且当 > 0时,2A. B. D. −21 2= (1) 7. 已知 3, , ,则( ) 1 3 = log3 = 3 1 33A. B. C. D. < << << << <)8. 已知函数=+ 为偶函数,且= 4,则= (A. B. C. D.2−44−29. 若函数=− − 1在区间[1,1.5]内的一个零点附近函数值用二分法逐次计算列表如下 311.5 1.25 1.375 1.3125 −10.875−0.29690.2246−0.05151那么方程 3 −− 1 = 0的一个近似根(精确度为 0,1)为( )A. B. C. D. 1.2 1.3125 1.4375 1.2510. 幂函数 =的图像过点(8,2 2),则幂函数 =的图像是( )√B. B.D. D.11.12.1)log=(24A.12C.1−2−22+1)+−2,>0已知>2,函数={,若函数有两个零点,,则()+4−(1)≤012B.D.A.C.−=0>2,=1−>2,>2,1212−|=2>2,−|=31212二、填空题(本大题共4小题,共20.0分)13.14.已知集合=−−1},且3∈,实数=______.______.+8=计算:函数2+315.16.1)2=(2的单调递增区间是______.2已知函数=,∈若对于任意的∈∗,f≥4恒成立,则的取值范围是a______.三、解答题(本大题共6小题,共72.0分)17.已知集合=≤≤7},=<−1<19},求:∪(2)(∁∩.18.求函数=(4−2−+在区间[0,1]上的最大值.19. 3 已知定义域为 的函数R=是奇函数.3(1)求 的值;(2)若在 上是增函数,求不等式 R1) < 0的解集.20. 已知二次函数 = 22∈ .(1)若该二次函数有两个互为相反数的零点,解不等式 1 ≥ 0;2 2(2)若关于 的方程1 = 0的两个实根均大于2 且小于 4,求实数 的取值范围. x 22t= {11,> 021. 已知 ∈ ,函数.1,≤ 0(1)求的值;(2)证明:函数 在(0, ∞) 上单调递增;的零点.(3)求函数22.1已知函数=.41(1)若函数=是奇函数,求实数的值;a(2)若关于的方程−−32=1在区间(0,2)上有解,求实数的取值范2x t 围.-------- 答案与解析 --------1.答案:A解析:【分析】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.先分别求出集合M,N,再利用并集定义求解.【解答】解:∵集合=−4≥0}=>0},=≥2或≤−2},2∴∪=故选:A.2.答案:B≤−2或>0}=(−∞,−2]∪(0,+∞).解析:【分析】本题考查了二次根式的性质,求函数的定义域问题,是一道基础题.根据二次根式的性质及分母不为0,从而求出x的范围.【解答】+4≥0解:由题意得:{,−4≠02解得:≥−4,且≠±2,故选:B.3.答案:B解析:【分析】本题主要考查分段函数的函数值的求法,属于基础题.先判断与1的大小关系,再代入相应区间的解析式,求出函数值即可.【解答】解:由于又由,则,则,则,,又由.故选B.4.答案:B解析:【分析】本题考查函数奇偶性与单调性的综合应用,属基础题.关键是利用函数的奇偶性与单调性分析函数的符号,把【解答】−>0转化为|3−>2,从而得解.解:因为函数=是定义在R上的偶函数,且在(−∞,0]上单调递减,所以()在[0,+∞)上是增函数,因为(3−)=(|3−|),=0,由已知得(3−)=(|3−|)>(2),所以|3−|>2,解得>5或<1.故选:B.5.答案:A解析:【分析】本题考查求函数的最值,属于基础题.将已知函数平方,可得到一个二次函数,根据二次函数的性质即可得到原函数的最值.【解答】解:函数的定义域为[1,3],=2+2√−1)(3−=2++2−3,2由二次函数的性质可得当=2时2取得最大值,最大值为4,所以的最大值为2.故选A.6.答案:A解析:【分析】本题考查函数的奇偶性及运用,解题时要注意自变量的范围,正确应用解析式求函数值,属于基础题.由奇函数定义得,ℎ(−1)=−ℎ(1),根据>0的解析式,求出ℎ(1),从而得到ℎ(−1)【解答】解:因为x>0时,h(x)=x 2+1,所以h(1)=1+1=2.又h(x)为奇函数,所以h(−1)=−h(1)=−2.故选A.7.答案:C解析:【分析】本题主要考查指数函数与对数函数的性质,为基础题.利用指数函数与对数函数的性质求解即可.【解答】解:由指数函数的性质可得=(1)∈(0,1),331,=3>3=13由对数函数的性质可得,所以<<.故选C.8.答案:C解析:本题考查了函数的奇偶性,属于基础题,难度较小.由为偶函数,得==+(−3)=1,从而得解.【解答】解:由题意,因为为偶函数,且=+(−3)=1.=4,所以=所以=+3=1,解得=−2.故选C.9.答案:B解析:【分析】本题考查二分法求方程的近似解,求解关键是正确理解掌握二分法的原理与求解步骤,根据其原理得出零点存在的区间,找出其近似解.由二分法的定义进行判断,根据其原理--零点存在的区间逐步缩小,区间端点与零点的值越越接近的特征选择正确选项.【解答】解:由表中数据中结合二分法的定义得零点应该存在于区间(1.25,1.375)中,观察四个选项,与其最接近的是B.故选B.10.答案:C解析:【分析】本题考查直线与抛物线的位置关系,考查学生的计算能力,比较基础.先利用已知条件求出函数=的解析式,再由解析式确定的图像【解答】解:设=,根据题意有22=8,√1则=,2即12,结合选项可知C正确.=11.答案:A解析: 【分析】本题考查对数运算,属于基础题. 【解答】1= log 2 = 422 = 2.解:log 2 故选 A .2 212.答案:D解析:解:当 > 0时, = log + 1) + 2,令 = 0,则有log + 1) = 3 + 1),不妨设= 3 + 1)],其根为 ;1 当 ≤ 0时, = + 4 (1),令 = 0,则有(1)= 3 ++ 1),即 + 1)] = 3,即: = 3;不妨设其根为 ,则有 + 1) +2 1212 = 3,因而答案为 D .同理,若 > 0时的零点为 , ≤ 0时的零点为 ,则有 2 1 21故选:D . 【分析】通过当 > 0时,不妨设其根为 ;当 ≤ 0时,不妨设其根为 ,推出 = 3;转化求出结果1 2 1 2即可.本题考查函数的零点的应用,考查函数与方程的思想,是中档题.13.答案:2 或 6解析:解:∵ = 1},且3 ∈ ;∴3 = 3时, = 6, = {3,11},满足条件; 1 = 3时, = 2, = {1,3} ,满足条件;∴ = 2或 6. 故答案为:2 或 6. 根据3 ∈ ,及 = 证是否满足3 ∈ 即可.1},从而得出3 = 3,或1 = 3,解出 a ,并求出集合 A ,验考查列举法的定义,以及元素与集合的关系,集合元素的互异性.14.答案:6解析:解:原式 2. = lg(25 × 2 ) + 23× = 2 + 4 = 6 2 3故答案为:6.利用指数与对数运算性质即可得出.本题考查了指数与对数运算性质,考查了推理能力与计算能力,属于基础题.15.答案:(−∞, −1)解析: 【分析】本题主要考查了复合函数的单调区间,以及指数函数及其性质,属于基础题. 根据复合函数的单调性,同增异减,得到答案. 【解答】 解:设 =2 + ,在(−∞, −1)上为减函数,在(−1, +∞)为增函数,1) 因为函数 = ( 是减函数,21) 2所以函数= ( 2的单调递增区间(−∞, −1),故答案为(−∞, −1).1, +∞)316.答案:[ 2解析:解:∵函数 =,且 ≥ 4,对于任意的 ∈ ∗恒成立f f 2= − 2= + 1) +8] + 6即 ≥ − 令=+ 1) +8 ] + 6,则≤ 6 − 4√2,当且仅当 = 2√2 − 1时取最大值又∵ ∈∗,∴当 = 2时, 取最大值131故 ≥ 31, +∞)3即 的取值范围是[ a 1, +∞)3故答案为:[ 2根据已知中函数 =, ∈ 若对于任意的 ∈ ∗,f≥ 4恒成立,我们可将其转化 f + 1) +8 ] + 6恒成立,进而将其转化为 ≥=+ 1) +8 ] + 6,解不等式为 ≥可得 的取值范围.a 本题考查的知识点是函数恒成立问题,其中将其转化为函数的最值,是转化思想在解答此类问题时 的亮点,应引起大家的注意.17.答案:解: =< − 1 < 19} = < < 10},(1)集合 = ≤ ≤ 7}, =<< 10}, ∴ ∪ = << 10};(2)∁ ∴ (∁= < 3或 > 7}, =<< 10},∩ =<< 3或7 < < 10}.解析:化简集合 ,根据交集、并集和补集的定义计算即可.B本题考查了集合的化简与运算问题,是基础题.218.答案:当 > 时,≤ 2 = ;当 时, = 2 −m a xm a x3 344= == ②4 解析:①当4 − = 0,即 = 时, =+ 在[0,1]上为减函数,∴ m a x33341< 0,则函数当 > 时,4 −< 0,函数的图像开口向下,对称轴为直线 = 在区间3=③当 < 时,4 −4 [0,1]上为减函数,∴ = > 0,函数的图像开口向上,对 m a x 31> 0当0 <1≤ 1 ≤ 2当1> 1 2<<3称轴为直线 =,即 时,= = 2 −; ,即 m a xm a x232 43> 2≤ 2 时, = = 。

重庆八中 2023——2024 学年度(上)期末考试高一年级数学模拟试卷

重庆八中 2023——2024 学年度(上)期末考试高一年级数学模拟试卷

重庆八中2023——2024学年度(上)期末考试高一年级数学模拟试题一.单选题:题号12345678答案DDCDBCAA3.解:设扇形的圆心角的弧度数为α,由扇形的面积公式:212S R α=,因为扇形的半径长为2R =,面积为4S =,所以扇形的圆心角的弧度数是2.故选.C 4.解:根据题意可得02815n C =⋅,则当10A I =时,101528n n t ⋅=⋅,所以,20233log 2log 23228(28(28(56h 2332n t -=⋅=⋅=⋅=,即当放电电流10A I =,放电时间为56h .故选:D .5.解:函数()()26f x ln x x =---,0x <时函数是连续函数,(2)2460f ln -=+-< ,()1260f e e -=+->,故有(2)()0f f e --< ,根据函数零点的判定定理可得,函数()()26f x ln x x =---的零点所在的区间为(,2)e --,故选:B .6.解:由于函数2tan()63y x ππ=-+在一个周期内单调递减,令()2632k x k k Z ππππππ-+<+<+∈,解得6561()k x k k Z -<<+∈,故函数2tan()63y x ππ=-+的单调递减区间为(65k -,61)()k k Z +∈.故选:C .7.解:根据题意,()f x 对任意的x R ∈都有51()(22f x f x +=-,则有(3)()f x f x +=,即函数()f x 是周期为3的周期函数,则(2020)(16733)f f f =+⨯=(1),(2019)(0)f f =,又由函数()f x 是定义在R 上的奇函数,则(0)0f =,又由当3(,0)2x ∈-时,2()log (1)f x x =--,则2(1)log (11)1f -=-+=-,则f (1)(1)1f =--=,故(2020)(2019)10f f f -=-=(1)(0)1f -=;故选:A .8.解: 函数(1)y f x =+是偶函数,(1)y f x ∴=+的图象关于y 轴对称,(1)y f x =+ 向右平移1个单位得到()y f x =,()y f x ∴=的图象关于直线1x =对称,若对任意a 、[1,)()b a b ∈+∞≠总有()()()()af b bf a af a bf b +<+成立,即()()()()0a b f a f b -->,()f x ∴在[1,)+∞上单调递增,()f x ∴在(,1)-∞上单调递减,因此由()(2)4f x f <,可得2141x -<-,即213x -<,所以3213x -<-<,解得12x -<<,即不等式()(2)4f x f <的解集为(1,2)-,故选A .二.多选题题号9101112答案BCDABDABDCD9.解:cos()cos θθ-=,A 不符合题意;cos()cos πθθ+=-,B 符合题意;sin(cos 2πθθ-=-,C 符合题意;3sin()cos 2πθθ-=-,D 符合题意.故选:BCD .10.解:对于A ,1113a a b a b a a b a b a b ++=+=+++= ,当且仅当12a b ==时取等号,故A 项正确;对于B ,2323()4545a b a b a b a b ab ab ab b a++++++===+,所以454545()()99a b a b b a b a b a+=++=+++ ,当且仅当2a =,即5a =-,4b =-时取等号,故B 项正确;对于C ,211222125(1)(21)(22)(21)(2228a b a b a b +++++=++⨯= ,当且仅当2221a b +=+,即14a =,34b =时取等号,故C 项错误;对于D ,因为0a >,0b >,1a b +=,所以01a <<,22244(1)(2)a b a a a +=+-=-,又因为01a <<,所以22(2)(02)4a -<-=,即244a b +<,故D 项正确.故选:ABD .11.解: 将()sin 2f x x =的图象向右平移(0)ϕϕ>个单位长度,得到函数()sin(22)g x x ϕ=-的图象,故当4πϕ=时,()sin(22)sin(2)cos 22g x x x x πϕ=-=-=-,为偶函数,故A 正确;当12x π=时,求得(sin(2)16123f x πππ+=⨯+=,为最大值,可得12x π=是函数(6f x π+的一条对称轴,故B 正确;()sin(222)sin(2cos 2422g x x x x πππϕϕϕ+-=+--=-=- ,当[4x π∈,23π,2[2x π∈,43π,故()4g x πϕ+-没有单调性,故C 错误;若函数()1sin(22)1y g x x ϕ=+=-+的一个对称中心为(3π,1),则223k πϕπ⨯-=,k Z ∈,即23k πϕπ=-+,令1k =-,可得56πϕ=,故D 正确,故选:ABD .12.解: 函数()cos([])2f x x π=,其中[]x 表示不超过x 的最大整数,由10x -< ,[]1x =-,()1f x =;由01x < ,[]0x =,()1f x =;由12x < ,[]1x =,()0f x =;由23x < ,[]2x =,()1f x =-,由34x < ,[]3x =,()0f x =;⋯,11()(0)122f f -+==,11(22f f +=(1)0=,1111((2222f f -+≠+,函数1(2y f x =+不是偶函数,所以A 不正确;则()f x 的值域为{1-,0,1},故B 不正确;由上面的分析可得()f x 为周期函数,且最小正周期4T =,故C 正确;()f x 与7log |1|y x =-的图象恰有一个公共点,故D 正确.故选:CD .三.填空题13.1(,1)2-;14.8-;15.9[,)4+∞;16.015.解:对x R ∀∈,()3f x 恒成立,即为13x x ae e + ,由0xe >,可得231x xa e e - 恒成立,设2231139()()24x x x g x e e e =-=--+,当132x e =即23x ln =时,()g x 取得最大值94,可得94a ,即有a 的取值范围为9[4,)+∞.16..解: (0,2cos()24ππααα∈=-,2sin 2sin )2ααα∴=+,两边平方可得:21sin 2(1sin 2)2αα=+,即22sin 2sin 210αα--=,2(0,)απ∈ ,sin 20α>,∴解得sin 21α=,可得cos 20α=.四.解答题17.解:(1)211log 313(0.008)2254(3)0.2232(52)lg lg lg lg π+--++++=-++⨯++356210ππ=-+++=+.(2)3sin()cos()tan()cos()cos (sin )tan (sin )222cos sin(2)tan()sin()sin (tan )sin πππααπαααααααπααπαπααα--++-⋅-⋅⋅-==-------⋅-⋅19.18.解:(1)2()12sin cos 2sin f x x x x ωωω=+-sin 2cos2x x ωω=+4x πω=+;所以()f x 的最小正周期为2|2|T ππω==,1ω=;(2)所以()sin()1424f πππ=+=;(3)由02x π- ,得32444x πππ-+ ,所以2sin(2)[1,]42x π+∈-;当242x ππ+=-,即38x π=-时,()f x取得最小值为.19.解:(1)由已知可得2sin cos αα=-,则1tan 2α=-,所以2222sin cos cos 2tan 11sin cos cos 215tan sin cos tan ααααααααααα++-+===++;(2)由2tan 6tan 1ββ-=,可得22tan 1tan 213tan βββ==--,则11tan tan 223tan(2)1111tan tan 2123αβαβαβ--++===---⨯,因为(0,2πβ∈,所以2(0,)βπ∈,又13tan 233β=->-,则52(,)6πβπ∈,因为(0,)απ∈,1tan 23α=->-,则5(,)6παπ∈,则52(,2)3παβπ+∈,所以724παβ+=.20.解:(1) 不搞促销活动,该产品的年销售量只能是2万件,即0m =时,2x =,2401∴=-+k ,解得2=k ,则2401x m =->+,816161.5(816)36(0)1x y x x m m m x m +∴=⨯-+-=--+ ;(2)16163637(1)11y m m m m =--=--+++3737829-=-= ,当且仅当1611m m =++,即3m =时,等号成立,故该厂家2020年的促销费用投入3万元时,厂家的利润最大.21.解:(1)由题意可知,T π=,所以22Tπω==,所以()2cos(2)f x x ϕ=+;因为()f x 的图象过点5(6π,2),所以52cos(2)26πϕ⨯+=,解得523k πϕπ=-,k Z ∈;因为0ϕπ<<,所以3πϕ=,所以()2cos(23f x x π=+;(2)由(1)可得()2cos(2cos(2)136g x x x ππ=++-+2cos(2))133x x ππ=++++4sin(2)136x ππ=+++4cos 21x =+;设()t g x =,因为1cos 21x - ,所以3()5g x - ;又因为不等式2()(32)()230g x m g x m -+-- 恒成立,即2()(32)230h t t m t m =-+-- 在[3-,5]上恒成立,则(3)0(5)0h h -⎧⎨⎩ ,即93(32)230255(32)230m m m m ++--⎧⎨-+--⎩ ,解得112m - ,所以m 的取值范围是1[2-,1].22.解:(1)由题知,当0x >,21()()log x g x f x x+==,设0x <.则0x ->,所以2211()log log x x g x x x-+--==-,因为()g x 是奇函数,所以2()log 1x g x x =-,又因为(0)0g =所以221log ,0()0,0log ,01x x x g x x x x x +⎧>⎪⎪==⎨⎪⎪<-⎩;(2)令2221()log ()log ()0h x a x x=++=,整理得210ax x +-=,因为()h x 有且只有一个零点,所以方程210ax x +-=有且只有一根或两相等根,当0a =时,1x =,符合题意,当0a ≠时,只需△140a =+=,所以14a =-,此时2x =,符合题意,综上,14a =-或0a =.(3)在(0,)+∞上任取1x ,2x ,且12x x <,则1211a a x x +>+,221211log ()log ()a a x x +>+,所以12()()f x f x >,所以()f x 在(0,)+∞上单调递减,所以函数()f x 在[t ,1]t +上的最大值与最小值分别为()f t ,(1)f t +,所以2222211(1)1()(1)log ()log ()log 11(1)at a t f t f t a a t t at a t +++-+=+-+=+++ ,即2(1)10at a t ++- ,对任意1[,1]2t ∈成立,因为0a >,所以函数2(1)1y at a t =++-的图象开口向上,对称轴102a t a+=-<,所以函数2(1)1y at a t =++-在(0,)+∞上单调递增,所以当12t =时,y 有最小值3142a -,所以31042a - ,解得23a ,所以a 的取值范围为2[,)3+∞.。

重庆市八中2019-2020学年高一数学上学期期末考试试题(含解析)

重庆市八中2019-2020学年高一数学上学期期末考试试题(含解析)

由图像可知,
与 图像共有 6 个交点
1 A. 16
1 B. 18
1 C. 4
1 D. 2
【答案】A
【解析】
【分析】
根据平面向量线性的加法运算,即可求解.
【详解】在 ABC 中, D 是 AC 的中点, P 是 BD 的中点
由平面向量的线性加法运算,可知
BP
1 2
BD
1 2
1 2
BA BC
1
BA BC
4
1
BA
【详解】因为
f (x 4)
f (x) ,即
f
x 是周期为 4 的周期函数
f
x 为偶函数,且
f
(x)
2x2,0 x 1
4
2x,1
x
2
,画出函数图像如下图所示:
g(x) f (x) 1 x 1 0

3
f (x) 1 x 1
可得
3.
hx 1 x 1
画出
3 的图像如上图所示:
f x hx
由余弦函数的图像与性质可知,其对称轴为 2x k , k Z
x
2 k , k Z
而 6 为其一条对称轴,所以 6
k , k Z
解得
3
因为 0
所以当
k
0
时,解得
3
故选:B
【点睛】本题考查了余弦函数的图像与性质,根据余弦函数的对称轴求参数,属于基础题.
9.已知函数
7 A. 9
7 B. 11
7 C. 9
7 D. 11
【答案】C
【解析】
【分析】
根据正切函数的和角公式,代入即可求解.
tan tan tan

重庆八中2019-2020学年高一下学期期末考试数学试题Word版含答案

重庆八中2019-2020学年高一下学期期末考试数学试题Word版含答案

重庆八中2021-2021学年度〔下〕期末考试高一年级数学试题一、选择题:此题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.等差数列{}n a 的前n 项和为n S ,23a =,41a =-,那么5S =〔 〕 A .10B .5C .0D .2-2.(2,3)a =-,a 与b 的夹角为60︒,那么a 在b 方向上的投影为〔 〕A .72B .72C .27D .2773.某班级17位同学某次数学联合诊断测试成绩的茎叶图如下图,那么这17位同学成绩中位数为〔 〕A .91B .92C .94D .954.总体由编号为01,02,...,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,那么选出来的第5个个体的编号为〔 〕7961 9507 8403 1379 5103 2094 4316 8317 1869 6254 0738 9261 5789 8106 4138 4975 A .20B .18C .17D .165.某企业2021年4月之前的过去5个月产品广告投入与利润依次统计如表:由此所得回归方程为ˆ12yx a =+,那么a 为〔 〕 A .4-B .6-C .8-D .10-6.设α,β是两个不同的平面,是m ,n 两条不同的直线,以下说法正确的选项是〔 〕 A .假设m n ∥,mα,那么n α B .假设m α⊂,n β⊂,αβ⊥,那么m n ⊥C .m α⊂,n β⊂,m n ∥, 那么αβD .假设n α⊂,m n ∥,m β⊥,那么αβ⊥7.如果实数m ,n ,满足:0m n <<,那么以下不等式中不成立的是〔 〕 A .m n >B .11m n m>- C .11n m< D .220n m -<8.在数列{}n a 中,11a =-,23a =-,23n n a a +=-,记数列{}n a 的前n 项和为n S ,那么2022S =〔 〕 A .4-B .1-C .0D .39.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,假设22tan tan B Cb c=,那么ABC △的形状为〔 〕A .等腰三角形或直角三角形B .等腰直角三角形C .等腰三角形D .直角三角形10.唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,表达了古人的智慧与工艺,它的盛酒局部可以近似地看作是半球与圆柱的组合体〔假设内壁外表光滑,忽略杯壁厚度〕,如图2所示,己知球的半径为R ,酒杯内壁外表积为214π3R ,设酒杯上局部〔圆柱〕的体积为1V ,下局部〔半球〕的体积为2V ,那么21V V =〔 〕A .2B .32C .12D .111.设a ,b ,c 分别是ABC △的内角的对边A ,B ,C ,点M 是BC 边的中点,且2221a b c --=,那么()AB MA MB ⋅+=〔 〕A .17B 17C .12D 1712.在锐角ABC △中,假设cos cos sin sin 3sin A C B Ca c A+=3cos 2C C +=,那么a b +的取值范围是〔 〕 A .(6,23B .(0,43C .(23,43D .(6,43二、填空题:此题共4小题,每题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆八中2019-2020学年高一上学期期末数学试题学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 已知全集,集合,则
( )
A.B.
C.D.
2. 下列函数在其定义域内既是奇函数又单调递减的是( )
A.B.
C.D.
3. 已知,则( )
A.B.
C.D.
4. 设,,,则( )
A.B.
C.D.
5. 在中,是的中点,是的中点,若,则( )
A.B.
C.D.
6. 函数的大致图象是()
A.B.
C.D.
7. 函数的单调递增区间为( )
A.B.
C.D.
8. 若直线是函数图象的一条对称轴,则( )
A.B.
C.D.
9. 已知函数的最大值为2,则
( )
A.-2 B.0
C.2 D.3
10. 已知实数且,若函数的值域为,则的取值范围是( )
A.B.
C.D.
11. 若,且,( )
A.B.
C.D.
12. 已知函数,则使得不等式成立的实数
的取值范围是( )
A.B.
C.D.
二、填空题
13. 设向量不平行,向量与平行,则实数___________.
14. 计算:___________.
15. 若函数是定义在上的偶函数,,且
,则函数的零点个数为___________.
16. 将函数的图象向左平移个单位,得到函数
的图象.若在区间上为增函数,则的取值范围是
___________.
三、解答题
17. 设为第二象限角,.
(1)求的值;
(2)求的值.
18. 已知函数在区间上的最大值与最小值之差为.
(1)求的值;
(2)证明:函数是上的增函数.
19. 已知函数的部分图象如图所示.
(1)求函数的解析式;
(2)若,求的值.
20. 已知函数.
(1)求函数的最小正周期;
(2)求函数在区间上的最大值和最小值.
21. 已知函数为偶函数.
(1)求的值;
(2)若在区间上恒成立,求的取值范围.
22. 设函数.
(1)当时,求函数在区间上的值域;
(2)设函数的定义域为I,若,且,则称为函数的“壹点”,已知在区间上有4个不同的“壹点”,求实数的取值范围.。

相关文档
最新文档