晶闸管的基本特性

合集下载

晶闸管的原理与应用pdf

晶闸管的原理与应用pdf

晶闸管的原理与应用一、晶闸管的基本原理晶闸管是一种电子器件,具有可控硅的特点。

其基本原理如下:1.PN结–晶闸管由P型半导体、N型半导体和P型半导体三层特殊结构构成。

–P型半导体具有正电荷载流子,N型半导体具有负电荷载流子,形成PN结。

2.开关特性–当PN结两端没有电压时,晶闸管处于关断状态。

–当PN结两端有正向电压时,晶闸管依然处于关断状态。

–当PN结两端有反向电压时,当反向电压超过某一临界值时,晶闸管会被击穿,进入导通状态。

3.可控性–通过控制晶闸管的控制电极,可以改变晶闸管的导通时间和导通电流。

–当控制电极施加正脉冲信号时,晶闸管进入导通状态,电流流过。

–当控制电极施加负脉冲信号时,晶闸管恢复关断状态,电流停止流动。

二、晶闸管的应用晶闸管由于其独特的特性,在电力控制、电动机控制和功率供应等领域有着广泛的应用。

1.电力控制–晶闸管可以控制电流的大小和方向,广泛应用于电力变频调速系统中。

–通过调节晶闸管的导通时间和导通电流,可以实现对电力系统的精确控制。

2.电动机控制–晶闸管可以控制电动机的启动、停止和转速等参数。

–通过控制晶闸管的导通时间和导通电流,可以实现对电动机的精确控制。

3.功率供应–晶闸管具有高功率控制能力,适用于高功率负载。

–晶闸管广泛应用于电力系统的功率供应、工业控制和电压变换等领域。

4.电流调制–晶闸管可通过不同的控制方式,实现电流的调制。

–通过改变晶闸管的导通时间和导通电流,可以实现正弦波、脉冲及方波等各种电流波形的调制。

三、晶闸管的优势与发展晶闸管作为一种可控硅器件,具有以下优势:•高可靠性:晶闸管的寿命长,无机械动部件,可靠性高。

•调制能力强:晶闸管能够实现多种电流波形的调制。

•功率控制精度高:晶闸管能够实现对功率的精确控制。

•体积小:晶闸管体积小,便于集成和安装。

晶闸管在过去几十年里得到了快速发展,随着科技的进步,有望在以下领域实现更多突破:1.新能源–晶闸管在风能、太阳能等新能源的开发和利用中有着广阔的应用前景。

晶闸管介绍

晶闸管介绍

晶闸管介绍:晶闸管是一种大功率开关型半导体器件,具有硅整流器件的特性。

1957年美国通用电器公司开发出世界上第一款晶闸管产品,并于1958年将其商业化。

晶闸管是PNPN 四层半导体结构,有三个极:阳极、阴极和控制极。

它能在高电压、大电流条件下工作,且其工作过程可以控制,被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。

晶闸管具有硅整流器件的特性,因此能够在高电压、大电流条件下工作。

在实际应用中,晶闸管的导通和截止状态可以通过控制极触发电流来实现控制。

在正向电压条件下,晶闸管内部两个等效三极管均处于截止状态,此时晶闸管是截止的。

当控制极上施加触发电流时,晶闸管内部等效三极管导通,晶闸管进入导通状态。

在导通状态下,控制极失去作用,即使控制极上施加反向电压,晶闸管仍然保持导通状态。

要使晶闸管截止,需要使其阳压为零或为负,或将阳压减小到一定程度,使流过晶闸管的电流小于维持电流,晶闸管才自行关断。

此外,晶闸管具有正向和反向特性。

在正向特性下,只有很小的正向漏电流;在反向特性下,需要施加反向电压才能使晶闸管导通。

因此,在实际应用中需要根据具体电路要求选择合适的晶闸管类型和规格。

晶闸管的特点

晶闸管的特点

晶闸管的特点
晶闸管的特点:
1、开关特性:晶闸管具有较强的开关特性,即在小输入电流和很小的电压差下,可在微秒级别内容直接承担大于千瓦的负载,承担功率器件特点,性能比开关管表现更好。

2、稳定性:晶闸管具有良好的稳定性,无需外接电容就可以达到高稳定性,并且在保证稳定性情况下,能够承担大于千瓦的电流负载,因此晶闸管在电源调节器技术中得到了广泛的应用。

3、受控特性:极小的控制和驱动电流,可以在测量微小的电压差的条件下控制强大的负载系统,可直接把小功率的输入电流转换成大功率的交流输出,这也是晶闸管作为集中系统控制器的重要原因之一。

4、阻断能力:晶闸管具有很强的阻断能力,即在小电流和很小的电压差下,可以在微秒级别直接承担大于千瓦的负载,可阻断高压和大电流模型,安全可靠。

5、散热特性:晶闸管具有良好的散热性能,在小电流情况下它的尖峰散热强度大于硅发射管;而当它的电流大于一定的阈值的时候,其热损失可大大降低,这有助于提高系统效率并延长其使用寿命。

6、反应速度:晶闸管的反应速度比普通硅发射管要快,可以在微秒级别内,控制一个大于千瓦的负载,这样就可以有效地防止因负载高速切换而带来的损耗和影响,是电源技术的重要元件。

7、安全性:晶闸管由于其结构安全性能稳定,多数电路结构中使用它作为保护元件,以降低系统停电率,改善系统的安全性能,保护系统的安全运行。

晶闸管相关练习题

晶闸管相关练习题

晶闸管相关练习题
晶闸管是一种常用的电子器件,广泛应用于电力电子控制领域。

为了帮助大家更好地掌握晶闸管的操作和特性,以下是一些晶闸管相关练习题,供大家练习和巩固知识。

题目一:晶闸管的基本特性
1. 什么是晶闸管?它的主要结构是什么?
2. 晶闸管的工作原理是什么?
3. 晶闸管的常见用途有哪些?
题目二:晶闸管的控制
1. 晶闸管的触发方式有哪些?请分别介绍。

2. 画出晶闸管的典型触发电路,并解释其工作原理。

3. 晶闸管的关断方式有哪些?请分别介绍。

题目三:晶闸管的保护和应用
1. 晶闸管的过电流保护方法有哪些?
2. 晶闸管的过压保护方法有哪些?
3. 晶闸管在电机控制中的应用有哪些?请举例说明。

题目四:晶闸管的特性参数
1. 什么是晶闸管的导通压降和关断压降?它们分别有什么特点?
2. 什么是晶闸管的阻断能力?
3. 什么是晶闸管的恢复时间和导通延迟时间?它们对晶闸管性能有何影响?
题目五:晶闸管的常见故障和排除方法
1. 晶闸管的常见故障有哪些?请分别介绍。

2. 当晶闸管出现故障时,我们应该如何判断和排除问题?
3. 晶闸管故障的预防措施有哪些?
题目六:晶闸管的逆变电路
1. 什么是逆变电路?它有什么常见的应用?
2. 画出晶闸管逆变电路的典型示意图,并解释其工作原理。

3. 晶闸管逆变电路的控制方法有哪些?
以上是一些晶闸管相关的练习题,希望能够帮助大家更好地理解和掌握晶闸管的知识。

通过不断练习和学习,我们可以在电力电子控制领域中更加熟练地应用晶闸管,为实际工程带来更多的便利与效益。

祝大家在晶闸管的学习中取得好成绩!。

晶闸管的基本特性

晶闸管的基本特性

晶闸管的基本特性
1、晶闸管的静态伏安特性第I 象限的是正向特性有阻断状态和导通状态之分。

在正向阻断状态时,晶闸管的伏安特性是一组随门极电流的增加而不同的曲线簇。

当IG 足够大时,晶闸管的正向转折电压很小,可以看成与一般二
极管一样第III 象限的是反向特性晶闸管的反向特性与一般二极管的反向特性相似。

IG=0 时,器件两端施加正向电压,为正向阻断状态,只有很小的正向漏电流流过,正向电压超过临界极限即正向转折电压Ubo,则漏电流急剧增大,器件开通随着门极电流幅值的增大,正向转折电压降低导通后的晶闸管特性和二极管的正向特性相仿晶闸管本身的压降很小,在1V 左右导通期间,如果门极电流为零,并且阳极电流降至接近于零的某一数值IH 以下,则晶闸管又回到正向阻断状态。

IH 称为维持电流。

晶闸管上施加反向电压时,伏安特性类似二极管的反向特性晶闸管的门极触发电流从门极流入晶闸管,从阴极流出阴极是晶闸管主电路与控制电路的公共端门极触发电流也往往是通过触发电路在门极和阴极之间施加触发电压而产生的晶闸管的门极和阴极之间是PN 结J3,其伏安特性称为门极伏安特性。

为保证可靠、安全的触发,触发电路所提供的触发电压、电流和功率应限制在可靠触发区。

2. 动态特性与二极管类似,开通、关断过程产生动态损耗
晶闸管的开通和关断过程波形
1) 开通过程延迟时间td:门极电流阶跃时刻开始,到阳极电流上升到稳态值。

(整理)晶闸管(SCR)原理

(整理)晶闸管(SCR)原理

晶闸管(SCR)原理作者:时间:2007-12-17 来源:电子元器件网浏览评论推荐给好友我有问题个性化定制关键词:晶闸管半导体材料晶闸管(thyristor)是硅晶体闸流管的简称,俗称可控硅(SCR),其正式名称应是反向阻断三端晶闸管。

除此之外,在普通晶闸管的基础上还派生出许多新型器件,它们是工作频率较高的快速晶闸管(fast switching thyristor,FST)、反向导通的逆导晶闸管(reverse conducting thyristor,RCT)、两个方向都具有开关特性的双向晶闸管(TRIAC)、门极可以自行关断的门极可关断晶闸管(gate turn off thyristor,GTO)、门极辅助关断晶闸管(gate assisted turn off thytistor,GATO)及用光信号触发导通的光控晶闸管(light controlled thyristor,LTT)等。

一、结构与工作原理晶闸管是三端四层半导体开关器件,共有3个PN结,J1、J2、J3,如图1(a)所示。

其电路符号为图1(b),A(anode)为阳极,K(cathode)为阴极,G(gate)为门极或控制极。

若把晶闸管看成由两个三极管T1(P1N1P2)和T2(N1P2N2)构成,如图1(c)所示,则其等值电路可表示成图1(d)中虚线框内的两个三极管T1和T2。

对三极管T1来说,P1N1为发射结J1,N1P2为集电结J2;对于三极管T2,P2N2为发射结J3,N1P2仍为集电结J2;因此J2(N1P2)为公共的集电结。

当A、K两端加正电压时,J1、J3结为正偏置,中间结J2为反偏置。

当A、K两端加反电压时,J1、J3结为反偏置,中间结J2为正偏置。

晶闸管未导通时,加正压时的外加电压由反偏值的J2结承担,而加反压时的外加电压则由J1、J3结承担。

如果晶闸管接入图1(d)所示外电路,外电源U S正端经负载电阻R引至晶闸管阳极A,电源U S的负端接晶闸管阴极K,一个正值触发控制电压U G经电阻R G后接至晶闸管的门极G,如果T1(P1N1P2)的共基极电流放大系数为α1,T2(N1P2N2)的共基极电流放大系数为α2,那么对T1而言,T1的发射极电流I A的一部分α1I A将穿过集电结J2,此外,J2受反偏电压作用,要流过共基极漏电流i CBO1,因此图1(d)中的I C1可表示为I C1=α1I A+i CBO1。

电力电子技术-模拟试题4-答案

电力电子技术-模拟试题4-答案

哈尔滨工业大学远程教育学院 2007年秋季学期电力电子技术模拟试题4(开卷,时间:120分钟)(所有答案必须写在答题纸上)一、填空题(40分,每空1分)1.晶闸管的基本工作特性可概括为:承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通;承受正向电压时,仅在门极有触发电流情况下,晶闸管才能导通;晶闸管一旦导通,门极就失去控制作用。

要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。

2.通常取晶闸管的U DRM和U RRM中较小的标值作为该器件的额定电压。

选用时,一般取额定电压为正常工作时晶闸管所承受峰值电压2~3倍。

3.使晶闸管维持导通所必需的最小电流称为维持电流。

晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流称为擎住电流。

对同一晶闸管来说,通常I L约为I H的称为2~4倍。

4.晶闸管的派生器件有:快速晶闸管、双向晶闸管、逆导晶闸管、光控晶闸管。

5. 普通晶闸管关断时间数百微秒,快速晶闸管数十微秒,高频晶闸管10 s左右。

高频晶闸管的不足在于其电压和电流定额不易做高。

6.双向晶闸管晶闸管可认为是一对反并联联接的普通晶闸管的集成。

7.逆导晶闸管是将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件。

8. 光控晶闸管又称光触发晶闸管,是利用一定波长的光照信号触发导通的晶闸管。

光触发保证了主电路与控制电路之间的绝缘,且可避免电磁干扰的影响。

9.带隔离变压器的DC-DC变换器的基本类型包括单端正激变换器和单端反激变换器,其中单端是指变压器磁通单方向变化。

10.正激变换器是指在开关管开通时电源将能量直接传送给负载。

11.反激变换器是指在开关管开通时电源将电能转为磁能储存在电感(变压器)中,当开关管关断时再将磁能变为电能传送到负载。

12.三相电压型逆变电路中,180度导电角的控制方式下,每个桥臂的导电角度为180˚,各相开始导电的角度依次相差120˚,在任一时刻,有3个桥臂导通。

(整理)晶闸管(SCR)原理

(整理)晶闸管(SCR)原理

晶闸管(SCR)原理作者:时间:2007-12-17 来源:电子元器件网浏览评论推荐给好友我有问题个性化定制关键词:晶闸管半导体材料晶闸管(thyristor)是硅晶体闸流管的简称,俗称可控硅(SCR),其正式名称应是反向阻断三端晶闸管。

除此之外,在普通晶闸管的基础上还派生出许多新型器件,它们是工作频率较高的快速晶闸管(fast switching thyristor,FST)、反向导通的逆导晶闸管(reverse conducting thyristor,RCT)、两个方向都具有开关特性的双向晶闸管(TRIAC)、门极可以自行关断的门极可关断晶闸管(gate turn off thyristor,GTO)、门极辅助关断晶闸管(gate assisted turn off thytistor,GATO)及用光信号触发导通的光控晶闸管(light controlled thyristor,LTT)等。

一、结构与工作原理晶闸管是三端四层半导体开关器件,共有3个PN结,J1、J2、J3,如图1(a)所示。

其电路符号为图1(b),A(anode)为阳极,K(cathode)为阴极,G(gate)为门极或控制极。

若把晶闸管看成由两个三极管T1(P1N1P2)和T2(N1P2N2)构成,如图1(c)所示,则其等值电路可表示成图1(d)中虚线框内的两个三极管T1和T2。

对三极管T1来说,P1N1为发射结J1,N1P2为集电结J2;对于三极管T2,P2N2为发射结J3,N1P2仍为集电结J2;因此J2(N1P2)为公共的集电结。

当A、K两端加正电压时,J1、J3结为正偏置,中间结J2为反偏置。

当A、K两端加反电压时,J1、J3结为反偏置,中间结J2为正偏置。

晶闸管未导通时,加正压时的外加电压由反偏值的J2结承担,而加反压时的外加电压则由J1、J3结承担。

如果晶闸管接入图1(d)所示外电路,外电源U S正端经负载电阻R引至晶闸管阳极A,电源U S的负端接晶闸管阴极K,一个正值触发控制电压U G经电阻R G后接至晶闸管的门极G,如果T1(P1N1P2)的共基极电流放大系数为α1,T2(N1P2N2)的共基极电流放大系数为α2,那么对T1而言,T1的发射极电流I A的一部分α1I A将穿过集电结J2,此外,J2受反偏电压作用,要流过共基极漏电流i CBO1,因此图1(d)中的I C1可表示为I C1=α1I A+i CBO1。

晶闸管原理以及参数介绍

晶闸管原理以及参数介绍

晶閘管結構可等效為一個 NPN型和一個PNP型三極管, 根據其連接方式等效電路 可以基本瞭解到晶閘管控 制導通方式
控制極G加正 向脉衝電壓
NPN管導通
PNP管導通
PNP管關閉
Y
N
NPN管關閉
IT>IH?
整個晶閘管關閉
整個晶閘管 導通
晶閘管的分類
基本分類
按关断导通控制 方式 普通晶闸管(SCR)、双向晶闸管(TRIAC)、逆导晶闸管(RCT)、门极关断晶闸 管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管(LTT)等多种。
普通晶闸管最基本的用途就是可控整流。大家熟悉的二极管整 流电路属于不可控整流电路。如果把二极管换成晶闸管,就可 以构成可控整流电路。
晶閘管的基本應用
1.单相半波相控整流电路 下图为单相半波相控整流电路(Single-phase half wave
controllable rectifier),整流变压器二次电压有效值用U2表 示,瞬时值用u2表示,负载上输出电压用uo表示。
(2)维持电流IH(Holding current) 指在室温和门极开路时,逐渐减小导通状态下晶闸管的
阳极电流,最后能维持晶闸管持续导通所必须的最小阳极电 流,结温越高,维持电流IH越小,晶闸管越难关断。
晶閘管的參數介紹
2. 晶闸管的电流参数
(3)掣住电流IL(Latching current) 指晶闸管触发后,刚从正向阻断状态转入导通状态,在立
(6)通态正向平均电压UF
在规定的环境温度和标准散热条件下,器件正向通过正弦 半波额定电流时,其两端的电压降在一周期内的平均值,又称 管压降,其值在0.6~1.2V之间。
晶閘管的參數介紹
2. 晶闸管的电流参数

晶闸管及其驱动实验报告

晶闸管及其驱动实验报告

一、实验目的1. 了解晶闸管的基本结构、工作原理及触发方式。

2. 掌握晶闸管驱动电路的设计方法及驱动信号的生成。

3. 通过实验验证晶闸管的触发、导通和关断特性。

二、实验原理1. 晶闸管(Thyristor)是一种大功率半导体器件,具有可控硅整流器的特性,是一种四层三端器件。

晶闸管在正向电压作用下,在阳极与阴极之间形成PNPN结构,导通电流;在反向电压作用下,阻断电流。

2. 晶闸管的触发方式主要有以下几种:(1)正触发:在阳极与阴极之间施加正向电压,并在控制极与阴极之间施加正向脉冲信号,使晶闸管导通。

(2)负触发:在阳极与阴极之间施加反向电压,并在控制极与阴极之间施加负向脉冲信号,使晶闸管导通。

(3)双极触发:在阳极与阴极之间施加正向电压,同时在控制极与阴极之间施加正向脉冲信号,使晶闸管导通。

3. 晶闸管驱动电路主要作用是产生触发信号,驱动晶闸管导通和关断。

驱动电路一般由脉冲发生器、驱动放大器、隔离电路和缓冲电路组成。

三、实验器材1. 晶闸管:2只2. 驱动电路:1套3. 脉冲发生器:1台4. 测量仪器:示波器、万用表、电源等5. 电路板、导线、连接器等四、实验步骤1. 晶闸管基本特性测试(1)将晶闸管安装在电路板上,连接好电路。

(2)打开脉冲发生器,设置触发方式为正触发。

(3)使用示波器观察晶闸管的触发、导通和关断波形。

(4)调整脉冲发生器的脉冲宽度,观察晶闸管的导通和关断特性。

2. 晶闸管驱动电路设计(1)设计驱动电路,包括脉冲发生器、驱动放大器、隔离电路和缓冲电路。

(2)连接好电路,确保电路连接正确。

(3)打开脉冲发生器,设置触发方式为正触发。

(4)使用示波器观察驱动电路的输出波形,确保触发信号正确。

3. 驱动电路性能测试(1)在晶闸管驱动电路的基础上,连接晶闸管。

(2)打开脉冲发生器,设置触发方式为正触发。

(3)使用示波器观察晶闸管的触发、导通和关断波形,验证驱动电路的性能。

五、实验结果与分析1. 晶闸管基本特性测试实验结果显示,晶闸管在正触发方式下,触发电压为20V,导通电流为5A。

第1章 晶闸管

第1章 晶闸管

有效值与平均值之比称为波形系数Kf则: Kf=I/Id或I= KfId 。 例:设晶闸管承受的电压有效值为220V,流过的电流平 均为157A,波形系数为1.11,考虑安全裕量,求晶 闸管电压、电流定额。 i 解:UN=(2~3)1.414×220 IM =622 ~933V(取800V)
I K f Id I IT ( AV ) = (1.5 2) = (1.5 2) 1.57 1.57 1.11´ 157 0 (取 200 A) = (1.5 2) = 166 222 A 图1-11 1.57
学习重点:
晶闸管的工作原理、基本特性、主要参数以 及选择和使用中应注意的一些问题。
1.1
引言
晶闸管(Thyristor):晶体闸流管,可控硅整流 器(Silicon Controlled Rectifier——SCR)
1956年美国贝尔实验室发明了晶闸管。 1957年美国通用电气公司开发出第一只晶闸管产品。 1958年商业化。
第1章
1.1 引言
晶闸管
1.2 晶闸管的结构与工作原理 1.3 晶闸管的基本特性 1.4 晶闸管的主要参数 1.5 晶闸管的派生器件
1.6 电力二极管(整流二极管)
本章学习内容与重点
本章内容:
介绍晶闸管的工作原理、基本特性、主要参 数以及选择和使用中应注意的一些问题。 介绍电力二极管、晶闸管派生器件的基本特 性和使用中应注意的一些问题。
仿真实验
1.2 晶闸管的结构与工作原理
晶闸管的工作原理
⊕工作原理(从其内部四层结构来 A 分析) P1 ①定性分析 J1 N1 a. UG≤0,IG=0 G J2 P2 UAK<0时,J1,J3反偏,J2正 J 3 偏,反向阻断,晶闸管不导通, N2 解释①。 K UAK>0时,J1,J3正偏,J2反 偏,晶闸管不导通,解释⑤。图1-2 晶闸管的内部结构图

简述晶闸管直流调速系统工作于整流状态时的机械特性基本特点。

简述晶闸管直流调速系统工作于整流状态时的机械特性基本特点。

简述晶闸管直流调速系统工作于整流状态时的
机械特性基本特点。

当晶闸管直流调速系统工作于整流状态时,其机械特性有以下基本特点:
1.单向导电:晶闸管在整流状态下只能向一个方向导电,通
常为正向导通。

当电流沿着正向方向流过晶闸管时,晶闸
管处于导通状态;而当电流反向流动时,晶闸管会自动关
闭,即为阻断状态。

2.非线性电流特性:晶闸管的电流-电压特性是非线性的。

在整流状态下,当晶闸管导通时,其电压降较低,电流急
剧增加;而当晶闸管阻断时,其电压降较高,电流几乎为
零。

这种非线性特性决定了晶闸管在整流过程中的开关行
为。

3.可控:晶闸管的导通和阻断状态可以通过触发控制电路来
控制。

通过适时的触发信号,可以使晶闸管在需要的时候
打开,实现正向导通;而在不需要通过正向电流时,可以
通过控制信号关闭晶闸管,实现阻断。

4.输出电压可调:晶闸管整流系统可以调整输出电压的大小。

通过改变晶闸管的导通角度(触发时刻),可以控制输出
电压的大小。

当导通角度增加时,输出电压增加;当导通
角度减小时,输出电压减小。

5.输出电流脉动:晶闸管整流系统的输出电流存在脉动现象。

由于晶闸管的非线性特性,输出电流在每个电周期内会出现脉动,造成输出电压的纹波。

输出电流脉动的幅值与负载电流有关,负载电流越大,脉动幅值越小。

这些基本特点决定了晶闸管整流系统在调速和控制过程中的特性和工作方式。

在应用中,需要根据具体需求和系统要求来选取合适的触发角度和控制策略,以实现所需的电压输出和负载调整。

晶闸管的基本特性

晶闸管的基本特性

1 T
T
i
0
2
dt
1 2

Im (Imsin t ) dt 2 0

2
IT ( AV )
1.5 7
有效值
管子额定电流的选择: (1) 按电流有效值相等的原则选择晶闸管 (2) 留裕量,取1.5-2倍后取整 (3) 额定电流等级: 50A以下-1、5、10、20、30、40、50A; 100~1000A- 100、200、300、 400、500、 600、800、1000A。
1.3.4
晶闸管的派生器件
2. 光控晶闸管(Light Triggered Thyristor—LTT)
1) 电路符号和特性
A
G
a)
K
b)
图1-12 光控晶闸管的电气图形符号和伏安特性 a) 电气图形符号 b) 伏安特性
2) 特点 • 利用一定波长的光照信号触发导通的晶闸
管→又称光触发晶闸管.
• 小功率光控晶闸管只有阳极和阴极两个端子. • 大功率光控晶闸管则还带有光缆,光缆上
800V/管压降0.4v~0.5v的普通晶闸管
本章思考题
1.晶闸管是硅晶体闸流管的简称,常用的除螺栓式 以外还有? 2.晶闸管象二极管一样具有可控的什么特性? 3.为了保证晶闸管可靠与迅速关断,通常在管子阳 极电压下降为零之后,在门极采取什么措施? 4.型号为KP10-1000晶闸管的额定容量是多少? 5.如何选择晶闸管的容量? 6.在分析了晶闸管的主要参数后,你使用晶闸管时 应注意什么?
-UA IA 正向 导通
IH O
IG2
IG1
IG=0
正向电压超过临界极限━正 向转折电压Ubo →则漏电流急 剧增大→器件开通。

晶闸管特性、作用

晶闸管特性、作用
不少GTO都制造成逆导型,类似于逆导晶闸管,需承 受反压时,应和电力二极管串联 。
③最大可关断阳极电流 I A T O ——GTO额定电流。 ④ 电流关断增益off ——最大可关断阳极电流与门极负脉冲电 流最大值IGM 之比称为电流关断增益。
o ff
I ATO I GM
off一般很小,只有5左右,这是GTO的一个主要缺点。
⑵ GTO的动态特性
开通过程:与普通晶闸管相同 关断过程:与普通晶闸管有所不同 储存时间 t ,使等效晶体退出饱 s 和 。 下降时间 t , f
iG
O
t
尾部时间 —残存载流子复 t 合。
t
iA IA 90%IA
td
tr
ts
tf
tt
10%IA 0
t0
t1
t2
t3
t4
t5
t6
t
图1.14
GTO的开通和关断过程电流波形
⑴GTR的结构和工作原理
在应用中,GTR一般采用共发射极接法。 集电极电流与基极电流之比为

ic ib
——GTR的电流放大系数,反映了基极电流对集电
极电流的控制能力 。
当考虑到集电极和发射极间的漏电流时,
ic i iceo b
单管GTR的 值比小功率的晶体管小得多,通常为10左 右,采用达林顿接法可有效增大电流增益。
截止区
②动态特性
开通过程 90% I b1 延迟时间 t d 和上升时间 , 10% I b1 t 二者之和为开通时间 。 0 on tr 加快开通过程的办法 。 关断过程 储存时间 和下降时间 ts 二者之和为关断时间 tf 加快关断速度的办法。 t o ff 。
90% ,Ics

晶闸管的结构以及工作原理

晶闸管的结构以及工作原理

晶闸管的结构以及工作原理一、晶闸管的基本结构可控硅整流器(SCR)是一种四层结构的大功率半导体器件。

它也被称为可控整流器或可控硅元件。

它有三个引出电极,即阳极(a)、阴极(k)和栅极(g)。

符号表示和设备部分如图1所示。

图1符号表示法和器件剖面图普通晶闸管在n型硅片中双向扩散p型杂质(铝或硼)形成p1n1p2结构,然后在P2的大部分区域扩散n型杂质(磷或锑)形成阴极。

同时,在P2上引出栅极,在P1区域形成欧姆接触作为阳极。

-1-图2。

晶闸管载波分配二、晶闸管的伏安特性晶闸管的通断状态由阳极电压、阳极电流和栅极电流决定。

它们之间的关系通常用伏安特性曲线来描述,如图3所示。

-2-图3晶闸管伏安特性曲线当晶闸管vak加正向电压时,j1和j3正偏,j2反偏,外加电压几乎全部降落在j2结上,j2结起到阻断电流的作用。

随着vak的增大,只要vak?vbo,通过阳极电流ia都很小,因而称此区域为正向阻断状态。

当vak增大超过vbo以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。

晶闸管流过由负载决定的通态电流it,器件压降为1v左右,特性曲线cd段对应的状态称为导通状态。

通常将vbo及其所对应的ibo称之为正向转折电压和转折电流。

晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流ih的某一临界值以下,器件才能被关断。

当晶闸管处于关闭状态(VAK?VBO)时,如果栅极相对于阴极为正,并且电流Ig施加到栅极,晶闸管将在较低的电压下导通。

转向电压VBO和转向电流IBO都是Ig的功能。

Ig越大,VBO越小。

如图3所示,一旦晶闸管导通,即使栅极信号被移除,该装置仍导通。

当晶闸管的阳极相对于阴极为负,只要vak?vro,ia很小,且与ig基本无关。

但反向电压很大时(vak?vro),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称vro为反向转折电压和转折电流。

晶闸管三象限

晶闸管三象限

晶闸管三象限晶闸管是一种常见的电力电子元器件,广泛应用于电力变换、控制领域。

作为一种特殊的开关元件,晶闸管具有独特的导通和关断特性,三象限方式即是晶闸管特性的重要表现之一。

一、晶闸管的基本特性晶闸管是一种可控硅元器件,它具有比较高的承压能力和电流能力。

晶闸管一般有三个电极,即阳极、阴极和控制极,在导通状态下,晶闸管三个电极之间呈电路短接状态,使电路中电流能够流通;在断开状态下,其正、负极相互隔离,电路断开,不再有电流流通。

晶闸管的状态转换由外部电源控制电信号触发实现。

二、晶闸管的三象限晶闸管的特性表现为一种称为三象限的现象,也被称为工作区域。

这里的“三象限”指的是晶闸管导通时的三个条件。

具体如下:1.阳极正向电压和控制极方向的电压之和大于阀值电压,即VAK > Vth;2.阳极电流大于最小保持电流,即IA > IH;3.阳极电流小于最大额定电流,即IA < ILM。

这三个条件组成了晶闸管导通的三象限,也是晶闸管工作条件的重要标志。

三、三象限在控制中的应用晶闸管的三象限特性是控制其导通和断开的功率控制基础。

在电力电子控制中,控制晶闸管运行的电路通常包括触发电路、保持电路和负载电路。

主要控制方法包括前沿触发控制、后沿触发控制、中点触发控制和斩波触发控制等。

除了广泛的应用于交流和直流电源的开关控制器、稳压器、逆变器、电动机控制等电力电子设备中,晶闸管作为控制元件也广泛应用于太阳能电池板控制器、火花塞控制器、舞台照明控制等多种领域。

总之,晶闸管作为一种新型的电力电子元器件,以其特殊的三象限特性,为现代电力电子控制技术带来了前所未有的发展机遇。

不断创新、提高控制技术,是不断深化晶闸管技术应用的重要途径。

设计晶闸管特性实验报告

设计晶闸管特性实验报告

设计晶闸管特性实验报告1. 实验目的本实验旨在通过实际操作,加深对晶闸管的理解,掌握晶闸管的基本特性,并能正确进行晶闸管的触发、导通和关断操作。

2. 实验原理晶闸管是一种主控制型元件,具有单向导电性。

它由四层n-p-n-p的结构组成,其中两个pn 结构的掺杂浓度较高,用作控制区;另外两个pn 结构的掺杂浓度较低,用作限流区。

当晶闸管的控制区施加正向偏置电压,通过控制电极施加正向脉冲,即可触发晶闸管,使之导通。

晶闸管导通后,只需保持控制电极在一定的电压范围内,晶闸管就可以一直导通。

若控制电极的电压降低或没有维持在一定电压范围内,晶闸管将进入关断状态。

3. 实验器材- 示波器- 变压器- 脉冲发生器- 晶闸管- 电阻- 电容- 电路板4. 实验步骤4.1 硬件连接按照实验要求,将示波器、变压器、脉冲发生器、晶闸管、电阻、电容等器件进行正确的电路连接。

4.2 晶闸管触发电路设计设计一个适当的触发电路,通过控制电极给晶闸管施加正向脉冲,以触发晶闸管导通。

4.3 测试晶闸管导通特性在脉冲发生器的输出端口连接示波器,观察晶闸管导通状态时的电压波形,并记录数据。

4.4 测试晶闸管关断特性通过改变控制电极的电压,并通过示波器观察晶闸管关断状态时的电压波形,并记录数据。

5. 实验结果与分析通过实验测量,得到了晶闸管导通和关断时的电压波形数据,根据实验数据我们可以得出以下结论:1. 在给定适当的脉冲信号下,晶闸管可以被触发导通;2. 在控制电极电压维持在一定范围内,晶闸管可以一直导通;3. 当控制电极电压降低或不在一定电压范围内时,晶闸管将进入关断状态。

通过对实验结果的分析,可以进一步了解晶闸管导通和关断特性,为晶闸管的应用提供了实际基础。

6. 实验总结本次实验通过设计晶闸管特性实验,我们深入了解了晶闸管的工作原理和特性。

在实验过程中,我们学会了如何正确地触发晶闸管,使之导通,并通过变化控制电极的电压,观察晶闸管导通和关断时的波形数据。

第一章:电力电子器件晶闸管

第一章:电力电子器件晶闸管
1.断态重复峰值电压UDRM:在门极断路而结温为额定值时,允许 重复加在器件上的正向峰值电压。
2.反向重复峰值电压URRM:在门极断路而结温为额定值时,允许 重复加在器件上的反向峰值电压。
3.通态(峰值)电压UTM:晶闸管通以某一规定倍数的额定通态 平均电流时的瞬态峰值电压。
4.额定电压:取晶闸管的UDRM和URRM中较小的标值作为该器件 的额定电压。选用晶闸管时,额定电压要留有一定裕量。
最小门极电流; ● UGr:指产生触发电流 IGr 所需门极电压值; ● 环境温度高时需要的 Igr 和 Ugr 要小些;
环境温度低时需要的 IGr 和 Ugr 要大些; ● 同一型号晶闸管门极特性分散性较大,因此触发电路送出的
触发电流和触发电压应适当大于额定值的上限,但不能超过 最大电流、电压和功率极限。
雪崩 击穿
IH
IG2
IG1 IG=0
O
UDRM Ubo +UA
UDSM
-IA
一.静态特性
§1.3.2 晶闸管的基本特性
1.正向特性:器件施加正向电压,IG=0 时,正向阻断状态,只有 很小的正向漏电流流过;正向电压超过临界极限——正向转折
电压Ubo,则漏电流急剧增大,器件开通; ● 随着门极电流幅值的增大,正向转折电压降低;
IC2=2 IK + ICBO2
(1-2) ICBO:共基极漏电流
I K=IA+IG
(1-3)
IA=Ic1+Ic2
(1-4)
IA
2 I G I CBO1 I CBO2 1 ( 1 2 )
(1-5)
★ 晶闸管中的晶体管特性为:
● 在低发射极电流下 是很小的; ● 而当发射极电流建立起来之后, 迅速增大。

哈工大电力电子技术考试习题1(含答案)

哈工大电力电子技术考试习题1(含答案)

1.在功率变换电路中,为了尽量提高电能变换的效率,所以器件只能工作在(开关)状态,这样才能降低(变换过程中的电能损耗)。

2.晶闸管的基本工作特性可概括为:承受反向电压时,不论(门极是否有触发电流),晶闸管都不会导通;承受正向电压时,仅在(门极有触发电流)情况下,晶闸管才能导通;晶闸管一旦导通,(门极)就失去控制作用。

要使晶闸管关断,只能使晶闸管的电流(降到接近于零的某一数值以下)。

3.在如下器件:电力二极管(Power Diode)、晶闸管(SCR)、门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应管(电力MOSFET)、绝缘栅双极型晶体管(IGBT)中,属于不可控器件的是(Power Diode ),属于半控型器件的是(SCR),属于全控型器件的是(GTO,GTR,电力MOSFET,IGBT),在可控的器件中,容量最大的是(GTO),工作频率最高的是(电力MOSFET),属于电压驱动的是(电力MOSFET,IGBT),属于电流驱动的是(GTO,GTR,SCR)。

•D3不能导通时输出电压波形?•器件的导通顺序?4.P组N组6.图2-1为简化的单相晶闸管变流电路(Ls=0),交流电源电压有效值为Vs ,大电感负载(近似认为负载电流恒定为Id ),回答下列问题:1)试画出α=45º时,输出电压vd ,电源电流is ,晶闸管T1上电压vT1(电压的参考方向:阳极正,阴极负),和晶闸管T1中电流iT1的波形。

2) 再画出此时其它3只晶闸管上的电压和电流波形。

3)计算晶闸管上承受的反向峰值电压vT_peak,晶闸管中电流的平均值idT 和有效值IT_eff 。

(用Vs 和Id 来表达)5.晶闸管三相桥式变流电路,在设计触发电路时,为什么要采用“双窄脉冲”触发方式?晶闸管单相桥式变流电路,是否也需要采用这种双窄脉冲触发方式,为什么?答:三相桥式变流电路要求按T1,T2,T3,T4,T5,T6的顺序依次触发晶闸管,触发脉冲相位依次差600,所以为保证同时导通的2个晶闸管均有触发脉冲,采用“双窄脉冲”触发方式,即在触发某晶闸管时,给之前导通的晶闸管发1个补脉冲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 门极触发电流IGT/触发电压UGT
例:KP5 IGD=0.4mA.UGD=0.3v,IGT=5~70mA, VGT3.5v,UGFM=10V, UGRM=5v ,PG(AV)=0.5w 参数受温度影响大
4 通态平均压降(管压降)UT(AV)
从减小损耗和发热的情况出发,UT(AV)越小越好, 一般为1.5v。
工频电路可不考虑开关时间 (2)断态电压临界上升率dv/dt及通态电流临界上 升率di/dt
1.3.2 晶闸管的基本特性
1. 静态特性━ 晶闸管的 伏安特性
IA 正向 导通
URSM URRM -UA
雪崩 击穿
IH
IG2Leabharlann IG1 IG=0O
UDRM Ubo +UA
UDSM
-IA
图1-8 晶闸管的伏安特性 IG2>IG1>IG
1.3.2晶闸管的基本特性 (静态、动态、)
1. 静态特性
1) 承受反向电压时,不论门极是否有触发电流,晶闸管 都不会导通。
1.3.3晶闸管的主要参数
1额定电压UDRM
晶闸管承受此电压时不自动开通也不反向击穿。 晶闸管额定电压的选择应为实际承受电压的2~3倍。 所留裕量用于防止电路中可能出现的操作过电压
2 额定电流IT(AV)
平均值
规定:在环境温度为40C和规定的冷却条件下,带
电阻性负载的单相工频半波整流电路中,管子全导
通(C)而稳定结温不超过额定值所允许的
最大电流平均值。
100
90
80
70 60
IT(AV)
50
晶闸管电流
40
30
20
10
0
0
0.005
0.01
0.015
0.02
0.025
0.03
IT ( AV ) 1 Im sin tdt Im
2 0
T
0.24i 2 Rt 0.24I 2 RT
0
0.035
0.04
平均值
发热量
IT
1
T
i 2dt
T0
1
(Imsin t )2 dt
Im
2 0
2
IT 1.57
IT ( AV )
2
有效值
管子额定电流的选择:
(1) 按电流有效值相等的原则选择晶闸管 (2) 留裕量,取1.5-2倍后取整 (3) 额定电流等级:
50A以下-1、5、10、20、30、40、50A; 100~1000A- 100、200、300、 400、500、 600、800、1000A。
1.3.2 晶闸管的基本特性
2. 动态特性
iA 100%
90%
10%
0 td tr
t
uAK
IRM
O
t
trr
URRM tgr
晶闸管的开通和关断过程波形
1.3.2 晶闸管的基本特性
1) 开通过程
① 延迟时间td
门极电流阶跃时刻开始,到 阳极电流上升到稳态值的 10%的时间。
② 上升时间tr
阳极电流从10%上升到稳 态值的90%所需的时间。
• 实际应用中,应对晶闸管施加足够长时间 的反向电压,使晶闸管充分恢复其对正向电 压的阻断能力,电路才能可靠工作。
3 门极伏安特性(PN结特性)
(1).保证可靠触发的门极电流、电压应位于可靠触发区 (2).保证晶闸管可靠关断的门极电流、电压应位于不 触发区或加反偏电压 (3).晶闸管正偏电压一般不大于10 v,反偏电压不大于5v。
5 维持电流与掣住电流IH/IL
IH:维持管子继续导通的最小电流。 IL:触发管子导通后,去除触发信号时阳极电流必须 达到的最小值。
6 动态参数
(1)开通时间ton与关断时间toff 普通晶闸管ton约6us, 快速晶闸管ton约1us。 普通晶闸管toff数十~数百us, 快速晶闸管toff约10us 开通较关断时间短
O
td tr
t IRM
t
trr
trr
URRM tgr
tgr
1.3.2 晶闸管的基本特性
2) 关断过程
iA 100%
① 反向阻断恢复时间trr 90%
正向电流降为零到反向恢 10%
复电流衰减至接近于零的 0 td tr
时间
uAK
② 正向阻断恢复时间tgr
晶闸管要恢复其对正向 O 电压的阻断能力所需要 的一段时间
2) 承受正向电压时,仅在门极有触发电流的情况下晶闸 管才能开通。
3) 晶闸管一旦导通,门极就失去控制作用。
4) 要使晶闸管关断,只能使晶闸管的电流降到接近于零 的某一数值以下 。
1.3.2 晶闸管的基本特性
1) 正向特性(第I象限)
• 正向阻断状态
➢ IG=0时,晶闸管两端受正向电 压→只有很小的正向漏电流流
• 维持电流IH
导通期间,如果门极电流为零,并且阳极电流降 至接近于零的某一数值IH以下,则晶闸管又回到 正向阻断状态。IH称为维持电流。
1.3.2 晶闸管的基本特性
2) 反向特性(第III象限)
IA
➢ 晶闸管受反向电压时,伏
安特性类似二极管的反向
特性。
URSM URRM
IH
-UA
O
正向 导通
IG2
IG1 IG=0
UDRM Ubo +UA UDSM
雪崩 击穿
晶闸管的伏安特性
-IA
1.3.2 晶闸管的基本特性
• 反向阻断
➢ 晶闸管处于反向阻断状态时→极
小的反相漏电流流过。 • 反向击穿
➢ 当反向电压超过一定限度(达到反向击穿电
压), 外电路如无限制措施→则反向漏电流急
剧增加→导致晶闸管发热损坏。
过.
URSM URRM
-UA
➢正向电压超过临界极限━正
向转折电压Ubo →则漏电流急
雪崩
剧增大→器件开通。
击穿
IA 正向 导通
IH
IG2 IG1 IG=0
O
UDRM Ubo +UA
UDSM
IG2> IG1 > IG
-IA
晶闸管的伏安特性
1.3.2 晶闸管的基本特性
• 正向导通
➢ 随着门极电流幅值的增大,正向转折电压降低。 ➢ 导通后的晶闸管特性和二极管的正向特性相仿。 ➢ 晶闸管本身的压降很小,在1V左右。
t IRM
t
trr URRM tgr
trr tgr
晶闸管的开通和关断过程波形
iA 100%
90%
10% 0 td tr
uAK
O
t IRM
t
trr
URRM tgr
trr
tgr
③ 关断时间tq
tq=trr+tgr
普通晶闸管的关断时间约几百微秒
④ 两点注意事项 • 在正向阻断恢复时间内如果重新对晶闸管 施加正向电压,晶闸管会重新正向导通。
iA 100% 90% 10%
0 td tr uAK
O
td tr
t IRM
t
trr URRM tgr
trr tgr
晶闸管的开通和关断过程波形
c) 开通时间tgt
tgt=td+ tr
(1-6)
普通晶闸管延迟时为0.5~1.5s,上升时 间为0.5~3s。
iA 100%
90%
10% 0 td tr
uAK
相关文档
最新文档