调洪演算

合集下载

调洪演算报告

调洪演算报告

调洪演算报告调洪演算报告引言•调洪演算是指通过数学模型和算法分析,对河流流量进行优化分配的过程。

•本报告旨在对调洪演算进行全面的介绍和分析,以便更好地了解其原理和应用。

调洪演算原理1.调洪演算依赖于河流流量和水位的监测数据。

2.利用数学模型和算法,对不同流量条件下的水位变化进行模拟。

3.通过分析模拟结果,确定合理的水流分配方案,以实现最佳的调洪效果。

调洪演算过程1.收集河流监测数据,包括流量和水位等信息。

2.建立数学模型,以描述河流水文过程。

3.基于已有数据和模型,编制调洪演算程序。

4.运行程序,进行模拟计算,得出不同水位下的流量分布。

5.分析模拟结果,评估调洪效果,并对结果进行优化调整。

6.输出调洪方案,以供实际操作和决策参考。

调洪演算应用•调洪演算多用于水库调度、防洪管理和水资源规划等领域。

•可通过调洪演算,优化水库蓄水、泄洪和供水计划,以最大程度减少洪水的危害。

•调洪演算也可用于设计洪水防护工程,提高防洪能力。

调洪演算技术挑战1.数据不确定性:准确的监测数据对调洪演算至关重要,但由于数据获取限制和不确定性,可能影响模拟结果的可靠性。

2.模型精度:构建准确的数学模型需要考虑多种因素,如河道特性、地形地貌等,提高模型精度是调洪演算的一个挑战。

3.运算效率:调洪演算涉及大量的数学计算,需要高效的算法和计算工具,以满足实时计算和决策的需求。

结论•调洪演算作为一种重要的水文调控方法,可以通过数学模型和算法,对河流流量进行优化分配,以实现最佳的调洪效果。

•但在应用过程中,需要解决数据不确定性、模型精度和运算效率等技术挑战。

•通过不断改进和创新,调洪演算技术的发展将为水文调控和防洪管理提供更有效的支持。

调洪演算未来发展趋势•数据采集技术的进步:随着监测设备和传感器技术的不断创新,数据采集的准确性和实时性将得到大幅提升,为调洪演算提供更可靠的数据支持。

•模型建立与优化:通过集成不同类型的数据和考虑更多的参数,将模型的精度逐步提高,更准确地模拟河流的水文过程,改进调洪方案。

调洪演算

调洪演算

第1章 调洪演算1.1 调洪演算已知正常高水位▽正=128m ,查水库水位库容曲线,可得361044.296m V ⨯=。

010020030040050060070060708090100110120130140150160水位(m)容积(106m 3)图 1 - 1 枋洋水库水位库容曲线1.1.1 确定防洪库容用枋洋水库入库断面20年一遇洪水流量同倍比法推求“6·9”洪水过程线,以洪峰控制,其放大倍比为095.121192320===mdmp Q Q K 表1-1 计算表格如下所示:)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q1 23 25 19 318 348 37 530 5802 51 56 20 454 497 38 417 4563 132 144 21 623 682 39 296 324 4 267 292 22 649 710 40 194 2125 366 400 23 721 789 41 137 150 6 412 451 24 694 759 42 99 108 7 519 568 25 802 877 43 75 82 868474826851931445863)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q9 953 1043 27 1150 1258 45 45 49 10 1053 1152 28 1711 1872 46 35 38 11 1154 1262 29 2119 2318 47 27 30 12 961 1051 30 1903 2082 48 21 23 13 814 891 31 1673 1830 49 15 16 14 629 688 32 1297 1419 50 9 10 15 475 520 33 1055 1154 51 6 7 16 375 410 34 846 926 52 2 2 17 314 344 35 719 787 53 1 1 182712963663669654根据表格数据,绘制6.9洪水过程线:51015202530354045505001000150020002500时间t (h)流量q(m3/s)图1-2 6.9洪水过程线1.1.2 求防洪库容和防洪高水位由正常高水位起调,下游最大安全泄量为500s m /3,调洪计算得防洪库容361044.296m V ⨯=正常。

“水库调洪演算的原理和方法”教案讲义

“水库调洪演算的原理和方法”教案讲义

2、蓄泄方程
qf(V) 或q ~ V
Z(m)
0
Z~q洞
Z~q溢
H H0
q溢M1BH3/2
q洞M2H01/2
溢洪 q(m3/s) 道
q~H Z ~V q~f(V)
泄洪 洞
方程不是显式,无法直接求解
三、水库调洪计算方法
1、列表试算法
(1)由Z~V曲线、泄流计算公式推求q~V曲线。
(2)推求水库下泄流量过程线q~t。
• 二、无闸溢洪道水库的防洪计算 • (一)下游无防洪要求时 • (1)拟定方案;(2)调洪计算;(3)计算坝高;
(4)计算各方案的投资(5)选定方案
• (二)下游有防洪要求
• 在防洪水利计算中需要考虑下游安全泄量的要求, 分别对枢纽标准与下游防洪标准的洪水进行调洪计 要。具体的步骤是:
• (1)假定不同的溢洪道宽度B方案。
• 水库防洪计算的内容,主要包括以下几点: • (1)根据库区地形、地质等条件,分析洪水特性及
灾害情况,考虑兴利库容与调洪(防洪)库容结合的 可能和程度,拟定苦干个泄流建筑物形式、位置、 尺寸,以及汛期运用方式的方案。 • (2)对各方案进行调洪计算,求得每个方案相应于 各种设计洪水的最大下泄流量、调洪库容和最高洪 水位。 • (3)计算各方案的大坝造价、淹没损失、泄流建筑 物投资、下游堤防造价、水库防洪效益等经济指标、 进行技术经济分析与比较,选择最佳方案。
(4)推求Vm、V调、Zm。
V调=Vm-V汛限
q~V
qmax
Vm
Z~V
Zm
列表试算法小结:
洪水过程线 起始条件
q~V曲线的绘制←Z~V q~t曲线的推求←试算
qm的推求←绘图 Zm、Vm推求←查图(表)

调洪演算报告

调洪演算报告

调洪演算报告一、引言调洪演算是指利用数学模型和计算机技术对洪水进行模拟和预测的过程。

它是现代水利工程中非常重要的一项技术,能够帮助水利部门预测洪水的发生及其对河流、湖泊等水域的影响,为防洪工作提供科学依据。

本报告将介绍调洪演算的基本原理、方法和应用,并对其在实际工程中的应用进行案例分析。

二、调洪演算的原理和方法1. 数学模型调洪演算主要依靠数学模型来描述洪水的传播过程。

常用的数学模型有水动力模型、水质模型和沉积模型等。

水动力模型用于模拟洪水的传播过程,水质模型用于模拟洪水对水质的影响,沉积模型用于模拟洪水沿河道的泥沙运动过程。

这些数学模型基于流体力学原理和质量守恒原理,通过求解偏微分方程组得到洪水的水位、流速和泥沙浓度等参数。

2. 数据采集和处理调洪演算需要大量的实测数据来进行模拟和预测。

这些数据包括雨量、水位、流量、泥沙浓度等。

数据采集可以通过自动气象站、水文站和水质监测站等设备来实现。

采集到的数据需要经过处理和校正,以保证数据的准确性和可靠性。

3. 模型参数的确定数学模型中有许多参数需要通过实测或估计来确定。

这些参数包括水动力模型中的水力半径、河床粗糙度系数等,水质模型中的污染物扩散系数、沉积模型中的沉积速率等。

确定这些参数的方法有试验室实测、现场观测、文献资料归纳等。

4. 模拟和预测在确定了数学模型和模型参数后,可以利用计算机进行模拟和预测。

模拟过程是根据已有的数据和模型参数,对洪水的传播过程进行数值计算,得到洪水的水位、流速和泥沙浓度等参数。

预测过程是在模拟的基础上,预测未来一段时间内的洪水情况,以便采取相应的防洪措施。

三、调洪演算的应用案例1. 洪水预警调洪演算可以提供洪水的预测结果,帮助水利部门及时发布洪水预警信息,提醒周边居民采取防洪措施,减少人员和财产损失。

2. 洪水调度调洪演算可以模拟不同调度方案对洪水传播的影响,帮助水利部门制定合理的调度方案,最大限度地减少洪水对下游地区的影响。

调洪演算报告(一)

调洪演算报告(一)

调洪演算报告(一)
调洪演算报告
研究背景
•调洪演算是水利工程中的重要研究方向之一
•目的在于准确预测雨洪过程中的洪峰流量和洪峰流量到达时间,以指导洪水调度管理
调洪演算方法
物理模型法
•基于流体力学原理,将水流运动过程进行数学建模和求解
•通过求解一维或二维托马斯方程、穿堤断面方程等,得到洪峰流量和到达时间
统计模型法
•基于历史洪水数据和统计分析方法,建立概率模型
•利用频率分析、概率分布函数等方法,预测未来洪峰流量和到达时间
目前存在问题
•物理模型法需要准确的地形数据和边界条件,对计算资源要求高
•统计模型法需要大量的历史数据,并假设未来洪水的概率分布与历史信息相似
研究方向及展望
数据驱动的调洪演算方法
•基于机器学习和人工智能技术,从大量数据中自动提取特征和建立模型
•可以避免对地形数据和边界条件的要求,提高调洪演算的效率和准确性
集成模型的开发
•结合物理模型和统计模型的优点,构建一体化的调洪演算模型•通过数据同化和模型校正等技术,改进预测结果的准确性和稳定性
结论
•调洪演算是水利工程中的重要研究方向,对于洪水调度管理具有重要意义
•现有方法存在一定的局限性,需要不断探索新的研究方向和方法•数据驱动的调洪演算方法和集成模型的开发是未来的研究重点。

洪水调节调洪演算列表法和图解法

洪水调节调洪演算列表法和图解法

调洪演算计算说明书一、 相关资料中包水利枢纽工程是三等工程,溢洪道设计洪水标准为五十年一遇(P=2%)至一百年一遇(P=1%),校核洪水标准为千年一遇(P=0.1%).二、基本原理1.泄水建筑物尺寸:溢洪道堰顶高程519m ,采用3孔86m m ⨯(宽⨯高)的弧形门控制。

由2/302q H g m nb ⋅=ε (其中侧收缩系数ε=0.92,n 为所开孔数, 流量系数m=0.48,单孔堰顶宽度b=8m ,g=9.812/m s ,堰顶水头0H =水位Z-堰顶高程,。

不计流速水头。

) 计算出下泄流量2.设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。

3.基本计算公式为:()()()t V V q q Q Q ∆-=+-+/2/2/122121式中: Q 1, Q 2--分别为计算时段初、末的入库流量,m 3/s ; v 1,v 2--分别为计算时段初、末水库的蓄水量,m 3 ; q 1,q 2--分别为计算时段初、末的下泄流量,m 3/s ; t ∆--计算时段,一般取1小时。

4.下游安全泄量及起调水位该水利枢纽没有下游防洪要求,一般在洪水来临时,水库将预泄库水至水库防洪限制水位,以便有足够的库容蓄洪或滞洪。

防洪限制水位是水库在汛期允许兴利蓄水的上限水位,则调洪计算从水位525.3m 起调。

5.水库运行方式根据题目分析,本工程采用3孔溢洪道泄洪,设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。

在洪水期间洪水来临时,先用闸门控制下泄流量q 并使其等于洪水来水量Q,使水库水位保持在防洪限制水位525.3m不变;当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后,就不再用闸门控制,下泄流量q随水库水位z 的升高而增大,流态为自由流态,情况与无闸门控制一样。

6.计算方法:先决定开始计算时刻和此时的q1、V1,然后假定下泄流量q2值,再由计算V2值,再查q-V表得出q2’值,水量平衡方程()()()t-+2/2/=+/VV-qqQ∆Q211122比较q2和q2’,若二者基本相等,则假定正确,否则重新试算,直到大致相等为止,依次计算下去。

尾矿库排水系统调洪演算

尾矿库排水系统调洪演算

尾矿库排水系统调洪演算尾矿库排水系统调洪演算调洪演算的目的是根据既定的排水系统确定所需的调洪库容及泄洪流量。

对一定的来水过程线,排水构筑物愈小,所需调洪库容就愈大,坝也就愈高。

设计中应通过几种不同尺寸的排水系统的调洪演算结果,合理地确定坝高及排水构筑物的尺寸,以便使整个工程造价最小。

一、数解法(一)对于洪水过程线可概化为三角形,且排水过程线可近似为直线的简单情况,其调洪库容和泄洪流量之间的关系可按公式(1)确定。

q=Qp(1-V t)(1)W p式中 q——所需排水构筑物的泄流量,米3/秒;Qp——设计频率P的洪峰流量,米3/秒;V t——某坝高时的调洪库容,米3;W p——频率为P的一次洪水总量,米3。

(二)对于一般情况的调洪演算,可根据来水过程线和排水构筑的泄水量与尾矿库的蓄水量关系曲线,通过水量平衡计算求出泄洪过程线,从而定出泄流量和调洪库容。

尾矿库内任一时段△t的水量平衡方程式如公式(2)如下。

1(Qs+Q z)△t-1(q s+q z) △t=V z-V s (2)22式中Q s、Q z——时段始、终尾矿库的来洪流量,米3/秒;q s、q z——时段始、终尾矿库的泄洪流量,米3/秒;V z、V s——时段始,终尾矿库的蓄洪量,米3。

令Q=1/2(Q s+Q z),将其代入公式(3),整理后得:V z +1q z△t= Q△t+(V s-1q s △t ) (3) 22求解公式(3)可列表计算,但需预先根据泄流量(q)—库水位(H)—调洪库(Vt)之间的关系绘出q-V+(1/2)q△t和q-V-(1/2)q△t输助曲线备查。

例1:某尾矿库初期坝装满时,水面面积F s=2.5公里2,陆面面积F1=1.5公里2,L0=0.81公里,E0=385公里/公里,J=0.2,N0=0.2,N s=0.08,mp=2.0,μ=1毫米/秒,S p=137.5毫米/小时,n1=0.55,n2=0.75,试求p=2%的设计洪水过程线。

调洪演算

调洪演算

2、采用列表试算法进行调洪演算:1) 确定水库蓄泄关系a) 确定库容曲线:根据给定的库容曲线表绘制水库的库容曲线如图2-1图2-1水库库容曲线b) 确定水库泄流公式 根据堰流泄流能力:2302H g mB Q =式中: m —— 流量系数,本工程取0.35; B —— 堰顶净宽,55.0m ; g —— 重力加速度,取29.81gm s ;H0—— 堰顶水头,考虑坝前行进流速水头较小,取H0=H 。

则水库泄流能力公式可确定为:23(27.85)Zo Zt Q -=式中: Zt 为当前水库水位 Zo 为正常高水位(溢流堰堰顶高程),本地取167.3m 。

c) 确定蓄泄关系 i. 确定一组水库库容V(I),I=1,2……m ; ii. 对V(I),据库容曲线查得库水位Z (I ),据2)计算对应的泄流能力q (i ); iii. 对应一组V~q ,确定蓄泄关系,如图2—2。

图2-2 水库蓄泄关系图2)列表进行调洪演算a)试算程序调洪演算原理i.对t时段计算,水库初始需水量V(t-1)由上一时段给出;ii.假设qt,则可计算出该时段的水库需水量V(t),从蓄泄关系上差得qt’;iii.比较qt与qt’,若|qt-qt’|<ξ1,则t=t+1,否则重新假设qt,令t=t;iv.当算至水库|Z(t)- Zo|<ξ2时,终止计算。

b)计算表格i.设计频率为P=5.0%的计算结果如表2-1:表2-1 频率为P=5.0%的调洪演算计算结果图2-3 频率为P=5.0%的调洪演算计算图ii.设计频率为P=3.33%的计算结果如表2-2;表2-2 频率为P=3.33%的调洪演算计算结果图2-4 频率为P=3.33%的调洪演算计算图iii.设计频率为P=0.33%的计算结果如表2-3;表2-3 频率为P=0.33%的调洪演算计算结果来水、泄流及水位过程线图2-4:表2-5 频率为P=0.33%的调洪演算计算结果c)调洪演算计算结果如表2-6表2-6 列表法调洪演算结果31)拟定工作图a)确定Z—q关系线,见列表法进行调洪演算;b)确定(V/△t±q/2)—q关系线;i.确定一组水库库容V(I),I=1,2……m;ii.对V(I),据库容曲线查得库水位Z(I),据2)计算对应的泄流能力q(i),并计算V(i)/△t+q(i)/2;iii.对应一组V(i)~Z(i)~ V(i)/△t+q(i)/2~ V(i)/△t-q(i)/2,确定各相各关系。

调洪演算

调洪演算

参莴工程3.1 设计洪水与校核洪水A河洪水由于暴雨集中,强度大,加之两岸地形较陡。

因而水情变化具有山区特性。

洪水历时短,涨落急剧,来势凶猛,洪峰、洪量相对较小,经常泛滥成灾。

从历史洪水调查及实测资料统计分析,A河较大洪水发生时间均在7~8月份,有时9月上旬也有发生,因此汛期定为每年7月1日~9月10日。

对可利用的水文系列年限经过综合考虑分析,根据SL252—2000《水利水电枢纽工程等级划分及设计标准》的规定,选取设计洪峰流量Q设=24800m3/s(p=0.1%),校核洪峰流量Q较=34500m3/s(p=0.01%)。

表3-1 山区、丘陵区水利水电工程永久性水工建筑物洪水标准表3-2 A河S水库最近的实测洪峰分析成果表3-3 典型洪水过程表(单位:m3/s)由资料知P=0.01%时,最大洪峰为34500m3/s.将资料中典型洪水过程线按同倍比放大法推求校核洪水过程线如下:表3-4 校核情况下的洪水过程线由P=0.1%时,最大洪峰为24800m3/s,将典型洪水过程线按同倍比放大法推求设计洪水过程线如下:表3-5 设计情况下的洪水过程线3.3 调洪演算3.3.1 基本资料根据工程的泥沙和水位资料:多年平均含沙量:201万吨,实测最大含沙量:151万吨;正常蓄水位:▽96.6m ,防洪限制水位:▽77.8m ,死水位:▽70m ,工程开发的主要目的和任务、现状,拟定泄水建筑物型式为坝顶表孔和泄洪底孔。

水库Z ~V 如表5所示:表3-6 坝址水位-库容关系曲线表P=0.01%时,最大洪峰为34500m 3/s. P=0.1%时,最大洪峰为24800万m 3/s 。

3.3.2 演算原理依据《水能规划》所给的水库洪水调节计算原理,采用水量平衡方程式:tV tV V q q Q Q q Q ∆∆=∆-=+-+=-122121)(21)(21,式中:21,Q Q ——分别为计算时段初,末的入库流量(s m /3);Q——计算时段中的平均入库流量(s m /3),它等于12()/2Q Q +;21,q q ——分别为计算时段初、末的下泄流量(s m /3); q——计算时段中的平均下泄量(s m /3),即q =12()/2q q +;21,V V ——分别为计算时段初、末水库的蓄水量(3m ); V ∆——为12V V 和的之差;t∆——计算时段,一般取1~6小时,需化为秒数。

调洪演算的基本步骤

调洪演算的基本步骤

调洪演算的基本步骤调洪演算是一种用于预测洪水的方法,通过模拟洪水过程,预测洪水的发展趋势和可能影响的范围,以帮助人们做出有效的防洪措施。

下面将介绍调洪演算的基本步骤。

第一步,收集数据。

调洪演算需要大量的数据来进行模拟计算,包括雨量、水位、地形、土壤类型等。

这些数据可以通过气象台、水文站等多种途径获取。

数据的准确性和完整性对于调洪演算的结果影响很大,因此在收集数据时需要注意数据的来源和质量。

第二步,建立模型。

在进行调洪演算之前,需要建立一个洪水模型,模拟洪水的传播过程。

洪水模型可以是基于物理原理的数学模型,也可以是基于统计方法的经验模型。

建立模型时需要考虑地区的特点和实际情况,选择合适的模型参数和模拟方法。

第三步,确定边界条件。

在进行模拟计算时,需要确定模型的边界条件,包括输入的雨量和水位数据,以及模型的输出要求。

边界条件的确定对于模拟结果的准确性和可靠性至关重要,需要结合历史洪水事件和实测数据来确定。

第四步,进行模拟计算。

在模型建立和边界条件确定之后,可以进行调洪演算的模拟计算。

模拟计算的过程是将输入的数据输入到模型中,通过模型的计算和迭代,得到洪水的传播过程和可能的影响范围。

模拟计算需要考虑不同的情景和参数,进行多次试算,以获得多种可能的结果。

第五步,分析结果。

在模拟计算完成后,需要对结果进行分析和评估。

可以对洪水的发展趋势、峰值水位、洪水面积等进行评估,评估结果可以用于制定洪水预警和防洪措施。

同时,还需要对模型的可靠性和误差进行评估,以提高模拟结果的准确性。

第六步,制定防洪措施。

根据调洪演算的结果和分析,可以制定相应的防洪措施。

这些措施可以包括加固堤坝、开展疏浚工程、建设排水系统等,以减少洪水对人们生活和财产的影响。

第七步,监测和预警。

在实施防洪措施后,需要进行洪水的监测和预警。

可以通过水文站、遥感技术等手段,及时获取洪水的信息,并向相关部门和居民发布预警,以提前做好防洪准备。

以上就是调洪演算的基本步骤。

调洪演算

调洪演算

3.1基本资料3.1.1洪水过程线的确定本设计中枢纽主要任务是发电,兼做防洪之用,所以必须在选定水工建筑物的设计标准外,还要考虑下游防护对象的防洪标准。

由资料知混凝土坝按500年一遇(P=0.2%)洪水设计,2000年一遇(P=0.05%)洪水校核。

绘出设计洪水过程线和校核洪水过程线:图3.1 校核洪水过程线图3.2 设计洪水过程线3.1.2相关曲线图图3.3 水位容量关系曲线图3.2洪水调节基本原则在已确定选择混凝土实体重力坝的情况下,从提高泄流能力,便于运用管理和闸门维修,节省工程投资角度出发,泄洪方式以坝顶泄流最为经济。

故按坝顶溢流的方式进行洪水调节计算,以确定坝顶高程和最大坝高。

调洪演算采用半图解法。

3.2.1确定工程等别和级别根据SDJ12-78《水利水电工程枢纽等级划分和设计标准(山区、丘陵区部分)》结合宁溪枢纽所给定的特征水位和基本资料,通盘考虑水库总库容、防洪效益、装机容量等因素,该工程为二等大型工程,主要建筑物为2级,次要建筑物为3级,临时建筑物为4级。

由表3-2-1可知永久性建筑物设计洪水标准为:正常运用(设计)洪水重现期为500年,非常运用(校核)洪水重现期为2000年。

3.2.2水库防洪要求本水库的设计标准为500年,校核标准为2000年,S 水库洪水调节除保证本工程设计标准以外,还担负着提高下游防洪标准的任务。

3.3调洪演算3.3.1调洪演算的目的根据水位~库容曲线以及S 坝址设计洪水过程线,孔口尺寸、孔数以及堰顶高程,利用调洪演算来确定设计洪水位和校核洪水位,为后面坝顶高程的确定奠定基础。

3.3.2调洪演算的基本原理和方法(a)根据库容曲线Z-V ,以及用水力学公式计算Q-Z 关系3/2q Bm =式中:q ——过堰流量,单位为3/m s ;B ——过水断面宽度,单位为m ; m ——堰的流量系数; ε——局部水头损失系数;H ——堰顶全水头,单位为m 。

(b)分析确定调洪开始时的起始条件,起调水位357m 。

调洪演算

调洪演算

2.1.1 调洪计算的原理洪水在水库中行进时,水库沿程的水位、流量、过水断面、流速等均随时间而变化,其流态属于明渠非恒定流。

根据水力学明渠非恒定流的基本方程,即圣维南方程组为连续性方程 0Q t sω∂∂+=∂∂ (2-1) 运动方程 221Z v v v Q s g t g s K∂∂∂-=++∂∂∂ (2-2) 式中 ω——过水断面面积(㎡);t ——时间(s );Q ——流量(m 3/s );s ——沿水流方向的距离(m );Z ——水位(m );v ——断面流速(m/s );K ——流量模数(m 3/s )。

为了简化计算,通常采用瞬态法来求近似解。

瞬态法实际上是采用有限差值来代替微分值并加以简化,以近似的求解一系列瞬时的流态。

瞬态法将式2-1和2-1简化得出专用于水库调洪计算的实用公式如下:21121211()()22V V V Q q Q Q q q t t-∆-=+-+==∆∆ (2-3) 式中 1Q 和2Q ——分别为计算时段初、末的入库流量; Q ——计算时段内平均入库流量,为1Q 和2Q 的平均值;1q 和2q ——分别为计算时段初、末的下泄流量; q ——计算时段的平均下泄流量;1V 和2V ——分别为计算时段初、末水库的蓄水量;V ∆——1V 和2V 之差;t ∆——计算时段。

这个公式实际上是一个水量平衡方程,它表明:在一个计算时段内,水库水量与下泄水量之间的差值即为该时段中水库蓄水量的变化。

当水库入库洪水过程线已知时,1Q 和2Q 均为已知,而1q 和1V 是计算时段开始时的初始条件,则必须有一个方程22()q f V =与式2-3相联立才能解出2q 和2V 的值。

由于下泄流量是泄流建筑物水头的函数,当泄流建筑物型式和尺寸已知时,则可求出2q 关于水头H 的方程为2()B q f H AH == (2-4)同时可借助水库容积特性曲线()V f Z =得出方程22()q f V =的具体形式。

调洪演算

调洪演算

A、4、调洪演算1、调洪演算的基本资料(1)起调水位:由于渭北地区水资源缺乏,尚书水库属于蓄洪运用水库,不能使用降低汛期限制水位的办法来保证水库安全。

水库的起调水位取正常蓄水位582.50m。

(2)库容曲线:2001年3月水库管理局委托陕西省水利电力设计院测量队,对尚书水库淤积和库容曲线进行了测量。

目前,坝前淤积面高程为570.00m,死库容已淤满,兴利库容为170万m3,总淤积量44万m3。

参见表4-1。

尚书水库水位与库容曲线表表4-1(3)溢洪道泄流曲线:溢洪道位于大坝右岸,涵洞泄流按宽顶堰计算,最大流量14m3/s,没有考虑涵洞淹没时的出流情况。

本次调洪演算对涵洞出流进行了复核,并考虑了淹没状态,当堰上水头小于2.0m时按宽顶堰计算,当堰上水头大于2.0m时涵洞淹没按管口出流计算流量。

经复核涵洞最大泄流量为42 m3/s,水位与泄流关系曲线表参见表4-2。

2、调洪计算的方法放水洞流量小(1.5m3/s)不参与调洪。

调洪计算的方法为蓄率中线法,三条工作曲线的计算表参见表4-3,将三条工作曲线绘制在同一图上,就可以进行调洪演算了。

蓄率中线法工作曲线计算表3、水库调洪运用方式在正常蓄水位582.50m时洪水入库,水库调洪运用方式是:入库流量小于闸门全开正常蓄水位下的出库流量(88m3/s)时,由闸门控制来多大流量泄多大流量;入库流量大于闸门全开正常蓄水位下的出库流量(88m3/s)时,闸门全开溢洪道畅泄,库水位回落到582.50m时由闸门控制来多大流量泄多大流量。

4、调洪计算结果将各频率设计洪水利用蓄率中线法进行调洪演算,其结果参见表4-4和表4-5。

从中可以看出, 30年一遇设计洪水调洪演算,水库最高洪水位为582.98m,最大下泄流量为113m3/s. 300年一遇校核洪水调洪演算,水库最高洪水位为584.44m,最大下泄流量为180m3/s.水库调洪计算表(P=0.33%)。

滚水坝调洪演算

滚水坝调洪演算

滚水坝调洪演算
摘要:
一、滚水坝简介
二、滚水坝调洪演算的必要性
三、滚水坝调洪演算方法
四、滚水坝调洪演算实例分析
五、滚水坝调洪演算对我国水利工程的意义
正文:
滚水坝是一种常见的水利工程设施,主要用于调节河流水位,保障上下游地区的水资源供应和防洪安全。

然而,滚水坝的运行往往涉及到复杂的洪水演算问题,需要借助一定的数学模型和计算方法进行分析和预测。

这就是滚水坝调洪演算。

滚水坝调洪演算的必要性主要体现在以下几点:首先,滚水坝的运行会改变河流的水文特征,可能引发洪涝、干旱等水文灾害,需要通过调洪演算预测和预防这些灾害的发生;其次,滚水坝的调度需要依据实时的水文信息,而调洪演算可以为滚水坝的调度提供科学依据;最后,滚水坝调洪演算也是我国水利工程管理和决策的重要依据。

滚水坝调洪演算的方法主要有两种:一种是物理模型法,即通过构建滚水坝的物理模型,模拟实际的洪水演算过程;另一种是数学模型法,即通过建立滚水坝的数学模型,使用数学方法进行洪水演算。

这两种方法各有优缺点,需要根据实际情况选择合适的方法。

滚水坝调洪演算的实例分析可以帮助我们更好地理解和应用这一方法。

例如,通过对某滚水坝的调洪演算,我们可以预测滚水坝在遇到洪水时的运行情况,从而为滚水坝的调度和管理提供科学依据。

总的来说,滚水坝调洪演算对我国水利工程具有重要意义。

它不仅可以帮助我们更好地理解和利用水资源,还可以有效地预防和减轻水文灾害,保障我国的水利安全。

调洪演算

调洪演算

(1)基本资料水位-容积曲线(见蓝图); 实测洪水过程线(见蓝图); 各类型洪峰值(见2.2.3节)正常(设计)洪水重现期 1000~500年 对应频率:0.1%~0.2% 非常(校核)洪水重现期 5000~2000年 对应频率:0.02%~0.05% (2)限制条件起调水位:175.8m ,对应流量824.7m 3/s ;参加泄洪的不包括放空流量,要求计入发电的流量;最大的下泄流量不得大于安全泄量,设计和校核分别为2000m 3/s 2500m 3/s ; (3)设计和校核洪水过程线的推求设计洪水过程线取频率为0.1%的洪水,期洪峰4750m 3/s ;校核洪水过程线取0.02%,对应洪水期洪峰5600m 3/s 。

利用按峰控制的同倍比放大法对典型洪水放大得设计校核洪水过程线。

设计洪水放大系数:48.132204750Q Q K m mp Q ===; 校核洪水放大系数: 74.132205600Q Q K m mp Q ===; 可得设计和校核洪水过程线如图1-2所示 (4)演算方案拟订①泄洪方式:采用表孔式泄洪; ②拟订演算方案(闸孔宽度和数量)取允许单宽流量:[q]=70 m 3/s; 溢流前净宽:m 71.35702500]q [Q L ===防 堰上水深H 0根据公式2/3H g 2m q ε=推求2/30H 8.9248.070⨯⨯= 则H 0=10.28m堰顶高程Z 堰顶=Z 限-H0=181.20-10.28=170.92m图1-1 溢流堰顶形式闸门高h=Z 正常- Z 堰顶=178.00-170.92=7.08m 取7米根据以上基本尺寸现拟订两个方案: Ⅰ b=11m n=3 堰顶高程170.92 Ⅱ b=12m n=3 堰顶高程170.92(5)计算工况计算工况分为校核和设计两种。

(6)计算方法计算方法:试算法。

由于试算过于复杂且均为重复性计算,考虑用电算。

(7)调洪演算试算法过程①根据库容曲线Z-V(见蓝图),的拟订的泄洪建筑物形式、尺寸,用水力学公式确定算Q-Z 关系为2/32H g Bm q ε=;②分析确定调洪开始时的起始条件,即起调流量824.7m 3/s;③利用水量平衡式和蓄泄曲线,按试算法列表解算各是段时段末的q 2、V 2。

调洪演算——精选推荐

调洪演算——精选推荐

1.5 调洪演算调洪演算的基本原理是水量平衡,其方程为121221--22Q Q q qt t V V ++∆∆= 式中: Q 1、Q 2分别为计算时段Δt 始、末入库流量; q 1、q 2分别为计算时段Δt 始、末出库流量; V 1、V 2分别为计算时段Δt 始、末水库库容; Δt 为计算时段。

采用列表试算法,计算工作量较大,这里采用半图解法(单辅助线法)。

将水量平衡方程变形得:2212111222V q Q Q V q q t t +⎛⎫+=-++ ⎪∆∆⎝⎭式中右边为已知项,左边为未知项。

我们可以先确定q 与2V q t ⎛⎫+ ⎪∆⎝⎭之间的关系,绘制2q V q t ⎛⎫+ ⎪∆⎝⎭~的辅助曲线。

方法为由已知的q 查上游水位与泄流量关系曲线得上游水位H 上,在查水位库容关系曲线得相应的库容,Δt 为计算时段,在这里为24h ,进而求得对应的2V q t ⎛⎫+ ⎪∆⎝⎭。

从第一时段开始,由入库洪水过程和起始条件就可以知道Q 1、Q 2、q 1、V 1,由上式求得222V q t ⎛⎫+ ⎪∆⎝⎭,然后由2q V q t ⎛⎫+ ⎪∆⎝⎭~的辅助曲线查的对应的q 值即为q 2,然后按此方法依次计算q 。

计算过程如下,先确定q 与2V q t ⎛⎫+ ⎪∆⎝⎭之间的关系。

表1.19A q 与2V q t ⎛⎫+ ⎪∆⎝⎭关系表绘制2q V q t ⎛⎫+ ⎪∆⎝⎭~的辅助曲线:图1.7A 2q V q t ⎛⎫+ ⎪∆⎝⎭~的辅助曲线然后进行调洪演算,过程如下:表1.20A 调洪演算过程表图1.8A 调洪演算过程曲线调洪演算后的最大泄流量为两线的交点,表中计算的q max=4819m3/s,对应的Q=4800 m3/s,不相等,但很接近,则q max比4819m3/s稍微大些,参照图得q max=4825m3/s。

调洪演算报告范文

调洪演算报告范文

调洪演算报告范文一、引言调洪演算是水利工程中的重要环节,旨在通过科学的方法和工具,对于河流水系中的洪水进行预测和调度,以达到减轻洪水灾害的目的。

本报告将对于调洪演算的原理、方法和实施过程进行详细的介绍和分析,并结合实际案例进行说明。

二、调洪演算的原理调洪演算的原理主要包括两个方面:洪水预测和调度决策。

洪水预测是基于历史洪水数据和气象预报等信息,通过数学模型和统计学方法,对未来一段时间内的洪水进行预测。

调度决策是在洪水预测的基础上,采用适当的水利工程措施,对水库蓄水和泄洪进行合理的安排,以尽量减少对下游地区的洪水影响。

三、调洪演算的方法调洪演算的方法通常包括以下几个步骤:1.数据收集与分析:根据洪水历史数据、气象预报以及水库、河流和地形等信息,收集并分析相关数据。

2.水文模型建立:根据收集到的数据,建立数学模型,模拟洪水的产生和传递过程。

3.洪水预测:利用建立的水文模型,结合实时的气象预报等信息,对未来一段时间内的洪水进行预测。

4.优化调度决策:根据洪水预测结果,采用优化方法,对水库蓄水和泄洪进行合理的安排,以减少洪水对下游地区的影响。

5.模拟验证与调整:通过模拟验证和调整,对调洪方案进行优化和完善,以提高调洪效果。

四、调洪演算的实施过程调洪演算的实施过程可以分为以下几个阶段:1.需求分析和目标确定:根据实际需要,确定调洪的目标和要求,明确工程的规模、投资和效益等因素。

2.数据采集和分析:收集并分析洪水历史数据、气象预报以及水文测量和地形资料等,建立数据库并进行质控。

3.模型建立和参数调整:根据采集到的数据,建立水文模型,确定模型中的参数,并进行模型的校准和验证。

4.调洪模拟和分析:利用建立的水文模型,进行洪水调洪模拟,并分析不同方案的调洪效果。

5.优化方案设计:根据调洪模拟结果,采用优化方法,设计出合理且有效的调洪方案。

6.方案评价和决策:对于设计的调洪方案进行评价和分析,结合经济、社会和环境效益等因素,做出最终的调洪决策。

介绍几种简易水库调洪演算方法

介绍几种简易水库调洪演算方法

介绍几种简易水库调洪演算方法
简易水库调洪演算方法是处理水利工程施工过程中形成的调度计算问题中非常重要的一步,它也是水利工程施工工程质量检验的主要内容。

目前,简易水库调洪演算方法有许多,这
些方法在设计中的应用也逐渐增多。

首先,均片法是常用的一种简易水库调洪演算方法。

它是将水库水位分成若干平行片,以规定的水位节点为界,每片水位都称为均片。

接着,采用等流线法,按当前水位和规定水位,求出每均片洪量,再把构成每均片的洪量相加,就得到最终的总洪量。

其次,还有梯形法和角坐标法。

梯形法是将水位分成多个梯形,由每个梯形的两条边找到
它的洪量,把每个梯形的洪量相加求得最终的总洪量。

而角坐标法是用变当量的曲率半径
和角坐标曲线等方法,求出洪量积分,最后再得出总洪量。

此外,还有多参数插值法和临界水位指定法。

多参数插值法是采用当前水库中水位、流量
数据,构建和重构在流量-水位曲线上的曲线拟合表达式,通过按规定的目标水位及其对
应的洪量而得出最终的总洪量。

而临界水位指定法是利用洪水实测资料,把洪水流量计算为相应的水位,及时调整放洪法,以达到洪水实测资料中出现的临界水位。

简易水库调洪演算方法在施工中应用越来越广泛,它们极大地避免了人为算法计算中发生的错误,使洪水调度能更加准确地进行。

水库调洪演算例题详解

水库调洪演算例题详解

水库调洪演算例题详解
我们要解决一个水库调洪演算的问题。

这个问题涉及到水库的蓄水量、泄洪量、流入量、流出量等,我们需要通过这些信息来计算水库的水位变化。

假设水库的初始蓄水量为 V_0 立方米,初始水位为 H_0 米。

每分钟流入水库的水量为 R 立方米/分钟,每分钟从水库泄出的水量为 B 立方米/分钟。

根据题目,我们可以建立以下方程:
1. 每分钟水库的水位变化是ΔH = (R - B) / V × 1000 米/分钟(流入量减去泄出量,再除以水库的体积,然后乘以1000来转换为米)。

2. 水库的蓄水量V = V_0 + ΔV,其中ΔV 是水位变化导致的蓄水量变化(V_0是初始蓄水量)。

3. 水库的水位H = H_0 + ΔH × t,其中 t 是时间(分钟)。

现在我们要来解这个方程组,找出水库的水位随时间的变化。

计算结果为:水库的水位随时间的变化是米/分钟。

所以,经过1小时,水库的水位将上升厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1基本资料
3.1.1洪水过程线的确定
本设计中枢纽主要任务是发电,兼做防洪之用,所以必须在选定水工建筑物的设计标准外,还要考虑下游防护对象的防洪标准。

由资料知混凝土坝按500年一遇(P=0.2%)洪水设计,2000年一遇(P=0.05%)洪水校核。

绘出设计洪水过程线和校核洪水过程线:
图3.1 校核洪水过程线
图3.2 设计洪水过程线
3.1.2相关曲线图
图3.3 水位容量关系曲线图
3.2洪水调节基本原则
在已确定选择混凝土实体重力坝的情况下,从提高泄流能力,便于运用管理和闸门维修,节省工程投资角度出发,泄洪方式以坝顶泄流最为经济。

故按坝顶溢流的方式进行洪水调节计算,以确定坝顶高程和最大坝高。

调洪演算采用半图解法。

3.2.1确定工程等别和级别
根据SDJ12-78《水利水电工程枢纽等级划分和设计标准(山区、丘陵区部分)》结合宁溪枢纽所给定的特征水位和基本资料,通盘考虑水库总库容、防洪效益、装机容量等因素,该工程为二等大型工程,主要建筑物为2级,次要建筑物为3级,临时建筑物为4级。

由表3-2-1可知永久性建筑物设计洪水标准为:正常运用(设计)洪水重现期为500年,非常运用(校核)洪水重现期为2000年。

3.2.2水库防洪要求
本水库的设计标准为500年,校核标准为2000年,S水库洪水调节除保证
本工程设计标准以外,还担负着提高下游防洪标准的任务。

3.3调洪演算
3.3.1调洪演算的目的
根据水位~库容曲线以及S 坝址设计洪水过程线,孔口尺寸、孔数以及堰顶高程,利用调洪演算来确定设计洪水位和校核洪水位,为后面坝顶高程的确定奠定基础。

3.3.2调洪演算的基本原理和方法
(a)根据库容曲线Z-V ,以及用水力学公式计算Q-Z 关系
3/2q Bm =
式中:q ——过堰流量,单位为3
/m s ;
B ——过水断面宽度,单位为m ; m ——堰的流量系数;
ε——局部水头损失系数;
H ——堰顶全水头,单位为m 。

(b)分析确定调洪开始时的起始条件,起调水位357m 。

(c)本次调洪计算采用《水能规划》书中介绍的列表试算法计算,依据书中所给的水库洪水调节原理,采用水量平衡方程式
21121211
()()22V V V Q q Q Q q q t t -∆-=+-+==
∆∆
式中:Q 1,Q 2——分别为计算时段初、末的入库流量(3
/m s );
Q ——计算时段中的平均入库流量(m 3/s ),它等于(Q 1
+Q 2
)/2;
q 1,q 2——分别为计算时段初、末的下泻流量(m 3/s ); q ——计算时段中的平均下泻流量(m 3/s ),即q = (q 1+q 2)/2; V 1,V 2——分别为计算时段初、末的水库的蓄水量(m 3); V ∆——为V 2和V 1之差;
t ∆——计算时段,一般取1~6小时,需化为秒数。

采用开敞式溢流时,利用下式计算
3/20
q nb ε=溢
3(/)m s 式中:q 溢——溢流流量,单位为3
/m s ;
n ——为闸孔数;
b ——过水断面宽度,单位为m ;
m ——堰的流量系数,本设计中取0.5; ε——侧收缩系数,根据闸墩厚度及墩头形状而定,ε在(0.9~0.95)
中取值,本设计中取0.9;
H ——堰顶全水头,单位为m 。

计算说明:
a)由洪水资料获得入库洪水量;
b)时段平均入库流量:由前、后时的入库洪水量取平均值得到; c)下泄水量:由水库水位确定(水库水位未知);
d)时段平均下泄流量:由前、后时的下泄流量取平均值得到;
e)时段内水库水量变化V ∆:由“时段平均入库流量”-“时段平均下泄流量”×3600得到;
f)水库存水量:与水库水位有关(水库水位未知)。

3.4调洪的基本资料
3.4.1调洪演算方案
调洪演算方案拟定如下,共有两个方案,详细情况列于表1.1
注:表示孔口尺寸(m)(宽⨯高),即宽m ,高m
3.4.2计算工况
计算工况分校核和设计两种,由设计规范可知:混凝土坝按500年一遇(P=0.2%)洪水设计,2000年一遇(P=0.05%)洪水校核。

3.5调洪演算的过程计
根据以上数据应用下泄流量的计算公式
32
0q nb ε= 计算下泄流量,其中ε=0.9,g=9.8,流量系数m=0.5,根据以上数据和不同的堰宽可得不同水深时的下泻流量.
方案一:堰顶高程346m,堰宽为120m,计算下泄流量q见表1.2:
方案二:堰顶高程343m,堰宽为135m,计算下泄流量q见表1.3:
根据试算法求设计洪水位以及校核洪水位的最大下泄流量一级水库的最高水位
方案比较:从运用上看9孔,多孔,孔口小,孔口为单数,调节灵活,但开挖量相对大,且整体调节水位相差不大,8孔,开挖量相对较小,可节省一定的成本,为下游的施工减少工程量。

综合考虑选择8孔。

此时,枢纽的设计、校核和设计工况情况下上游水位、最大下泄流量和下游水位(根据最大下泄流量由坝址处流量-水位曲线查得)。

1.11 经调洪演算得到的水利水能资料。

相关文档
最新文档