黑龙江省哈尔滨市道外区2020-2021学年八年级第二学期期末调研测试数学试题

合集下载

第2章 一元二次方程 章末检测卷-2020-2021学年八年级数学下学期高频考点专题突破(解析版)

第2章 一元二次方程 章末检测卷-2020-2021学年八年级数学下学期高频考点专题突破(解析版)

第2章一元二次方程章末检测卷(浙教版)姓名:__________________班级:______________得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020ꞏ浙江杭州市ꞏ八年级模拟)下面关于x 的方程中①20ax bx c ++=;②223(9)(1)1x x --+=;③2150x x++=;④232560x x -+-=;⑤2233(2)x x =-;⑥12100x -=是一元二次方程的个数是()A .1B .2C .3D .4【答案】A【分析】根据一元二次方程的定义对各小题进行逐一判断即可.【详解】解:①当0a =时,20ax bx c ++=是一元一次方程,故错误;②223(9)(1)1x x --+=是一元二次方程,故正确;③2150x x++=是分式方程,故错误;④232560x x -+-=是一元三次方程,故错误;⑤2233(2)x x =-可化为12120x -=是一元一次方程,故错误;⑥12100x -=是一元一次方程,故错误.故选:A .【点睛】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.(2020ꞏ浙江鄞州初二期末)把一元二次方程()2(3)31x x x +=-化成一般形式,正确的是()A .22790x x --=B .2 2590x x --=C .24790x x ++=D .2 26100x x --=【答案】A【分析】方程左边利用完全平方公式将原方程的左边展开,右边按照整式乘法展开,然后通过合并同类项将原方程化为一般形式.【解析】由原方程,得x 2+6x+9=3x 2-x ,即2x 2-7x-9=0,故选A .【点睛】本题主要考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.3.(2020ꞏ浙江上虞初二期末)如图,某小区规划在一个长40m 、宽26m 的长方形场地ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块草坪的面积都为2144m ,那么通道的宽x 应该满足的方程为()A .(402)(26)4026x x ++=⨯B .(40)(262)1446x x --=⨯C .214464022624026x x x ⨯++⨯+=⨯D .(402)(26)1446x x --=⨯【答案】D【分析】设道路的宽为xm ,将6块草地平移为一个长方形,长为(40-2x )m ,宽为(26-x )m .根据长方形面积公式即可列方程(40-2x )(26-x )=144×6.【解析】解:设道路的宽为xm ,由题意得:(40-2x )(26-x )=144×6.故选:D .【点睛】本题考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解题的关键.4.(2020ꞏ安徽省初三二模)若关于x 的一元二次方程x 2﹣4x +m +2=0有两个不相等实数根,且m 为正整数,则此方程的解为()A .x 1=﹣1,x 2=3B .x 1=﹣1,x 2=﹣3C .x 1=1,x 2=3D .x 1=1,x 2=﹣3【答案】C【分析】由根的情况,依据根的判别式得出m 的范围,结合m 为正整数得出m 的值,代入方程求解可得.【解析】∵关于x 的一元二次方程x 2﹣4x +m +2=0有两个不相等实数根,∴△=(﹣4)2﹣4×1×(m +2)>0,解得:m <2,∵m 为正整数,∴m =1,则方程为x 2﹣4x +3=0,解得:x 1=1,x 2=3,故选:C .【点睛】本题考查了一元二次方程根的判别式以及一元二次方程求解,熟练掌握相关知识点是解题关键.5.(2020ꞏ山东省初三期中)已知4是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为()A .7B .10C .11D .10或11【答案】D【分析】把x=4代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【解析】把x=4代入方程得16−4(m+1)+2m=0,解得m=6,则原方程为x2−7x+12=0,解得x1=3,x2=4,∵这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10;综上所述,该△ABC的周长为10或11.故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了三角形三边的关系.6.(2020ꞏ杭州市八年级期中)若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为()A.2017B.2020C.2019D.2018【答案】B【分析】对于一元二次方程a(x﹣1)2+b(x﹣1)+2=0,设t=x﹣1得到at2+bt+2=0,利用at2+bt+2=0有一个根为t=2019得到x﹣1=2019,从而可判断一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.【详解】解:对于一元二次方程a(x﹣1)2+b(x﹣1)+2=0,设t=x﹣1,所以at2+bt+2=0,而关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,所以at2+bt+2=0有一个根为t=2019,则x﹣1=2019,解得x=2020,所以一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.故选:B.【点睛】本题考查的是一元二次方程的根,考查方程中的整体未知数,掌握以上知识是解题的关键.7、(2020年成都市初三半期)根据下列表格对应值:x 3.24 3.25 3.262++‐0.020.010.03ax bx c判断关于x的方程20(0)++=≠的一个解x的范围是()ax bx c aA.x<3.24B.3.24<x<3.25C.3.25<x<3.26D.3.25<x<3.28【答案】B【解析】当3.24<x <3.25时,2ax bx c ++的值由负连续变化到正,说明在3.24<x <3.25范围内一定有一个x 的值,使20ax bx c ++=,即是方程20ax bx c ++=的一个解.故选B .【考点】利用夹逼法求近似解8.(2020ꞏ江苏省初三期中)古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如下图1,2,他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是()A .289B .1225C .1024D .1378【答案】B【分析】图1中求出1、3、6、10,…,第n 个图中点的个数是1+2+3+…+n ,即12n n +();图2中1、4、9、16,…,第n 个图中点的个数是n 2.然后把各数分别代入,若解出的n 是正整数,则说明符合条件是所求.【解析】根据题意得:三角形数的第n 个图中点的个数为12n n +();正方形数第n 个图中点的个数为n 2.A 、令12n n +()=289,解得:n =12-(不合题意);再令n 2=289,n =±17;不符合条件,错误;B .令12n n +()=1225,解得n 1=49,n 2=﹣50(不合题意);再令n 2=1225,n 1=35,n 2=﹣35(不合题意,舍去),符合条件,正确.C .令12n n +()=1024,解得:n =12-±(都不合题意);再令n 2=1024,n =±32;不符合条件,错误;D .令12n n +()=1378,解得n 1=52,n 2=﹣53(不合题意);再令n 2=1378,n =(不合题意,舍去),不符合条件,错误.故选B .【点睛】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.9.(2020ꞏ浙江杭州市ꞏ八年级期末)已知关于x 的方程2(21)(1)0kx k x k +++-=有实数根,则k 的取值范围为()A .18k ≥-B .18k >-C .18k ≥-且0k ≠D .18k <-【答案】A【分析】由于k 的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【详解】解:当k=0时,x-1=0,解得:x=1;当k≠0时,此方程是一元二次方程,∵关于x 的方程kx 2+(2k+1)x+(k-1)=0有实根,∴△=(2k+1)2-4k×(k-1)≥0,解得18k ≥-且k≠0,综上:k 的取值范围是18k ≥-,故选A .【点睛】本题考查的是根的判别式,注意掌握一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.10.(2020ꞏ绵阳市初三期末)关于x 的方程0122=-++k kx x 的根的情况描述正确的是.A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【答案】B。

吉林省松原市前郭县南部学区2024~2025学年度九年级上期中测试.名校调研 物理(含答案)

吉林省松原市前郭县南部学区2024~2025学年度九年级上期中测试.名校调研   物理(含答案)

九 年 · 物 理 ( 省 命 题 ) ( 六 十 ) 九年 ·物理(省命题) (六十)学 校姓 名班 级考 号名校调研系列卷 ·九年级期中测试物理(人教版) 题 号 二三四五 总 分得 分一、单项选择题(每题2分,共12分)1.一般情况下,下列物体中容易导电的是 ( )A.玻璃杯B.塑料尺C.铅笔芯D.橡胶轮胎2.植物油燃料是一种新型燃料,可用来替代传统燃料。

它不易燃、不易爆、无烟无异味,在节能方面比传统燃料更胜一筹,进行同样的工作消耗的燃料更少,这是因为该燃料具有 较大的 ( ) A. 热值 B.比热容 C.内能 D. 质量3.下列用电器正常工作时,所需电压最小的是 ( ) A.电饭锅 B.电子计算器 C. 电冰箱 D.电熨斗4.如图是一款热销的仿真猫咪玩具,其工作原理为:闭合开关S, 电源指示灯 亮,当触摸玩具猫咪头部时,开关S ₂ 闭合,玩具猫咪就会吐舌头(电动机工 作)开启撤娇卖萌模式;当断开开关S ₁ 时,电源指示灯不亮,无论是否触摸 其头部,玩具猫咪都不会吐舌头。

下列电路设计符合上述要求的是( )A B C D5.两只定值电阻,甲标有“1000.8A”字样,乙标有“1500.4A”字样,把它们串联起来, 两端允许加的最大电压是 ( ) A.14V B.10V C.8V D.6V6.小晨同学准备用如图所示的电路测量两个电阻的阻值,但当开关S 闭合时,他发现电流表有示数,电压表V ₁ 、V ₁ 有 示 数 且 示 数 相 同 , 则电路故障的原因可能是 ( ) A.R ₁ 短路 B.R ₁ 断 路 C.R ₂ 短路 D.R ₁ 断路二、填空题(每空1分,共18分)7.在暗朗无风的天气,小明的爸爸给爷爷家的院门刷油漆时,在院子里玩的小明闻到了油漆 的气味儿,这是 现象;油漆能附着在院门上,这利用了分子间的 8.腊月,东北农村有蒸粘豆包的习俗。

将蒸熟的粘豆包放在寒冷的室外晾凉,这是通过的方式来 粘豆包的内能。

2020-2021学年黑龙江省哈尔滨市南岗区八年级(上)期末数学试卷(五四学制)

2020-2021学年黑龙江省哈尔滨市南岗区八年级(上)期末数学试卷(五四学制)

2020-2021学年黑龙江省哈尔滨市南岗区八年级(上)期末数学试卷(五四学制)一、选择题(每小题3分,共计30分)1.(3分)下列方程中,是分式方程的是()A.+=1B.x+=2C.2x=x﹣5D.x﹣4y=1 2.(3分)下列图案中不是轴对称图形的是()A.B.C.D.3.(3分)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a5C.a6÷a2=a3D.a6﹣a2=a4 4.(3分)若分式的值为0,则x的值是()A.1或﹣1B.1C.﹣1D.05.(3分)计算3a(5a﹣2b)的结果是()A.15a﹣6ab B.8a2﹣6ab C.15a2﹣5ab D.15a2﹣6ab 6.(3分)下列计算正确的是()A.﹣=B.=C.=D.﹣=67.(3分)计算(﹣3)0﹣2﹣3的结果是()A.﹣B.C.6D.78.(3分)若a≠b,则下列分式化简正确的是()A.B.C.=D.=9.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC =6,AD=2,则BD的长为()A.2B.3C.4D.610.(3分)若的整数部分为x,小数部分为y,则x﹣y的值是()A.1B.C.3﹣3D.3二、填空题(每小题3分,共计30分)11.(3分)0.0012用科学记数法表示为.12.(3分)若分式有意义,则字母x满足的条件是.13.(3分)把多项式a3b﹣ab分解因式的结果为.14.(3分)计算﹣的结果是.15.(3分)计算:28x4y2÷7x3y=.16.(3分)一个长方形的长和面积分别是和4,则这个长方形的宽为.17.(3分)等腰三角形的一个角是80°,则它的底角是.18.(3分)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB 与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为.19.(3分)当x=2时,代数式÷(x﹣1)的值为.20.(3分)如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则DF的长为.三、解答题(其中21-25题各8分,26-27题各10分,共计60分)21.(8分)化简:(1)(2x)3(﹣5xy2);(2)(3x+2)(x+2).22.(8分)计算:(1);(2).23.(8分)解方程:(1)(x﹣3)(x﹣2)+18=(x+9)(x+1);(2)+1=.24.(8分)如图,△ABD,△AEC都是等边三角形,连接BE,DC,BE交DC于点F.(1)求证:BE=DC;(2)求∠BFC的度数.25.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.例如:第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.26.(10分)某商店想购进A、B两种商品,已知每件B种商品的进价比每件A种商品的进价多5元,且用300元购进A种商品的数量是用100元购进B种商品数量的4倍.(1)求每件A种商品和每件B种商品的进价分别是多少元?(2)商店决定购进A、B两种商品共50件,A种商品加价5元出售,B种商品比进价提高20%后出售,要使所有商品全部出售后利润不少于210元,求A种商品至少购进多少件?27.(10分)已知:在△ABC中,AB=AC,点D在BA的延长线上,DE∥AC交BC的延长线于点E.(1)如图1,求证:DB=DE;(2)如图2,作△DBE的高EF,连接AE,若∠DEA=∠FEA,求证:∠AEB=45°;(3)如图3,在(2)的条件下,过点B作BG⊥AE于点G,BG交AC于点H,若CE =4,且四边形CEGH的面积是24,求BH的长.2020-2021学年黑龙江省哈尔滨市南岗区八年级(上)期末数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)下列方程中,是分式方程的是()A.+=1B.x+=2C.2x=x﹣5D.x﹣4y=1【分析】根据分式方程的定义对各选项进行逐一分析即可.【解答】解:A、该方程是一元一次方程,故本选项不符合题意;B、该方程符合分式方程的定义,故本选项符合题意;C、该方程是一元一次方程,故本选项不符合题意;D、该方程是二元一次方程,故本选项不符合题意;故选:B.2.(3分)下列图案中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义直接判断得出即可.【解答】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意;故选:C.3.(3分)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a5C.a6÷a2=a3D.a6﹣a2=a4【分析】根据同底数幂的乘除法法则,幂的乘方法则,合并同类项法则,逐一检验.【解答】解:A、a2•a3=a2+3=a5,本选项正确;B、(a2)3=a6,本选项错误;C、a6÷a2=a6﹣2=a4,本选项错误;D、a6与﹣a2不是同类项,不能合并,本选项错误;故选:A.4.(3分)若分式的值为0,则x的值是()A.1或﹣1B.1C.﹣1D.0【分析】根据分式的值为零的条件可以求出x的值.【解答】解:根据题意知,x﹣1=0,解得x=1.故选:B.5.(3分)计算3a(5a﹣2b)的结果是()A.15a﹣6ab B.8a2﹣6ab C.15a2﹣5ab D.15a2﹣6ab【分析】根据单项式乘以多项式,先用单项式乘以多项式的每一项,再把所得的积相加计算.【解答】解:3a(5a﹣2b)=15a2﹣6ab.故选:D.6.(3分)下列计算正确的是()A.﹣=B.=C.=D.﹣=6【分析】根据二次根式的加减法对A、B、C进行判断;根据二次根式的乘法法则对C进行判断.【解答】解:A、原式=2﹣,所以A选项错误;B、原式=2+3=5,所以B选项错误;C、原式=,所以C选项正确;D、原式=5﹣=4,所以D选项错误.故选:C.7.(3分)计算(﹣3)0﹣2﹣3的结果是()A.﹣B.C.6D.7【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:原式=1﹣=.故选:B.8.(3分)若a≠b,则下列分式化简正确的是()A.B.C.=D.=【分析】根据a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;≠,故选项C错误;=,故选项D正确;故选:D.9.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC 的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC =6,AD=2,则BD的长为()A.2B.3C.4D.6【分析】根据线段垂直平分线的性质即可得到结论.【解答】解:由作图知,MN是线段BC的垂直平分线,∴BD=CD,∵AC=6,AD=2,∴BD=CD=4,故选:C.10.(3分)若的整数部分为x,小数部分为y,则x﹣y的值是()A.1B.C.3﹣3D.3【分析】先估算出的范围,求出x、y的值,再代入求出即可.【解答】解:∵1,∴x=1,y=﹣1,∴x﹣y=×1﹣(﹣1)=1,故选:A.二、填空题(每小题3分,共计30分)11.(3分)0.0012用科学记数法表示为 1.2×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.0012用科学记数法表示为1.2×10﹣3,故答案是:1.2×10﹣3.12.(3分)若分式有意义,则字母x满足的条件是x≠0.【分析】根据分式值为零的条件可得x≠0.【解答】解:由题意得:3x≠0,解得x≠0.故答案为:x≠0.13.(3分)把多项式a3b﹣ab分解因式的结果为ab(a+1)(a﹣l).【分析】先提公因式ab,然后把a2﹣1利用平方差公式分解即可.【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1).故答案为ab(a+1)(a﹣1).14.(3分)计算﹣的结果是.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=4﹣3=,故答案为:.15.(3分)计算:28x4y2÷7x3y=4xy.【分析】根据单项式除以单项式的法则计算即可.【解答】解:28x4y2÷7x3y=4xy,故答案为:4xy.16.(3分)一个长方形的长和面积分别是和4,则这个长方形的宽为2.【分析】利用长方形的面积公式计算即可.【解答】解:由题意知:长方形的宽为:===2,故答案为:2.17.(3分)等腰三角形的一个角是80°,则它的底角是50°或80°.【分析】已知给出了一个内角是80°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.【解答】解:由题意知,分两种情况:(1)当这个80°的角为顶角时,则底角=(180°﹣80°)÷2=50°;(2)当这个80°的角为底角时,则另一底角也为80°.故答案为:50°或80°.18.(3分)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB 与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为10°.【分析】求出∠C,∠AB′D,利用三角形的外角的性质求解即可.【解答】解:∵∠B=50°,∠ABC=90°,∴∠C=90°﹣50°=40°,∵AD⊥BC,△ADB与△ADB'关于直线AD对称,∴∠AB′D=∠B=50°,∵∠AB′D=∠C+∠CAB′,∴∠CAB′=50°﹣40°=10°,故答案为10°.19.(3分)当x=2时,代数式÷(x﹣1)的值为.【分析】根据分式的除法和因式分解可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷(x﹣1)==,当x=2时,原式==,故答案为:.20.(3分)如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF =2,△ADG的面积为2,则DF的长为1.【分析】求出△ABD的面积.根据三角形的面积公式求出DF即可.【解答】解:∵DG=GE,∴S=S△AEG=2,△ADG=4,∴S△ADE由翻折可知,△ADB≌△ADE,BE⊥AD,∴S=S△ADE=4,∠BFD=90°,△ABD∴•(AF+DF)•BF=4,∴•(3+DF)•2=4,∴DF=1.故答案为:1.三、解答题(其中21-25题各8分,26-27题各10分,共计60分)21.(8分)化简:(1)(2x)3(﹣5xy2);(2)(3x+2)(x+2).【分析】(1)先算积的乘方,然后再利用单项式乘以单项式计算法则进行计算即可;(2)根据多项式乘以多项式的计算法则进行计算即可.【解答】解:(1)原式=8x3•(﹣5xy2)=﹣8x3•5xy2=﹣40x4y2;(2)原式=3x2+6x+2x+4=3x2+8x+4.22.(8分)计算:(1);(2).【分析】根据二次根式的运算法则即可求出答案.【解答】(1)==0(2)===23.(8分)解方程:(1)(x﹣3)(x﹣2)+18=(x+9)(x+1);(2)+1=.【分析】(1)分别将原方程按照多项式乘法法则展开,然后移项、合并同类项,最后系数化为1即可;(2)根据解分式方程的方法可以解答此方程,注意分式方程要检验.【解答】解:(1)(x﹣3)(x﹣2)+18=(x+9)(x+1),x2﹣5x+6+18=x2+10x+9,﹣15x=﹣15,x=1.(2)方程两边同乘以(x﹣2),得x﹣3+x﹣2=﹣3,移项及合并同类项,得2x=2,系数化为1,得x=1,检验:当x=1时,x﹣2≠0,∴原分式方程的解是x=1.24.(8分)如图,△ABD,△AEC都是等边三角形,连接BE,DC,BE交DC于点F.(1)求证:BE=DC;(2)求∠BFC的度数.【分析】(1)利用△ABD、△AEC都是等边三角形,求证△DAC≌△BAE,然后即可得出BE=DC;(2)根据全等三角形的性质解答即可.【解答】证明:(1)∵△ABD、△AEC都是等边三角形,∴AD=AB,AE=AC,∠DAB=∠CAE=60°,∴∠DAC=∠BAC+60°,∠BAE=∠BAC+60°,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=DC;(2)令AB与DC的交点为G,∵△BAE≌△DAC,∴∠ABE=∠ADC,∵∠BGD=∠ABE+∠BFG,∠BGD=∠ADC+∠DAG,∴∠ABE+∠BFG=∠ADC+∠DAG,∴∠BFG=∠DAG=60°,∴∠BFC=180°﹣∠BFG=120°.25.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.例如:第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.【分析】(1)根据题意列出代数式即可;(2)根据题意得到25+4a2+(﹣16﹣12a),根据整式加减的法则计算,然后配方,根据非负数的性质即可得到结论.【解答】解:(1)A区显示的结果为:25+2a2,B区显示的结果为:﹣16﹣6a;(2)这个和不能为负数,理由:根据题意得,25+4a2+(﹣16﹣12a)=25+4a2﹣16﹣12a=4a2﹣12a+9;∵(2a﹣3)2≥0,∴这个和不能为负数.26.(10分)某商店想购进A、B两种商品,已知每件B种商品的进价比每件A种商品的进价多5元,且用300元购进A种商品的数量是用100元购进B种商品数量的4倍.(1)求每件A种商品和每件B种商品的进价分别是多少元?(2)商店决定购进A、B两种商品共50件,A种商品加价5元出售,B种商品比进价提高20%后出售,要使所有商品全部出售后利润不少于210元,求A种商品至少购进多少件?【分析】(1)设每件A商品的进价为x元,则每件B商品的进价为(x+5)元,根据“用300元购进A种商品的数量是用100元购进B种商品数量的4倍”列出方程,解方程即可;(2)设购进A商品a件,根据“A种商品加价5元出售,B种商品比进价提高20%后出售,要使所有商品全部出售后利润不少于210元”列出不等式,解不等式即可.【解答】解:(1)设每件A商品的进价为x元,则每件B商品的进价为(x+5)元,由题意得:=×4,解得:x=15,经检验,x=15是原分式方程的解,且符合题意,则x+5=20,答:每件A商品的进价为15元,每件B商品的进价为20元;(2)设购进A商品a件,由题意得:5a+20×20%(50﹣a)≥210,解得:a≥10,答:A种商品至少购进10件.27.(10分)已知:在△ABC中,AB=AC,点D在BA的延长线上,DE∥AC交BC的延长线于点E.(1)如图1,求证:DB=DE;(2)如图2,作△DBE的高EF,连接AE,若∠DEA=∠FEA,求证:∠AEB=45°;(3)如图3,在(2)的条件下,过点B作BG⊥AE于点G,BG交AC于点H,若CE =4,且四边形CEGH的面积是24,求BH的长.【分析】(1)根据平行线的性质解答即可;(2)根据三角形的内角和解答即可;(3)过点C作CR⊥AE于R,过点R作RT⊥CE于T,根据全等三角形的判定和性质以及三角形面积公式解答.【解答】证明:(1)∵AB=AC,∴∠B=∠ACB,∵DE∥AC,∴∠ACB=∠E,∴∠B=∠E,∴DB=DE;(2)令∠DEA=α,则∠FEA=α,∠FED=2α,∵EF是△DBE的高,∴EF⊥DB,∴∠DFE=90°,∴∠D=90°﹣∠DEF=90°﹣2α,∵∠B+∠DEB+∠D=180°,∴2∠DEB+90°﹣2α=180°,∴∠DEB=45°+α,∴∠AEB=∠DEB﹣∠DEA=45°+α﹣α=45°,(3)如图3,过点C作CR⊥AE于R,过点R作RT⊥CE于T,则∠CRE=∠CTR=∠ETR=90°,∵∠AEB=45°,∴∠RCE=∠ERT=45°=∠CRT,∴RC=RE,ET=RT=CT=,∵,∴,∴ER=CR=4,∵DE∥AC,∴∠CAR=∠DEA=α,∵BG⊥AE,∴∠BGE=90°,∴∠GBE=90°﹣∠AEB=45°,∴∠ABG=∠ABC﹣∠GBE=∠DEB﹣∠GBE=45°+α﹣45°=α=∠CAR,∵∠AGB=∠CRA=90°,∴△ABG≌△CAR(AAS),=S△CAR,AG=CR=4,∴S△ABG﹣S△AGH=S△CAR﹣S△AGH,∴S△ABG∴S=S四边形CRGH,△ABH=S四边形CRGH+S△CER,∵S四边形CEGH∴,=S四边形CRGH=16,∴S△ABH∴,∴,∴BH=8.。

人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)

人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。

2020-2021学年度第二学期期末质量抽查八年级数学真题试卷

2020-2021学年度第二学期期末质量抽查八年级数学真题试卷
3.在直角坐标系内,直线y=-x+2在x轴上方的点的横坐标的取值范围是________.
4.方程x3-x= 0的解为__________________.
5.方程 的解为_____.
6.“太阳每天从东方升起”,这是一个_____________事件(填“确定”或“随机”).
7.如图是一个被等分成6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是_____.
三、解答题
20.解方程: .
21.解方程组:
22.已知□ABCD,点E是BC边的中点,请回答下列问题:
(1)在图中求作 与 的和向量: =;
(2)在图中求作 与 的差向量: =;
(3)如果把图中线段都画成有向线段,那么在这些有向线段所表示的向量中,所有与 互为相反向量的向量是;
(4) =.
23.请你根据图中图像所提供的信息,解答下面问题:
8.从1,2,3,4四个数中任意取出2个数做加法,其和为偶数的概率是_________.
9.甲乙两人加工同一种玩具,甲加工 个玩具所用的时间与乙加工 个玩具所用的时间相等.已知甲乙两人每天共加工 个玩具.若设甲每天加工 个玩具,则根据题意列出方程为:_____________________________.
A.本市明天将有80%的地区降水
B.本市明天将有80%的时间降水
C.明天肯定下雨
D.明天降水的可能性比较大
18.如图,在□ ABCD中,对角线AC、BD交于点O,下列式子一定成立的是( )
A.AC⊥BDB.AO=ODC.AC=BDD.OA=OC
19.矩形、菱形、正方形都具有的性质是()
A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线互相平分且相等

2020-2021学年黑龙江省哈尔滨市阿城区八年级(上)期末数学试卷【附答案】

2020-2021学年黑龙江省哈尔滨市阿城区八年级(上)期末数学试卷【附答案】

2020-2021学年黑龙江省哈尔滨市阿城区八年级(上)期末数学试卷一、选择题:(每小题3分,共30分)1.(3分)已知点Q与点P(3,2)关于x轴对称,那么点Q的坐标为()A.(﹣3,2)B.(3,2)C.(﹣3,﹣2)D.(3,﹣2)2.(3分)下列运算中,结果正确的是()A.a3÷a3=a B.a2+a2=a4C.(a3)2=a5D.a•a=a23.(3分)下列图形中不是轴对称的是()A.B.C.D.4.(3分)下列各式由左边到右边的变形中,是因式分解的为()A.a(a+1)=a2+aB.a2﹣2a﹣3=a(a﹣2)﹣3C.(a﹣b)x﹣(a﹣b)y=(a﹣b)(x﹣y)D.(a+b)2﹣4ab=a2﹣2ab+b25.(3分)下列各式,,,﹣3x2中,是分式的有()A.1个B.2个C.3个D.4个6.(3分)如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.扩大2倍7.(3分)等腰三角形有两条边长为5cm和9cm,则该三角形的周长是()A.18cm B.19cm C.23cm D.19cm或23cm 8.(3分)如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB=8m,∠A=30°,则DE等于()A.1m B.2m C.3m D.4m9.(3分)已知正n边形的一个内角为135°,则边数n的值是()A.10B.8C.7D.610.(3分)在平面直角坐标系xOy中,已知A(2,2),在y轴确定点P,使△AOP为等腰三角形,则符合条件的点P有()A.2个B.3个C.4个D.5个二、填空题:(每小题3分,共30分)11.(3分)计算:﹣a2•a3=.12.(3分)计算:(12a3﹣6a2+3a)÷3a=.13.(3分)当x时,分式有意义.14.(3分)分解因式:x3﹣4x=.15.(3分)计算=.16.(3分)在△ABC中,AB=3,BC=7,则AC的长x的取值范围是.17.(3分)如图,在△ABC中,∠A=70°,∠B=50°,B、C、D在一条直线上,则∠ACD =.18.(3分)如图,要测量池塘两岸相对的两点A、B的距离,可以在池塘外取AB的垂线BF上的两点C、D,使BC=CD,再画出BF的垂线DE,使E与A、C在一条直线上,测得DE=12m,则AB=m.19.(3分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形底角的度数为.20.(3分)如图直角三角形ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠CAB交CD于点E、交BC于点F,EG∥AB交CB于点G,FH⊥AB于H,以下4个结论:①∠ACD=∠B;②△CEF是等边三角形;③CD=FH+DE;④BG=CE中正确的是(将正确结论的序号填空).三、解答下列各题:(21题10分;22题、23题,每题6分;24题8分;26、27题,每题10分,共60分)21.(10分)(1)计算:(y﹣1)(y+5)﹣(y+2)(y﹣2);(2)分解因式:(2x+y)2﹣(x+2y)2.22.(6分)先化简,再求值:÷,其中.23.(6分)如图,△ABC的三个顶点的坐标分别为A(﹣6,4),B(﹣4,0),C(﹣2,2).(1)将△ABC向右平移5个单位,得△A1B1C1,画出图形,并直接写出点A1的坐标;(2)画出△ABC关于x轴的对称图形△A2B2C2,并直接写出点B2的坐标.24.(8分)如图,△ABD、△AEC都是等边三角形,直线CD交AB于点G、交直线BE于点F.(1)求证:△ACD≌△AEB;(2)求∠DFB的度数.25.(10分)甲、乙两名工人要到距他们45千米远的事故地点进行抢修,甲骑摩托车先行,乙用了小时装载设备后开抢修车出发,且开车速度是摩托车速度的1.5倍时,甲、乙两人能同时到达事故地点.(1)求摩托车的速度;(2)为了更快到达事故地点,若摩托车的速度提高到45千米/时,乙开车受路况限制,速度最大是60千米/时,且不能比甲晚到,就需要缩短装载设备的时间,则装载设备的时间最多是多少?26.(10分)已知,如图:等边△ABC中,延长AB至点D,使AD=2AB,延长AC至点E,使CE=AB,连接CD、BE交于点F.求证:(1)△ACD为直角三角形;(2)试探究线段DF与CF的数量关系,并加以证明.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,在Rt△OAB中,∠OAB=90°,OA=AB,点A的坐标为(4,4),点B在x轴的正半轴上.(1)如图1,求点B的坐标;(2)如图2,动点P从点B出发以每秒1个单位长度的速度沿射线BO运动,设点P的运动时间为t秒,请用含t的代数式表示△AOP的面积S;(3)在(2)问条件下,当点P在边OB上运动时,点Q为BP边上一点,且∠P AQ=45°,把△P AQ沿直线AQ翻折,点P落在点D处,当S=4时,求点D的坐标?2020-2021学年黑龙江省哈尔滨市阿城区八年级(上)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)已知点Q与点P(3,2)关于x轴对称,那么点Q的坐标为()A.(﹣3,2)B.(3,2)C.(﹣3,﹣2)D.(3,﹣2)【解答】解:∵点Q与点P(3,2)关于x轴对称,∴点Q的坐标为(3,﹣2),故选:D.2.(3分)下列运算中,结果正确的是()A.a3÷a3=a B.a2+a2=a4C.(a3)2=a5D.a•a=a2【解答】解:A、由于同底数的幂相除底数不变指数相减,故当a≠0时,a3÷a3=a0=1,故本选项错误;B、a2+a2=2a2,故本选项错误;C、依据幂的乘方运算法则可以得出(a3)2=a6,故本选项错误;D、a•a=a2,正确.故选:D.3.(3分)下列图形中不是轴对称的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项不合题意;故选:A.4.(3分)下列各式由左边到右边的变形中,是因式分解的为()A.a(a+1)=a2+aB.a2﹣2a﹣3=a(a﹣2)﹣3C.(a﹣b)x﹣(a﹣b)y=(a﹣b)(x﹣y)D.(a+b)2﹣4ab=a2﹣2ab+b2【解答】解:A、a(a+1)=a2+a,是整式的乘法,故此选项错误;B、a2﹣2a﹣3=a(a﹣2)﹣3,不是因式分解,故此选项错误;C、(a﹣b)x﹣(a﹣b)y=(a﹣b)(x﹣y),是因式分解,故此选项正确;D、(a+b)2﹣4ab=a2﹣2ab+b2,是整式的乘法,故此选项错误;故选:C.5.(3分)下列各式,,,﹣3x2中,是分式的有()A.1个B.2个C.3个D.4个【解答】解:,分母是实数,不是分式;,﹣3x2,都是整式,不合题意;是分式,共1个,故选:A.6.(3分)如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.扩大2倍【解答】解:分别用3x和3y去代换原分式中的x和y,得==,可见新分式与原分式相等.故选:B.7.(3分)等腰三角形有两条边长为5cm和9cm,则该三角形的周长是()A.18cm B.19cm C.23cm D.19cm或23cm 【解答】解:当等腰三角形的腰长为5cm,底边长为9cm时,∵5+5>9,9﹣5<5,∴能够成三角形,∴三角形的周长=5+5+9=19cm;当等腰三角形的腰长为9cm,底边长为5cm时,∵9+5>9,9﹣5<5,∴能够成三角形,∴三角形的周长=9+9+5=23cm;∴该三角形的周长是19cm或23cm.故选:D.8.(3分)如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB=8m,∠A=30°,则DE等于()A.1m B.2m C.3m D.4m【解答】解:如右图所示,∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,BC=AB=4,∴DE=2.故选:B.9.(3分)已知正n边形的一个内角为135°,则边数n的值是()A.10B.8C.7D.6【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,n=360°÷45°=8.故选:B.10.(3分)在平面直角坐标系xOy中,已知A(2,2),在y轴确定点P,使△AOP为等腰三角形,则符合条件的点P有()A.2个B.3个C.4个D.5个【解答】解:如图所示:当PO=P A时,符合条件的点P有1个;当OA=OP时,符合条件的点P有2个;当AO=AP时,符合条件的点P有1个;综上所述,在y轴确定点P,使△AOP为等腰三角形,则符合条件的点P有4个,故选:C.二、填空题:(每小题3分,共30分)11.(3分)计算:﹣a2•a3=﹣a5.【解答】解:﹣a2•a3=﹣a2+3=﹣a5,故答案为:﹣a5.12.(3分)计算:(12a3﹣6a2+3a)÷3a=4a2﹣2a+1.【解答】解:(12a3﹣6a2+3a)÷3a=4a2﹣2a+1.故填:4a2﹣2a+1.13.(3分)当x≠5时,分式有意义.【解答】解:根据题意得:x﹣5≠0,解得:x≠5.故答案是:≠5.14.(3分)分解因式:x3﹣4x=x(x+2)(x﹣2).【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).15.(3分)计算=a.【解答】解:原式===a.故答案为:a.16.(3分)在△ABC中,AB=3,BC=7,则AC的长x的取值范围是4<x<10.【解答】解:根据三角形的三边关系,得AC的长x的取值范围是7﹣3<x<7+3,即4<x<10.17.(3分)如图,在△ABC中,∠A=70°,∠B=50°,B、C、D在一条直线上,则∠ACD =120°.【解答】解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=70°+50°=120°,故答案为:120°.18.(3分)如图,要测量池塘两岸相对的两点A、B的距离,可以在池塘外取AB的垂线BF上的两点C、D,使BC=CD,再画出BF的垂线DE,使E与A、C在一条直线上,测得DE=12m,则AB=12m.【解答】解:∵AB⊥BF,DE⊥BF,∴∠B=∠EDC=90°.在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=12(m),故答案为:12.19.(3分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形底角的度数为30°或80°.【解答】解:(1)当底角与顶角的比是1:4时,设底角为x,顶角为4x,根据三角形内角和得,x+x+4x=180°,解得:x=30°,即底角为30°;(2)当顶角与底角的比是1:4,设顶角为x,底角为4x,根据三角形内角和得,x+4x+4x =180°,解得:x=20°,∴4x=80°,即底角为80°;所以底角的度数为30°或80°.故答案为:30°或80°.20.(3分)如图直角三角形ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠CAB交CD于点E、交BC于点F,EG∥AB交CB于点G,FH⊥AB于H,以下4个结论:①∠ACD=∠B;②△CEF是等边三角形;③CD=FH+DE;④BG=CE中正确的是①③④(将正确结论的序号填空).【解答】解:如图,连接EH,∵∠ACB=90°,∴∠3+∠4=90°,∵CD⊥AB,∴∠ADC=90°,∴∠B+∠4=90°,∴∠3=∠B,故①正确;∵∠ADC=∠ACB=90°,∴∠1+∠AFC=90°,∠2+∠AED=90°,∵AE平分∠CAB,∴∠1=∠2,∵∠AED=∠CEF,∴∠CEF=∠AFC,∴CE=CF,∴△CEF是等腰三角形,故②错误;∵AF平分∠CAB,FH⊥AB,FC⊥AC,∴FH=FC,在Rt△CAF和Rt△HAF中,,∴Rt△CAF≌Rt△HAF(HL),∴AC=AH,在△CAE和△HAE中,,∴△CAE≌△HAE(SAS),∴∠3=∠AHE,CE=EH,∵∠3=∠B,∴∠AHE=∠B,∴EH∥BC,∵CD⊥AB,FH⊥AB,∴CD∥FH,∴四边形CEFH是平行四边形,∴CE=FH,∴CD=CE+DE=FH+DE,故③正确;∵EG∥AB,EH∥BC,∴四边形EHBG是平行四边形,∴EH=BG,∵CE=EH,∴BG=CE.故④正确.所以正确的是①③④.故答案为:①③④.三、解答下列各题:(21题10分;22题、23题,每题6分;24题8分;26、27题,每题10分,共60分)21.(10分)(1)计算:(y﹣1)(y+5)﹣(y+2)(y﹣2);(2)分解因式:(2x+y)2﹣(x+2y)2.【解答】解:(1)原式=y2+4y﹣5﹣(y2﹣4)=y2+4y﹣5﹣y2+4=4y﹣1;(2)原式=(2x+y+x+2y)(2x+y﹣x﹣2y)=(3x+3y)(x﹣y)=3(x+y)(x﹣y).22.(6分)先化简,再求值:÷,其中.【解答】解:原式=•=,当x=+1=时,原式==9.23.(6分)如图,△ABC的三个顶点的坐标分别为A(﹣6,4),B(﹣4,0),C(﹣2,2).(1)将△ABC向右平移5个单位,得△A1B1C1,画出图形,并直接写出点A1的坐标;(2)画出△ABC关于x轴的对称图形△A2B2C2,并直接写出点B2的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求,其中点A1的坐标为(﹣1,4);(2)如图所示,△A2B2C2即为所求,点B2的坐标为(﹣4,0).24.(8分)如图,△ABD、△AEC都是等边三角形,直线CD交AB于点G、交直线BE于点F.(1)求证:△ACD≌△AEB;(2)求∠DFB的度数.【解答】(1)证明:∵△ABD、△AEC都是等边三角形,∴AD=AB,AC=AE,∠DAB=∠CAE=60°,∴∠DAC=∠BAE,在△ACD与△AEB中,,∴△ACD≌△AEB(SAS);(2)由(1)知△ACD≌△AEB,∴∠ADC=∠ABE,∵∠DGA=∠BGF,∴180°﹣∠ADC﹣∠DGA=180°﹣∠ABE﹣∠BGF,∴∠DFB=∠DAB=60°.25.(10分)甲、乙两名工人要到距他们45千米远的事故地点进行抢修,甲骑摩托车先行,乙用了小时装载设备后开抢修车出发,且开车速度是摩托车速度的1.5倍时,甲、乙两人能同时到达事故地点.(1)求摩托车的速度;(2)为了更快到达事故地点,若摩托车的速度提高到45千米/时,乙开车受路况限制,速度最大是60千米/时,且不能比甲晚到,就需要缩短装载设备的时间,则装载设备的时间最多是多少?【解答】解:(1)设摩托车的速度是x千米/时,则抢修车的速度为1.5x千米/时,由题意得,.解得x=40.经检验x=40是原方程的根,答:摩托车的速度40千米/时;(2)设装载设备的时间是t小时,由题意得,≤.解得t≤.答:装载设备的时间最多是小时.26.(10分)已知,如图:等边△ABC中,延长AB至点D,使AD=2AB,延长AC至点E,使CE=AB,连接CD、BE交于点F.求证:(1)△ACD为直角三角形;(2)试探究线段DF与CF的数量关系,并加以证明.【解答】(1)证明:∵△ABC是等边三角形,∴∠ACB=ABC=60°,AB=BC,∵AD=2AB,∴AB=BD,∴BD=BC,∴∠D=∠BCD,∵∠ABC=∠D+∠BCD=60°,∴∠D=∠BCD=30°,∴∠ACD=∠ACB+∠BCD=60°+30°=90°,∴△ACD为直角三角形;(2)DF=3CF,理由:过点B作BH⊥DC于点H,∵DB=BC,∴DH=CH,∵∠BCH=30°,∠BHC=90°,∴BH=BC=AB,∵CE=AB,∴BH=CE,由(1)知∠ACD=90°,∴∠FCE=90°,在△BFH和△EFC中,,∴△BFH≌△EFC(AAS),∴FH=CF,∴CH=2CF,∴DH=CH=2CF,∴DF=3CF.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,在Rt△OAB中,∠OAB=90°,OA=AB,点A的坐标为(4,4),点B在x轴的正半轴上.(1)如图1,求点B的坐标;(2)如图2,动点P从点B出发以每秒1个单位长度的速度沿射线BO运动,设点P的运动时间为t秒,请用含t的代数式表示△AOP的面积S;(3)在(2)问条件下,当点P在边OB上运动时,点Q为BP边上一点,且∠P AQ=45°,把△P AQ沿直线AQ翻折,点P落在点D处,当S=4时,求点D的坐标?【解答】解:(1)如图1,过A点作AH⊥OB于点H,∵A(4,4),∴OH=4,在Rt△OAB中,∠OAB=90°,OA=AB,∴OB=2OH=8,∴B(8,0);(2)当P点在边OB上时,即0≤t<8,由运动知,BP=t,∴OP=8﹣t,过点A作AH⊥OB于H,∵A(4,4),∴AH=4,∴S=S△AOP=OP•AH=(8﹣t)×4=﹣2t+16,当P点在边BO的延长线上时,即t>8,由运动知,BP=t,∴OP=t﹣8,∴S=S△AOP=OP•AH=(t﹣8)×4=2t﹣16;(3)当点P在BO边上时,S△AOP=4,∴﹣2t+16=4,∴t=6,∴P(2,0),∴OP=2,记AQ与PD交于点K,∵把△P AQ沿直线AQ翻折,∴∠P AK=∠DAK=45°,∴∠P AD=90°,AP=AD,∵∠OAB=90°,∴∠OAP=∠BAD,OA=AB,∴△APO≌△ADB(SAS),∴OP=BD,∠AOP=∠ABD,∵∠AOP=45°,∴∠ABD=45°,∴∠DBP=90°,∴BD⊥OB,∴D(8,2).。

2020-2021学年黑龙江省哈尔滨市香坊区八年级(上)期末数学试卷(五四学制)(含解析)

2020-2021学年黑龙江省哈尔滨市香坊区八年级(上)期末数学试卷(五四学制)(含解析)

2020-2021学年黑龙江省哈尔滨市香坊区八年级第一学期期末数学试卷(五四学制)一、选择题(共10小题).1.下列图案中,是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.a6÷a2=a3B.a2+a2=a4C.(a+b)2=a2+b2D.(a3)2=a63.下列二次根式中属于最简二次根式的是()A.B.C.D.4.等腰三角形的一边等于3,一边等于7,则此三角形的周长为()A.10B.13C.17D.13或175.如果分式中的x、y都扩大到原来的2倍,那么下列说法中,正确的是()A.分式的值不变B.分式的值缩小为原来的C.分式的值扩大为原来的2倍D.分式的值扩大为原来的4倍6.正方形的边长增加了2cm,面积相应增加了24cm2,则这个正方形原来的面积是()A.15cm2B.25cm2C.36cm2D.49cm27.下列说法正确的是()A.如果两个三角形全等,则它们是关于某条直线成轴对称的图形B.如果两个三角形关于某条直线成轴对称,那么它们是全等三角形C.等边三角形是关于一条边上的中线成轴对称的图形D.一条线段是关于经过该线段中点的中线成轴对称的图形8.如图(1),在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分拼成一个长方形,如图(2),此过程可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)2=(a﹣b)2+4ab9.某校组织540名学生去外地参观,现有A,B两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆.设A型客车每辆坐x人,根据题意可列方程()A.﹣=6B.﹣=6C.﹣=6D.﹣=610.如图,以△ABC的边AB、AC为边向外作等边△ABD与等边△ACE,连接BE交DC于点F,下列结论:①CD=BE;②FA平分∠DFE;③∠BFC=120°;④=.其中正确的有()A.4个B.3个C.2个D.1个二.填空题(共10小题).11.在2020年,新型冠状病毒威胁着人类的健康,一种新型冠状病毒的直径大约是120纳米,也就是0.00000012米,将0.00000012用科学记数法表示为.12.使分式有意义的x的取值范围为.13.化简﹣3的结果为.14.把多项式4mx2﹣my2因式分解的结果是.15.若a m=2,a n=5,则a m﹣n=.16.如图,△ABC中,点P、点Q是边BC上的两个点,若BP=PQ=QC=AP=AQ,则∠PAC的度数为°.17.若a+b=7,ab=12,则a2+b2的值为.18.如图,△ABC中,AB=AC,BH⊥AC,垂足为点H,BD平分∠ABH,点E为BH上一点,连接DE,∠BDE=45°,DH:CH=3:2,BE=10,则CH=.19.等腰△ABC中,腰AB的垂直平分线交AC于点D,若∠A=40°,则∠DBC的度数为.20.如图,四边形ABCD中,对角线AC⊥BD,点F为CD上一点,连接AF交BD于点E,AF⊥AB,DE=DF,∠BAG=∠ABC=45°,BC+AG=20,AE=2EF,则AF=.三、解答题(共计60分)21.计算:(1)(x3)2•(﹣2x2y3)2;(2)(a﹣3)(a+3)+(2a+1)2.22.先化简,再求值:÷(﹣),其中x=20200+2﹣2.23.如图,每个小正方形的边长均为1,小正方形的顶点为格点,线段AB的两个端点均在格点上.(1)画出以AB为底的等腰△ABC,点C在格点上,且△ABC的面积为10;(2)画出△ABC中AB上的高CD,点D在AB上,点E在AC上,满足CE=AC,请在CD上找一点F,使得点F到点A,点E的距离和最小.(保留作图痕迹)24.已知:等边△ABC,点D为AC上一点,DF⊥BC,垂足为点F,点E为BC延长线上一点,分别连接DB、DE,AD=CE.(1)如图1,AD≠CD,求证:BF=EF;(2)如图2,点G为BC中点,连接DG,若AD=CD,在不添加任何辅助线的情况下,请直接写出图中所有是△DFG面积二倍的三角形.25.某商厦利用8000元的资金购进一批运动服,面市后供不应求.于是,商厦再次利用17600元购进同样的运动服,第二批购进的数量是第一批购进数量的2倍,且每套运动服的进价比第一批多4元,商厦销售运动服时每套的预售价都是58元.(1)求第一批运动服的进价为每套多少元?(2)按预售价销售一段时间后,根据市场的实际情况,商厦决定将剩余部分运动服打五折销售,要使销售这两批运动服的总利润不少于6300元,商厦打折销售的该运动服至多为多少套?26.已知:△ABC中,AB=AC,点H为BC中点,连接AH,点D为AB上一点,连接CD 交AH于点F,点E为BH上一点,连接DE,∠AFD=∠ACB+∠BDE.(1)如图1,求证:CD⊥DE;(2)如图2,过点B作AC的平行线,交DE的延长线于点G,连接CG,DH,若BD=DH,求证:BG+AC=CG;(3)如图3,在(2)的条件下,点P为CG上一点,CP=CA,连接PH,若∠BAC=120°,PH=6,∠PHB+∠ADF=90°,求线段CD的长.27.在平面直角坐标系中,直线AC分别与x轴、y轴交于点A、C,直线BC交x轴于点B,交y轴于点C,OC=3OA,OB=OC,△ABC的面积为24.(1)如图1,求点A的坐标;(2)如图2,点E为OC上一点,连接AE并延长至点D,分别连接BD,BE,延长BE 交AC于点K,若BK⊥AC,BD=AC,求点D的坐标;(3)如图3,在(2)的条件下,点F为第一象限内一点,分别连接FB、FE、FD,点G 为OB上一点,连接DG,DG=DB,BF∥DG,∠DFB=∠BEF+90°,延长DF交x轴于点M,求点M的坐标.参考答案一、选择题(共10小题).1.下列图案中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不合题意;故选:C.2.下列运算正确的是()A.a6÷a2=a3B.a2+a2=a4C.(a+b)2=a2+b2D.(a3)2=a6解:A、a6÷a2=a4,原计算错误,故此选项不符合题意;B、a2+a2=2a2,原计算错误,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意;D、(a3)2=a6,原计算正确,故此选项符合题意.故选:D.3.下列二次根式中属于最简二次根式的是()A.B.C.D.解:A、是最简二次根式,符合题意;B、=3,不符合题意;C、=2,不符合题意;D、=,不符合题意.故选:A.4.等腰三角形的一边等于3,一边等于7,则此三角形的周长为()A.10B.13C.17D.13或17解:①当等腰三角形的三边长是3,3,7时,3+3<7,不符合三角形的三边关系定理,此时不能组成等腰三角形;②当等腰三角形的三边长是3,7,7时,符合三角形的三边关系定理,能组成等腰三角形,此三角形的周长是3+7+7=17;综合上述:三角形的周长是17,故选:C.5.如果分式中的x、y都扩大到原来的2倍,那么下列说法中,正确的是()A.分式的值不变B.分式的值缩小为原来的C.分式的值扩大为原来的2倍D.分式的值扩大为原来的4倍解:把分式中的x、y都扩大到原来的2倍,则原式可变为:==,故分式的值扩大为原来的2倍.故选:C.6.正方形的边长增加了2cm,面积相应增加了24cm2,则这个正方形原来的面积是()A.15cm2B.25cm2C.36cm2D.49cm2解:设正方形的边长是xcm,根据题意得:(x+2)2﹣x2=24,解得:x=5.则这个正方形原来的面积是25cm2,故选:B.7.下列说法正确的是()A.如果两个三角形全等,则它们是关于某条直线成轴对称的图形B.如果两个三角形关于某条直线成轴对称,那么它们是全等三角形C.等边三角形是关于一条边上的中线成轴对称的图形D.一条线段是关于经过该线段中点的中线成轴对称的图形解:A、如果两个三角形全等,则它们不一定是关于某条直线成轴对称的图形,所以选项A不正确;B、如果两个三角形关于某条直线成轴对称,那么它们是全等三角形,所以选项B正确;C、三角形的中线是线段,而对称轴是直线,应该说等边三角形是关于一条边上的中线所在直线成轴对称的图形,所以选项C不正确;D、一条线段是关于经过该线段中垂线成轴对称的图形,所以选项D不正确;故选:B.8.如图(1),在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分拼成一个长方形,如图(2),此过程可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)2=(a﹣b)2+4ab解:图(1)中阴影部分的面积为:a2﹣b2,图(2)中阴影部分的面积为(a+b)(a﹣b),因此有a2﹣b2=(a+b)(a﹣b),故选:C.9.某校组织540名学生去外地参观,现有A,B两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆.设A型客车每辆坐x人,根据题意可列方程()A.﹣=6B.﹣=6C.﹣=6D.﹣=6解:由题意可得:﹣=6,故选:B.10.如图,以△ABC的边AB、AC为边向外作等边△ABD与等边△ACE,连接BE交DC于点F,下列结论:①CD=BE;②FA平分∠DFE;③∠BFC=120°;④=.其中正确的有()A.4个B.3个C.2个D.1个解:过点A作AM⊥CD于M,AN⊥BE于N,过点C作CH⊥BE于H,∵△ABD,△ACE都是等边三角形,∴AD=AB,AE=AC,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,在△ADC和△ABE中,,∴△ADC≌△ABE(SAS),∴CD=BE,∠AEB=∠ACD,故①正确∵△ADC≌△ABE,∴AM=AN,∵AM⊥CD于M,AN⊥BE于N,∴AF平分∠DFE,故②正确,∵∠AEB=∠ACD,∴∠AEC+∠ACE=120°=∠AEB+∠BEC+∠ACE,∴∠ACF+∠BEC+∠ACE=120°,∴∠BFC=120°,故③正确,∴∠DFE=120°,∴∠DFA=∠EFA=60°=∠CFE,∵AN⊥BE,CH⊥EF,∴∠FAN=∠FCH=30°,∴AF=2FN,AN=FN,FC=2FH,HC=FN,∴AN=AF,HC=FC,∴==,故④正确,故选:A.二.填空题(每小题3分,共计30分)11.在2020年,新型冠状病毒威胁着人类的健康,一种新型冠状病毒的直径大约是120纳米,也就是0.00000012米,将0.00000012用科学记数法表示为 1.2×10﹣7.解:0.00000012=1.2×10﹣7,故答案为:1.2×10﹣7.12.使分式有意义的x的取值范围为x≠﹣2.解:当分母x+2≠0,即x≠﹣2时,分式有意义.故填:x≠﹣2.13.化简﹣3的结果为.解:原式=2﹣=.故答案为:.14.把多项式4mx2﹣my2因式分解的结果是m(2x+y)(2x﹣y).解:原式=m(4x2﹣y2)=m(2x+y)(2x﹣y),故答案为:m(2x+y)(2x﹣y)15.若a m=2,a n=5,则a m﹣n=.解:∵a m=2,a n=5,∴a m﹣n=a m÷a n=.故填.16.如图,△ABC中,点P、点Q是边BC上的两个点,若BP=PQ=QC=AP=AQ,则∠PAC的度数为90°.解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠BAP=∠CAQ=30°,∴∠PAC=∠PAQ+∠QAC=60°+30°=90°,故答案为:90.17.若a+b=7,ab=12,则a2+b2的值为25.解:∵a+b=7,ab=12,∴a2+b2=(a+b)2﹣2ab=72﹣2×12=25.故答案为:25.18.如图,△ABC中,AB=AC,BH⊥AC,垂足为点H,BD平分∠ABH,点E为BH上一点,连接DE,∠BDE=45°,DH:CH=3:2,BE=10,则CH=4.解:延长DE交BC于F,∵AB=AC,设∠A=2α,则∠ABC=∠ACB=90°﹣α,∵BH⊥AC,∴∠HBC=90°﹣∠ACB=α,∠A+∠ABH=90°,∵BD平分∠ABH,∴∠DBH=∠ABH=45°﹣α,∴∠DBF=45°﹣α+α=45°,∴∠BDF=∠DBF=45°,∠DFB=∠DFC=90°,∴DF=BF,∵∠DFB=∠DHB=90°,∴∠CDF=∠EBF,在△BEF和△DCF中,,∴△BEF≌△DCF(AAS),∴BE=CD=CH+DH=10,∵DH:CH=3:2,∴CH=4.故答案为:4.19.等腰△ABC中,腰AB的垂直平分线交AC于点D,若∠A=40°,则∠DBC的度数为30°或60°.解:当∠A是顶角时,如图1,∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵AB的垂直平分线MN交边AC于点D,∴DB=DA,∴∠DBA=∠A=40°,∴∠DBC=∠ABC﹣∠DBA=70°﹣40°=30°,当∠A是底角时,如图2,∵AB=BC,∠A=40°,∴∠C=∠A=40°,∴∠ABC=180°﹣40°﹣40°=100°,∵AB的垂直平分线MN交边AC于点D,∴DB=DA,∴∠DBA=∠A=40°,∴∠DBC=∠ABC﹣∠DBA=100°﹣40°=60°,故答案为30°或60°.20.如图,四边形ABCD中,对角线AC⊥BD,点F为CD上一点,连接AF交BD于点E,AF⊥AB,DE=DF,∠BAG=∠ABC=45°,BC+AG=20,AE=2EF,则AF=12.解:延长AF、BC,交于点H,如图:∵AF⊥AB,∠ABC=45°,∴∠BAH=90°,∠AHB=90°﹣∠ABC=45°,∴△ABH为等腰直角三角形,∴AH=AB,∵∠BAH=90°,∠BAG=45°,∠AHB=45°,∴∠GAE=∠BAG=∠AHB=45°,∵AC⊥BD,∴∠ABG+∠BAC=90°,∵∠BAC+∠HAC=∠BAH=90°,∴∠ABG=∠HAC,在△ABG和△HAC中,,∴△ABG≌△HAC(ASA),∴AG=HC,BH=BC+CH=BC+AG=20,在等腰直角三角形△ABH中,AH=AB,∠BAH=90°,由勾股定理得:AB2+AH2=BH2,∴AB=AH=20,∵AE=2EF,∴设EF=x,则AE=2x,∵DE=DF,∴∠DEF=∠DFE,∴∠AEG=∠HFC,∵∠AHB=∠GAE=45°,∴∠AGE=135°﹣∠HFC=∠FCH,在△AGE和△HCF中,,∴△AGE≌△HCF(AAS),∴FH=AE=2x,∴AH=AE+EF+FH=5x=20,解得:x=4,∴AF=AE+EF=3x=12,故答案为:12.三、解答题(其中21、22题各7分,23、24题各8分,25~27题各10分,共计60分)21.计算:(1)(x3)2•(﹣2x2y3)2;(2)(a﹣3)(a+3)+(2a+1)2.解:(1)原式=x6•4x4y6=4x10y6.(2)原式=a2﹣9+4a2+4a+1=5a2+4a﹣8.22.先化简,再求值:÷(﹣),其中x=20200+2﹣2.解:÷(﹣)=÷==,当x=20200+2﹣2=1+=,原式==.23.如图,每个小正方形的边长均为1,小正方形的顶点为格点,线段AB的两个端点均在格点上.(1)画出以AB为底的等腰△ABC,点C在格点上,且△ABC的面积为10;(2)画出△ABC中AB上的高CD,点D在AB上,点E在AC上,满足CE=AC,请在CD上找一点F,使得点F到点A,点E的距离和最小.(保留作图痕迹)解:(1)如图,△ABC即为所求作.(2)如图,线段CD,点F即为所求作.24.已知:等边△ABC,点D为AC上一点,DF⊥BC,垂足为点F,点E为BC延长线上一点,分别连接DB、DE,AD=CE.(1)如图1,AD≠CD,求证:BF=EF;(2)如图2,点G为BC中点,连接DG,若AD=CD,在不添加任何辅助线的情况下,请直接写出图中所有是△DFG面积二倍的三角形.【解答】证明:作DM∥BC交AB于M,如图,∵△ABC为等边三角形,∴∠A=∠ABC=∠ACB=60°,AB=AC,∴∠DCE=120°,∵DM∥BC,∴∠AMD=60°,∴∠BMD=120°,△AMD为等边三角形,∴AD=DM=AM,∵AD=CE,∴DM=EC,∴AB﹣AM=AC﹣AD,∴MB=DC,在△BMD和△DCE中,,∴△BMD≌△DCE(SAS),∴BD=DE,而DF⊥BC,∴BF=EF;(2)∵AD=CD,△ABC是等边三角形,∴BD⊥AC,∠ABD=∠CBD=30°,∴BC=2CD,∵∠ACB=60°,DF⊥BC,∴∠CDF=30°,∴CD=2CF,∴BC=4CF,BF=3CF,∵G是BC中点,∴BG=GC=2CF=AD=CE,∴△DGC,△DBG,△DCE的面积是△DFG面积的二倍.25.某商厦利用8000元的资金购进一批运动服,面市后供不应求.于是,商厦再次利用17600元购进同样的运动服,第二批购进的数量是第一批购进数量的2倍,且每套运动服的进价比第一批多4元,商厦销售运动服时每套的预售价都是58元.(1)求第一批运动服的进价为每套多少元?(2)按预售价销售一段时间后,根据市场的实际情况,商厦决定将剩余部分运动服打五折销售,要使销售这两批运动服的总利润不少于6300元,商厦打折销售的该运动服至多为多少套?解:(1)设第一批运动服的进价为每套x元,则第二批运动服的进价为每套(x+4)元,依题意得:×2=,解得:x=40,经检验,x=40是原方程的解,且符合题意.答:第一批运动服的进价为每套40元.(2)第一批购进运动服的数量为8000÷40=200(套),第二批购进运动服的数量为200×2=400(套).设商厦打折销售的该运动服为m套,依题意得:58(200+400﹣m)+58×0.5m﹣8000﹣17600≥6300,解得:m≤100.答:商厦打折销售的该运动服至多为100套.26.已知:△ABC中,AB=AC,点H为BC中点,连接AH,点D为AB上一点,连接CD 交AH于点F,点E为BH上一点,连接DE,∠AFD=∠ACB+∠BDE.(1)如图1,求证:CD⊥DE;(2)如图2,过点B作AC的平行线,交DE的延长线于点G,连接CG,DH,若BD=DH,求证:BG+AC=CG;(3)如图3,在(2)的条件下,点P为CG上一点,CP=CA,连接PH,若∠BAC=120°,PH=6,∠PHB+∠ADF=90°,求线段CD的长.【解答】(1)证明:∵AB=AC,H为BC的中点,∴∠B=∠ACB,AH⊥BC,∴∠CHF=90°,∵∠DEC=∠BDE+∠B,∴∠DEC=∠BDE+∠ACB,∵∠AFD=∠ACB+∠BDE,∴∠AFD=∠DEC,∵∠CFH=∠AFD,∴∠DEC=∠CFH,∵∠CFH+∠DCE=90°,∴∠DCE+∠DEC=90°,∴∠CDE=180°﹣(∠DCE+∠DEC)=90°,∴CD⊥DE;(2)证明:由(1)得,∠AHB=90°,∵BD=DH,∴∠DBH=∠DHB,∴90°﹣∠DBH=90°﹣∠DHB,∴∠DAH=∠DHA,∴DH=AD,∴BD=AD,如图2,延长GD交CA的延长线于M,∵BG∥AC,∴∠M=∠BGD,∠DAM=∠DBG,∴△DBG≌△DAM(AAS),∴DG=DM,AM=BG,由(1)知,CD⊥DE,∴CG=CM,∴CG=CM=AM+AC=BG+AC;(3)解:如图3,延长GD交CA的延长线于M,连接AP交CD于Q,连接BP交DG于N,连接DP,延长PH交CD于K,连接AK,在DC上取一点R,使DR=HK,由(2)知,∠DAM=∠DBG,BD=AD,∵CP=CA,∴CD⊥AP,CD平分AP,∴AD=DP,∠CQP=90°,∵BD=AD=DP,∴∠DBP=∠DPB,∠DPA=∠DAP,∵∠ABP+∠APB+∠BAP=180°,∴∠DBP+∠DPB+∠DPA+∠DAP=180°,∴∠APB=90°,∴∠CQP=∠APB,∴CD∥PB,∴∠HBP=∠HCK,∠HPB=∠HKC,∵BH=CH,∴△HKC≌△HPB(AAS),∴HK=PH=6,CK=PB,∴PK=PH+HK=6+6=12,∵点K在CD上,∴AK=PK=12,∵∠AHK+∠PHB=180°﹣∠AHB=90°,∵∠PHB+∠ADF=90°,∴∠AHK=∠ADF,∵AD=AH,DR=HK,∴△ADR≌△AHK(SAS),∴AR=AK,∠DAR=∠HAK,∴QR=QK,∠DAR+∠RAF=∠HAK+∠RAF,∴∠DAF=∠RAK,∵∠BAC=120°,AB=AC,AH⊥BC,∴∠DAF=∠BAC=60°,∴△ARK是等边三角形,∴KR=AK=12,∵AP⊥CD,∴RQ=KR=6,∴DQ=DR+RQ=6+6=12,∵∠CDG=90°,∴∠CDE=∠CQP,∴MG∥AP,∴∠APB+∠DNP=180°,∴∠DNP=90°,∵BD=DP,∴BN=NP,∵MG∥AP,∴∠NDP=∠QPD,∵∠DNP=∠CQP=90°,DP=DP,∴△NDP≌△QPD(AAS),∴DQ=PN=12,∴PB=2PN=2DQ=24,∴CK=PB=24,∴CD=DR+KR+CK=6+12+24=42,即线段CD的长为42.27.在平面直角坐标系中,直线AC分别与x轴、y轴交于点A、C,直线BC交x轴于点B,交y轴于点C,OC=3OA,OB=OC,△ABC的面积为24.(1)如图1,求点A的坐标;(2)如图2,点E为OC上一点,连接AE并延长至点D,分别连接BD,BE,延长BE 交AC于点K,若BK⊥AC,BD=AC,求点D的坐标;(3)如图3,在(2)的条件下,点F为第一象限内一点,分别连接FB、FE、FD,点G 为OB上一点,连接DG,DG=DB,BF∥DG,∠DFB=∠BEF+90°,延长DF交x轴于点M,求点M的坐标.解:(1)如图1中,∵OB=OC,OC=3OA,∴AB=OA+OB=4OA,∵△ABC的面积为24,∴•AB•OC=24,∴•4OA•3OA=24,∴OA=2,∴A(﹣2,0).(2)如图2中,过点D作DH⊥OB于H.∵∠AOC=90°,∴∠ACO+∠CAO=90°,∵BK⊥AC,∴∠AKB=90°,∴∠CAO+∠ABK=90°,∴∠ACO=∠ABK,∵∠AOC=∠BOE,OC=OB,∴△CAO≌△BEO(ASA),∴AC=BE,OA=OE,∴∠OAE=∠AEO,∵∠DHA=∠COA=90°,∴DH∥OC,∴∠ADH=∠AEO=∠OAE,∵BD=AC,∴BD=BE,∴∠BED=∠BDE,∴∠BED﹣∠OAE=∠BDE﹣∠AHD,即∠BDH=∠EBO,∵∠DHB=∠EOB=90°,∴△DHB≌△BOE(AAS),∴DH=OB=3OA=3×2=6,BH=OE=OA=2,∴OH=OB﹣BH=6﹣2=4,∴D(4,6).(3)如图3中,延长KB交DM的延长线于N,过点D作DH⊥OB于H.∵DG=DB,∴∠DGB=∠DBG,由(1)(2)可知∠DBG=∠BEO,∠BEO=∠CAO,∴∠DGB=∠CAO,∴AC∥GD,∵BF∥DG,∴BF∥AC,∴∠FBK+∠BKC=180°,∴∠FBK=180°﹣90°=90°,设∠FEB=α,则∠EFB=90°﹣α,∵∠DFB=∠BEF+90°,∴∠DFB=90°+α,∴∠BFN=90°﹣α,∴∠N=α,∴∠FEN=∠N,∴EF=FN,∵∠FBE=90°,∴FB⊥EN,∴EB=BN,∴BD=BE=BN,∴∠BED=∠BDE,∠BDN=∠N,∵∠BED+∠EDN+∠N=180°,即∠BED+∠BDE+∠BDN+∠N=180°,∴∠BDE+∠BDN=90°,即∠EDN=90°,∵∠OAE=∠AEO,∠OAE+∠AEO=90°,∴∠OAE=∠AEO=45°,∴∠DMA=90°﹣45°=45°,∴AD=DM,∵DH⊥AM,∴AH=HM=2+4=6,∴OM=OH+HM=4+6=10,∴M(10,0).。

2020-2021学年黑龙江省哈尔滨市平房区八年级数学第二学期期末学业质量监测试题含解析

2020-2021学年黑龙江省哈尔滨市平房区八年级数学第二学期期末学业质量监测试题含解析

2020-2021学年黑龙江省哈尔滨市平房区八年级数学第二学期期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题3分,共30分)1.用换元法解方程2231512x xx x-+=-时,如果设21xx-=y,则原方程可化为()A.y+1y=52B.2y2﹣5y+2=0 C.6y2+5y+2=0 D.3y+1y=522.下列分解因式正确的是()A.x2-x+2=x(x-1)+2 B.x2-x=x(x-1)C.x-1=x(1-1x) D.(x-1)2=x2-2x+13.我国是最早了解勾股定理的国家之一.下面四幅图中,不能用来证明勾股定理的是()A.B. C.D.4.在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直5.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD 相等.以上四个条件中可以判定四边形ABCD是平行四边形的有( )A.1个B.2个C.3个D.4个6.直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A .(52,0),(0,5)B .(﹣52,0),(0,5)C .(52,0),(0,﹣5)D .(﹣52,0),(0,﹣5)7.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )A .23B .16C .13D .128.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF的面积之比为( )A .3:4B .9:16C .9:1D .3:19.下列因式分解正确的是( )A .x 2+2x-1=(x-1)2B .a 2-a=a(a+1)C .m 2+(-n)2=(m+n)(m-n)D .-9+4y 2=(3+2y)(2y-3)10.如图,一次函数y kx b =+(0k ≠)的图象经过A ,B 两点,则关于x 的不等式0kx b +>的解集是( )A .0x >B .2x >C .3x >-D .32x -<<二、填空题(每小题3分,共24分)11.若21,2,则代数式(x-1)(y+1)的值等于_____.若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有_____棵.13.实数a 在数轴上的位置如图示,化简:21(2)a a -+-=_____.14.在ABC 中,90C ∠=︒,30A ∠=︒,1BC =,则AB =__________.15.分式1x ,12x ,13x的最简的分母是_____. 16.已知一个直角三角形的两条直角边的长分别为6cm 、8cm ,则它的斜边的中线长________cm .17.已知直线1:26L y x =-,则直线1L 关于y 轴对称的直线2L 函数关系式是__________.18.已知:在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF 分别交AD 于E 、BC 于F ,S △AOE =3,S △BOF =5,则▱ABCD 的面积是_____.三、解答题(共66分)19.(10分)如图,已知直线1l 与x 轴交于点()A 2,0,与y 轴交于点()B 0,4-,把直线1l 沿x 轴的负方向平移6个单位得到直线2l ,直线2l 与x 轴交于点C ,与y 轴交于点D ,连接BC .()1如图①,分别求出直线1l 和2l 的函数解析式;()2如果点P 是第一象限内直线1l 上一点,当四边形DCBP 是平行四边形时,求点P 的坐标;()3如图②,如果点E 是线段OC 的中点,EF//OD ,交直线2l 于点F ,在y 轴的正半轴上能否找到一点M ,使MCF是等腰三角形?如果能,请求出所有符合条件的点M 的坐标;如果不能,请说明理由.20.(6分)已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论.21.(6分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次又用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?22.(8分)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D 相交于N,设运动时间为t秒:(1)填空:当点M在AC上时,BN=(用含t的代数式表示);(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.23.(8分)(1112748342224.(8分)已知一次函数y kx b =+的图象经过点(1,5)A --,且与正比例函数12y x =的图象相交于点(2, )B a (1)求a 的值;(2)求出一次函数的解析式;(3)求AOB ∆的面积. 25.(10分)如图,在正方形ABCD 中,点E 在边AD 上,点F 在边BC 的延长线上,连结EF 与边CD 相交于点G ,连结BE 与对角线AC 相交于点H ,AE=CF ,BE=EG .(1)求证:EF ∥AC ;(2)求∠BEF 大小;26.(10分)在西安市争创全国教育强市的宏伟目标指引下,高新一中初中新校区在今年如期建成.在校园建设过程中,规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%,求广场中间小路的宽.参考答案一、选择题(每小题3分,共30分)1、D【解析】【分析】因为已知设21x x -=y ,易得21x x-=1y ,即可转化为关于y 的方程. 【详解】 设21x x -=y ,则 则原方程变形为:3y +1y =52, 故选:D .【点睛】 本题主要考查了解分式方程中的换元法,换元的关键是仔细观察题目,看看可以把哪一部分看作一个整体,发现他们之间的联系,从而成功换元.2、B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误; D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.3、C【解析】【分析】根据A 、B 、C 、D 各图形结合勾股定理一一判断可得答案.【详解】解:A 、有三个直角三角形, 其面积分别为12ab,12ab 和21c 2,还可以理解为一个直角梯形,其面积为1(a+b)(a+b)2,由图形可知:1(a+b)(a+b) 2=12ab+12ab+21c2,整理得:(a+b)2=2ab+c2,∴a2+b2+2ab=2ab+ c2, a2+b2= c2∴能证明勾股定理;B、中间正方形的面积= c2,中间正方形的面积=(a+b)2-4⨯12⨯ab=a2+b2,∴a2+b2= c2,能证明勾股定理;C、不能利用图形面积证明勾股定理, 它是对完全平方公式的说明.D、大正方形的面积= c2,大正方形的面积=(b-a)2+4⨯12⨯ab = a2+b2,,∴a2+b2= c2,能证明勾股定理;故选C.【点睛】本题主要考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.4、A【解析】【分析】根据平行四边形的判定定理逐个判断即可.【详解】A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形不一定是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选A.【点睛】本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.5、C【解析】根据平行四边形的判定定理可知①②③可以判定四边形ABCD 是平行四边形.故选C.6、A【解析】【分析】分别根据点在坐标轴上坐标的特点求出对应的x 、y 的值,即可求出直线25y x =-+与x 轴、y 轴的交点坐标.【详解】令0y =,则250x -+=, 解得52x =, 故此直线与x 轴的交点的坐标为5,02⎛⎫ ⎪⎝⎭;令0x =,则5y =,故此直线与y 轴的交点的坐标为()0,5.故选:A .【点睛】本题考查的是坐标轴上点的坐标特点,一次函数y kx b =+(0k ≠,k 、b 是常数)的图象是一条直线,它与x 轴的交点坐标是,0b k ⎛⎫-⎪⎝⎭;与y 轴的交点坐标是()0,b . 7、D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 详解:∵共6个数,大于3的有3个,∴P (大于3)=3162=. 故选D .点睛:本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 8、B可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.9、D【解析】【分析】因式分解就是把多项式变形成几个整式积的形式,根据定义即可判断.【详解】A选项:等号两边不相等,故是错误的;B选项:等号两边不相等,故是错误的;C选项:等号两边不相等,故是错误的;D选项:-9+4y2=(3+2y)(2y-3),是因式分解,故是正确的.故选:D.【点睛】考查了因式分解的定义,理解因式分解的定义(把多项式变形成几个整式积的形式,注意是整式乘积的形式)是解题的关键.10、C【解析】【分析】根据图像,找到y>0时,x的取值范围即可.【详解】解:由图像可知:该一次函数y随x的增大而增大,当x=-3时,y=0∴关于x 的不等式0kx b +>的解集是3x >-故选C .【点睛】此题考查的是一次函数与一元一次不等式的关系,掌握一次函数的图象及性质与一元一次不等式的解集的关系是解决此题的关键.二、填空题(每小题3分,共24分)11、22-2 【解析】 【分析】 【详解】解:()()111x y xy x y -+=+--∵x y -=21-,=xy 2 原式2211222=+--=-故答案为:222-12、121【解析】【分析】设共有x 人,则有4x +37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.【详解】设市团委组织部分中学的团员有x 人,则树苗有(4x+37)棵,由题意得1(4x+37)-6(x-1)<3,去括号得:1-2x+43<3,移项得:-42-2x<-40,解得:20<x 21,因为x 取正整数,所以x=21,当x=21时,4x+37=421+37=121,则共有树苗121棵.故答案为:121.【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解. 13、1.【解析】【分析】由数轴可知,1<a<2,从而得到a-1>0.a-2<0.再根据绝对值的性质:(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩a=化简即可.【详解】解:∵1<a<2,∴a-1>0.a-2<0.∴1a-+=a-1+2-a=1故答案为:1.【点睛】本题考查了绝对值和二次根式的性质,掌握它们的性质是解题的关键.14、1【解析】【分析】根据直角三角形中,30°所对的直角边是斜边的一半进行计算.【详解】∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,∴AB=1BC=1.故答案为:1.【点睛】此题考查直角三角形的性质,解题关键在于掌握30°所对的直角边是斜边的一半.15、6x【解析】【分析】先确定各分母中,系数的最小公倍数,再找出各因式的最高次幂,即可得答案.【详解】∵3个分式分母的系数分别为1,2,3∴此系数最小公倍数是6.∵x的最高次幂均为1,∴三个分式的最简公分母为6x.故答案为:6x【点睛】本题考查分式最简公分母的定义:最简公分母就是由每个分母中系数的最小公倍数与各因式的最高次幂的积. 16、1【解析】【分析】绘制符合题意的直角三角形,并运用勾股定理,求出其斜边的长度,再根据直角三角形斜边上的中线长度等于斜边长度的一半求解.【详解】解:如下图所示,假设Rt ABC 符合题意,其中BC=6cm ,AC=8cm ,∠C=90°,点D 为AB 的中点.由勾股定理可得:22AB BC AC =+2268+=10(cm ) 又∵点D 为AB 的中点∴CD=12AB =1(cm ) 故答案为:1.【点睛】本题考查了勾股定理(直角三角形两条直角边的平方和等于斜边的平方),直角三角形斜边上的中线长度是斜边长度的一半,其中后者是解本题的关键.17、26y x =--【解析】【分析】直接根据关于y 轴对称的点纵坐标不变横坐标互为相反数进行解答即可.【详解】 解:关于y 轴对称的点纵坐标不变,横坐标互为相反数,∴直线1:26L y x =-与直线2L 关于y 轴对称,则直线2l 的解析式为26y x =--.故答案为:26y x =--.【点睛】本题考查的是一次函数的图象与几何变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键.18、1【解析】【详解】分析:利用平行四边形的性质可证明△AOF ≌△COE ,所以可得△COE 的面积为3,进而可得△BOC 的面积为8,又因为△BOC 的面积=14▱ABCD 的面积,进而可得问题答案. 详解::∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EAC=∠BCA ,∠AEF=∠CFE ,又∵AO=CO ,在△AOE 与△COF 中EAC BCA AEF CFE AO CO ∠∠⎧⎪∠∠⎨⎪⎩===∴△AOE ≌△COF∴△COEF 的面积为3,∵S △BOF =5,∴△BOC 的面积为8,∵△BOC 的面积=14▱ABCD 的面积, ∴▱ABCD 的面积=4×8=1, 故答案为1.点睛:本题考查了平行四边形的性质及全等三角形的判定,解答本题需要掌握两点:①平行四边形的对边相等且平行,②全等三角形的对应边、对应角分别相等.三、解答题(共66分)19、(1)1l y 2x 4=-:;2l y 2x 8=+:;(2)()P 4,4;(3)M 点坐标为10,2⎛⎫ ⎪⎝⎭,()0,0,()0,2,()0,2-. 【解析】【分析】()1用待定系数法可求直线1l 的解析式,平移可得直线2l 的解析式()2由四边形DCBP 是平行四边形,可得BC DP =,BC //DP ,根据两点公式可求P 的坐标.()3分FC FM =,CF CM =,MC MF =三种情况讨论,根据勾股定理可求M 的坐标.【详解】()1设直线1l 的解析式为y kx b =+,且过()A 2,0,()B 0,4-,{b 402k b =-∴=+,解得:k 2=,b 4=-, 1l ∴解析式y 2x 4=-,把直线1l 沿x 轴的负方向平移6个单位得到直线2l ,∴直线2l 的解析式()y 2x 642x 8=+-=+;()2设()P m,2m 4-,直线y 2x 8=+与y 轴交于D 点,交x 轴于C 点,()D 0,8∴,()C 4,0-,()C 4,0-,()B 0,4-,BC ∴=,四边形DCBP 是平行四边形,DP BC ∴=,DP //BC ,22(m 0)(2m 48)32∴-+--=,1m 4=,228m (5=不合题意舍去), ()P 4,4∴;()3点E 是线段OC 的中点,()C 4,0-,CE OE 2∴==,EF//OD ,EF CF CE 1OD CD CO 2∴===, EF 4∴=,CD 2CF =,∴在Rt CEF 中,CF ==EF CO ⊥,CE EO =,CF FO ∴=,∴当点M 与 点O 重合时,即F C FM =,∴当()M 0,0时,FCM 是等腰三角形,当CF CM ==OM 2==,M ∴ ()0,2或()0,2-,当CM PM =时,设M ()0,a ,22224a 2(4a)∴+=+-,1a 2∴=, 1M 0,2⎛⎫∴ ⎪⎝⎭, 综上所述:M 点坐标为10,2⎛⎫ ⎪⎝⎭,()0,0,()0,2,()0,2-.【点睛】本题考查了四边形的综合题,待定系数法求一次函数解析式,平行四边形的性质,等腰三角形的性质,利用分类思想解决问题是本题的关键.20、(1)证明见解析;(2)四边形MENF 是菱形;理由见解析.【解析】【分析】(1)由矩形的性质得出AB =DC ,∠A =∠D ,再由M 是AD 的中点,根据SAS 即可证明△ABM ≌△DCM ;(2)先由(1)得出BM =CM ,再由已知条件证出M E=MF ,EN 、FN 是△BCM 的中位线,即可证出EN =FN =ME =MF ,得出四边形MENF 是菱形.【详解】(1)证明:∵四边形ABCD 是矩形,∴∠A=∠D=90°,AB=DC ,∵M 是AD 的中点,∴AM=DM ,在△ABM 和△DCM 中,AB AC A D AM DM =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△DCM (SAS );(2)解:四边形MENF 是菱形;理由如下:由(1)得:△ABM ≌△DCM ,∴BM=CM ,∵E 、F 分别是线段BM 、CM 的中点,∴ME=BE=12BM ,MF=CF=12CM , ∴ME=MF ,又∵N 是BC 的中点,∴EN 、FN 是△BCM 的中位线,∴EN=12CM ,FN=12BM , ∴EN=FN=ME=MF ,∴四边形MENF 是菱形.点睛:本题考查了矩形的性质、全等三角形的判定与性质、三角形的中位线、菱形的判定;熟练掌握矩形的性质,菱形的判定方法,证明三角形全等是解决问题的关键.21、第一次买了11本资料.【解析】【分析】设第一次买了x 本资料,根据“比上次多买了21本”表示出另外一个未知数,再根据等量关系“第一次用121元买了若干本资料,第二次又用241元在同一商家买同样的资料,这次商家每本优惠4元”列出方程,即可求解.【详解】设第一次买了x 本资料, 根据题意,得:120x -24020x +=4 整理,得:x 2+51x ﹣611=1.解得:x 1=﹣61,x 2=11,经检验:它们都是方程的根,但x 1=﹣61不符合题意,舍去,答:第一次买了11本资料.【点睛】该题主要考查了列分式方程解应用题,解题的关键是正确分析已知设出未知数,找准等量关系列出方程,然后解方程即可求解.另外该题解完之后要尝试其他的解法,以求一题多解,举一反三.22、(1)BN =22﹣2t ;(2)当t =4﹣2或t =3或t =2时,△DNE 是等腰三角形;(3)当t =43时,S 取得最大值83. 【解析】【分析】(1)由等腰直角三角形的性质知AB =22,MN =AM =t ,AN =2﹣AM =2﹣t ,据此可得;(2)先得出MN =DM =4﹣t ,BP =PN =t ﹣2,PE =4﹣t ,由勾股定理得出NE =()()22t 24t -+-,再分DN =DE ,DN =NE ,DE =NE 三种情况分别求解可得;(3)分0≤t <2和2≤t≤4两种情况,其中0≤t <2重合部分为直角梯形,2≤t≤4时重合部分为等腰直角三角形,根据面积公式得出面积的函数解析式,再利用二次函数的性质求解可得.【详解】(1)如图1,∵∠ACB =90°,AC =BC =2,∴∠A =∠ABC =45°,AB =2∵AM =t ,∠AMN =90°,∴MN =AM =t ,AN 2AM 2t ,则BN =AB ﹣AN =222t ,故答案为222t.(2)如图2,∵AM =t ,AC =BC =CD =2,∠BDC =∠DBE =45°,∴DM =MN =AD ﹣AM =4﹣t ,∴DN =2DM =2(4﹣t ),∵PM =BC =2,∴PN =2﹣(4﹣t )=t ﹣2,∴BP =t ﹣2,∴PE =BE ﹣BP =2﹣(t ﹣2)=4﹣t ,则NE =()()2222PN PE t 24t +=-+-, ∵DE =2,∴①若DN =DE ,则2(4﹣t )=2,解得t =4﹣2;②若DN =NE ,则2(4﹣t )=()()22t 24t -+-,解得t =3; ③若DE =NE ,则2=()()22t 24t -+-,解得t =2或t =4(点N 与点E 重合,舍去);综上,当t =4﹣2或t =3或t =2时,△DNE 是等腰三角形.(3)①当0≤t <2时,如图3,由题意知AM =MN =t ,则CM =NQ =AC ﹣AM =2﹣t ,∴DM =CM+CD =4﹣t ,∵∠ABC =∠CBD =45°,∠NQB =∠GQB =90°,∴NQ =BQ =QG =2﹣t ,则NG =4﹣2t ,∴()21348 S t42t4t t2233,⎛⎫=⋅⋅-+-=--+⎪⎝⎭当t=43时,S取得最大值83;②当2≤t≤4时,如图4,∵AM=t,AD=AC+CD=4,∴DM=AD﹣AM=4﹣t,∵∠DMN=90°,∠CDB=45°,∴MN=DM=4﹣t,∴S=12(4﹣t)2=12(t﹣4)2,∵2≤t≤4,∴当t=2时,S取得最大值2;综上,当t=43时,S取得最大值83.【点睛】本题是四边形的综合问题,解题的关键是掌握正方形的性质和等腰直角三角形的判定与性质,等腰三角形的判定及二次函数性质的应用等知识点.23、(1)-3(2)-2、4 3【解析】【分析】(1)根据二次根式的运算法则进行运算;(2)运用开方知识解方程. 【详解】(1)解:原式=3﹣15×+×=3+=;(2)解:原方程可化为:()12123243x x x x -=±-=-=所以,【点睛】本题考核知识点:二次根式运算,解一元二次方程. 解题关键点:掌握二次根式运算法则和开方知识解方程.24、(1)1(2)23y x =-(3)92 【解析】【分析】(1)将点B 代入正比例函数12y x =即可求出a 的值; (2)将点A 、B 代入一次函数y kx b =+,用待定系数法确定k ,b 的值即可;(3)可将AOB ∆分割成两个三角形求其面积和即可.【详解】(1)依题意,点(2,)B a 在正比例函数12y x =的图象上, 所以,1212a =⨯= (2)依题意,点A 、B 在一次函数图象上,所以,521k b k b -+=-⎧⎨+=⎩,解得:23k b =⎧⎨=-⎩,. 一次函数的解析式为:23y x =-,(3)直线AB 与y 轴交点为(0,3)-,AOB ∆的面积为:1193132222⨯⨯+⨯⨯=【点睛】本题考查了一次函数与反比例函数的综合,待定系数法求一次函数解析式是解题的关键,对于一般的三角形不易直接求面积时,可将其分割成多个易求面积的三角形.25、(1)、证明过程见解析;(2)、60°. 【解析】试题分析:根据正方形的性质得出AD ∥BF ,结合AE=CF 可得四边形ACFE 是平行四边形,从而得出EF ∥AC ;连接BG ,根据EF ∥AC 可得∠F=∠ACB=45°,根据∠GCF=90°可得∠CGF=∠F=45°可得CG=CF ,根据AE=CF 可得AE=CG ,从而得出△BAE ≌△BCG ,即BE=EG ,得出△BEG 为等边三角形,得出∠BEF 的度数.试题解析:(1)∵四边形ABCD 是正方形 ∴AD ∥BF ∵AE="CF" ∴四边形ACFE 是平行四边形 ∴EF ∥AC (2)连接BG ∵EF ∥AC , ∴∠F=∠ACB=45°,∵∠GCF=90°, ∴∠CGF=∠F=45°, ∴CG=CF ,∵AE=CF , ∴AE=CG , ∴△BAE ≌△BCG (SAS )∴BE=BG , ∵BE=EG , ∴△BEG 是等边三角形,∴∠BEF=60°考点:平行四边形的判定、矩形的性质、三角形全等的应用.26、广场中间小路的宽为1米.【解析】【分析】设广场中间小路的宽为x 米,根据矩形的面积公式、结合绿化区域的面积为广场总面积的80%可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】设广场中间小路的宽为x 米,由题意得:(182)(10)181080%x x --=⨯⨯,整理得:219180x x -+=,解得121,18x x ==,又∵1820x ->,∴9x <,∴1x =,答:广场中间小路的宽为1米.【点睛】本题考查一元二次方程的几何应用,依据题意,正确建立方程是解题关键.。

2020-2021学年第二学期期末教学质量检测八年级下册人教版数学试卷(五)(word版 含答案)

2020-2021学年第二学期期末教学质量检测八年级下册人教版数学试卷(五)(word版 含答案)

绝密★启用前2020-2021学年第二学期期末教学质量检测八年级数学试题(五)满分150考试时间120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题 1.在函数y =1x +中,自变量x 的取值范围是( ) A .x≥-1B .x >-1C .x <-1D .x≤-12.下列计算正确的是 ( ) A .3+9=12B .36=18⨯C .5+20=35D .2814=2÷3.如图,直线y =-x +2与x 轴交于点A ,则点A 的坐标是( )A .(2,0)B .(0,2)C .(1,1)D .(2,2)4.若代数式2k-在实数范围内有意义,则一次函数(2)2y k x k =--+的图象可能是( )A .B .C .D .5.下列运算正确的是( ) A .422xy y x -= B .()2239x x -=- C .()32528a a -=-D .642a a a ÷=6.如图所示,直线y x b =-+与直线2y x =都经过点()1,2--A ,则方程组2y x by x =-+⎧⎨=⎩的解为( )试卷第2页,总6页A .12x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =-⎧⎨=-⎩7.某交警在一个路口统计某时间段来往车辆的车速情况如下表,则上述车速的中位数和众数分别是( )A .50,8B .50,50C .49,50D .49,88.已知(,)A m n ,(,)B a b ,且6AB =,若33(,)22C m n ,33(,)22D a b ,则CD 的长为( ) A .4B .9C .272D .839.以下列各组数据中,能构成直角三角形的是( ) A .2)3)4B .3)4)7C .5)12)13D .1)2)310.已知平面上四点A)0)0))B)10)0))C)12)6))D)2)6),直线y=mx)3m+6将四边形ABCD 分成面积相等的两部分,则m 的值为( ) A .13B .)1C .2D .1211.若一个四边形的两条对角线相等,则称这个四边形为对角线四边形.下列图形不是对角线四边形的是( ) A .平行四边形B .矩形C .正方形D .等腰梯形12.下列命题中,属于假命题的是( ). A .等角的余角相等B .在同一平面内垂直于同一条直线的两直线平行C .相等的角是对顶角D .有一个角是60°的等腰三角形是等边三角形第II 卷(非选择题)二、填空题13.若一次函数y=)a+3)x+a)3不经过第二象限,则a 的取值范围是________) 14.观察勾股数:3、4、5;8、6、10;15、8、17……则顺次第6组勾股数是_____. 15.如图,在四边形ABCD 中,2AB =,2BC =,3CD =,1DA =,且90ABC ∠=︒,则BAD ∠=______度.16.如图,一次函数y kx b =+(0k <)的图象经过点A .当3y <时,x 的取值范围是________.17.如图,在四边形ABCD 中,//,6,16AD BC AD BC ==, E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从 点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形.则t 的值为_________.18.当x_________时,分式23x -有意义.三、解答题19.小亮和爸爸登山,两人距离地面的高度y (米)与小亮登山时间x (分)之间的函数图象分别如图中折线OA AC -和线段DE 所示,根据函数图象进行以下探究:试卷第4页,总6页(1)爸爸开始登山时距离地面___________米,登山的速度是每分钟___________米. (2)求爸爸登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式. (3)小亮和爸爸什么时候相遇?求出相遇的时间.(4)若小亮提速后,他登山的速度是爸爸速度的3倍,问小亮登山多长时间时开始提速?20.如图,P 为正方形ABCD 的对称中心,正方形ABCD的边长为10,tan 3ABO ∠=,直线OP 交AB 于N ,DC 于M ,点H 从原点O 出发沿x 轴的正半轴方向以1个单位每秒速度运动,同时,点R 从O 出发沿OM 方向以个单位每秒速度运动,运动时间为t,求:(1)直接写出A 、D 、P 的坐标; (2)求)HCR 面积S 与t 的函数关系式; (3)当t 为何值时,)ANO 与)DMR 相似?(4)求以A 、B 、C 、R 为顶点的四边形是梯形时t 的值. 21.已知,如图,AB ∥CD)(1)则图①中的∠1+∠2的度数是180°.(2)则图②中的∠1+∠2+∠3的度数是多少?解:如图⑤,过点E作EF∥AB(为了解题的需要,添加的线叫做辅助线,辅助线常常画成虚线).所以∠1+∠AEF=180°.因为AB∥CD,所以CD∥EF.所以∠FEC+∠3=180°.所以∠1+∠2+∠3=360°.认真阅读(2)的解题过程,求图③中∠1+∠2+∠3+∠4的度数是多少?探究图④中∠1+∠2+∠3+∠4+…+∠n的度数是多少?22.如图,已知直线L1经过点A(﹣1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).(1)求直线L1的解析式.(2)若△APB的面积为3,求m的值.(提示:分两种情形,即点P在A的左侧和右侧)23.为迎接新年,某单位组织员工开展娱乐竞赛活动,工会计划购进A、B两种电器共21件作为奖品.已知A种电器每件90元,B种电器每件70.设购买B种电器x件,购买两种电器所需费用为y元.(1)y与x的函数关系式为:(2)若购买B种电器的数量少于A种电器的数量,请给出一种最省费用的方案,并求出该方案所需费用.24.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?25.计算或化简:(101)3+-(2)+⎝试卷第6页,总6页参考答案1.B【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x+1≥0且1+x≠0,解得x≥-1且x≠-1自变量x的取值范围是x>-1.故选B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.C【解析】【分析】根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.【详解】A.3,所以A选项错误;B. 原式=B选项错误;C. 原式D. 原式故选C.【点睛】本题考查二次根式的加、减、乘、除运算,熟练掌握二次根式的加减乘除运算是解决此题的关键.3.A【分析】答案第2页,总17页一次函数y =kx +b (k≠0,且k ,b 为常数)的图象是一条直线.令y=0,即可得到图象与x 轴的交点. 【详解】解:直线2y x =-+中,令0y =.则02x =-+. 解得2x =. ∴(2,0)A . 故选:A . 【点睛】本题主要考查了一次函数图象上点的坐标特征,一次函数y =kx +b (k≠0,且k ,b 为常数)与x 轴的交点坐标是(−bk,0),与y 轴的交点坐标是(0,b ). 4.C 【分析】根据二次根式有意义的条件和分式有意义的条件得到2k <,则20k -<,20k -+>,然后根据一次函数与系数的关系可判断一次函数的位置,从而可对各选项进行判断. 【详解】在实数范围内有意义, ∴20k ->, ∴2k <,∴20k -<,20k -+>,∴一次函数(2)2y k x k =--+的图象经过第一、二、四象限, 故选:C . 【点睛】本题考查了一次函数的图形和性质,解题的关键是熟练掌握一次函数图形与系数之间的关系. 5.D 【分析】根据整式的加减、完全平方公式、积的乘方、同底数幂的除法逐项判断即可. 【详解】A 、4xy 与2y 不是同类项,不可合并,此项错误B 、()22369x x x -=-+,此项错误 C 、()3232362(2)()8a a a -=-⋅=-,此项错误D 、64642a a a a -÷==,此项正确 故选:D . 【点睛】本题考查了整式的加减、完全平方公式、积的乘方、同底数幂的除法,熟记各运算法则是解题关键. 6.B 【分析】 方程组2y x by x =-+⎧⎨=⎩的解即为直线y x b =-+与直线2y x =的交点坐标.根据图象交点坐标直接判断即可. 【详解】解:∵直线y x b =-+与直线2y x =都经过点A (-1,-2),∴方程组2y x b y x =-+⎧⎨=⎩的解为12x y =-⎧⎨=-⎩,故选:B 【点睛】本题考查了一次函数与二元一次方程组的关系,主要考查学生的观察图形的能力和理解能力,题目比较典型,是一道比较容易出错的题目. 7.B 【解析】 【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数. 【详解】解:要求一组数据的中位数,答案第4页,总17页把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50, 所以中位数是50,在这组数据中出现次数最多的是50, 即众数是50, 故选:B. 【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从大到小排列,找出中间一个数字或中间两个数字的平均数即为所求. 8.B 【解析】 【分析】根据勾股定理求出两点间的距离,进而得22m a)(n b)36-+-=(,然后代入CD=CD. 【详解】解:∵(,)A m n ,(,)B a b ,且6AB =, ∴6=, 则22m a)(n b)36-+-=(, 又∵33(,)22C m n ,33(,)22D a b ,=9, 故选:B. 【点睛】本题考查的是用勾股定理求两点间的距离,求出22m a)(n b)36-+-=(是解题的关键. 9.C【分析】根据勾股定理逆定理逐项计算判断即可.【详解】详解: A. )22+32=13≠42)) 2,3,4不能构成直角三角形;B. )32+42=25≠72)) 3,4,7不能构成直角三角形;C. )52+122=169=132)) 5,12,13能构成直角三角形;D. )12+22=5≠32)) 1,2,3不能构成直角三角形;故选C.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a )b )c 表示三角形的三条边,如果a 2+b 2=c 2,那么这个三角形是直角三角形.10.B【解析】如图,∵A(0,0),B (10,0),C (12,6),D (2,6),∴AB=10﹣0=10,CD=12﹣2=10,又点C 、D 的纵坐标相同,∴AB∥CD 且AB=CD ,∴四边形ABCD 是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P 的坐标是(6,3),∵直线y=mx ﹣3m+6将四边形ABCD 分成面积相等的两部分,∴直线y=mx ﹣3m+6经过点P ,∴6m﹣3m+6=3,解得m=﹣1.故选B .【点睛】本题考查了平行四边形的判定以及平行四边形中心对称的性质,也就是过对角线交点的直线把平行四边形分成的两个部分的面积相等.11.A【解析】)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))A)12.C【详解】A 、等角的余角相等,正确;B 、在同一平面内垂直于同一条直线的两直线平行,正确;C 、相等的两个角不一定是对顶角,因此C 选项是假命题,D 、有一个角是60°的等腰三角形是等边三角形,正确,故选C.13.a≤-3【解析】∵一次函数y=(a+3)x+a ﹣3的图象不经过第二象限,)a+3<0,a -3≤0解得a<-3, a≤3)所以a<-3.故答案是:a≤-3)14.48,14,50.【详解】试题分析:观察所给数据的特点可知,每个数都可以用第n 组的组数n 表示,第一个数是()211n +-,第2个数是()21n +,第3个数是()211n ++,按照此规律即可写出第6组勾股数是48,14,50.故答案为48,14,50.考点:数字的规律变化类问题.15.135【解析】【分析】根据勾股定理可得AC 的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD 的度数.【详解】∵AB=2,BC=2,∠ABC=90°,∴=,∠BAC=45°,∵12+(2=32,∴∠DAC=90°,∴∠BAD=90°+45°=135°,故答案是:135.【点睛】考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.16.x >2【详解】解:由图象可得,当3y =时,2x =,且y 随x 的增大而减小,则当3y <时,2x >故答案为:2x >.17.1秒或3.5秒【分析】分别从当Q 运动到E 和B 之间、当Q 运动到E 和C 之间去分析求解即可求得答案.【详解】∵E 是BC 的中点,∴BE=CE=12BC=8,①当Q运动到E和B之间,设运动时间为t,则得:3t−8=6−t,解得:t=3.5;②当Q运动到E和C之间,设运动时间为t,则得:8−3t=6−t,解得:t=1,∴当运动时间t为1秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【点睛】此题考查平行四边形的判定,解题关键在于掌握判定定理.18.≠3【分析】根据分式有意义,分母不为0解答.【详解】解:∵分式23x-有意义,∴x-3≠0,解得:x≠3,故答案为:≠3.【点睛】本题考查了分式有意义的条件,熟知分式有意义分母不为0是解题关键.19.(1)100,10;(2)y=10x+100;(3)小亮登山6.5分钟时与爸爸相遇;(4)小亮登山1.5分钟时开始提速.【分析】(1)由图象可知爸爸开始登山时距地面100米,用爸爸登山的路程除以登山的时间即可求速度;(2)根据函数图象上两点D (0,100),E (20,300),用待定系数法可求解析式; (3)把B 点纵坐标代入(2)中解析式,求出m 即可;(4)根据提速后的速度是爸爸的3倍,求出速度,再求出开始提速到相遇的时间即可.【详解】解:(1)由图象可知,爸爸开始登山时距离地面100米, 爸爸登山的速度为:3001001020-=(米/分); 故答案为100,10;(2)设DE 的解析式为y=kx+b,把D (0,100),E (20,300)代入得, 10030020b k b=⎧⎨=+⎩, 解得,10010b k =⎧⎨=⎩∴爸爸登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式为:y=10x+100; (3)把y=165代入y=10x+100得,165=10m+100,解得,m=6.5,∴小亮登山6.5分钟时与爸爸相遇;(4)∵小亮提速后,他登山的速度是爸爸速度的3倍,∴小亮提速后的速度为30米/分,16515530-=(分), 6.5-5=1.5(分),∴小亮登山1.5分钟时开始提速.【点睛】本题考查一次函数的应用,解题的关键是读懂图象,利用数形结合的数学思想,找出所求问题需要的条件.20.(1)C (4,1),D (3,4),P (2,2);(2)2212(04)212(4)2t t t S t t t ⎧-+<≤⎪⎪=⎨⎪-->⎪⎩;(3)2t =或3;(4) 4.5t =或134或13 【分析】(1)过点D 作DF ⊥y 轴于点F ,作CE ⊥x 轴于点E ,连接AC ,由tan ∠ABO =3可知3OA OB =,设OA =3x ,则OB =x ,再根据正方形ABCD,利用勾股定理可求出OA 及OB 的长,由全等三角形的判定定理可得出△AOB ≌△BEC ≌△DF A ,故可得出CD 的坐标,利用中点坐标公式即可得出P 点坐标;(2)由RH 速度为1,且∠ROH =45°,可知tan ∠ROH =1,故RH 始终垂直于x 轴,RH =OH =t ,设△HCR 的边RH 的高为h ,4h t =-,再由三角形的面积公式即可得出结论;(3)过点N 作NE ⊥AO 于点E ,过点M 作MS ⊥x 轴于点S ,过点A 作AF ⊥MS 于点F ,求出M 、N 两点坐标,再分∠DRM =45°和∠MDR =45°两种情况进行讨论;(4)分情况进行讨论,顶边和底边分别为BC 、AR ,此时BC ∥AR ,结合已知和已证求出R 点的坐标,求出t 即可;顶边、底边分别为CR 、AB ,此时CR ∥AB ,结合已知和已证求出R 点的坐标,求出t 即可.【详解】解:(1)如图,过点D 作DF ⊥y 轴于点F ,作CE ⊥x 轴于点E ,连接AC ,∵tan ∠ABO =3, ∴3OA OB=, ∴设OB =x ,则OA =3x ,∵正方形ABCD,∴△AOB 中222OA OB AB +=,即2229x x +=,解得:1x =,∴OA =3,OB =1,∴A (0,3),∵∠OAB +∠ABO =90°,∠ABO +∠CBE =90°,∠CBE +∠BCE =90°,∴∠OAB =∠CBE ,∠ABO =∠BCE ,在△AOB 与△BEC 中,OAB CBE AB BCABO BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOB ≌△BEC ,同理可得,△AOB ≌△BEC ≌△DF A ,∴BE =DE =3,CE =AF =1,∴C (4,1),D (3,4),∵P 为正方形ABCD 的对称中心,∴P 是AC 的中点,∴点P (0+42,312+),即P (2,2), 故C (4,1),D (3,4),P (2,2);(2)∵RH 速度为1,且∠ROH =45°,∴tan ∠ROH =1,∴RH 始终垂直于x 轴,∴RH =OH =t ,设△HCR 的边RH 的高为h , 则4h t =-, ∴211422HCR S h t t t =⋅⋅=-+⋅,∴2212(04)212(4)2t t t S t t t ⎧-+<≤⎪⎪=⎨⎪-->⎪⎩; (3)如图,过点N 作NE ⊥AO 于点E ,过点M 作MS ⊥x 轴于点S ,过点A 作AF ⊥MS 于点F ,由(1)可得:B (1,0),∴直线AB 的解析式为:33y x =-+;直线OP 的解析式为:y x =,联立33y x y x =-+⎧⎨=⎩, 解得:3434x y ⎧=⎪⎪⎨⎪=⎪⎩, 直线CD 的解析式为:313y x =-+,联立313y x y x=-+⎧⎨=⎩, 解得:134134x y ⎧=⎪⎪⎨⎪=⎪⎩∴M (134,134),∴44ON OM ==∵4DM =,4AN ==, 当∠MDR =45°时,∵∠AON =45°,∴∠MDR =∠AON ,∵AN ∥DM ,∴∠ANO =∠DMP ,∴△ANO ∽△RMD , ∴MR AN DM NO ==,解得:MR =,则OR OM MR =-=,则2t =,同理可得:当∠DRM =45°时,t =3,△ANO 与△DMR 相似,综上可知:t =2或3时当△ANO 与△DMR 相似;(4)以A 、B 、C 、R 为顶点的梯形,有三种可能:①顶边和底边分别为BC 、AR ,此时BC ∥AR .如图3,延长AD ,交OM 于点R ,则AD 的斜率为1tan 3BAO ∠=, ∴则直线AD 为:33x y =+, ∴则R 坐标为(4.5,4.5),∴则此时四边形ABCR 为直角梯形,则t =4.5;②顶边、底边分别为CR 、AB ,此时CR ∥AB ,且R 与M 重合,四边形ABCR 为梯形. 则CD 的斜率=-3,且直线CD 过点C ,∴直线CD 为:y -1=-3•(x -4),即y =-3x +13,∵OM 与CD 交于点M (即R ),∴点M (134,134),∴OM =, ∴134t =, ③当AC ∥BR 时,可求得AC 解析式为:132x y =-+,BR 解析式为:2122x y =-+, 联立:2122x y y x⎧=-+⎪⎨⎪=⎩,可求得R 坐标为(13,13), 此时13t =, 综上所述: 4.5t =或134或13. 【点睛】本题考查相似三角形的判定和性质,涉及到全等三角形的判定和性质、二次不等式,正方形的性质及梯形的判定定理,解答此题时要注意分类讨论,不要漏解.21.540°;(n -1)•180°.【分析】分别过C ,D 作CE)AB ,DF)AB ,则CE)DF)CD ,根据平行线的性质即可得到结论;根据角的个数n 与角的和之间的关系是(n -1)•180°,于是得到)1+)2+)3+)4+…+)n 的度数=(n -1)•180°.【详解】如图),分别过E ,F 作GE)AB ,HF)AB ,则AB)EG)FH)CD ,))A +)AEG =)GEF +)HFE =)C +)CFH =180°,))1+)2+)3+)4=)A +)AEG+)GEF +)HFE+)C +)CFH =540°=3×180°;由(1)(2)可得角的个数n 与角的和之间的关系是(n -1)•180°,))1+)2+)3+)4+…+)n 的度数为(n -1)•180°.【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的性质进行推理是解此题的关键. 22.(1)y =x +1;(2)m 的值为1或﹣3.【分析】(1)根据待定系数法即可求解.(2)根据三角形的面积公式分点P 在点A 的右侧时与点P 在点A 的左侧分别求解即可.【详解】解:(1)设直线L 1的解析式为y =kx +b ,∵直线L 1经过点A (﹣1,0)与点B (2,3),∴023k b k b -+=⎧⎨+=⎩, 解得11k b =⎧⎨=⎩. 所以直线L 1的解析式为y =x +1.(2)当点P 在点A 的右侧时,AP =m ﹣(﹣1)=m +1,有S △APB =12×(m +1)×3=3, 解得:m =1.此时点P 的坐标为(1,0).当点P 在点A 的左侧时,AP =﹣1﹣m ,有S △APB =12×|﹣m ﹣1|×3=3,解得:m =﹣3, 此时,点P 的坐标为(﹣3,0).综上所述,m 的值为1或﹣3.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的应用.23.(1)y=-20x+1890(x 为整数且0≤x ≤21);(2)费用最省的方案为购买A 种电器11件,B种电器10件,此时所需费用为1690元.【分析】(1)设购买B种电器x件,则购买A种电器(21-x)件,根据“总费用=A种电器的单价×购买A种电器数量+B种电器的单价×购买B种电器数量”即可得出y关于x的函数关系式;(2)根据购买B种电器的数量少于A种电器的数量可得出关于x的一元一次不等式,解不等式即可求出x的取值范围,再结合一次函数的性质即可得出结论.【详解】解:(1)设购买B种电器x件,则购买A种电器(21-x)件,由已知得:y=70x+90(21-x)化简得,y=-20x+1890(x为整数且0≤x≤21).(2)由已知得:x<21-x,解得:x<10.5.∵y=-20x+1890中-20<0,∴当x=10时,y取最小值,最小值为1690.答:费用最省的方案为购买A种电器11件,B种电器10件,此时所需费用为1690元.【点睛】本题考查了一次函数的应用、解一元一次不等式以及一次函数的性质,解题的关键是:(1)根据数量关系列出y关于x的函数关系式;(2)根据数量关系列出关于x的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(不等式或函数关系式)是关键.24.选择乙.【解析】【分析】由形体、口才、专业水平、创新能力按照4:6:5:5的比确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可,【详解】形体、口才、专业水平、创新能力按照4:6:5:5的比确定,则甲的平均成绩为8649069659254655⨯+⨯+⨯+⨯+++=91.2.乙的平均成绩为9248869559354655⨯+⨯+⨯+⨯+++4+6+5+5=91.8.答案第16页,总17页乙的成绩比甲的高,所以应该录取乙.【点睛】本题考查加权平均数,熟练掌握计算方法是解题的关键.25.(1)4;(2)4.5【分析】(1)根据二次根式的乘法运算法则,零指数幂运算法则,绝对值的性质对各项进行化简,最后相加减即可;(2)先化为最简二次根式,最后根据平方差公式进行简便运算.【详解】解:(1)原式1321343=-+=-+=;(2)原式(333 4.52222⎛+=⨯⨯=⎝⎭==.【点睛】本题考查二次根式的混合运算,熟练掌握其运算法则是解题的关键,第(2)可利用平方差公式进行简便计算.。

黑龙江省哈尔滨市道外区2020—2021学年度上学期期末调研测试八年级数学试题 含答案

黑龙江省哈尔滨市道外区2020—2021学年度上学期期末调研测试八年级数学试题   含答案

道外区2020—2021学年度上学期期末调研测试八年级数学试卷考生须知:1.本试满分为120分。

考试时间为120分钟。

2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效。

4.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。

第Ⅰ卷选择题(共 30 分)一、选择题:(1—10题,每小题3分,共30分,每题只有一个答案)1.愿同学们好运相伴,在下列英文字母中,不能看作是轴对称图形的是().A. B. C. D.2.下列式子中分式的是().A.2xB.32m+C.3πD.1a12+3.下列二次根式是最简二次根式的为().A.10B.20C.32D.6.34.下列等式变形中属于因式分解的是().A.a2a)2a(a2+=+ B.)ba)(ba(ba22-+=-C.31m(m3mm2++=++) D.6)3a(3a6a22-+=++5.无理数2的倒数是().A.2B.2- C.22D.26.下列计算中正确的是().A.632aaa=⋅ B.632a)(a= C.422a3)a3(= D.aa2a3=7.已知分式1x1x2+-的值等于0,则x的值为().A.0B.1C.-1D.1或-18.如图,△ABC中,AB=AC,∠A=36°,BD平分∠ABC,则图中等腰三角形的个数是().A.0B.1C.2D.39. 下列分式方程无解的是( ).A.x 33x 2=- B.1x 21x 12-=- C.03x 2x 21=+- D.13x 3x 21x x ++=+ 10.下列命题中真命题有( )个.①有一个内角是60°的等腰三角形是等边三角形; ②等腰三角形的角平分线、中线、高线三线合一;③在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半; ④线段垂直平分线上的点与这条线段两个端点的距离相等.A.1B.2C.3D.4第Ⅱ卷 非选择题(共 90 分)二、填空题:(11—20题,每小题3分,共30分)11. 将数0.000 000 057用科学记数法表示___________.12. 若分式1x 1-有意义,则x 的取值范围为___________. 13. 已知2x -在实数范围内有意义,则x 的取值范围是___________. 14. 计算=-28___________.15. 把多项式3m 32-分解因式的结果为___________.16. 分式b a 232与cab ba 2+的最简公分母是___________.17. 计算:=⨯--10)21()2020(___________.18. 如图,△ABC 中,∠A=90°,AB=AC ,△ABC 的面积为8,则BC 的长为___________. 19. △ABC 中,∠A=90°,AB=AC ,以AB 为一边在同一平面内作等边△ABD,连接CD,则∠BDC 的度数为___________.20. 如图,等边△ABC ,D 为CA 延长线上一点,E 在BC 边上,且AD=CE,连接DE 交AB 于点F , 连接BD ,若∠BFE=45°,△DBE 的面积为2,则DB=___________.三、解答题:(21—25每题8分,26、27每题10分,共60分.) 21.(本题8分)计算:⑴)35)(35(-+ ⑵ 22)6624(÷-先化简,再求值:)1a 11(1a a 2-+÷-,其中12a -=.23.(本题8分)在平面直角坐标系中,△ABC 的顶点坐标分别为A(2,4),B(1,1),C(3,2).⑴画出△ABC 关于x 轴的对称图形△A 1B 1C 1(点A 与A 1、B 与B 1、C 与C 1对应); ⑵直接写出点A 1、B 1、C 1的坐标.24.(本题8分)如图,点D 、E 在△ABC 的边上,AD=AE,BD=CE. ⑴求证:AB=AC ;⑵当∠DAE=∠B 时,直接写出图中所有等腰三角形.25.(本题8分)某加工厂甲乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.⑴求甲、乙每小时各做多少个零件;⑵该加工厂急需甲、乙二人制造该种零件240个,由于乙另有任务,所以先由甲工作若干小时后,再由甲、乙共同完成剩余任务,工厂要求必须不超过10小时完成任务,请你求出乙至少工作多少小时.四边形ABCD中,DA=DC,连接BD,∠ABD=∠DBC.⑴如图1,求证:∠BAD+∠BCD=180°;⑵如图2,连接AC,当∠DAC=45°时,BC=3AB,S△DBC=27,求AB的长;⑶如图3,在⑵的条件下,把△ADC沿AC翻折,点D的对应点是点E,AE交BC于点K,F是线段BC上一点,连接EF,∠BFE=45°,求△EFC的面积.27.(本题10分)如图,平面直角坐标系中O为原点,Rt△ABC的直角顶点A在y轴正半轴上,斜边BC在x轴上,已知B、C两点关于y轴对称,且C(-8,0).⑴请直接写出A、B两点坐标;⑵动点P在线段AB上,横坐标为t,连接OP,请用含t的式子表示△POB的面积;⑶在⑵的条件下,当△POB的面积为24时,延长OP到Q,使得PQ=OP,在第一象限内是否存在点D,使得△OQD是等腰直角三角形,如果存在,求出D点坐标;如果不存在,请说明理由.AC AB AEC ADB CE BD AEC ADB ADE AED ADE AE AD =∴∴=∠=∠︒=∠︒∴∠=∠∴=≌△△∵又即∵-180-180)2,3();1,1();4,2(111---C B A 1866090.)1(解得个零件设甲每小时加工解:=-=x x x x2020八上期末数学答案1 2 34 5 6 7 8 9 10 A D ABCB B D B C21.(每题4分) 22.(8分)235)35)(35).(1(=-=-+3322266222422)6624).(2(-=÷-÷=÷- 2211-2112a 111)1)(1(111)1)(1(=+=-=+=-⨯-+=-+-÷-+=时,原式当a a a a a a a a a a a23. (8分) 24.(8分) (1) (1)(2)△ABC 、△ADE 、△ABE 、△ACD (2)25.(8分).55240101812.)2(小时答:乙至少加工解得小时设乙加工≥≥⨯+a a a26(10分)(1)如图1,作DM ⊥BA 于M ,DN ⊥BC 于N ,则∠DMA =∠DNC =90°,又∵点D 在∠B 的平分线上,∴DM =DN , 又∵DA =DC ,∴Rt △DMA ≌Rt △DNC ,∴∠DAM =∠BCD ,又∵∠DAM+∠DAB =180°,∴∠DAB+∠BCDB =180°。

第4章 平行四边形 单元检测卷-2020-2021学年八年级数学下学期高频考点专题突破(解析版)

第4章 平行四边形 单元检测卷-2020-2021学年八年级数学下学期高频考点专题突破(解析版)

第4章平行四边形章末检测卷(浙教版)姓名:__________________班级:______________得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021ꞏ江苏苏州市ꞏ九年级零模)一个n 边形的每个外角都是45°,则这个n 边形的内角和是()A .1080°B .540°C .2700°D .2160°【答案】A【分析】根据多边形外角和及内角和可直接进行求解.【详解】解:由一个n 边形的每个外角都是45°,可得:360845n ︒==︒,∴这个多边形的内角和为:()821801080-⨯︒=︒,故选A .【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形的内角和及外角和是解题的关键.2.(2020ꞏ山东阳谷ꞏ初二期末)随着国民经济快速发展,我国涌现出一批规模大、效益高的企业,如大疆、国家核电、华为、凤凰光学等,以上四个企业的标志是中心对称图形的是()A .B .C .D .【答案】B【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此依次判断即可.【解析】∵在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,∴A 、C 、D 不符合,不是中心对称图形,B 选项为中心对称图形.故选:B.【点睛】本题主要考查了中心对称图形的定义,熟练掌握相关概念是解题关键.3.(2021ꞏ山东东营市ꞏ八年级期末)下面关于平行四边形的说法中,不正确的是()A .对角线互相平分的四边形是平行四边形B .有一组对边平行,一组对角相等的四边形是平行四边形C .有一组对边相等,一组对角相等的四边形是平行四边形D .有两组对角相等的四边形是平行四边形【答案】C【分析】根据平行四边形的判定分别对各个选项进行判断即可.【详解】A 、∵对角线互相平分的四边形是平行四边形,∴选项A 不符合题意;B 、∵有一组对边平行,一组对角相等的四边形是平行四边形,∴选项B 不符合题意;C 、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形,∴选项C 符合题意;D 、∵有两组对角相等的四边形是平行四边形,∴选项D 不符合题意;故选:C .【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键.4.(2021ꞏ山东烟台市ꞏ八年级期末)如图1,平行四边形纸片ABCD 的面积为120,20AD =.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD 、CB 重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为()A .26B .29C .2243D .1253【答案】A 【分析】由题意可得对角线EF ⊥AD ,且EF 与平行四边形的高相等,进而利用面积与边的关系求出BC 边的高即可.【详解】解:如图,连接AD 、EF ,则可得对角线EF ⊥AD ,且EF 与平行四边形的高相等.∵平行四边形纸片ABCD 的面积为120,AD=20,∴BC=AD=20,12EF×AD=12×120,∴EF=6,又AD=20,∴则图形戊中的四边形两对角线之和为20+6=26,故选:A .【点睛】本题考查了平行四边形的性质以及图形的对称问题,熟练掌握平行四边形的性质是解题的关键.5.(2020ꞏ福建南平市ꞏ七年级期中)如图,点,A B 为定点,直线//,l AB P 是直线l 上一动点.对于下列各值:①线段AB 的长;②APB ∠的度数;③PAB △的周长;④PAB △的面积.其中不会随点P 的移动而变化的是()A .①③B .①④C .②③D .②④【答案】B 【分析】由A 、B 为定点可得AB 长为定值,进而可判断①;当P 点移动时,∠APB 的度数发生变化,PA +PB 的长也发生变化,于是可判断②、③;由直线l ∥AB 可得P 到AB 的距离为定值,于是可判断④,从而可得答案.【详解】解:∵A 、B 为定点,∴AB 长为定值,∴①线段AB 的长不会随点P 的移动而变化;当P 点移动时,∠APB 的度数发生变化,∴②∠APB 的度数会随点P 的移动而变化;当P 点移动时,PA +PB 的长发生变化,∴③△PAB 的周长会随点P 的移动而变化;∵点A ,B 为定点,直线l ∥AB ,∴P 到AB 的距离为定值,∴④△APB 的面积不会随点P 的移动而变化;综上,不会随点P 的移动而变化的是①④.故选:B .【点睛】本题考查了平行线的性质、同底等高的三角形的面积相等以及平行线间的距离等知识,熟练掌握上述基本知识是解题的关键.6.(2020ꞏ江苏南通市ꞏ南通第一初中)已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是()A .③④②①B .③④①②C .①②③④D .④③①②【答案】B【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC ,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B <90°,原题正确顺序为:③④①②,故选B .【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.7.(2021ꞏ上海九年级专题练习)四边形ABCD 中,对角线AC BD 、交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB CD =,AD BC =;③AO CO =,BO DO =;④AB ∥CD ,AD BC =.其中一定能判定这个四边形是平行四边形的条件共有()A .1组;B .2组;C .3组;D .4组.【答案】C【分析】根据平行四边形的判定方法对①②③④分别作出判断即可求解.【详解】①AB ∥CD ,AD ∥BC ,根据两组对边分别平行的四边形是平行四边形即可得到四边形是平行四边形;②AB CD =,AD BC =,根据两组对边分别相等的四边形是平行四边形即可得到四边形是平行四边形;;③AO CO =,BO DO =,根据对角线互相平分的四边形是平行四边形即可得到四边形是平行四边形;④AB ∥CD ,AD BC =,无法判定四边形是平行四边形.故选:C【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的定义和判定定理是解题关键.8.(2021ꞏ山东潍坊市ꞏ八年级期末)如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是()A .16B .18C .20D .24【答案】C 【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出▱ABCD 的周长.【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,BC=AD=6,AB=CD ,∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD ,∵AD=6,BE=2,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD 是解题的关键.9.(2021ꞏ山东潍坊市ꞏ八年级期末)如图,在ABC ∆中,D 是AB 上一点,,AD AC AE CD =⊥于点E ,点F 是BC 的中点,若10BD =,则EF 的长为()A .8B .6C .5D .4【答案】C【分析】首先根据AD AC =可得△ACD 为等腰三角形,再由AE CD ⊥结合“三线合一”性质可得E 为CD 的中点,从而得到EF 为△CBD 的中位线,最终根据中位线定理求解即可.【详解】∵AD AC =,∴△ACD 为等腰三角形,∵AE CD ⊥,∴E 为CD 的中点,(三线合一)又∵点F 是BC 的中点,∴EF 为△CBD 的中位线,∴152EF BD ==,故选:C .【点睛】本题考查等腰三角形三线合一的性质以及中位线的性质,准确判断出中位线是解题关键.10.(2021ꞏ山东泰安市ꞏ九年级期末)如图,已知ABC ∆的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4,BC CF =四边形DCFE 是平行四边形,则图中阴影部分的面积为()A .6B .8C .3D .4【答案】A【分析】想办法证明S 阴=S △ADE +S △DEC =S △AEC ,再由EF ∥AC ,可得S △AEC =S △ACF 解决问题;【详解】解:如图,连接AF 、EC .∵BC=4CF ,S △ABC =24,∴S △ACF =14×24=6,∵四边形CDEF 是平行四边形,∴DE ∥CF ,EF ∥AC ,∴S △DEB =S △DEC ,∴S 阴=S △ADE +S △DEC =S △AEC ,∵EF ∥AC ,∴S △AEC =S △ACF =6,∴S 阴=6.故选:A .【点睛】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.11.(2020ꞏ浙江杭州市ꞏ八年级期末)如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是()A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半D .若60α=︒,则平行四边形ABCD )a b +【答案】C【分析】由平行四边形的性质得出//AD BC ,AD BC =,AB CD =,B D ∠=∠,得出180D C ∠+∠=︒,求出180EAF C ∠+∠=︒,得出B D EAF α∠=∠=∠=;由平行四边形ABCD 的面积得出::a b CD BC =;若60α=︒,则60B D ∠=∠=︒,求出30BAE DAF ∠=∠=︒,由直角三角形的性质得出33BE AE a ==,33DF AF b ==,得出23AB BE a ==,23AD DF ==,求出平行四边形ABCD 的周长2())AB AD a b =+=+;求出ABE ∆的面积2126BE AE a =⨯=,ADF ∆的面积26=,平行四边形ABCD 的面积BC AE a =⨯=⨯=,得出四边形AECF 的面积=平行四边形ABCD的面积ABE -∆的面积ADF -∆的面积22()36ab a b =-+≠平行四边形ABCD 面积的一半;即得出结论.【详解】解: 四边形ABCD 是平行四边形,//AD BC ∴,AD BC =,AB CD =,B D ∠=∠,180D C ∴∠+∠=︒,AE BC ⊥ 于点E ,AF CD ⊥于点F ,360290180EAF C ∴∠+∠=︒-⨯︒=︒,B D EAF α∴∠=∠=∠=;平行四边形ABCD 的面积BC AE CD AF =⨯=⨯,AE a =,AF b =,BC a CD b ∴⨯=⨯,::a b CD BC ∴=;若60α=︒,则60B D ∠=∠=︒,30BAE DAF ∴∠=∠=︒,33BE AE a ∴==,33DF AF ==,23AB BE a ∴==,23AD DF ==,∴平行四边形ABCD 的周长2())AB AD a b =+=+;ABE ∆ 的面积21122BE AE a =⨯=⨯,ADF ∆的面积21122DF AF b =⨯=⨯=,平行四边形ABCD 的面积33BC AE a ab =⨯=⨯=,∴四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22()36a b =-+≠平行四边形ABCD 面积的一半;综上所述,选项A 、B 、D 不符合题意,选项C 符合题意;故选:C .【点睛】本题考查了平行四边形的性质、直角三角形的性质、三角形面积等知识;熟练掌握平行四边形的性质和直角三角形的性质是解题的关键.12.(2021ꞏ山东泰安市ꞏ九年级期末)如图,ABCD 的对角线AC BD 、交于点,O DE 平分ADC ∠交AB 于点,60,E BCD ∠=︒12AD AB =,连接OE .下列结论:①ABCD S AD BD =⋅ ;②DB 平分CDE ∠;③AO DE =;④OE 垂直平分BD .其中正确的个数有()A .1个B .2个C .3个D .4个【答案】C 【分析】求得∠ADB=90°,即AD ⊥BD ,即可得到S ▱ABCD =AD•BD ;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE ,进而得出DB 平分∠CDE ;依据Rt △AOD 中,AO >AD ,即可得到AO >DE ;依据O 是BD 中点,E 为AB 中点,可得BE=DE ,利用三角形全等即可得OE ⊥BD 且OB=OD .【详解】解:在ABCD 中,∵∠BAD=∠BCD=60°,∠ADC=120°,DE 平分∠ADC ,∴∠ADE=∠DAE=60°=∠AED ,∴△ADE 是等边三角形,12AD AE AB ∴==,∴E 是AB 的中点,∴DE=BE ,1302BDE AED ︒∴∠=∠=,∴∠ADB=90°,即AD⊥BD,∴S▱ABCD=AD•BD,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠CDB=∠CDE-∠BDE=60°-30°=30°,∴∠CDB=∠BDE,∴DB平分∠CDE,故②正确;∵Rt△AOD中,AO>AD,∵AD=DE,∴AO>DE,故③错误;∵O是BD的中点,∴DO=BO,∵E是AB的中点,∴BE=AE=DE∵OE=OE∴△DOE≌△BOE(SSS)∴∠EOD=∠EOB∵∠EOD+∠EOB=180°∴∠BOE=90°∴OE垂直平分BD,故④正确;正确的有3个,故选择:C.【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式的综合运用,三角形全等判定与性质,熟练掌握平行四边形的性质,等边三角形的性质,直角三角形的性质定理和等边三角形判定定理,三角形全等判定方法和性质是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)B a b关于原点成中心13.(2020ꞏ浙江杭州市ꞏ八年级其他模拟)在直角坐标系中.点A-和点(,)a b的值为_____.对称,则-【答案】-【分析】直接利用关于原点成中心对称点的性质得出a,b的值,进而得出答案.B a b关于原点成中心对称,∴a=-b=【详解】解:∵点A-和点(,)则a-b的值为:a-b=-=-.故答案为:-.【点睛】此题主要考查了关于原点对称的点的坐标,要熟练掌握,解答此题的关键是要明确:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).14.(2020ꞏ浙江杭州市ꞏ八年级开学考试)在平面直角坐标系中,已知平行四边形的三个顶点坐标分别是A B C,则平行四边形第四个顶点D的坐标为__________.(1,2),(3,0),(5,4)【答案】(3,6),(-1,-2),(7,2)【分析】分三种情况讨论,由平行四边形的性质即可得出答案.【详解】解:观察图象可知满足条件的点D的坐标为(3,6),(-1,-2),(7,2),故答案为:(3,6),(-1,-2),(7,2).【点睛】本题考查了平行四边形的性质、坐标与图形性质,解答本题的关键要注意分情况求解,不能忽略任何一种可能的情况.15.(2020ꞏ四川遂宁市ꞏ射洪中学九年级月考)如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB =13,AC =8,则DF 的长为_________.【答案】2.5【分析】延长CF 交AB 于H ,证明△AFH ≌△AFC ,根据全等三角形的性质得到AH=AC=7,CF=FH ,求出HB ,根据三角形中位线定理计算即可.【详解】解:延长CF 交AB 于H,∵AE 平分∠BAC ,∴∠HAF=∠CAF,在△AFH 和△AFC 中,90HAF CAF AF AF AFH AFC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△AFH ≌△AFC (ASA ),∴AH=AC ,CF=FH ,∵AB=13,AC=8,∴AH=AC=8,∴HB=AB-AH=13-8=5,∵CF=FH ,CD=DB ,∴DF=12HB=2.5,故答案为:2.5.【点睛】本题考查了三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.16.(2020ꞏ浙江杭州市ꞏ八年级其他模拟)在ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD的延长线于点F .已知AB =120A ∠=︒,5BF =:则FD =__________,ABCD S = __________.62-【分析】结合题意,通过证明AEB DEF △≌△,得到AB FD =,即可得到FD ;过点F 作FH BC ⊥于点H ,延长AD 交FH 于点G ,结合题意,根据平行四边形、对顶角、直角三角形两锐角互余的性质,计算得30DFG ∠= ,从而得CH 的值;再根据勾股定理计算,得FH 和BC 的值,结合平行四边形ABCD 性质以及FD CD =,DG 是CFH △中位线,从而得到DG ,通过计算即可得到答案.【详解】∵E 是AD 边上的中点∴AE ED=∵平行四边形ABCD ∴//AB CD ∴BAE EDF∠=∠∵AEB DEF ∠=∠∴AEB DEF △≌△∴AB FD=∵AB =∴FD AB ==过点F 作FH BC ⊥于点H ,延长AD 交FH 于点G∵ABCD ∴//AD BC ∴AG FH ⊥,即90DGF ∠=∵120A ∠=︒,且ABCD ∴18060ADC A ∠=-∠=∴60FDG ADC ∠=∠= ∴9030DFG FDG ∠=-∠= ∴12CH CF =∵平行四边形ABCD ∴==CD AB ∴CF CD DF =+=∴12CH CF ==∴3FH ===∴4BH ===∴4BC BH CH =-=-∵//AD BC ,FD CD ==∴DG 是CFH △中位线∴1322FG GH FH ===∴(34622ABCD BC S GH ⨯=⨯=-= ,62-.【点睛】本题考查了平行四边形、勾股定理、直角三角形、三角形中位线、全等三角形的知识;解题的关键是熟练掌握平行四边形、勾股定理、直角三角形、三角形中位线、全等三角形的性质,从而完成求解.17.(2021ꞏ安徽阜阳市ꞏ九年级期末)如图,在▱ABCD 中,∠A =60°,AB =8,AD =6,点E 、F 分别是边AB 、CD 上的动点,将该四边形沿折痕EF 翻折,使点A 落在边BC 的三等分点处,则AE 的长为.【答案】143或285【分析】设点A 落在BC 边上的A′点,分两种情况:①当A′C=13BC=2时;②如图2,当A′B=13BC=2时,过A′点作AB 延长线的垂线,构造直角三角形,利用勾股定理即可.【详解】设点A 落在BC 边上的A′点.①如图1,当A′C=13BC=2时,A′B=4,设AE=x ,则A′E=x ,BE=8-x .过A′点作A′M 垂直于AB ,交AB 延长线于M 点,在Rt △A′BM 中,∠A′BM=60°,∴BM=2,.在Rt △A′EM 中,利用勾股定理可得:x 2=(10-x )2+12,解得x=285.即AE=285;②如图2,当A′B=13BC=2时,设AE=x ,则A′E=x ,BE=8-x .过A′点作A′N 垂直于AB ,交AB 延长线于N 点,在Rt △A′BN 中,∠A′BN=60°,∴BN=1,在Rt △A′EN 中,利用勾股定理可得:x 2=(9-x )2+3,解得x=143.即AE=143;所以AE 的长为5.6或143.故答案为5.6或143.【点睛】本题主要考查翻折性质、平行四边形的性质、勾股定理,同时考查分类讨论的数学思想.18.(2020ꞏ山东济南市ꞏ八年级期末)如图,在 ABCD 中,AD=2AB ,CE AB ⊥,垂足E 在线段AB 上,F 、G 分别是AD 、CE 的中点,连接FG ,EF 、CD 的延长线交于点H ,则下列结论:①12DCF BCD ∠=∠;②EF CF =:③2BEC CEF S S = ;④3DFE AEF ∠=∠.其中,正确的序号有【答案】①②④【分析】由点F 是AD 的中点,结合 ABCD 的性质,得FD=CD ,即可判断①;先证∆AEF ≅∆DHF ,再证∆ECH 是直角三角形,即可判断②;由EF=HF ,得2HEC CEF S S = ,由CE AB ⊥,CE ⊥CD ,结合三角形的面积公式,即可判断③;设∠AEF=x ,则∠H=x ,根据直角三角形的性质,得∠FCH=∠H=x ,由FD=CD ,∠DFC=∠FCH=x ,由FG ∥CD ∥AB ,得∠AEF=∠EFG=x ,由EF=CF ,∠EFG=∠CFG=x ,进而得到3DFE AEF ∠=∠,即可判断④.【详解】∵点F 是AD 的中点,∴2FD=AD ,∵在 ABCD 中,AD=2AB ,∴FD=AB=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠BCF ,∴∠DCF=∠BCF ,即:12DCF BCD ∠=∠,∴①正确;∵AB ∥CD ,∴∠A=∠FDH ,∠AEF=∠H ,又∵AF=DF ,∴∆AEF ≅∆DHF (AAS ),∴EF=HF ,∵CE AB ⊥,∴CE ⊥CD ,即:∆ECH 是直角三角形,∴EF CF ==12EH ,∴②正确;∵EF=HF ,∴2HEC CEF S S = ∵CE AB ⊥,CE ⊥CD ,垂足E 在线段AB 上,∴BE CH <,∴BEC HCE S S < ,∴2BEC CEF S S < ,∴③错误;设∠AEF=x ,则∠H=x ,∵在Rt∆ECH 中,CF=FH=EF ,∴∠FCH=∠H=x ,∵FD=CD ,∴∠DFC=∠FCH=x ,∵点F ,G 分别是EH ,EC 的中点,∴FG ∥CD ∥AB ,∴∠AEF=∠EFG=x ,∵EF=CF ,∴∠EFG=∠CFG=x ,∴∠DFE=∠DFC+∠EFG+∠CFG=3x ,∴3DFE AEF ∠=∠.∴④正确.【点睛】本题主要考查平行四边形和直角三角形的性质定理的综合,掌握直角三角形斜边上的中线等于斜边的一半,是解题的关键.三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2020ꞏ浙江杭州市ꞏ八年级其他模拟)在66⨯的方格纸中,每个小正方形的边长均为1,请在图1、图2、图3中各画一个以A ,B 为顶点的四边形,满足以下要求:(1)在图1中画出一个面积为6,且是中心对称的四边形;(2)在图2中画出一个面积为9,且是轴对称的四边形;(3)在图3中画出一个既是轴对称又是中心对称的四边形.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)画一个底为2,高为3的平行四边形即可;(2)画一个上底为2,下底为4,高为3的梯形即可;(3)以AB 为边画一个正方形即可.【详解】解:(1)如图,四边形ABCD 即为所作;(2)如图,四边形ABCD 即为所作;(3)如图,四边形ABCD 即为所作.【点睛】本题考查了轴对称图形和中心对称图形,解题的关键是掌握相应图形的性质,以及网格的性质.20.(2021ꞏ山东烟台市ꞏ八年级期末)如图,在ABC 中,CD 是AB 边的中线,E 是CD 的中点,连接AE 并延长交BC 于点F .求证:2BF CF =.【答案】见解析【分析】取AF 的中点M ,连接DM ,则DM 是△ABF 的中位线,利用中位线定理结合全等三角形的判定即可证得.【详解】证明:取AF 的中点M ,连接DM ,∵CD 是AB 边的中线,∴D 是AB 边的中点,∴2BF DM =,//DM BC .∴MDE FCE ∠=∠,DME CFE ∠=∠.∵E 是CD 的中点,∴DE CE =,在△MDE 和△FCE 中,MDE FCE DME CFE DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴MDE FCE ≌△△.∴DM CF =,∴2BF CF =.【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.21.(2021ꞏ渝中区ꞏ重庆巴蜀中学九年级期末)已知:在平行四边形ABCD 中,点E 、F 分别在AD 和BC 上,点G 、H 在对角线AC 上,且BF=DE ,AH=CG ,连接FH 、HE 、BG 、FG .(1)求证:FG=EH .(2)若EG 平分∠AEH ,FH 平分∠CFG ,FG//AB ,∠ACD=68°,∠GFH=35°,求∠GHF的度数.【答案】(1)证明见解析;(2)77°【分析】(1)根据平行四边形的性质可得//AD BC ,AD BC =,通过证明AEH △≌CFG △即可得证;(2)利用角平分线的定义可得35GFH CFH ∠=∠=︒,再根据平行四边形的性质求出18042ACB D ACD ∠=︒-∠-∠=︒,利用三角形外角的性质即可求解.【详解】解:(1)∵四边形ABCD 是平行四边形,∴//AD BC ,AD BC =,∴EAH FCG ∠=∠,∵BF DE =,∴AD DE BC BF -=-,即AE CF =,在AEH △和CFG △中,AE CF EAH FCG AH CG =⎧⎪∠=∠⎨⎪=⎩,∴AEH △≌CFG △,∴FG=EH ;(2)∵FH 平分∠CFG ,∠GFH=35°,∴35GFH CFH ∠=∠=︒,∵FG//AB ,∴70B GFC ∠=∠=︒,∵四边形ABCD 是平行四边形,∴70D B ∠=∠=︒,∴18042ACB D ACD ∠=︒-∠-∠=︒,∴77GHF CFH ACB ∠=∠+∠=︒.【点睛】本题考查平行四边形的性质、全等三角形的判定与性质等,掌握上述性质定理是解题的关键.22.(2021ꞏ安徽九年级一模)如图,在□ABCD 中,点P 在对角线AC 上一动点,过点P 作PM //DC ,且PM =DC ,连接BM ,CM ,AP ,BD .(1)求证:△A DP ≌△BCM ;(2)若PA =12PC ,设△ABP 的面积为S ,四边形BPCM 的面积为T ,求S T的值.【答案】(1)证明见解析;(2)13【分析】(1)根据四边形ABCD 是平行四边形,得到AD=BC ,∠ADC+∠BCD=180︒,由PM //DC ,且PM =DC ,证得四边形PMCD 是平行四边形,得到PD=CM ,∠PDC+∠DCM=180︒,推出∠ADP=∠BCM ,即可证得结论;(2)作BH ⊥AC 于H ,DG ⊥AC 于G ,根据四边形ABCD 是平行四边形,得到△ABC ≌△CDA ,BH=DG ,求得2BCP ABP S S = ,ADP ABP S S = ,利用△A DP ≌△BCM ,得到ADP BCM S =S ,即可求出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD=BC ,∠ADC+∠BCD=180︒,∵PM //DC ,且PM =DC ,∴四边形PMCD 是平行四边形,∴PD=CM ,∠PDC+∠DCM=180︒,∴∠ADP=∠BCM ,∴△A DP ≌△BCM ;(2)解:作BH ⊥AC 于H ,DG ⊥AC 于G ,∵四边形ABCD 是平行四边形,∴△ABC ≌△CDA ,∴BH=DG ,∴12ABP BCP S AP S CP == ,即2BCP ABP S S = ,12112ABPADP AP BH S S AP DG ⋅⋅==⋅⋅ ,即ADP ABP S S = ,∵△A DP ≌△BCM ,∴ADP BCM S =S ,∴S T =13ABP BCP ADP S S S =+.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,同底等高或同高的三角形的面积关系,证明△A DP≌△BCM并利用其全等的性质解决问题是解题的关键.23.(2020ꞏ黑龙江哈尔滨市ꞏ九年级月考)如图,在△AFC中,∠FAC=45°,FE⊥AC于点E,在EF上取一点B,连接AB、BC,使得AB=FC,过点A作AD⊥AF,且AD=BC,连接CD.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,若AB平分∠FAC,延长FE交CD于点H,请直接写出与∠ABE相等的角.【答案】(1)见解析;(2)∠CHB;∠BCH;∠BAD;∠FCA;∠CFA【分析】(1)由题意易得∠FEA=∠FEC=90°,∠FAC=∠EFA=45°,进而可证Rt△AEB≌Rt△FEC,则有BE=CE,然后可证BC∥AD,最后求解问题即可;(2)由(1)及题意可直接进行解答.【详解】(1)证明:∵FE⊥AC,∴∠FEA=∠FEC=90°,∵∠FAC=45°,∴∠FAC=∠EFA=45°∴AE=EF,∵AB=FC,∴Rt△AEB≌Rt△FEC(HL),∴BE=CE,∵AD⊥AF,∴∠FAD=90°,∴∠CAD=90°-45°=45°,∴∠CBE=∠BCE=∠CAD=45°,∴BC∥AD,∵BC=AD,∴四边形ABCD是平行四边形;(2)解:由(1)得:∠CBE=∠BCE=∠CAD=∠BFA=45°,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠CHB,∠BAC=∠DCA,∵AB平分∠FAC,∴∠BAC=∠BAF,∵∠ABE=∠BFA+∠BAF,∠BCH=∠BCE+∠DCA,∴∠ABE=∠BCH=∠BAD,∵∠CFA=∠CFH+∠BFA,∠HCE=∠CFE,∴∠ABE=∠CFA,∵∠DCA+∠FCA=90°,∴∠ABE=∠FCA,∴与∠ABE相等的角有:∠CHB;∠BCH;∠BAD;∠FCA;∠CFA.【点睛】本题主要考查平行四边形的性质与判定及角的和差关系,熟练掌握平行四边形的性质与判定及角的和差关系是解题的关键.24.(2020ꞏ全国八年级课时练习)如图,等腰Rt△ABD中,AB=AD,点M为边AD上一动点,点E在DA 的延长线上,且AM=AE,以BE为直角边,向外作等腰Rt△BEG,MG交AB于N,连NE、DN.(1)求证:∠BEN=∠BGN.(2)求NGAB的值.(3)当M在AD上运动时,探究四边形BDNG的形状,并证明之.【答案】(1)详见解析;(2;(3)四边形BDNG是平行四边形,证明详见解析.【分析】(1)连接BM,推出BE=BM,∠EBA=∠MBA,根据SAS证△BMN≌△BEN,推出∠BMN=∠BEN,证出∠BMN=∠BGN即可;(2)过G作GH⊥AB,垂足为H,证△BGH≌△ABE,推出BH=AE=AN,求出NGGHAB,代入求出即可;(3)根据ADN≌△BAE,推出BG⊥BE,BG=BE,得出BG∥DN,BG=DN,根据平行四边形的判定判断即可.【解析】(1)证明:连BM,∵∠BAD=90°,∴BA⊥EM,∵AE=AM,∴BE=BM,∠EBA=∠MBA,在△BEN和△BMN中BE BMEBA MBABN BN=⎧⎪∠=∠⎨⎪=⎩,∴△BMN≌△BEN,∴∠BMN=∠BEN,∵BE=BG=BM,∴∠BMN=∠BGN,∴∠BEN=∠BGN.(2)解:由(1)得,∠GBE=∠GNE=90°,∴△NME等腰直角三角形,∴AE=AN,过G作GH⊥AB,垂足为H,∴∠H=∠BAE=∠GBE=90°,∴∠HGB+∠HBG=90°,∠HBG+∠ABE=90°,∴∠HGB=∠EBA,在△BGH和△ABE中H BAEHGB ABEBG BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BGH≌△ABE,∴BH=AE=AN,HN=AB=GH,NGGHAB,∴NGAB=.(3)解:四边形BDNG是平行四边形,理由是:∵∠DAN=∠BAE=90°,AN=AE,AB=AD,∴△ADN≌△BAE,∴DN⊥BE,DN=BE=BG,又∵BG⊥BE,BG=BE,∴BG∥DN,BG=DN∴四边形BDNG为平行四边形.【点睛】本题考查了平行四边形的判定,全等三角形的性质和判定,等腰直角三角形性质等知识点的运用,主要考查学生运用定理进行推理的能力,题型较好,但有一定的难度.25.(2020ꞏ广东深圳市ꞏ八年级期末模拟)如图1,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A的坐标为_____,点B的坐标为_____;(2)当BP+PM+ME′的长度最小时,请直接写出此时点P的坐标为_____;(3)如图2,点N为线段BC上的动点且CM=CN,连接MN,是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的EP的值;若不存在,请说明理由.【答案】(1)(﹣2,),(4,);(2)(2);(3)EP 的值为3或65.【分析】(1)由30°直角三角形的性质求出OD 的长,再由平行四边形的性质求出BD 的长即可解决问题;(2)首先证明四边形OPME ′是平行四边形,可得OP =EM ,因为PM 是定值,推出PB +ME ′=OP +PB 的值最小时,BP +PM +ME ′的长度最小;(3)分三种情形画出图形分别求解即可解决问题.【详解】解:(1)如图1中,在Rt △ADO 中,∵∠A =60°,∴∠AOD =30°.∵AD =2,∴OD A (﹣2,),∵四边形ABCO 是平行四边形,∴AB =OC =6,∴DB =6﹣2=4,∴B (4,);(2)如图1中,连接OP .∵EF 垂直平分线段OD ,PM ⊥OC ,∴∠PEO =∠EOM =∠PMO =90°,∴四边形OMPE 是矩形,∴PM =OE .∵OE =OE ′,∴PM =OE ′,PM ∥OE ′,∴四边形OPME ′是平行四边形,∴OP =EM ,∵PM 是定值,∴PB +ME ′=OP +PB 的值最小时,BP +PM +ME ′的长度最小,∴当O 、P 、B 共线时,BP +PM +ME ′的长度最小.∵直线OB 的解析式为y =2x ,∴P (2.故答案为(2.(3)如图2中,当PM =PN 时,∵AOCB 是平行四边形,∴∠MCN =∠A =60°.∵MC =CN ,∴△MNC 是等边三角形,∴∠CMN =∠CNM =60°.∵PM ⊥OC ,∴∠PMN =∠PNM =30°,∴∠PNF =30°+60°=90°,∵∠PFN =∠BCO =60°,∴∠NPF =30°,NF =1,∴PF =2NF =2,∵EF =2BD OC =5,∴PE =5﹣2=3.如图3中,当PM =MN 时,∵PM =MN =CM ,∴EP =OM =6如图4中,当点P 与F 重合时,NP =NM ,此时PE =EF =5.综上所述:满足条件的EP 的值为3或65.【点睛】本题考查了四边形综合题、平行四边形的性质、等腰三角形的判定和性质、最短问题等知识,解题的关键是学会利用两点之间线段最短,解决最短问题,学会用分类讨论的首先思考问题,属于中考压轴题.26.(2020ꞏ浙江杭州市ꞏ八年级期末)如图,在四边形ABCD 中,//AB CD ,90A ∠=︒,16cm AB =,13cm BC =,21cm CD =,动点N 从点D 出发,以每秒2cm 的速度在射线DC 上运动到C 点返回,动点M 从点A 出发,在线段AB 上,以每秒1cm 的速度向点B 运动,点M ,N 分别从点A ,D 同时出发.当点M 运动到点B 时,点N 随之停止运动,设运动时间为t (秒).(1)当t 为何值时,四边形MNCB 是平行四边形.(2)是否存在点N ,使NMB △是等腰三角形?若存在,请求出所有满足要求的t 的值,若不存在,请说明理由.【答案】(1)5秒或373秒;(2)存在,163秒或72秒或685秒【分析】(1)由题意已知,AB ∥CD ,要使四边形MNBC 是平行四边形,则只需要让BM=CN 即可,因为M 、N 点的速度已知,AB 、CD 的长度已知,要求时间,用时间=路程÷速度,即可求出时间;(2)使△BMN 是等腰三角形,可分三种情况,即BM=BN 、NM=NB 、MN=MB ;可利用等腰三角形及直角梯形的性质,分别用t 表达等腰三角形的两腰长,再利用两腰相等即可求得时间t .【详解】解:(1)设运动时间为t秒.∵四边形MNCB是平行四边形,∴MB=NC,当N从D运动到C时,∵BC=13cm,CD=21cm,∴BM=AB-AM=16-t,CN=21-2t,∴16-t=21-2t,解得t=5,当N从C运动到D时,∵BM=AB-AM=16-t,CN=2t-21∴16-t=2t-21,解得t=373,∴当t=5秒或373秒时,四边形MNCB是平行四边形;(2)△NMB是等腰三角形有三种情况,Ⅰ.当NM=NB时,作NH⊥AB于H,则HM=HB,当N从D运动到C时,∵MH=HB=12BM=12(16-t),由AH=DN得2t=12(16−t)+t,解得t=163秒;当点N从C向D运动时,观察图象可知,只有由题意:42-2t=12(16-t)+t,解得t=685秒.Ⅱ.当MN=MB,当N从D运动到C时,MH=AH-AM=DN-AM=2t-t=t,BM=16-t,∵MN2=t2+122,∴(16-t)2=122+t2,解得t=72(秒);Ⅲ.当BM=BN,当N从C运动到D时,则BH=AB-AH=AB-DN=16-2t,∵BM2=BN2=NH2+BH2=122+(16-2t)2,∴(16-t)2=122+(16-2t)2,即3t2-32t+144=0,∵△<0,∴方程无实根,。

2020-2021学年人教版数学八年级下册期末压轴题专项复习卷(含答案)

2020-2021学年人教版数学八年级下册期末压轴题专项复习卷(含答案)

2021年人教版数学八年级下册期末《压轴题专项》复习卷1.如图,点A的坐标是(-2,0),点B的坐标是(6,0),点C在第一象限内且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为E,交OC于点F.(1)求直线BD的函数表达式;(2)求线段OF的长;(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由.2.阅读下面材料:我们知道一次函数y=kx+b(k≠0,k、b是常数)的图象是一条直线,到高中学习时,直线通常写成Ax+By+C=0(A≠0,A、B、C是常数)的形式,点P(x0,y0)到直线Ax+By+C=0的距离可用公式d=计算.例如:求点P(3,4)到直线y=﹣2x+5的距离.根据以上材料解答下列问题:(1)求点Q(﹣2,2)到直线3x﹣y+7=0的距离;(2)如图,直线y=﹣x沿y轴向上平移2个单位得到另一条直线,求这两条平行直线之间的距离.3.已知正方形ABCD,AB=8,点E、F分别从点A、D同时出发,以每秒1m的速度分别沿着线段AB、DC向点B、C方向的运动,设运动时间为t.(1)求证:OE=OF.(2)在点E、F的运动过程中,连结AF.设线段AE、OE、OF、AF所形成的图形面积为S.探究:①S的大小是否会随着运动时间为t的变化而变化?若会变化,试求出S与t的函数关系式;若不会变化,请说明理由.②连结EF,当运动时间为t为何值时,△OEF的面积恰好等于的S.4.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数的图象交点为C(m,4).求:(1)一次函数y=kx+b的解析式;(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,则点D的坐标为;(3)在x轴上求一点P使△POC为等腰三角形,请求出所有符合条件的点P的坐标.5.将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.(1)求点G的坐标;(2)求直线EF的解析式;(3)设点P为直线EF上一点,是否存在这样的点P,使以P, F, G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.6.如图,已知直线y=kx+1经过点A(3,-2)、点B(a,2),交y轴于点M.(1)求a的值及AM的长(2)在x轴的负半轴上确定点P,使得△AMP成等腰三角形,请你直接写出点P的坐标.(3)将直线AB绕点A逆时针旋转45°得到直线AC,点D(-3,b)在AC上,连接BD,设BE是△ABD 的高,过点E的射线EF将△ABD的面积分成2:3两部分,交△ABD的另一边于点F,求点F的坐标.7.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC边上的高为h,点M为底边BC 上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=0.75x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M 的坐标.8.如图,在平面直角坐标系xOy中,矩形ABCD的AB边在x轴上,AB=3,AD=2,经过点C的直线y=x ﹣2与x轴、y轴分别交于点E、F.(1)求:①点D的坐标;②经过点D,且与直线FC平行的直线的函数表达式;(2)直线y=x﹣2上是否存在点P,使得△PDC为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)在平面直角坐标系内确定点M,使得以点M、D、C、E为顶点的四边形是平行四边形,请直接写出点M的坐标.9.如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为;(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接写出S与a之间的函数表达式;②在平移过程中,当S=时,请直接写出a的值.10.如图,直线y=2x+m(m>0)与x轴交于点A(-2,0)直线y=-x+n(n>0)与x轴、y轴分别交于B、C 两点,并与直线y=2x+m(m>0)相交于点D,若AB=4.(1)求点D的坐标;(2)求出四边形AOCD的面积;(3)若E为x轴上一点,且△ACE为等腰三角形,直接写出点E的坐标.11.如图,直线l:交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是, BC= .(2)当点P在什么位置时,△APQ≌△CBP,说明理由。

2020-2021学年八年级数学人教版下册 期末复习:一次函数实际应用(一)

2020-2021学年八年级数学人教版下册  期末复习:一次函数实际应用(一)

2020-2021学年八年级数学人教版下册期末复习:一次函数实际应用(一)1.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)本次上学途中,小明一共行驶了米.一共用了分钟.(3)在整个上学的途中最快的速度是米/分.(4)小明当出发分钟离家1200米.2.一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地的距离y(千米)与轿车行驶时间x(小时)的关系.(1)求轿车在返回甲地过程中的速度;(2)当轿车从乙地返回甲地的途中与货车相遇时,求相遇处离甲地的距离;(3)请求出两车出发多久后相距10千米.3.小明家距离学校8千米.一天早晨,小明骑车上学途中自行车出现故障,他于原地修车,车修好后,立即在确保安全的前提下以更快的速度匀速骑行到达学校.如图反映的是小明上学过程中骑行的路程(千米)与他所用的时间(分钟)之间的关系,请根据图象,解答下列问题:(1)小明骑行了千米时,自行车出现故障;修车用了分钟;(2)自行车出现故障前小明骑行的平均速度为千米/分,修好车后骑行的平均速度为千米/分;(3)若自行车不发生故障,小明一直按故障前的速度匀速骑行,与他实际所用时间相比,将早到或晚到学校多少分钟?4.小明从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,小明的家、体育场、文具店在同一条直线上.如图是小明离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离小明家千米.(2)小明在文具店逗留了分钟.(3)求小明从文具店到家的速度是千米/时.5.如图反映的过程是:小明从家出发去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离,小明家,菜地,玉米地在同一直线上.根据图象回答下列问题:(1)菜地离小明家多远?小明走到菜地用了多长时间?小明给菜地浇水用了多长时间?(2)菜地离玉米地多远?小明草菜地到玉米地用了多长时间?(3)小明给玉米地锄草用了多长时间?(4)玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?6.深圳校服已成为城市的一张名片,也成了在外游子“认亲”的凭证.夏季来临,深圳某校服生产厂为提高生产效益引进了新的设备来生产夏季校服,其中甲表示新设备的产量y (万套)与生产时间x(天)的关系,乙表示旧设备的产量y(万套)与生产时间x(天)的关系.(1)由图象可知,新设备因工人操作不当停止生产了天;(2)旧设备每天生产万套夏季校服,新设备正常生产每天生产万套夏季校服.(3)在生产过程中,x=时,新旧设备所生产的校服数量相同.7.小明和小华是姐弟俩,某日早晨,小明7:40先从家出发去学校,走了一段后,在途中广场看到志愿者们在向过往行人讲解卫生防疫常识,小明想起自己在学校学到的卫生防疫常识,于是停下来加入了志愿者队伍,后来发现上课时间快到了,就开始跑步上学,恰好在8:00赶到学校;小华离家后沿着与小明同一条道路前往学校,速度一直保持不变,也恰好在8:00赶到学校,他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图如图所示,请结合图中信息解答下列问题:(1)小明家和学校的距离是米;小明在广场向行人讲解卫生防疫常识所用的时间是分钟;(2)分别求小华的速度和小明从广场跑去学校的速度;(3)求小华在广场看到小明时是几点几分?(4)如果小明在广场进行卫生防疫常识讲解后,继续以之前的速度去往学校,假设讲解1次卫生防疫常识需要1分钟,在保证不迟到(不超过8:00)的情况下,通过计算求小明最多可以讲解几次?(结果保留整数)8.新冠病毒防疫期间,草莓摊主小钱为避免交叉感染的风险,建议顾客选择微信支付,尽量不使用现金,早上开始营业前,他查看了自己的微信零钱;销售完20kg后,他又一次查看了微信零钱,由于草莓所剩不多,他想早点卖完回家,于是每千克降价10元销售,很快销售一空,小钱弟弟根据小钱的微信零钱(元)与销售草莓数量(kg)之间的关系绘制了下列图象,请你根据以上信息回答下列问题:(1)图象中A点表示的意义是什么?(2)降价前草莓每千克售价多少元?(3)小钱卖完所有草莓微信零钱应有多少元?9.某长途客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需支付相应的行李费.设x表示行李的质量(kg),y表示行李费(元),y与x的函数关系如图所示,请写出x,y变化过程中的实际意义.10.A,B,C三地在同一条公路上,C地在A,B两地之间,且到A,B两地的路程相等.甲、乙两车分别从A,B两地出发,匀速行驶.甲车到达C地并停留1小时后以原速继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回C地停止行驶,乙车经C地到达A地停止行驶.在两车行驶的过程中,甲、乙两车距C地的路程y(单位:千米)与所用的时间x(单位:小时)之间的函数图象如图所示,请结合图象信息解答下列问题:(1)直接写出A,B两地的路程和甲车的速度;(2)求乙车从C地到A地的过程中y与x的函数关系式(不用写自变量的取值范围);(3)出发后几小时,两车在途中距C地的路程之和为180千米?请直接写出答案.11.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B 地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过时间x(小时)之间的函数关系图象.(1)甲从B地返回A地的过程中,直接写出y与x之间的函数关系式及自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?(3)甲与乙同时出发后,直接写出经过多长时间他们相距20千米?12.某天,甲组工人为灾区加工棉衣,工作中有一次停产检修机器,然后继续加工,由于任务紧急,乙组工人加入与甲组工人一起加工棉衣,甲停产前后各保持匀速生产,乙在工作时间内保持匀速生产,两组各自加工棉衣的数量y(件)与甲组工人加工时间x(小时)的函数图象如图所示.(1)求乙组加工棉衣的数量y与时间x之间的函数关系式;(2)直接写出甲组加工棉衣总量a的值.(3)如果要求x=8时,加工棉衣的总数量为480件,求乙组工人应提前多长时间加工棉衣.13.四名同学两两一队,从学校集合进行徒步活动,目的地是距学校10千米的前海公园.由于乙队一名同学迟到,因此甲队两名同学先出发.24分钟后,乙队两名同学出发.甲队出发后第30分钟,一名同学受伤,处理伤口,稍作休息后,甲队由一名同学骑单车载受伤的同学继续赶往目的地.若两队距学校的距离s(千米)与时间t(小时)之间的函数关系如图所示,请结合图象,解答下列问题:(1)甲队在队员受伤前的速度是千米/时,甲队骑上自行车后的速度为千米/时;(2)当t=时,甲乙两队第一次相遇;(3)当t≥1时,什么时候甲乙两队相距1千米?14.明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y(单位:m)与所用时间x(单位:min)之间的对应关系.请根据相关信息,解决下列问题:(Ⅰ)填表:离开家的时间/min 2 5 8 11离家的距离/m400 600(Ⅱ)填空:①明明家与书店的距离是m;②明明在书店停留的时间是min;③明明与家距离900m时,明明离开家的时间是min.(Ⅲ)当6≤x≤14时,请直接写出y与x的函数关系.15.A,B,C三地在同一条公路上,C地在A,B两地之间,且与A,B两地的路程相等.甲、乙两车分别从A,B两地同时出发,匀速行驶.甲车到达C地停留1小时后以原速度继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回A地停止;乙车经C地到达A地停止,且比甲车早1小时到达A地.两车距B地的路程y(km)与所用时间x(h)的函数关系如图所示.请结合图象信息解答下列问题:(1)A,B两地的路程为km,乙车的速度为km/h;(2)求图象中线段GH所表示的y与x的函数解析式(不需要写出自变量x的取值范围);(3)两车出发后经过多长时间相距120km的路程?请直接写出答案.参考答案1.解:(1)由图象可得,小明家到学校的路程是1500米,故答案为:1500;(2)本次上学途中,小明一共行驶了:1500+(1200﹣600)×2=2700(米),一共用了14(分钟),故答案为:2700,14;(3)由图象可知,在整个上学的途中,12分钟至14分钟小明骑车速度最快,最快的速度为:(1500﹣600)÷(14﹣12)=450米/分钟,故答案为:450;(4)设t分钟时,小明离家1200米,则t=6或t﹣12=(1200﹣600)÷450,得t=13,即小明出发6分钟或13分钟离家1200米.故6或13.2.解:(1)根据图象可得当x=1.5小时时,离甲地的距离是90千米,当x=2.5小时时,离甲地的距离是0千米,∴轿车在返回甲地过程中的速度为:90÷(2.5﹣1.5)=90(千米/小时),答:轿车在返回甲地过程中的速度为90千米/小时;(2)设货车离甲地的距离y(千米)与轿车行驶时间x(小时)的的函数解析式是y=kx+b,则2k=90,解得:k=45,则函数解析式是y=45x(0≤x≤2);设轿车在返回甲地过程中离甲地的距离y(千米)与轿车行驶时间x(小时)的的解析式是y=mx+b,则,解得:,则函数解析式是y=﹣90x+225.根据题意得:﹣90x+225=45x,解得:x=,则轿车从乙地返回甲地的途中与货车相遇时,相遇处到甲地的距离是45×=75(千米).答:当轿车从乙地返回甲地的途中与货车相遇时,相遇处离甲地的距离是75千米;(3)设两车出发a小时相距10千米轿车到达乙地前,(90÷1.5﹣45)a=10,解得:a=;轿车到达乙地后与货车相遇前:﹣90a+225﹣45a=10,解得:a=;轿车到达乙地后与货车相遇后:45a﹣(﹣90a+225)=10,解得:a=;答:两车出发小时或小时或小时后相距10千米.3.解:(1)由图可知,小明行了3千米时,自行车出现故障,修车用了15﹣10=5(分钟);故答案为:3;5;(2)修车前速度:3÷10=0.3(千米/分),修车后速度:5÷15=(千米/分);故答案为:0.3;;(3)8÷(分钟),30﹣=(分钟),故他比实际情况早到分钟.4.解:(1)由图象可知,体育场离小明家2.5千米.故答案为:2.5;(2)由图象可知,小明在文具店逗留了:65﹣45=20(分钟).故答案为:20;(3)1.5÷=(km/h),即小明从文具店到家的速度为km/h.故答案为:.5.解:由图象得:(1)菜地离小明家1.1千米,小明从家到菜地用了15分钟,小明给菜地浇水用了25﹣15=10(分钟);(2)菜地离玉米地2﹣1.1=0.9(千米),小明从菜地到地用了37﹣25=12(分钟);(3)小明给玉米地锄草用了55﹣37=18(分钟);(4)玉米地离小明家2千米,小明从玉米地走回家的平均速度=2÷=4.8(千米/小时).6.解:(1)由图象知,新设备因工人操作不当停止生产了2天,故答案为:2.(2)旧设备每天生产:1.4÷7=0.2(万套),新设备每天生产:0.4÷1=0.4(万套),故答案为:0.2,0.4;(3)①0.2x=0.4,解得x=2;②0.2x=0.4(x﹣2),解得x=4;故答案为:2或4.7.解:(1)由图象可知,小明家和学校的距离是1280米;小明在广场向行人讲解卫生防疫常识所用的时间是:14﹣8=6(分钟);故答案为:1280;6;(2)小华的速度为:1280÷(20﹣4)=80(米/分),小明从广场跑去学校的速度为:(1280﹣560)÷(20﹣14)=120(米/分);(3)560÷80=7(分),40+4+7=51(分),答:小华在广场看到小明时是7:51;(4)1280÷(560÷8)=(分),20﹣=(分),,答:在保证不迟到的情况下,小明最多可以讲解1次.8.解:(1)由图象可知,小钱开始营业前微信零钱有50元;(2)由图象可知,销售草莓20kg后,小钱的微信零钱为650元,∴销售草莓20kg,销售收入为650﹣50=600元,∴降价前草莓每千克售价为:600÷20=30(元);(3)降价后草莓每千克售价为:30﹣10=20元,∴小钱卖完所有草莓微信零钱为:650+5×20=750(元),答:小钱卖完所有草莓微信零钱应该有750元.9.解:∵y是x的一次函数,∴设y=kx+b(k≠0)由图可知,函数图象经过点(40,6),(60,10),,∴函数表达式为y=0.2x﹣2,将y=0代入y=0.2x﹣2,得0=0.2x﹣2,∴x=10,所以,旅客最多可免费携带行李的质量为10kg;当x>10,即当行李质量超过10kg时,超出部分的行李每千克需要加收0.2元.10.解:(1)当0h时,甲车和乙车距C地为180km,∴两地的路程为:180+180=360km,设甲车经过180km用了xh,则:x+x+x+1=5.5,∴x=1.5,则甲车速度为:180÷1.5=120(km/h);(2)设乙车从C地到A地的过程中y与x的函数关系式为:y=kx+b(k≠0),将(3,0),(6,180)代入y=kx+b(k≠0),得:,解得:,∴乙车从C地到A地的过程中y与x的函数关系式为:y=60x﹣180;(3)由图可知,分别在3个时间段可能两车在途中距C地路程之和为180km,①甲车从A地到C地,乙车从B到C,﹣120x+180+60x+180=180,解得:x=1;②甲车从C到B,乙车从C到A,﹣120x﹣300+60x﹣180=180,记得:x=;③甲车从B到C,乙车从C到A,﹣120x+660+60x﹣180=180,解得:x=5.总上所述:分别在1h,h,5h这三个时间点,两车在途中距C地的路程之和为180km.11.解:(1)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b,根据题意得:,解得,所以y=﹣60x+180(1.5≤x≤3);(2)∵当x=时,y=﹣60×1.8+180=72,∴骑电动车的速度为72÷1.8=40(千米/时),∴乙从A地到B地用时为90÷40=2.25(小时)=135分钟.答:乙从A地到B地用了135分钟.(3)根据题意得:90x﹣40x=20或60(x﹣1.5)+40x=90﹣20或60(x﹣1.5)+40x =90+20,解得x=或x=或x=2,答:经过时或时或2时,他们相距20千米.12.解:(1)设y乙=kx+b(k≠0),将(4.5,0),(8,252)代入得:,解得,∴y乙=72x﹣324;(2)把x=7代入y乙=72x﹣324,得y乙=72×7﹣324=180,当4≤x≤8时,设甲组加工棉衣的数量y与时间x之间的函数关系式为y甲=mx+n,将(7,180),(4,90)代入得:,解得,∴y甲=30x﹣30(4≤x≤8),将x=8代入,得y甲=30×8﹣30=210,即a=210;(3)由图象可知,乙组工人加工252件棉衣所用时间为:8﹣4.5=3.5(小时),∴乙的加工速度为:252÷3.5=72(件/小时),∵480﹣210=270(件),270÷72=3.75(小时),∴3.75﹣3.5=0.25(小时),即乙组工人应提前0.25小时加工棉衣.13.解:(1)由图象可得,甲队在队员受伤前的速度是:2÷=4(千米/时),甲队骑上自行车后的速度为:(10﹣2)÷(2﹣1)=8(千米/时),故答案为:4,8;(2)由图象可得,乙队的速度为:10÷(2.4﹣)=5(千米/时),令5×(t﹣)=2,解得t=0.8,即当t=0.8时,甲乙两队第一次相遇,故答案为:0.8;(3)由题意可得,[5×(t﹣)]﹣[2+8(t﹣1)]=1或[2+8(t﹣1)]﹣[5×(t﹣)]=1或[5×(t ﹣)]=10﹣1,解得t=1或t=或t=,即当t≥1时,1小时、小时或小时时,甲乙两队相距1千米.14.解:有图象可知,明明从家到学校分四段,当0≤x≤6时,图象经过(0,0)和(6,1200),∴解析式为:y1=200x;当6<x≤8时,设函数解析式为:y2=kx+b,∵图象经过(6,1200)和(8,600),∴,解得:,∴函数解析式为:y2=﹣300x+3000;当8<x≤12时路程没有变化说明明明在书店停留,∴y3=600;当12<x≤14时,设函数解析式为:y4=ax+m,∵图象经过(12,600)和(14,1500),∴,解得:,∴函数解析式为:y4=450x﹣4800;Ⅰ∵x=5时属于第①钟情况,∴y=1000(m),∵x=11时属于第③种情况,∴y=600(m);Ⅱ①由图象知明明家书店的距离是600m;②明明在书店停留的时间为:12﹣8=4(min);③从图象上可知x在0~6,6~8,12~14时可以距家900m,当0≤x≤6时,当y=900时,即200x=900,∴x=(min),当6<x≤8时,当y=900时,即﹣300x+3000=900,∴x=7(min),当12<x≤14时,当y=900时,即450x﹣4800=900,∴x=(min),∴明明与家距离900m时,明明离开家的时间为min或7min或min;Ⅲ由上面解法知:y=.故答案为:Ⅰ、1000,600;Ⅱ、①600,②4,③或7或.15.解:(1)∵C地在A,B两地之间,且与A,B两地的路程相等,且E、F纵坐标为180,∴A、B两地距离为180×2=360(km),又P横坐标为6,∴乙车速度为360÷6=60(km/h),故答案为:360,60;(2)∵乙车经C地到达A地停止,且比甲车早1小时到达A地,∴H(7,360),∵甲车到达C地停留1小时后以原速度继续前往B地,∴甲车行驶的时间一共6小时,即甲车行驶360km需要3小时,∴甲车速度为120km/h,G(4,0),设GH的解析式为y=kx+b,将H(7,360)、G(4,0)代入得:,解得:,∴GH的解析式为y=120x﹣480;(3)有三个时刻两车距120km,①刚出发t小时两车距120km,则360﹣(120t+60t)=120,解得:t=(h),②甲车停1小时后重新出发,设经过的时间是x小时两车相距120km,则120(x﹣1)+60x﹣120=360,解得:x=(h),③甲4小时达到B地,此时乙所行路程为4×60=240(千米),即两车此时距240千米,设再过y小时二车相距120千米,则120y﹣60y=240﹣120,解得y=2,∴两车第三次相距120千米,经过的时间是4+y=6(h),综上所述,两车出发后相距120km的路程,时间分别是小时、小时、6 小时.。

2020-2021学年黑龙江省哈尔滨市阿城区八下数学期末考试试题含解析

2020-2021学年黑龙江省哈尔滨市阿城区八下数学期末考试试题含解析

2020-2021学年黑龙江省哈尔滨市阿城区八下数学期末考试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题4分,共48分)1.已知两个直角三角形全等,其中一个直角三角形的面积为4,斜边为3,则另一个直角三角形斜边上的高为( )A .43B .32 C .83 D .52.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有A .4个B .3个C .2个D .1个 3.一个三角形的三个内角之比是1∶2∶3,且最小边长度是8,则最长边的长度是( )A .10B .12C .16D .244.如图图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .5.菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致().A.B.C.D.6.不等式的解集是( )A.B.C.D.7.小颖现已存款200元,为赞助“希望工程”,她计划今后每月存款10元,则存款总金额y(元)与时间x(月)之间的函数关系式是()A.y=10x B.y=120x C.y=200-10x D.y=200+10xn+个等边三角形拼成的,通过观察,分析发现:第8个图形8.如图:由火柴棒拼出的一列图形,第n个图形是由(1)中平行四边形的个数().A.16 B.18 C.20 D.22∠的度数是()9.如图以正方形ABCD的一边AB为边向下作等边三角形ABE,则CDEA.30°B.25°C.20°D.15°10.若一个等腰三角形的腰长为5,底边长为6,则底边上的高为( )A .4B .3C .5D .611.如图,矩形ABCD 中,AC 与BD 交于点O ,若60AOB ∠=,5AB =,则对角线AC 的长为( )A .5B .7.5C .10D .1512.如图,点E 为正方形ABCD 内一点,AD ED =,70AED ∠=︒,连结EC ,那么AEC ∠的度数是( )A .105︒B .130︒C .135︒D .140︒二、填空题(每题4分,共24分)13.已知直线y kx b =+与直线2y x =平行且经过点()1,2,则k b +=__.14.如图,三个正比例函数的图象分别对应表达式:①y=ax ,②y=bx ,③y=cx ,将a ,b ,c 从小到大排列并用“<”连接为_____.15.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试 面试 体能 甲83 79 90 乙85 80 75 丙 80 90 73该公司规定:笔试、面试、体能成绩分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分,根据总分,从高到低确定三名应聘者的排名顺序,通过计算,乙的总分是82.5,根据规定,将被录用的是__________.16.方程x3+8=0的根是_____.17.如图,菱形ABCD的边长为8cm,∠B=45°,AE⊥BC于点E,则菱形ABCD的面积为_____cm2。

【人教版】数学八年级下学期《期末检测题》附答案

【人教版】数学八年级下学期《期末检测题》附答案

2020-2021学年第二学期期末测试人教版数学八年级试题学校________ 班级________ 姓名________ 成绩________本试卷共25题.全卷满分120分.考试用时120分钟.一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若化成最简二次根式后,能与合并,则a的值不可以是()A.B.8 C.18 D.282.下列各组数中,是勾股数的是()A.0.3,0.4,0.5 B.6,8,10C.D.10,15,183.a=2019×2021﹣2019×2020,b=,c=,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图,在正方形ABCD中,以对角线BD为边作菱形BDFE,连接BF,则∠AFB=()A.30°B.25°C.22.5°D.不能确定6.如图,周长为20的菱形ABCD中,点E、F分别在边AB、AD上,AE=2,AF=3,P为BD上一动点,则线段EP+FP长度的最小值为()A.3 B.4 C.5 D.67.如图,直线y=kx+b与x轴,y轴分别相交于点A(﹣3,0),B(0,2),则不等式kx+b>2的解集是()A.x>﹣3 B.x<2 C.x>0 D.x<28.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,1349.某班同学从学校出发去秋游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要15分钟才能到达景点入口.A.1个B.2个C.3个D.4个10.如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图②所示,则图②中的a等于()A.3B.4C.14 D.18二、填空题:本题共7小题,每小题3分,共21分.11.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.12.若代数式有意义,则x的取值范围是13.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为.14.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC.(1)线段PC的最小值是.(2)当PC=5时,AP长是.15.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.17.如图,在直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为.三、解答题:共69分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.18.计算:×﹣(+1)2.19.已知:a=+2,b=﹣2.(1)求ab.(2)求a2+b2﹣ab.20.已知函数y=kx+,当x=1时,y=7;当x=2时,y=8.(1)求y与x之间的函数关系式;(2)当x=4时,求y的值.21.如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.22.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?23.在平面直角坐标系xOy中,A(0,4),B(2,0),C(5,1),D(2,5).(1)AD=,AB=;(2)∠BAD是直角吗?请说出理由;(3)求点B到直线CD的距离.24.如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.(1)求证:四边形BDCE是菱形;(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.25.如图,矩形ABCO中,点C在y轴上,点A在x轴上,点B的坐标是(﹣8,﹣6),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、y轴分别交于点D、F.(1)求线段BO的长;(2)求直线BF的解析式;(3)若点N是平面内任一点,在x轴上是否在点M,使得M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.参考答案一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若化成最简二次根式后,能与合并,则a的值不可以是()A.B.8 C.18 D.28【答案】D【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、=,能与合并,a的值可以是,本选项不符合题意;B、==2,能与合并,a的值可以是8,本选项不符合题意;C、==3,能与合并,a的值可以是18,本选项不符合题意;D、==2,不能与合并,a的值不可以是28,本选项符合题意;故选:D.【知识点】最简二次根式、同类二次根式、二次根式有意义的条件2.下列各组数中,是勾股数的是()A.0.3,0.4,0.5 B.6,8,10C.D.10,15,18【答案】B【分析】利用勾股数定义进行分析即可.【解答】解:A、0.3,0.4,0.5不是正整数,不是勾股数,故此选项不合题意;B、62+82=102,都是正整数,是勾股数,故此选项符合题意;C、,,不是正整数,不是勾股数,故此选项不合题意;D、102+152≠182,不是勾股数,故此选项不合题意;故选:B.【知识点】勾股数3.a=2019×2021﹣2019×2020,b=,c=,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【答案】A【分析】利用平方差公式计算a,利用完全平方公式和二次根式的化简求出b,利用二次根式大小的比较办法,比较b、c得结论.【解答】解:a=2019×2021﹣2019×2020=(2020﹣1)(2020+1)﹣(2020﹣1)×2020=20202﹣1﹣20202+2020=2019;∵20222﹣4×2021=(2021+1)2﹣4×2021=20212+2×2021+1﹣4×2021=20212﹣2×2021+1=(2021﹣1)2=20202,∴b=2020;∵>,∴c>b>a.故选:A.【知识点】实数大小比较、二次根式的乘除法、二次根式的性质与化简4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【答案】D【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选:D.【知识点】勾股定理的应用5.如图,在正方形ABCD中,以对角线BD为边作菱形BDFE,连接BF,则∠AFB=()A.30°B.25°C.22.5°D.不能确定【答案】C【分析】根据正方形的对角线平分一组对角可得∠ADB=45°,再根据菱形的四条边都相等可得BD=DF,根据等边对等角可得∠DBF=∠DFB,然后根据三角形的一个外角等于与它不相邻的两个内角的和进行计算即可得解.【解答】解:在正方形ABCD中,∠ADB=∠ADC=×90°=45°,在菱形BDFE中,BD=DF,所以,∠DBF=∠AFB,在△BDF中,∠ADB=∠DBF+∠AFB=2∠AFB=45°,解得∠AFB=22.5°.故选:C.【知识点】正方形的性质、菱形的性质6.如图,周长为20的菱形ABCD中,点E、F分别在边AB、AD上,AE=2,AF=3,P为BD上一动点,则线段EP+FP长度的最小值为()A.3 B.4 C.5 D.6【答案】C【分析】在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG的长就是EP+FP的最小值,据此即可求解.【解答】解:∵四边形ABCD是菱形,周长为20,∴AD=20,在DC上截取DG=FD=AD﹣AF=5﹣3=2,连接EG,EG与BD交于点P′,连接P′F,此时P′E+P′F的值最小,最小值=EG的长,∵AE=DG=2,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=5.故选:C.【知识点】菱形的性质、轴对称-最短路线问题7.如图,直线y=kx+b与x轴,y轴分别相交于点A(﹣3,0),B(0,2),则不等式kx+b>2的解集是()A.x>﹣3 B.x<2 C.x>0 D.x<2【答案】C【分析】根据图象和B的坐标得出即可.【解答】解:∵直线y=kx+b和y轴的交点是B(0,2),∴不等式kx+b>2的解集是x>0,故选:C.【知识点】一次函数的性质、一次函数与一元一次不等式8.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,134【答案】B【分析】先将这组数据重新排列,再根据众数和中位数的概念求解即可.【解答】解:将这组数据重新排列为115,118,126,126,134,138,143,157,所以这组数据的众数为126,中位数为=130,故选:B.【知识点】中位数、众数9.某班同学从学校出发去秋游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要15分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】C【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【解答】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车原来的速度为:15÷30=0.5km/min,后来的速度为:0.5×=(km/min),当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷﹣(40﹣15)÷1=10分钟才能达到景点入口,故④错误,故选:C.【知识点】一次函数的应用10.如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图②所示,则图②中的a等于()A.3B.4C.14 D.18【答案】A【分析】由图②知,BC=6,CD=14﹣6=8,BD=18﹣14=4,再通过解直角三角形,求出△CBD高,进而求解.【解答】解:由图②知,BC=6,CD=14﹣6=8,BD=18﹣14=4,过点B作BH⊥DC于点H,设CH=x,则DH=8﹣x,则BH2=BC2﹣CH2=BD2﹣DH2,即:BH2=42﹣(8﹣x)2=62﹣x2,解得:BH=,则a=y=S△ABP=DC×HB=×8×=3,故选:A.【知识点】动点问题的函数图象二、填空题:本题共7小题,每小题3分,共21分.11.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.【答案】39【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40,其中第四个数据为39,所以这组数据的中位数为39.故答案为39.【知识点】中位数12.若代数式有意义,则x的取值范围是【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0.【解答】解:若代数式有意义,必有解得﹣3≤x<且x≠﹣2.【知识点】二次根式有意义的条件13.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为.【答案】6【分析】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.【解答】解:作PF⊥AD于F,PG⊥BC于G,∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∵AD∥BC,∴两平行线AD与BC间的距离为PF+PG=6,故答案为:6.【知识点】平行线之间的距离、角平分线的性质14.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC.(1)线段PC的最小值是.(2)当PC=5时,AP长是.【答案】【第1空】4.8【第2空】5或2.2【分析】(1)当PC⊥AB时,PC的值最小,利用面积法求解即可;(2)过C作CQ⊥BC于Q,同(1)得CQ=4.8,由勾股定理求出AQ=3.6,PQ=1.4,当P在线段BQ上时,AP=AQ+PQ=5;当P在线段AQ上时,AP=AQ﹣PQ=2.2.【解答】解:(1)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB===10,由垂线段最短得:当PC⊥AB时,PC的值最小,此时,△ABC的面积=•AB•PC=•AC•BC,∴AB•PC=AC•BC,∴PC===4.8,故答案为:4.8;(2)过C作CQ⊥BC于Q,如图所示:同(1)得:CQ=4.8,由勾股定理得:AQ===3.6,PQ===1.4,当P在线段BQ上时,AP=AQ+PQ=3.6+1.4=5;当P在线段AQ上时,AP=AQ﹣PQ=3.6﹣1.4=2.2;综上所述,AP的长为5或2.2,故答案为:5或2.2.【知识点】勾股定理、垂线段最短15.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.【分析】根据一次函数图象过定点A(2,3),即可得到OA=为最大距离.【解答】解:一次函数y=(x﹣2)k+3中,令x=2,则y=3,∴一次函数图象过定点A(2,3),∴OA=为最大距离.故答案为:.【知识点】一次函数的性质、一次函数的图象16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.【答案】(4,160)【分析】根据点C与点D的坐标即可得出乙货车的速度,进而得出乙货车从B地到A地所用时间,据此即可得出点E的坐标.【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).【知识点】一次函数的应用17.如图,在直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为.【分析】根据直线y=x+4先确定OA和OB的长,证明四边形PHOC是矩形,得PH=OC=BC=2,再证明四边形PBCH是平行四边形,则BP=CH,在BP+PH+HQ中,PH=2是定值,所以只要CH+HQ 的值最小就可以,当C、H、Q在同一直线上时,CH+HQ的值最小,利用平行四边形的性质求出即可.【解答】解:如图,连接CH,∵直线y=x+4分别交x轴,y轴于A,B两点,∴OB=4,OA=3,∵C是OB的中点,∴BC=OC=2,∵∠PHO=∠COH=∠DCO=90°,∴四边形PHOC是矩形,∴PH=OC=BC=2,∵PH∥BC,∴四边形PBCH是平行四边形,∴BP=CH,∴BP+PH+HQ=CH+HQ+2,要使CH+HQ的值最小,只须C、H、Q三点共线即可,∵点Q是点B关于点A的对称点,∴Q(﹣6,﹣4),又∵点C(0,2),根据勾股定理可得CQ==6,此时,BP+PH+HQ=CH+HQ+PH=CQ+2=6+2,即BP+PH+HQ的最小值为6+2;故答案为:6+2.【知识点】一次函数综合题三、解答题:共69分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.18.计算:×﹣(+1)2.【分析】根据根式的乘法和完全平方公式化成最简二次根式,再合并即可.【解答】解:×﹣(+1)2=﹣[()2+2+1]=﹣3﹣2﹣1=2﹣3﹣2﹣1=﹣4.【知识点】二次根式的混合运算19.已知:a=+2,b=﹣2.(1)求ab.(2)求a2+b2﹣ab.【分析】(1)根据平方差公式、二次根式的乘法法则计算;(2)根据二次根式的加法法则求出a+b,根据完全平方公式把原式变形,把a+b、ab的值代入计算即可.【解答】解:(1)ab=(+2)(﹣2)=()2﹣22=5﹣4=1;(2)∵a=+2,b=﹣2,∴a+b=(+2)+(﹣2)=2,∴a2+b2﹣ab=a2+2ab+b2﹣3ab=(a+b)2﹣3ab=(2)2﹣3×1=17.【知识点】二次根式的化简求值、分母有理化20.已知函数y=kx+,当x=1时,y=7;当x=2时,y=8.(1)求y与x之间的函数关系式;(2)当x=4时,求y的值.【分析】(1)直接把已知x,y的值代入解方程组得出答案;(2)利用(1)中所求把x的值代入求出答案.【解答】解:(1)∵函数y=kx+,当x=1时,y=7;当x=2时,y=8,∴,解得:,故y与x之间的函数关系式为:y=3x+;(2)当x=4时,y=3×4+=13.【知识点】函数值21.如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.【分析】连结BD,取BD的中点H,连结HE,HF,根据三角形的中位线的性质得到FH∥BM,FH=AB,EH∥CN,EH=CD,根据平行线的性质得到∠BME=∠HFE,∠CNE=∠HEF,根据等腰三角形的性质得到∠HFE=∠HEF,等量代换即可得到结论.【解答】证明:连结BD,取BD的中点H,连结HE,HF,∵E、F分别是BC、AD的中点,∴FH∥BM,FH=AB,EH∥CN,EH=CD,∴∠BME=∠HFE,∠CNE=∠HEF,∵AB=CD,∴FH=EH,∴∠HFE=∠HEF,∴∠BME=∠CNE.【知识点】三角形中位线定理22.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?【答案】【第1空】1.5【第2空】1.5【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,再用总人数减去学生劳动“0.5小时”、“1小时”、“2小时”的人数,得出学生劳动“1.5小时”的人数,从而补全条形图;(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.【解答】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,故答案为:1.5,1.5;(3)1200×=216,答:估算该校学生参加义务劳动2小时的有216人.【知识点】中位数、全面调查与抽样调查、众数、条形统计图、用样本估计总体23.在平面直角坐标系xOy中,A(0,4),B(2,0),C(5,1),D(2,5).(1)AD=,AB=;(2)∠BAD是直角吗?请说出理由;(3)求点B到直线CD的距离.【分析】(1)直接根据两点间的距离公式可求出AD及AB的长即可;(2)连接BD,根据勾股定理的逆定理进行判断即可;(3)过点B作BE⊥CD于点E,作CG⊥x轴于点G,根据三角形的面积公式求出BE的长即可.【解答】解:(1)∵A(0,4),B(2,0),C(5,1),D(2,5).∴AD==;AB===2.故答案为:,2;(2)∠BAD是直角.理由:连接BD,∵B(2,0),D(2,5),∴BD=5﹣0=5.∵由(1)知AD=,AB=2,∴AD2=5,AB2=20,BD2=25,∴AD2+AB2=BD2,∴∠BAD是直角;(3)过点B作BE⊥CD于点E,作CG⊥x轴于点G,∵C(5,1),D(2,5),∴CD==5,∵B(2,0),D(2,5).∴BD⊥x轴,BG=5﹣2=3,CG=1,∴S△BCD=S梯形DBGC﹣S△BCG,即×5BE=(1+5)×3﹣×1×3,解得BE=3.答:点B到直线CD的距离为3.【知识点】勾股定理、勾股定理的逆定理、坐标与图形性质24.如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.(1)求证:四边形BDCE是菱形;(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.【分析】(1)先证明四边形BDCE是平行四边形,得出CE=BD,证出BD=CD,由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BDCE是菱形;(2)连接DE,由菱形的性质得出BC⊥DE,BD=BE,OB=OC,由线段垂直平分线的性质得出BE=DE,证出BE=DE=BD,由等边三角形和菱形的性质得出∠EBC=∠EBD=30°,求出OE=EB=3,由勾股定理求出OB,即可得出结果.【解答】(1)证明:∵CE∥AB,BE∥CD,∴四边形BDCE是平行四边形,∴CE=BD,∵CE=AD,∴BD=AD,又∵∠ACB=90°,∴CD=AB=BD,∴四边形BDCE是菱形;(2)解:连接DE,如图所示:由(1)得:四边形BDCE是菱形,∴BC⊥DE,BD=BE,OB=OC,∵EF⊥BD,点F是BD的中点,∴BE=DE,∴BE=DE=BD,∴∠DBE=60°,∠EBC=∠EBD=30°,∴OE=EB=3,∴OB===3,∴BC=2OB=6.【知识点】菱形的判定25.如图,矩形ABCO中,点C在y轴上,点A在x轴上,点B的坐标是(﹣8,﹣6),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、y轴分别交于点D、F.(1)求线段BO的长;(2)求直线BF的解析式;(3)若点N是平面内任一点,在x轴上是否在点M,使得M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.【分析】(1)由勾股定理求出BO即可;(2)由待定系数法求出直线BF的解析式即可;(3)分情况讨论:①当OM、OE都为菱形的边时,OM=OE=4,得出M的坐标为(4,0)或(﹣4,0);②当OM为菱形的对角线,OE为边时,同②得(﹣,0);③当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,由勾股定理求出OM即可.【解答】解:(1)∵四边形ABCO是矩形,点B的坐标是(﹣8,﹣6),∴∠OAB=∠OCB=90°,OA=BC=8,AB=CO=6,∴BO===10;(2)由折叠的性质得:BE=AB=6,DE=DA,∠DEB=∠DAB=90°,∴∠DEO=90°,OE=BO﹣BE=10﹣6=4.设OD=a,则DA=DE=8﹣a,在Rt△EOD中,DE2+OE2=OD2,即(8﹣a)2+42=a2,解得:a=5,∴D(﹣5,0),设直线BF的解析式为y=kx+b,把B(﹣8,﹣6),D(﹣5,0)代入得:,解得:,∴直线BF的解析式为y=2x+10;(3)存在,理由如下:①当OM、OE都为菱形的边时,OM=OE=4,∴M的坐标为(4,0)或(﹣4,0);②当OE为菱形的边,OM为菱形的对角线时,如图1所示:设直线OB解析式为:y=kx,由点B(﹣8,﹣6)在图象上可知:﹣6=﹣8k,∴k=,则直线OB解析式为y=x,设点E(x,x),在Rt△EOG中,OG2+GE2=OE2,即:x2+(x)2=16,解得:x=±,∵点E在第三象限,∴x=﹣,∴点M(﹣,0);③当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,作EP⊥OA于P,如图2所示:由②得:E(﹣,﹣),则OP=,EP=,在Rt△PEM中,由勾股定理得:(﹣OM)2+()2=EM2,∵OM=EM,∴(﹣OM)2+()2=OM2,解得:OM=,∴点M的坐标为(﹣,0);综上所述,在x轴上存在点M,使得M、N、E、O为顶点的四边形是菱形,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0).【知识点】一次函数综合题。

第2章 一元二次方程 章末检测卷-2020-2021学年八年级数学下学期高频考点专题突破(原卷版)

第2章 一元二次方程 章末检测卷-2020-2021学年八年级数学下学期高频考点专题突破(原卷版)

第2章 一元二次方程 章末检测卷(浙教版)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·浙江杭州市·八年级模拟)下面关于x 的方程中①20ax bx c ++=;②223(9)(1)1x x --+=;③2150x x++=;④232560x x -+-=;⑤2233(2)x x =-;⑥12100x -=是一元二次方程的个数是( ) A .1B .2C .3D .42.(2020·浙江鄞州初二期末)把一元二次方程()2(3)31x x x +=-化成一般形式,正确的是( ) A .22790x x --= B .2 2590x x --= C .24790x x ++= D .2 26100x x --=3.(2020·浙江上虞初二期末)如图,某小区规划在一个长40m 、宽26m 的长方形场地ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块草坪的面积都为2144m ,那么通道的宽x 应该满足的方程为( )A .(402)(26)4026x x ++=⨯B .(40)(262)1446x x --=⨯C .214464022624026x x x ⨯++⨯+=⨯D .(402)(26)1446x x --=⨯4.(2020·安徽省初三二模)若关于x 的一元二次方程x 2﹣4x +m +2=0有两个不相等实数根,且m 为正整数,则此方程的解为( ) A .x 1=﹣1,x 2=3 B .x 1=﹣1,x 2=﹣3 C .x 1=1,x 2=3D .x 1=1,x 2=﹣35.(2020·山东省初三期中)已知4是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A .7B .10C .11D .10或116.(2020·杭州市 八年级期中)若关于x 的一元二次方程ax 2+bx +2=0(a≠0)有一根为x =2019,则一元二次方程a (x ﹣1)2+b (x ﹣1)=﹣2必有一根为( ) A .2017B .2020C .2019D .20187、(2020年成都市初三半期)根据下列表格对应值:判断关于x 的方程0(0)ax bx c a ++=≠A.x <3.24 B.3.24<x <3.25 C.3.25<x <3.26 D.3.25<x <3.288.(2020·江苏省初三期中)古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如下图1,2,他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( ) A .289B .1225C .1024D .13789.(2020·浙江杭州市·八年级期末)已知关于x 的方程2(21)(1)0kx k x k +++-=有实数根,则k 的取值范围为() A .18k ≥-B .18k >-C .18k ≥-且0k ≠D .18k <-10. (2020·绵阳市初三期末)关于的方程的根的情况描述正确的是.A .为任何实数,方程都没有实数根B .为任何实数,方程都有两个不相等的实数根C .为任何实数,方程都有两个相等的实数根x 0122=-++k kx x k k kD .根据的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种11.(2020·浙江丽水初二期末)若关于x 的方程2(4550)x x m --=+的解中,仅有一个正数解,则m 的取值范围是( ) A .5m >-B .5m ≥-C .10516m >-D .10516m ≥-12.(2020·内蒙古包头初三其他)如果关于x 的一元二次方程20(a 0)++=≠ax bx c 有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.若关于x 的方程210,(ax bx a b ++=是常数,0)a >是“邻根方程”,令28t a b =-,则t 的最大值为( )A .2B.C .4D .2-二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上) 13.(2020·浙江初三期末)定义:若两个一元二次方程有且只有一个相同的实数根,我们就称这两个方程为“友好方程”.已知关于x 的一元二次方程2455x x m mx -+=+和2210x x m ++-=互为“友好方程”,则m 的值为_______.14.(2020·上海杨浦初二期末)在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信,已知全公司共发出2450条短信,那么这个公司有_________员工人. 15.(2020·浙江杭州市·八年级其他模拟)设2213,13a a b b +=+=,且a b ,则代数式2211a b+的值为______.16、(2020·江苏省初三期末)等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为 .17.(2020·浙江诸暨初二月考)已知关于x 的方程20(a 0)++=≠ax bx c 的系数满足0a b c -+=,我们把这样的方程称为“西施”方程.已知“西施”方程2ax bx c ++0(0)a =≠的一个根是另一个根的3倍,则这个方程的两个根是_____.18、(2020成都市外国语实验学校初三直升考试)已知实数m ,n 满足220190m m +-=,()211201901mn n n--=≠-,则_____1=-n m . k三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19、(2020·成外初三期末模拟)按要求解方程(第3小题选择合适方法解方程):(1);(公式法)(2);(配方法) (3) (-2)+-2=0.20.(2020·长沙市南雅中学初二期末)已知关于x 的一元二次方程227(21)04x m x m +-+-=有两个不相等的实数根 12,x x .(1)若m 为正整数,求m 的值;(2)在(1)的条件下,求代数式2221112()()x x x x ++的值.21.(2020·浙江杭州市·八年级期末)某商场销售某种冰箱,每台进货价为2500元,标价为3000. (1)若商场连续两次降价,每次降价的百分率相同,最后以2430元售出,求每次降价的百分率; (2)市场调研表明:当每台售价为2900元时,平均每天能售出8台;当每台售价每降50元时,平均每天就能多售出4台.若商场要使这种冰箱的销售利润平均每天达到5000元,则每台冰箱的售价应为多少元?22.(2020·广西福绵初二期末)已知x 1,x 2是一元二次方程2x 2﹣2x +m +1=0的两个实数根.2420x x +-=2410x x -+=x x x(1)求实数m的取值范围;(2)如果x1,x2满足不等式4+4x1x2>x12+x22,且m为整数,求m的值.23、(2020·湖北省武汉市初三期末)已知:关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2,且|x1|=|x2|-2,求m的值及此时这个方程的根。

黑龙江省哈尔滨市呼兰区实验校2020-2021八下期末调研测试数学题

黑龙江省哈尔滨市呼兰区实验校2020-2021八下期末调研测试数学题
A.70°B.65°C.50°D.25°
三、填空题
9.如图,在 中,AB=AC=5,BC=6,点M为BC中点, 于点N,则MN=____________
10.如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位,元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列正确结论的序号是____.
19.在矩形ABCD中,AB=4,AD=9点F是边BC上的一点,点E是AD上的一点,AE:ED=1:2,连接EF、DF,若EF=2 ,则CF的长为______________。
20.如图在△ABC中,AH⊥BC于点H,在AH上取一点D,连接DC,使DA=DC,且∠ADC=2∠DBC,若DH=2,BC=6,则AB=_________________。
黑龙江省哈尔滨市呼兰区实验校2018-2019八下期末调研测试数学题
学校:___________姓名:___________班级:___________考号:___________
一、未知
1.下列各曲线中,不能表示y是x的函数的是()
二、单选题
2.下列计算正确的是()。
A. B. C. D.
3.下列各组数据中,能做为直角三角形三边长的是()。
17.如图,在平行四边形ABCD中,以顶点A为圆心,AD长为半径,在AB边上截取AE=AD,用尺规作图法作出∠BAD的角平分线AG,若AD=5,DE=6,则AG的长是_________________.
18.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH=_____________.

黑龙江省伊春市铁力市第四中学2020-2021学年数学八年级第二学期期末复习检测模拟试题含解析

黑龙江省伊春市铁力市第四中学2020-2021学年数学八年级第二学期期末复习检测模拟试题含解析

黑龙江省伊春市铁力市第四中学2020-2021学年数学八年级第二学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.武侯区某学校计划选购甲,乙两种图书为“初中数学分享学习课堂之生讲生学”初赛的奖品.已知甲图书的单价是乙图书单价的1.5倍,用600元单独购买甲种图书比单独购买乙种图书少10本,设乙种图书的价为x元,依据题意列方程正确的是()A.60060010x 1.5x-= B.600600101.5x x-=C.6006001.5x10x-=+D.6006001.5x x10-=+2.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,AB=6cm,BC=8cm,则△AEF的周长是()A.14cm B.8cm C.9cm D.10cm3.现有一块长方形绿地,它的短边长为20 m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m2,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )A.x(x-20)=300 B.x(x+20)=300 C.60(x+20)=300 D.60(x-20)=3004.某工厂计划用两年时间使产值增加到目前的4倍,并且使第二年增长的百分数是第一年增长百分数的2倍,设第一年增长的百分数为x,则可列方程得()A.(1+x)2=4 B.x(1+2x+4x)=4C.2x(1+x)=4 D.(1+x)(1+2x)=45.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A .3cmB .4cmC .5cmD .6cm6.已知()A 3,m -,()B 2,n 是一次函数y 2x 1=-的图象上的两个点,则m ,n 的大小关系是( )A .m n <B .m n =C .m n >D .不能确定7.永康市某一周的最高气温统计如下(单位:)℃:27,28,30,31,28,30,28,则这组数据的众数和中位数分别是( )A .28,27B .28,28C .28,30D .27,28 8.如图,已知四边形ABCD 是平行四边形,要使它成为菱形,那么需要添加的条件可以是( )A .AC =BDB .AB =AC C .∠ABC =90°D .AC ⊥BD9.如图,ABCD 的对角线相交于点O ,且AB AD ≠,过点O 作OE BD ⊥交BC 于点E ,若ABCD 的周长为20,则CDE ∆的周长为( )A .7B .8C .9D .1010.直线23y x =-的截距是 ( )A .—3B .—2C .2D .311.平行四边形一边长12,那么它的两条对角线的长度可能是( )A .8和16B .10和16C .8和14D .8和1212.方程 x 2 = x 的解是( )A .x = 1B .x 1 = 1 , x 2 = 0C .x = 0D .x 1 = -1 , x 2 = 0二、填空题(每题4分,共24分)13.已知:在矩形ABCD 中,AD =2AB ,点E 在直线AD 上,连接BE ,CE ,若BE =AD ,则∠BEC 的大小为_____度.14.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE =5,F 为DE 的中点.若OF 的长为,则△CEF 的周长为______.15.某县为了节约用水,自建了一座污水净化站,今年一月份净化污水3万吨,三月份增加到3.63万吨,则这两个月净化的污水量每月平均增长的百分率为______.16.已知函数y =(m ﹣1)x +m 2﹣1是正比例函数,则m =_____.17.在函数y =12x x++中,自变量x 的取值范围是_____. 18.一次函数2y kx =+不经过第三象限,则k 的取值范围是______ 三、解答题(共78分)19.(8分)如图,在直角梯形ABCD 中,AB ∥DC ,∠B=90°,AB=16,BC=12,CD=1.动点M 从点C 出发,沿射线CD 方向以每秒2个单位长的速度运动;动点N 从B 出发,在线段BA 上,以每秒1个单位长的速度向点A 运动,点M 、N 分别从C 、B 同时出发,当点N 运动到点A 时,点M 随之停止运动.设运动时间为t(秒).(1)设△AMN 的面积为S ,求S 与t 之间的函数关系式,并确定t 的取值范围;(2)当t 为何值时,以A 、M 、N 三点为顶点的三角形是等腰三角形?20.(8分)一次函数图象经过(3,8)和(5,12)两点,求一次函数解析式.21.(8分)有这样一个问题:探究函数|3|12x x y --+=的图象与性质. 小东根据学习函数的经验,对函数|3|12x x y --+=的图象与性质进行了探究. 下面是小东的探究过程,请补充完成:(1)填表 x … 1- 0 1 2 3 4 5 6 . . . y … 3 2 1- 1-. . . (2)根据(1)中的结果,请在所给坐标系中画出函数|3|12x x y --+=的图象; (3)结合函数图象,请写出该函数的一条性质.22.(10分)先化简,再求值:2a a 42a 1a 1-⎛⎫-÷ ⎪++⎝⎭,其中a =2+1. 23.(10分)如图是一个三级台阶,它的第一级的长、宽、高分别为20dm ,3dm ,2dm ,点A 和点B 是这个台阶两个相对的端点,A 点处有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是多少?24.(10分)解一元二次方程:23220x x +-=.25.(12分)为了庆祝新中国成立70周年,某校组织八年级全体学生参加“恰同学少年,忆峥嵘岁月”新中国成立70周年知识竞赛活动.将随机抽取的部分学生成绩进行整理后分成5组,50~60分(5060x ≤<)的小组称为“学童”组,60~70分(6070x ≤<)的小组称为“秀才”组,70~80分(7080x ≤<)的小组称为“举人”组,80~90分(8090x ≤<)的小组称为“进士”组,90~100分(90100x ≤≤)的小组称为“翰林”组,并绘制了不完整的频数分布直方图如下,请结合提供的信息解答下列问题:(1)若“翰林”组成绩的频率是12.5%,请补全频数分布直方图;(2)在此次比赛中,抽取学生的成绩的中位数在 组;(3)学校决定对成绩在70~100分(70100x ≤≤)的学生进行奖励,若八年级共有336名学生,请通过计算说明,大约有多少名学生获奖?26.如图.已知A 、B 两点的坐标分别为A (0,23),B (2,0).直线AB 与反比例函数k y x=的图象交于点C 和点D (-1,a ).(1)求直线AB 和反比例函数的解析式.(2)求∠ACO 的度数.参考答案一、选择题(每题4分,共48分)1、A【解析】【分析】根据“600元单独购买甲种图书比单独购买乙种图书少10本”列出相应的分式方程,本题得以解决.【详解】由题意可得,60060010x 1.5x-=,故选:A.【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.2、C【解析】【分析】利用勾股定理列式求出AC,再根据矩形的对角线互相平分且相等求出OA=OD=12AC,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=12OD,再求出AF,AE,然后根据三角形的周长公式列式计算即可得解.【详解】由勾股定理得,AC=10cm ∵四边形ABCD是矩形∴OA=OD=12AC=12×10=5cm∵点E、F分别是AO、AD的中点∴EF=12OD=52cmAF=12×8=4cmAE=12OA=52cm∴△AEF的周长=52+4+52=9cm.故选C.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,矩形的性质,勾股定理,熟记定理与性质是解题的关键.3、A【分析】设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加300m2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm,根据题意得x(x-20)=300,故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.4、D【解析】【分析】设第一年增长的百分数为x,则第二年增长的百分数为2x,根据“计划用两年时间使产值增加到目前的1倍”列出方程即可.【详解】解:设第一年增长的百分数为x,则第二年增长的百分数为2x,根据题意,得(1+x)(1+2x)=1.故选:D.【点睛】此题主要考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.5、A【解析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.详解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=12BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,故选:A.点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.6、A【解析】【分析】根据一次函数中k的值确定函数的增减性,然后比较m、n的大小即可.【详解】解:∵一次函数y=2x-1中的k=2>0,∴y随x的增大而增大,∵图象经过A(-3,m),B(2,n)两点,且-3<2,∴m<n,故选A.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解决此类问题的关键.一次函数y=kx+b(k≠0),当k>0时,y随着x的增大而增大,当k<0时,y随着x的增大而减小.7、B【解析】【分析】根据众数和中位数的意义进行分析.【详解】27,28,30,31,28,30,28,中28出现次数最多,28再中间,则这组数据的众数和中位数分别是28,28.故选:28,28.【点睛】本题考核知识点:众数和中位数.解题关键点:理解众数和中位数的意义.8、D【解析】【分析】根据菱形的判定方法有四种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,④对角线平分对角,作出选择即可.A.∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,不是菱形,故本选项错误;B.∵四边形ABCD是平行四边形,AB=AC≠BC,∴平行四边形ABCD不是菱形,故本选项错误;C.∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,不能推出平行四边形ABCD是菱形,故本选项错误;D.∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故本选项正确.故选D.【点睛】本题考查了平行四边形的性质,菱形的判定方法;注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.9、D【解析】【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分、对边相等,即可得OB=OD,AB=CD,AD=BC,又由OE⊥BD,即可得OE是BD的垂直平分线,然后根据线段垂直平分线的性质,即可得BE=DE,由行四边形ABCD 的周长为20可得BC+CD=10,然后可求△CDE的周长.【详解】∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵OE⊥BD,∴BE=DE,∵平行四边形ABCD的周长为20,∴BC+CD=10,∴△CDE的周长为CD+DE+EC=CD+BC=10.故选D.【点睛】此题考查了平行四边形的性质与线段垂直平分线的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.10、A【解析】【分析】由一次函数y=kx+b在y轴上的截距是b,可求解.∵在一次函数y=2x−1中,b=−1,∴一次函数y=2x−1的截距b=−1.故选:A.【点睛】本题考查了一次函数图象上点的坐标特征.一次函数图象上的点的坐标,一定满足该函数的关系式.11、B【解析】【分析】根据平行四边形的对角线互相平分,利用三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【详解】A、两对角线的一半分别为4、8,∵4+8=12,∴不能组成三角形,故本选项错误;B、两对角线的一半分别为5、8,∵5+8>12,∴能组成三角形,故本选项正确;C、两对角线的一半分别为4、7,∵4+7=11<12,∴不能组成三角形,故本选项错误;D、两对角线的一半分别为4、6,∵4+6=10<12,∴不能组成三角形,故本选项错误,故选B.【点睛】本题考查了平行四边形的对角线互相平分的性质,三角形的三边关系,利用两对角线的一半与边长能否构成三角形判定是解题的关键.12、B【解析】【分析】先变形得一元二次方程的一般形式,再用分解因式法解方程即可.【详解】解:移项,得x2-x=0,原方程即为,所以,x=0或x-1=0,所以x1= 1 ,x2= 0.故选B.【点睛】本题考查了一元二次方程的解法,熟知一元二次方程的四种解法(完全开平方法、配方法、公式法和分解因式法)并能根据方程的特点灵活应用是求解的关键.二、填空题(每题4分,共24分)13、75或1【解析】【分析】分两种情况:①当点E在线段AD上时,BE=AD,由矩形的性质得出BC=AD=BE=2AB,∠BAE=90°,AD∥BC,得出BE=2AB,∠BEC=∠BCE,∠CBE=∠AEB,得出AB=12BE,证出∠AEB=30°,得出∠CBE=30°,即可得出结果;②点E在DA延长线上时,BE=AD,同①得出∠AEB=30°,由直角三角形的性质得出∠ABE=60°,求出∠CBE=90°+60°=10°,即可得出结果.【详解】解:分两种情况:①当点E在线段AD上时,BE=AD,如图1所示:∵四边形ABCD为矩形,∴BC=AD=B E=2AB,∠BAE=90°,AD∥BC,∴BE=2AB,∠BEC=∠BCE,∠CBE=∠AEB,∴AB=12 BE,∴∠AEB=30°,∴∠CBE=30°,∴∠BEC =∠CBE =12(180°﹣30°)=75°;②点E 在DA 延长线上时,BE =AD ,如图2所示:∵四边形ABCD 为矩形,∴BC =AD =BE =2AB ,∠ABC =∠BAE =∠BAD =90°,∴BE =2AB ,∠BEC =∠BCE ,∴AB =12BE , ∴∠AEB =30°,∴∠ABE =60°,∴∠CBE =90°+60°=10°,∴∠BEC =∠BCE =12(180°﹣10°)=1°; 故答案为:75或1. 【点睛】本题考查了矩形的性质、直角三角形的性质、平行线的性质、等腰三角形的性质等知识;熟练掌握矩形的性质,进行分类讨论是解题的关键.14、18【解析】OF 是BDE ∆ 的中位线,27BE OF ∴== .5CE = ,7512CD BC BE CE ∴==+=+= .由勾股定理得 2212513DE =+= .CF 是Rt CDE △ 的中线,1 6.52CF EF DF DE ∴==== . ∴△CEF 的周长为6.5+6.5+5=1815、10%【解析】【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这两个月净化的污水量平均每月增长的百分率为x,那么由题意可得出方程为3(1+x)2=3.63解方程即可求解.【详解】解:设这两个月净化的污水量平均每月增长的百分率为x,由题意得3(1+x)2=3.63解得x=0.1或-2.1(不合题意,舍去)所以这两个月净化的污水量平均每月增长的百分率为10%.【点睛】本题主要考查了增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.16、-2【解析】【分析】由正比例函数的定义可得m2﹣2=2,且m﹣2≠2.【详解】解:由正比例函数的定义可得:m2﹣2=2,且m﹣2≠2,解得:m=﹣2,故答案为:﹣2.【点睛】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2.17、x≥﹣2且x≠1.【解析】【分析】根据二次根式的非负性及分式有意义的条件来求解不等式即可.【详解】解:根据题意,得:x+2≥1且x≠1,解得:x≥﹣2且x≠1,故答案为x≥﹣2且x≠1.【点睛】二次根式及分式有意义的条件是本题的考点,正确求解不等式是解题的关键.k<18、0【解析】【分析】根据图象在坐标平面内的位置关系确定k 的取值范围,从而求解.【详解】解:∵一次函数y =kx +2的图象不经过第三象限,∴一次函数y =kx +2的图象经过第一、二、四象限,∴k <1.故答案为:k <1.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y =kx +b 所在的位置与k 、b 的符号有直接的关系.k >1时,直线必经过一、三象限;k <1时,直线必经过二、四象限.b >1时,直线与y 轴正半轴相交;b =1时,直线过原点;b <1时,直线与y 轴负半轴相交.三、解答题(共78分)19、(1)966(016)=-≤<S t t ;(2)t=3.5或t=163【解析】【分析】(1)过点M 作MH ⊥AB ,垂足为H ,用含t 的代数式表示AN 的长,再利用三角形面积公式即可得到答案.(2)先用含t 的代数式分别表示,,AN AM MN 的长,进行分类讨论,利用腰相等建立方程求解.【详解】(1)如图,过点M 作MH ⊥AB ,垂足为H ,则四边形BCMH 为矩形.∴MH=BC=2.∵AN=16-t ,∴12(16)2966(016)=⨯-÷=-≤<S t t t ;(2)由(1)可知:BH=CM=2t ,BN=t ,12MH =.以A 、M 、N 三点为顶点的三角形是等腰三角形,可以分三种情况:①若MN=AN .因为:在Rt △MNH 中,222MN MH HN =+,所以:MN 2=t 2+22,由MN 2=AN 2得t 2+22=(16-t )2,解得t=72. ②若AM=AN .在Rt △MNH 中,AM 2=(16-2t )2+22.由AM 2=AN 2得:222(162)12(16)t t -+=-,即3t 2-32t+144=4.由于△=7040-<,∴3t 2-32t+144=4无解,∴AM AN ≠.③若MA=MN .由MA 2=MN 2,得t 2+22=(16-2t )2+22整理,得3t 2-64t+256=4. 解得1163t =,t 2=16(舍去) 综合上面的讨论可知:当t=72秒或t=163秒时,以A 、M 、N 三点为顶点的三角形是等腰三角形. 【点睛】本题考察的是梯形通过作辅助线化成直角三角形的问题与等腰三角形存在性问题,掌握分类讨论是解题的关键.20、y=1x+1.【解析】试题分析:本题考查了用待定系数法求一次函数的解析式,熟练掌握待定系数法求函数的解析式是解题的关键.利用待定系数法即可求得函数的解析式.试题解析:解:设一次函数解析式为y=kx+b ,则,解得. 所以一次函数解析式为y=1x+1.考点:待定系数法求一次函数解析式.21、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)将x 的值代入函数|3|12x x y --+=中,再求得y 的值即可; (2)根据(1)中x 、y 的值描点,连线即可;(3)根据(2)中函数的图象写出一条性质即可,如:不等式|3|10x x --+>成立的x 的取值范围是2x <.【详解】(1)填表如下:x . . . 1- 0 1 2 3 4 5 6 . . . y . . . 3 2 1 0 1- 1- 1- 1-. . . (2)根据(1)中的结果作图如下:(3)根据(2)中的图象,不等式|3|10x x --+>成立的x 的取值范围是2x <.【点睛】考查了画函数的图象、性质,解题关键是由列表得到图象,由图象得到性质.22、22【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【详解】原式=2211(2)(2)a a a a a a +-+⋅++- =12a -,当a =2+1时,原式=22222==+-. 【点睛】 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23、最短路程是25dm.【解析】【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【详解】三级台阶平面展开图为长方形,长为20dm ,宽为()()23315dm +⨯=,则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁台阶面爬行到B 点最短路程为dm x .由勾股定理,得()222202+33625x =+⨯=⎡⎤⎣⎦,解得25x =.因此,蚂蚁沿着台阶面爬到B 点的最短路程是25dm.【点睛】此题考查平面展开-最短路径问题,解题关键在于利用勾股定理进行计算.24、117x -+=,217x --= 【解析】【分析】用公式法求一元二次方程的解.【详解】解:3a =,2b =,2c =-. ()224243228b ac -=-⨯⨯-=>1.∴2422817b b acx-±--±-±===.∴原方程的解为117x-+=,217x--=【点睛】本题考核知识点:解一元二次方程.解题关键点:熟记一元二次方程的求根公式.25、(1)详见解析;(2)70~80或“举人”;(3)231.【解析】【分析】(1)先根据90~100分的人数及其所占百分比求得总人数,再由各组人数之和等于总人数求得60~70分的人数.从而补全图形;(2)根据中位数的定义求解可得;(3)利用样本估计总体的思想求解可得.【详解】解:(1)∵被调查的总人数为6÷12.5%=48(人),∴60~70分的人数为48-(3+18+9+6)=12(人),补全频数分布直方图如下:(2)因为中位数是第24、25个数据的平均数,而第24、25个数据都落在70~80分这一组,所以在此次比赛中,抽取学生的成绩的中位数在70~80或“举人”组,故答案为70~80或“举人”;(3)1896 33623148++⨯=.答:大约有231名学生获奖.故答案为(1)详见解析;(2)70~80或“举人”;(3)231.【点睛】本题考查频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.26、(1)y=x+,y =﹣x;(2)∠ACO =30°; 【解析】【分析】(1)根据A 、B 两点坐标求得一次函数解析式,再求得D 点的具体坐标,从而求得反比例函数的解析式.(2)联立函数解析式求得C 点坐标,过C 点作CH ⊥x 轴于H ,证明AOC △为等腰三角形,根据特殊直角三角形求得OAC ∠的度数,从而求得ACO ∠的度数.【详解】解:(1)设直线AB 的解析式为:1y k x b =+ ,把A (0,,B (2,0)分别代入,得,120b k b ⎧=⎪⎨+=⎪⎩, 解得1k=b=∴直线AB 的解析式为:y=x+∵点D (-1,a )在直线AB 上,∴a+D 点坐标为(-1,, 又∵D 点(-1,在反比例函数k y x =的图象上, ∴k =-1×﹣∴反比例函数的解析式为:y =﹣x ; (2)由y y ⎧=+⎪⎨=⎪⎩,解得1x y =-⎧⎪⎨=⎪⎩或3x y =⎧⎪⎨=⎪⎩ ∴C 点坐标为(3),过C 点作CH ⊥x 轴于H ,如图,∵OH=3,CH3∴OC223(3)23,而OA=3∴OA=OC,∴∠OAC=∠OCA.又∵OB=2,∴AB222(23)4+=,在Rt△AOB中,∴∠OAB=30°,∴∠ACO=30°【点睛】本题考查了一次函数与反比例函数的交点问题,解题的关键是熟练掌握待定系数法.。

黑龙江省哈尔滨市道外区2020-2021学年 下学期期末调研测试八年级数学试卷

黑龙江省哈尔滨市道外区2020-2021学年 下学期期末调研测试八年级数学试卷

八年数学试卷第1页(共4页)道外区2020—2021学年度下学期期末调研测试八年级数学试卷考生须知:1.本试卷满分为120分。

考试时间为120分钟。

2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效。

4.选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。

第Ⅰ卷选择题(共30分)一、选择题:(1—10题,每小题3分,共30分,每题只有一个答案)1.直角三角形的两条直角边长分别是3和4,则斜边长是()A.3B.4C.5D.62.下列图形中,不是轴对称图形的是()A. B. C.D.3.以下式子中,表示y 是x 的正比例函数的是()A.1x y += B.3x y=C.2x 2y = D.x 4y 2=4.下列一元二次方程是一般形式的是()A.0)5x (x =- B.x 41-x 52= C.01x x 22=+- D.81x 42=5.一次函数y=x-1的图像一定经过的点是().A.(1,-1)B.(1,2)C.(0,1)D.(0,-1)6.如图,在菱形ABCD 中,对角线AC,BD 相交于点O.下列结论中不一定成立的是().A.AB ∥DCB.AC=BDC.AC⊥BDD.OA=OC7.如图,在□ABCD 中,AB=10,AD=8,AC⊥BC,则□ABCD 的面积为().A.80B.60C.48D.408.某兴趣学习小组组织一次跳棋比赛,参赛的每两人之间都要比赛一场,按计划需要进行28场比赛.设参赛的人数为x ,则x 满足的关系式为().A.28)1x (x =-B.28)1x (x =+C.28)1x (x 21=+ D.28)1x (x 21=-9.如图,在矩形纸片ABCD 中,AB=6,AD=8,折叠该纸片,使得AB 边落在对角线AC 上,点B 落在点F 处,折痕为AE,则线段EF 的长为()A.3 B.4 C.5 D.610.一个有进水管与出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数.容器中的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.下列说法:①当0≤x≤4时,y 与x 的函数解析式为y=5x;②当4<x≤12时,y 与x 的函数解析式为y=45x+15;③进水5L/min;④出水3.75L/min.其中正确的有()个. A.1 B.2 C.3D.4第Ⅱ卷非选择题(共90分)二、填空题:(11—20题,每小题3分,共30分)11.如图,在□ABCD 中,若∠ABC=60°,则∠ADC=.12.在函数3x 3y -=中,自变量x 的取值范围是.13.直线6x 2-=y 与y 轴的交点坐标是.14.一元二次方程0x x 2=--k 一个根是2,则=k _______.15.顺次连接任意四边形各边中点得到的四边形一定是.16.函数b +=x 2y (b <0)的图象不经过第________象限.17.如图,在△ABC 中,∠ACB=90°,∠ABC=30°,CD⊥AB 于点D,如果AD=1,那么BC=.18.某种家电价格受市场购买力影响,连续两次降价,由原来售价5000元降到3200元,则平均每次降价的百分率为______.19.正方形ABCD 的边长为8,E 为正方形边上一点,连接BE,若BE=10,则AE=______.20.如图,等腰Rt△ABC 中,∠BAC=90°,过点C 作CD⊥BC,连接BD,交AC 于点E,F 为BD 中点,连接AF、AD,若AF=CD,AD=10,则CD=________.三、解答题:(21—25每题8分,26、27每题10分,共60分.)21.(本题8分)解方程:⑴16)4x (2=-⑵)4x (2)4x (x -=-22.(本题8分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.⑴在图1中画出一个以AB 为一边正方形ABCD,使点C 、D 在小正方形的顶点上;⑵在图2中画出一个以AB 为一边,面积为6的□ABEF,使点E 、F 均在小正方形的顶点上,并直接写出□ABEF 周长.如图,直线25x 21y +=交x 轴于点A,直线1x y +-=交x 轴于点B,两直线相交于点C.求△ABC 的面积.24.(本题8分)在△ABC 中,AB=AC,点D、O 分别是边BC、AC 的中点,连接AD,过点A 作AE∥BC,交射线DO 于点E,连接CE.⑴如图1,求证:四边形ADCE 是矩形;⑵如图2,连接BE 交AD 于点F,连接OF,当∠ABC=60°时,在不添加任何字母和辅助线的情况下,请直接写出四条线段,长度分别是线段OF 长度的4倍.25.(本题8分)如图,在一块长16米、宽10米的矩形场地上修建一横一竖两条甬道,场地其余部分种植草坪,已知横、竖甬道的宽度之比为2:1,设竖甬道的宽度为x 米,草坪面积为y 平方米.⑴请直接写出y 与x 之间的函数关系式;(不必写出取值范围)⑵若草坪的面积为120平方米,请求出竖甬道的宽度.已知正方形ABCD的边BC上有两点E、F,连接AE、DF相交于点P.⑴如图1,当PF=PE时,求证:PA=PD;⑵如图2,连接BP,BP延长线交CD于点G,当AP=AB时,求∠DPG的度数;⑶如图3,在(2)的条件下,延长BC到M,使CM=CF,以DC、CM为邻边作矩形DCMN,延长BG交MN于点Q,当PE=2,QM=6时,求AB的长.27.(本题10分)如图,平面直角坐标系中,O为原点,直线y=x+1分别交x轴、y轴于点A、B,直线y=-x+5分别交x轴、y轴于点C、D,直线AB、CD相交于点E.⑴请直接写出A、D的坐标;⑵P为直线CD上方直线AE上一点,横坐标为m,线段PE长度为d,请求出d与m的关系式;⑶在⑵的条件下,连接PC、PD,若∠CPD=135°,求点P的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.已知,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴的正半轴、y轴的正半轴上,且OA、OC( )的长是方程 的两个根.
(1)如图,求点A的坐标;
(2)如图,将矩形OABC沿某条直线折叠,使点A与点C重合,折痕交CB于点D,交OA于点E.求直线DE的解析式;
(3)在(2)的条件下,点P在直线DE上,在直线AC上是否存在点Q,使以点A、B、P、Q为顶点的四边形是平行四边形.若存在,请求出点Q坐标;若不存在,请说明理由.
A.5B.3.75C.4D.2.5
二、填空题
10.“我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=0.5千米,则该沙田的面积为________________平方千米.
参考答案
1.D
【解析】
【分析】
只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.
【详解】
A、是关于x的一元一次方程,不符合题意;
B、为二元二次方程,不符合题意;
C、是分式方程,不符合题意;
D、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;
黑龙江省哈尔滨市道外区2020-2021学年八年级第二学期期末调研测试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列方程中,是关于x的一元二次方程的是().
A. B. C. D.
2.在一个直角三角形中,如果斜边长是10,一条直角边长是6,那么另一条直角边长是().
20.如图,在四边形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC与BD交于点E,若CE=2AE=4 ,则DC的长为________.
三、解答题
21.解下列一元二次方程
(1)
(2)
22.如图分别是 的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在以下图中各画一个图形,所画图形各顶点必须在小正方形的顶点上,并且分别满足以下要求:
(1)从2021年到2021年,该地投入异地安置资金的年平均增长率为多少?
(2)在2021年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房7.下列条件中,不能判定四边形ABCD是平行四边形的是( )
A.AB∥CD,AB=CDB.AB=CD,AD=BC
C.AB∥CD,∠B=∠DD.AB∥CD,AD=BC
8.一次函数y=﹣3x+5的图象不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
9.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间(单位:min)之间的关系如图所示.则每分的出水量是()L.
11.在函数y= 中,自变量x的取值范围是
12.在菱形ABCD中, , ,则对角线AC的长为________.
13.关于x的方程的 有两个相等的实数根,则m的值为________.
14.在平面直角坐标系中有两点 和点 .则这两点之间的距离是________.
15.已知一次函数y=x+4的图象经过点(m,6),则m=_____.
故选D.
【点睛】
24.在 中,BD是它的一条对角线,过A、C两点分别作 , ,E、F为垂足.
(1)如图,求证: ;
(2)如图,连接AC,设AC、BD交于点O,若 .在不添加任何辅助线的情况下,请直接写出图中的所有长度是OE长度2倍的线段.
25.某地2021年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2021年在2021年的基础上增加投入资金1600万元.
(1)在下图中画一个以线段AB为一边的直角 ,且 的面积为2;
(2)在下图中画一个以线段AB为一边的四边形ABDE,使四边形ABDE是中心对称图形且四边形ABDE的面积为12.连接AD,请直接写出线段AD的长.线段AD的长是________
23.如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后,分别位于点Q、R处,且相距30海里,如果知道“远航”号沿北偏东 方向航行,请求出“海天”号的航行方向?
16.一个矩形的长比宽多1cm,面积是132cm2,则矩形的长为________cm.
17.直线 向上平移4个单位后,所得直线的解析式为________.
18.如图,点D是等边 内部一点, , , .则 的度数为=________°.
19.已知平行四边形ABCD中, , ,AE为BC边上的高,且 ,则平行四边形ABCD的面积为________.
26.已知,正方形ABCD中,点E为BC边上任意一点(点E不与B,C重合),点F在线段AE上,过点F的直线 ,分别交AB、CD于点M、N.
(1)如图,求证: ;
(2)如图,当点F为AE中点时,连接正方形的对角线BD,MN与BD交于点G,连接BF,求证: ;
(3)如图,在(2)的条件下,若 , ,求BM的长度.
A.6B.7C.8D.9
3.下列函数中,表示y是x的正比例函数的是().
A. B. C. D.
4.在平行四边形ABCD中, , .则平行四边形ABCD的周长是().
A.16B.13C.10D.8
5.将方程 化成一元二次方程的一般形式,正确的是().
A. B. C. D.
6.如图,把一个边长为1的正方形放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数为().
相关文档
最新文档