模电集成运放放大电路

合集下载

模电实验模拟运算放大电路(一)

模电实验模拟运算放大电路(一)

实验目的和要求:① 了解运放调零和相位补偿的基本概念。

② 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法。

③ 熟练掌握运算放大电路的故障检查和排除方法,以及增益、传输特性曲线的测量方法。

实验原理:预习思考:1、 设计一个反相比例放大器,要求:|A V|=10,Ri>10KΩ,将设计过程记录在预习报告上; 电路图如P20页5-1所示,电源电压为±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ2、 设计一个同相比例放大器,要求:|A V|=11,Ri>100KΩ,将设计过程记录在预习报告上;R F R LVo电源电压为±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ 3、 设计一个电路满足运算关系 VO= -2Vi1 + 3Vi2减法运算电路:1123213111113232)()()(i f i f i f i i O V R R V R R R R R R V R R R V R R R V V -++=++-+=3)()(32131=++R R R R R R f ,0,22211==⇒=R R R R R f f取Ω=Ω=Ω=Ω=K R K R K R K R f 100,0,20,10321实验电路如实验内容:1、反相输入比例运算电路(I ) 按图连接电路,其中电源电压为±15V ,R 1=10 kΩ, R F =100 kΩ, R L =100 kΩ, R P =10 kΩ//100 kΩAR1R F Rp=R F //R1R LVoVi+Vcc-Vcc输入端接地,用万用表测量并记录输出端电压值,此时测出失调电压0.016 V 分析:失调电压是直流电压,将会直接影响直流放大器的放大精度。

直流信号测量:Vi/V V O /V Avf测量值 理论值 -2 14.25 -7.125 -10 -0.5 4.98 -9.96 -10 0.5 -5.02 -10.04 -10 2-12.87-6.435-10实验结果分析:运算放大器的输出电压摆幅受器件特性的限制,当输入直流信号较大时,经过运放放大后的输出电压如果超过V OM ,则只能输出V OM 的值。

模电

模电
上页 首页 下页
பைடு நூலகம்
3.输入偏置电流 IB : 输入偏置电流I 输入偏置电流 输入电压为零时,运放两个输入端偏置电流的平均值, 输入电压为零时,运放两个输入端偏置电流的平均值,
用于衡量差分放大对管输入电流的大小。 用于衡量差分放大对管输入电流的大小。
模拟电子技术第四章
I IB = 1 ( I B1 + I B 2 ) 2
模拟电子技术第四章
注意:在以后教学中, 注意:在以后教学中, 这两种符号都会出现, 这两种符号都会出现, 两者画法不同, 两者画法不同,但都表 示集成运放。 示集成运放。
V
+ -
A

+
u o 输出端
国际符号: 国际符号:
集成运放的特点: 集成运放的特点: 开环电压增益高 Aod>105 开环电压增益高
不能太大
上页
首页
下页
二、运放的保护措施 输入保护
模拟电子技术第四章
二极管的钳位作用, 二极管的钳位作用,使差模输 入不超过范围。 入不超过 0.7V~0.7V范围。 范围
有效防止共模输入幅值过大
上页
首页
下页
输出保护电路
模拟电子技术第四章
双向稳压, 双向稳压,即可在必要时为 负载分流而起过流保护, 负载分流而起过流保护,也 能限制运放的输出电压不超 过稳压管的稳压电压。 过稳压管的稳压电压。
为运放设置合理的静态偏置电路和调零电路
为运放输入端设置合适的去耦电容以消除自激震荡
上页 首页 下页
选择集成运放时注意的问题: 选择集成运放时注意的问题:
不要盲目追求指标先进。 不要盲目追求指标先进。
模拟电子技术第四章

模电课件集成运放基本电路

模电课件集成运放基本电路

R f 8 R f 20
R2
R3
加减运算电路旳设计环节 R1 24k 先根据函数关系画出电路,R2然 后30计k算参数
解(1) 画出电路 (2) 计算电阻
平衡电阻
R3 12k R 80k
Rf
R’ // R1 // R2 =Rf // R3
uo
Rf R1
ui1
Rf R2
ui 2
Rf R3
ui 3
(由2虚)断因:为i叠 加i点为0虚地,i输i1 入ii信2 号ii3之间i f
满u足i1 线u0性 叠u加i2 定 0u理 ,互ui不3 影0u响。u0 uo
R1
R2
R3
Rf
uo 由由u虚R虚Rf 短地uu:i:1 u0i2 ui3
ui3 ui2
ii3 ii2
R3 R2
Rf
若 R1 = R2 = R3 = R
换作用
1反相微分器 平衡电阻R’=Rf
iC
C
duC dt
由虚断:i i 0 iC i i f i f
iC
u uo Rf
C d ui
dt
由“虚
地u” 0
u
uo
iC
R
f
C
iiCi
ui
dui t
RuC
dt
u
u R
if ii+
Rf
uo
2实际应用旳微分器Zf
uRωi ↑限i→Zi制11/输uω入Ci电↓- →流i,C ↑降→低高高频u频噪o 噪声声uo Cf相位补u 偿i,+ 克制自激振荡
由虚短: u u
uo ui2
R1 R f RRf R2 R R1

模电第六章集成运算放大电路

模电第六章集成运算放大电路

=
vod vid
差模电 压增益
对线性放大电路而言
c
=
voc vic
共模电 压增益
vo = Avdvid + Avcvic
6.2.2 射极耦合差分式放大电路 1.基本电路 在图6.2.1中,如选用两只特性全同的
BJT T1 和 T2 ,则可得如图6.2.2所示射 极耦合差分式放大电路。
图 6.2.2射 极耦合差分 式放大电路。
IC13;
④若要求IC10=28A,试估算电阻R4的阻值。
T12 IC10
R5
IREF
T10
T11
R4
+VCC T13 IC13
-VEE
解:
IREF
=VCC+
VEE-2VBE R5
IC13 = IREF(1 - —b—+22)
UT
ln
I C11
I C 10
I C10R 4
T10、T11构成微电流源,
引言 集成放大电路的特点
把整个电路中的元器件制作在一块硅基片上, 构成特定功能的电子电路,称为集成电路(IC -Integrated Circuits)。它的体积小,而性 能却很好。
集成电路按其功能来分,有数字集成电路和 模拟集成电路。模拟集成电路种类繁多,有 运算放大器、宽频带放大器、功率放大器、 模拟乘法器、模拟锁相环、模—数和数—模 转换器、稳压电源和音像设备中常用的其他 模拟集成电路等。
图 6.2.2射 极耦合差分 式放大电路。
图6.2.3 (a)交流通路
图6.2.3 (a)交流通路 图6.2.3 (b)半边等效电路
当从两管集电极作双端输出,未接RL时其差 模电压增益与单管共射放大电路的电压增益

模电第四章 集成运算放大电路题解

模电第四章 集成运算放大电路题解

集成运算放大电路自测题一、选择合适答案填入空内。

(1)集成运放电路采用直接耦合方式是因为。

A.可获得很大的放大倍数B. 可使温漂小C.集成工艺难于制造大容量电容(3)集成运放制造工艺使得同类半导体管的。

A.指标参数准确B.参数不受温度影响C.参数一致性好(4)集成运放的输入级采用差分放大电路是因为可以。

A.减小温漂B. 增大放大倍数C. 提高输入电阻(5)为增大电压放大倍数,集成运放的中间级多采用。

A.共射放大电路B.共集放大电路C.共基放大电路解:(1)C (2)B (3)C (4)A (5)A三、电路如图T4.3所示,已知β1=β2=β3=100。

各管的U BE均为0.7V,试求I C2的值。

图T4.3解:分析估算如下:100BE1BE2CC =--=R U U V I R μA100)2221(2C =≈++-=R R I I I ββμA习 题4.1 通用型集成运放一般由几部分电路组成,每一部分常采用哪种基本电路?通常对每一部分性能的要求分别是什么?(概念题目,直接看结果)解:通用型集成运放由输入级、中间级、输出级和偏置电路等四个部分组成。

通常,输入级为差分放大电路,中间级为共射放大电路,输出级为互补电路,偏置电路为电流源电路。

对输入级的要求:输入电阻大,温漂小,放大倍数尽可能大。

对中间级的要求:放大倍数大,一切措施几乎都是为了增大放大倍数。

对输出级的要求:带负载能力强,最大不失真输出电压尽可能大。

对偏置电路的要求:提供的静态电流稳定。

4.2 已知一个集成运放的开环差模增益A od 为100dB ,最大输出电压峰-峰值U opp =±14V ,分别计算差模输入电压u I (即u P -u N )为10μV 、100μV 、1mV 、1V 和-10μV 、-100μV 、-1mV 、-1V 时的输出电压u O 。

解:根据集成运放的开环差模增益,可求出开环差模放大倍数5od od 10dB100lg 20==A A当集成运放工作在线性区时,输出电压u O =A od u I ;当A od u I 超过±14V 时,u O 不是+14V ,就是-14V 。

模电集成运放实物图

模电集成运放实物图

3.反相加法运算电路
电路图
uo Rf (
ui1 ui 2 ) R1 R 2
实验内容
1) 按图连接实验电路。 2) 接通电源,调零之后,用电位器分压电路产
生大小不同的两个电压ui1、 ui2 ,完成表 2.31 。
3.减法运算电路
电 路图
uo
Rf (ui 2 ui1) R1
实验内容
1) 按图连接实验电路。 2) 接通电源,调零之后,用电位器分压电路产
生大小不同的两个电压ui1、 ui2 ,在反相输入 端加直流信号ui1,在同相端加直流信号ui2, 完成表2.32 。
3积分运算电路
电路图
1 uo(t ) RC

t
0
Edt
E t RC
实验内容
1) 按图连接实验电路。 2) 接通电源,调零之后,输入ui接矩形波,其
万用表测输出uo。然后调节调零电位器RW, 使uo=0。 3) 在反相端加直流信号ui,完成表2.29 。
同相比例运算电路
uo (1
Rf )ui R1
uo Rf AVf 1 ui R1
实验内容
1) 按图连接实验电路。 2) 接通电源,调零之后在同相输入端加直流信
号ui,完成表2.30 。
幅值为1V,频率为1kHz,观察输出波形,描 绘出曲线uo=f(t)。
集成运算放大器组成的基本运算 电路
集成运算放大UA741管脚说明
U+12vຫໍສະໝຸດ U+-12v
Uo
1、4、5脚接调零电位器
1.反相比例运算电路
实验电路图
uo
Rf ui R1 uo Rf AVf ui R1

电路模电实验之运算放大器实验报告

电路模电实验之运算放大器实验报告

目录1实验目的2 2实验原理23实验设计33.1实验I基础型实验 (3)3.1.11、电压跟随器——检测运放是否正常 (3)3.1.2反相比例运算放大器电压放大特性 (3)3.2实验II设计型实验 (4)3.2.1减法器的设计 (4)4实验预习仿真44.1电压跟随器——检测运放是否正常 (4)4.2反相比例运算放大器电压放大特性 (5)4.3减法器设计 (6)5数据处理7 6实验总结9 7思考题9 8实验讨论91实验目的•深刻理解集成放大器工作在线性工作区时,遵循的两条基本原则——虚短、虚断•熟悉集成运算放大器的线性应用。

•掌握比例运算等电路、训练设计运放电路的能力。

2实验原理集成运算放大器是一种高电压放大倍数的多级直耦放大电路,在深度负反馈条件下,集成运放工作在线性工作区,它遵循两条基本原则:1.虚短:U i=U−−U+≈02.虚断:I N≈I p≈0(非线性区也成立)用途:广泛应用于各种信号的运算处理、测量以及信号的产生、变换等电路中。

图1:运算放大器符号3实验设计3.1实验I基础型实验3.1.11、电压跟随器——检测运放是否正常3.1.2反相比例运算放大器电压放大特性3.2实验II设计型实验3.2.1减法器的设计1.自行设计运放电路,要求实现u0=2u i2−u i12.将u i分别设置为以下两组信号,验证电路是否满足要求4实验预习仿真4.1电压跟随器——检测运放是否正常图2:Multisim接线图3:Multisim结果4.2反相比例运算放大器电压放大特性图4:Multisim 接线图5:Multisim 结果U i (V )理论值(V )实测值(V )U N U P U O U O U iU N U P U O U O U i-0.300310455.314µV 564.134µV 3.012V 10.040.3-310563.904µV489.999µV-2.987V9.964.3减法器设计设计如图所示:表3:验证结果波形频率u i u0直流0u i1=1V,u i2=2V3.04V正弦波500Hz u i1=1V,u i2=2V2.98V5数据处理表1U i(V)理论值(V)实测值(V)U N U P U O U OU iU N U P U O U OU i-0.3003100.1mV0.2mV 3.66V12.20.300-310-0.1mV0-3.65V12.16表2波形频率u i u0直流0u i1=1V,u i2=2V 3.00V正弦波500Hz u i1=1V,u i2=2V 3.24V1.完成表1,并绘制基础型实验的运放的电压传输特性;2.列出基础型实验中U i和U o理论关系式,并和仿真数据、实际数据比较;•电压跟随器u i=u o仿真数据中u i=u o,实验数据u i=1.00V,u o=1.04V,在误差允许范围内,所以等式也成立。

模电--运算放大器

模电--运算放大器

2.2.2 理想运放电路模型
V+
iP = 0
vP
ri
ro
+
+
vo
vN iN = 0
Avo(vP – vN) V-
vO / V V+
O vP – vN /mV V-
12 / 105
2.3 基本线性运放电路
2.3.1 同相放大电路
• 基本电路 • 负反馈概念 • 虚短与虚断 • 近似计算 • 电压跟随器
2.1.2 运算放大器电路模型
B. 电压传输特性
Avo越大,运放的线性 范围越小,必须在输
vo / V 正饱和
V+
线性放大区
出与输入之间加负反 馈才能使其扩大输入
vo = Avo(vP – vN)
信号的线性范围。
O
vP – vN /mV
例:若UOM =12V,Avo=106,
则 |ui| <12V 时,运放
15 / 105
2.3 基本线性运放电路
2.3.1 同相放大电路
3. 虚短与虚断
vi
由于运放的开环放大倍数很
大,输入电阻高,输出电阻
ii vp
vid+–
vn
+
A

vo
小,分析时常将其理想化, 称所谓的理想运放。
R1 R2
理想运放
线性区工作特点
Avo
ri ro 0
uo Avo (up un ) up un
v3
v2–

A2
+
R3 v4
v4
v2
iR2
R1 R2 R1
v2
R2 R1
v1
R4 R3

模电设计性实验报告——集成运算放大器的运用之模拟运算电路

模电设计性实验报告——集成运算放大器的运用之模拟运算电路

模电设计性实验报告——集成运算放大器的运用之模拟运算电路重庆科技学院设计性实验报告学院:_电气与信息工程学院_ 专业班级: 自动化1102学生姓名: 罗讯学号: 2011441657实验名称: 集成运算放大器的基本应用——模拟运算电路完成日期:2013年 6月 20 日重庆科技学院学生实验报告集成运算放大器的基本应用——课程名称模拟电子技术实验项目名称模拟运算电路开课学院及实验室实验日期学生姓名罗讯学号 2011441657 专业班级自动化1102 指导教师实验成绩实验六集成运算放大器的基本应用——模拟运算电路一、实验目的1、研究有集成运算放大器组成的比例、加法和减法等基本运算电路的功能2、了解运算放大器在实际应用时应考虑的有些问题二、实验仪器1、双踪示波器;2、数字万用表;3、信号发生器三、实验原理在线性应用方面,可组成比例、加法、减法的模拟运算电路。

1) 反相比例运算电路电路如图6-1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻//。

RF 100k1 5 4 R1 10k2 Ui 6 Uo3 U1 R2 9.1k 7图6-1 反相比例运算电路2) 反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为:////RF 100kR1 10k Ui1 4 1 5 R2 20k 2 Ui2 6 Uo 3 U1 R3 6.2k 7图6-2 反相加法运算电路3) 同相比例运算电路图6-3(a)是同相比例运算电路。

RF 100k1 5 4 R1 10k 26 Uo 3R2 9.1k U1 7RF10k4 1 526 R2 Uo 3 Ui 10k U1 7(a)同乡比例运算 (b)电压跟随器图6-3 同相比例运算电路它的输出电压与输入电压之间关系为://当即得到如图6-3所示的电压跟随器。

图中,用以减小漂移和起保护作用。

一般取10KΩ,太小起不到保护作用,太大则影响跟随性。

模拟电子电路模电课件清华大学华成英4集成运算放大电路

模拟电子电路模电课件清华大学华成英4集成运算放大电路

注意集成运算放大器的散热问题,采取适当的散热措施,避免过热导致性能下降或损坏。
在电路设计时考虑噪声干扰的影响,采取措施减小噪声干扰,如使用屏蔽、远离噪声源等。
在使用过程中注意避免突然的电压或电流冲击,以免造成集成运算放大器的损坏。
谢谢
THANKS
详细描述
共模抑制比是集成运算放大器性能的重要指标之一,它影响着电路的稳定性和性能。
总结词
在实际应用中,电路中的干扰和噪声通常是共模的,因此共模抑制比的大小直接影响到电路的性能和稳定性。在选择集成运算放大器时,需要根据实际需求来选择具有较大共模抑制比的型号。
详细描述
集成运算放大器的使用注意事项
了解集成运算放大器的规格书,确保其满足电路的性能要求。
良好的线性度
集成运放的内部电路设计使得它在放大信号时产生的噪声较低。
低噪声
集成运放的输入阻抗一般都在兆欧姆级别,使得它对信号源的影响较小。
高输入阻抗
按功能
可以分为通用型和专用型两类。通用型集成运放适用于多种场合,而专用型集成运放则是针对特定应用设计的,如仪表放大器、音频放大器等。
按性能指标
可以分为低噪声、高精度、高速型等不同类型。低噪声型集成运放主要用于信号放大,高精度型用于高精度的测量和运算,高速型则用于高速信号处理和传输。
电压-频率转换
电压-电流转换
集成运算放大器的性能指标
详细描述
开环电压增益的数值越大,意味着对微弱信号的放大能力越强,因此开环电压增益是衡量集成运算放大器性能的重要参数之一。
总结词
开环电压增益是衡量集成运算放大器放大能力的重要指标。
详细描述
开环电压增益是指在无反馈情况下,输入信号经过集成运算放大器放大后的输出电压与输入电压的比值。这个比值越大,说明放大器的放大能力越强。

模电课件第四章集成运算放大电路

模电课件第四章集成运算放大电路
第四章 集成运算放大电路
§4.1集成运算放大电路概述 一、集成运放的电路结构特点
集成运算放大电路:高电压放大倍数的直接耦合多级放大电路。
2019/7/28
模电课件
二、集成运放的电路组成
1、输入级:运算放大器的输入级通常是差分放大电路,其主 要功能是抑制共模干扰和温漂,双极型运放中差分管通常采 用CC-CB复合管,以便拓展通频带。 2、中间级:电压放大,要求:放大倍数要尽可能大,通常采 用共201射9/7/2或8 共源电路,并采用恒模电流课源件 负载和复合管以增加电压 放大倍数。
工作在放大状态。
当T0与 T1特性参数完全一致时,由U BE0 = U BE1可推得
IB0 = IB1 = IB IC0 = IC1 = Io 由基极输入回路得,
Io
IR
VCC
U BE R
I0 2IB

I0

2

I0

所以,I0

1 1 2
IR
基准电流
输出电流


时,I0 IR 。
在集成运放电路中通常只能制作小容量(几十pF)电容,不能 制作大201容9/7/量28 电解电容,级间通常模采电课用件 直接耦合。
四、以电流源为有源负载的放大电路
在集成运放的共射(共源)放大电路中,为了提高电压放大 倍数,常用电流源电路取代Rc (或Rd ),这样在电源电压不 变的情况下,既获得合适的静态电流,又可以得到很大的等效 的Rc(或 Rd )。
(1) 运放电路的结构分解 输入级是一个差动放大电路,主要由T1、T3(共集-共基组合)
和T2、T4组成。中间放大级由T16、T17、T13组成共集—共射电路; 输出级由T14、T18 、 T19组成互补输出电路。

模电第15讲 集成运算放大电路

模电第15讲 集成运算放大电路

输入级的分析
共集-共基形式 共集 共基形式 T1和T2从基极输入、射极输出 从基极输入、 T3和T4从射极输入、集电极输出 从射极输入、 T3、T4为横向 为横向PNP型管,输 型管, 型管 入端耐压高。共集形式, 入端耐压高。共集形式,输入 电阻大, 电阻大,允许的共模输入电压 幅值大。共基形式频带宽。 幅值大。共基形式频带宽。 Q点的稳定: 点的稳定: 点的稳定 T(℃)↑→IC1↑ IC2↑ →IC8↑ ( IC9与IC8为镜像关系 C9↑ 为镜像关系→I 因为I 不变→I 因为 C10不变 B3↓ IB4↓ → IC3 ↓ IC4↓→ IC1↓ IC2↓
1.原理框图 原理框图
与uo反相
+VCC
反相 输入端
+ +
+ -
u–
同相 输入端 与uo同相
T3 +
T4 +
T1
+
+
IS
中 间 级
输 出 级
-VEE
例 集成运放中的电流源电路
在电流源电路中充分利用集成运放中晶体管性能的一致性。 在电流源电路中充分利用集成运放中晶体管性能的一致性。 特性完全相同。 1. 镜像电流源 T0 和 T1 特性完全相同。 基准电流
第十五讲 集成运算放大电路(简介
一、概述 二、集成运放的主要性能指标
一、概述
集成运算放大电路,简称集成运放, 集成运算放大电路,简称集成运放,是一个高性能的直接 耦合多级放大电路。因首先用于信号的运算,故而得名。 耦合多级放大电路。因首先用于信号的运算,故而得名。
1. 集成运放的特点
(1)电路元件制作在一个芯片上,采用直接耦合方式, 电路元件制作在一个芯片上,采用直接耦合方式, 充分利用管子性能良好的一致性, 充分利用管子性能良好的一致性,元件参数偏差方向一 温度均一性好。采用差分放大电路和电流源电路。 致,温度均一性好。采用差分放大电路和电流源电路。 用复杂电路实现高性能的放大电路, (2)用复杂电路实现高性能的放大电路,因为电路复杂 并不增加制作工序。 并不增加制作工序。 用有源元件替代无源元件, (3)用有源元件替代无源元件,如用晶体管取代难于制 作的大电阻。 以下的小电容用PN结的结电容构 作的大电阻。几十 pF 以下的小电容用 结的结电容构 成、大电容要外接。二极管一般用三极管的发射结构成 采用复合管。 (4)采用复合管。

模电课件53集成电路运算放大器

模电课件53集成电路运算放大器

2021/4/11
(maximum common mode input voltage)在保证运放正常工作条件下, 共模输入电压的允许范围。共模电压超 过此值时,输入差分对管出现饱和,放 大器失去共模抑制能力。
11
二、运算放大器的动态技术指标
1.开环差模电压放大倍数 Avd :(open loop voltage gain)运放在无外加反馈条件下,输出电压的变化量 与输入电压的变化量之比。
2021/4/11
5
3.运算放大器的符号和型号
(1)集成放大器的符号
按照国家标准符号如图5.15所示。
(a)
(b)
图5.15 模拟集成放大器的符号
(a) 国家标准符号 (b)原符号
2021/4/11
6
(2)集成运算放大器的型号命名
数字序号
(与世界上其它厂家同类型产品的序号相同。)
其它例如:集成功率放大器的型号命名 CD----
2021/4/11
21
4.高输入阻抗型
用于测量设备及采样保持电路中。 例如: AD549
IIB 0.040p A
Rid 1013
CF155/255/355
IIB 30p A
Rid 1012
2021/4/11
22
5.低功耗型
用于空间技术和生物科学研究中,工作于较低 电压下,工作电流微弱。 例如:
用于精密仪表放大器,精密测试系统,精密
传感器信号变送器等。 例如:
OP177 VIO 4μ V
IIO 0.3nA
dVIO 0.03μ V/ C d IIO 1.5pA/C
dT
dT
CF714
VIO 30 ~ 60 μ V dVIO 0.3 ~ 0.5 μ V/ C dT

2019年《模拟电子电路模电课件清华大学华成英4集成运算放大电路》.ppt

2019年《模拟电子电路模电课件清华大学华成英4集成运算放大电路》.ppt
华成英 hchya@
三、集成运放的电压传输特性
uO=f(uP-uN)
在线性区: uO=Aod(uP-uN) Aod是开环差模放大倍数。
非线 性区
由于Aod高达几十万倍,所以集成运放工作在线性区时的 最大输入电压(uP-uN)的数值仅为几十~一百多微伏。 (uP-uN)的数值大于一定值时,集成运放的输出不是 +UOM , 就是-UOM,即集成运放工作在非线性区。
i i i 0
华成英 hchya@
§4.3 集成运放的电路分析及其 性能指标
一、读图方法
二、读图举例 三、集成运放的性能指标
华成英 hchya@
一、读图方法
已知电路图,分析其原理和功能、性能。 (1)了解用途:了解要分析的电路的应用场合、用途和技术 指标。 (2)化整为零:将整个电路图分为各自具有一定功能的基本 电路。 (3)分析功能:定性分析每一部分电路的基本功能和性能。 (4)统观整体:电路相互连接关系以及连接后电路实现的功 能和性能。 (5)定量计算:必要时可估算或利用计算机计算电路的主要 参数。
华成英 hchya@
简化电路 分解电路
三级放大电路
双端输入、单端 输出差分放大电 路
以复合管为放大管、 用UBE倍增电路消 恒流源作负载的共 除交越失真的准 射放大电路 互补输出级
华成英 hchya@
输入级的分析
共集-共基形式 T1和T2从基极输入、射极输出 T3和T4从射极输入、集电极输出 T3、T4为横向PNP型管,输 入端耐压高。共集形式,输入 电阻大,允许的共模输入电压 幅值大。共基形式频带宽。 Q点的稳定: T(℃)↑→IC1↑ IC2↑ →IC8↑ IC9与IC8为镜像关系→IC9↑,因 IC10不变→ IB3↓ IB4↓ → IC3 ↓ IC4↓→ IC1↓ IC2↓

模电实验八集成运放基本应用之一--模拟运算电路实验报告

模电实验八集成运放基本应用之一--模拟运算电路实验报告

实验八集成运放基本应用之一--模拟运算电路
一、班级:姓名:学号:实验目的
1、研究由集成运算放大电路构成的比率、加法、减法和积分等基本运算电路的功能。

2、认识运算放大电路在实质应用时应试虑的一些问题。

二、实验仪器及器件
仪器及器件名称型号数目
+12V 直流稳压电源DP8321
函数信号发生器DG41021
示波器MSO2000A1
数字万用表DM30581
集成运算放大电路μA7411
电阻器若干
电容器若干
三、实验原理
1、反对比率运算电路
电路如图 8- 1 所示。

图 8- 1 反对比率运算电路
V O R F
V i R1
2、反相加法电路
电路如图 8- 2 所示。

图 8- 2
反相加法电路
V O
(
R F
V i1
R F
V i2 )
R ═ R
R 1
R 2
3
1
V O
( 1
R F
)V i
V O
R F
( V i2V i1 )
R 1
R 1
于实验设施使用时间的关系,实验电路板的电阻的实质阻值和标明的阻值存在偏差,电路中的其余元
件老化等对电路也有必定的偏差;
2.因为我们丈量时集成运放等元器件向来处于工作状态,长时间的工作也会对数据的丈量产
生必定的影响;
3.在用万用表丈量实验数据时,第一万用表自己存在偏差,其次在丈量有些数据时。

万用表显示的数值向来在跳动难以稳固,这也对数据的读出造成不可以忽略的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性区:
0
uP- uN
U om
集成运放的电压传输特性
Uom, uP uN
u0
Uom, uP uN
练习 已知一个集成运放的开环差模增益Aod为100dB,最大输出电压峰-峰
值Uopp=±14V,分别计算差模输入电压uI(即uP-uN)为10μV、100μV、 1mV、1V和-10μV、-100μV、-1mV、-1V时的输出电压uO。
ln
I E1 IS0
UT
ln
IE0 I E1
I E1Re1
I E0 Re0
UT
ln
IE0 I E1
比例电流源
当 >>2时, IC0≈IE0≈IR , IC1 ≈ IE1
所以
IC1
Re0 Re1
IR
UT Re1
ln
IR IC1
在一定范围内
IC1
Re0 Re1
I
VCC RR
U BE Re0
0
特点:具有更高的温度稳定性。
u0 1103 105 100V Uopp
运放工作在非线性区
u0 14V
同理
uI 1V 时,u0 14V
4—2 集成运放中的电流源电路
电流源是一个输出电流恒定的电源电路, 与电压源相对应。在模拟集成电路中广泛使用 各种电流源,为各种放大电路提供稳定的偏置 电流,或作有源负载。
电流源在电路中的作用
第四章 集成运算放大电路
4—1 集成运算放大电路概述 4—2 集成运放中的电流源电路 4—3 集成运放电路简介 4—4 集成运放的性能指标及低频等效电路 4—5 集成运放的种类及选择 4—6 集成运放的使用
本章要求
熟悉集成运放的组成及各部分的作用,正确理解主 要指标参数的物理意义。
了解电流源电路的工作原理。 了解一种运放电路的工作原理。
(1)提供静态偏置电流 (2)作为有源负载(取代高阻值电阻)
4—2 集成运放中的电流源电路
4.2.1 基本电流源电路
镜像电流源 比例电流源 微电流源
4.2.2 改进型电流源电路
加射极输出器的电流源 威尔逊电流源
4.2.3 多路电流源电路 4.2.4 以电流源为有源负载的放大电路
有源负载共射放大电路 有源负载差分放大电路
4—1 集成运算放大电路概述
集成电路: 在半导体制造工艺的基础上,把整个电路中的元器件 制作在一块硅基片上,构成的特定功能的电子电路。 体积小(密度高)、引线短、外接线少,从而提高了电子
设备的可靠性和灵活性,同时降低了成本。
分类 模拟集成电路: 集成运算放大器、集成功率放大器等。
按功能分 数字集成电路: 集成触发器、集成计数器等。
iC
三极管工作在放大
区,则其输出特性具
VCC Rc
有恒流特性。
但易受温度影响
ICQ
Q
IBQ
VCC vCE
电路如图所示
VB
Rb2 Rb1 Rb2
VCC
I

E
VB-VBE Re
故输出恒定电流
VCC Rb1
Rb 2
RO
三极管电流源
采用适当的辅助电路,可使其恒流特性更接近于理想情况。
4.2.1 基本电流源电路
IC
IC
1 1
2
IRBiblioteka 10Ic1 0.83I R
当>>2时,输出电流
IC1
IR
VCC
U BE R
不满足>>2时,输出电流误差大
纵向晶体管 (百倍以上)
特点: 镜像电流源具有一定的温度补偿作用:
↗ IC1↑ T(℃) ↑
↘ IC0↑ → IR↑→UR(RIR) ↑
→UB↓→IB↓
→ IC1↓
2、比例电流源
按构成器件的类型: 双极型和单极型
按外形:双列直插式、圆壳式、扁平式。
4.1.1 集成运放的电路结构特点
1. 集成运放均采用直接耦合方式。 2. 电路结构与元件参数具有对称性。 3. 用有源器件代替无源器件。 4. 采用复合结构的电路。
4.1.2 集成运放电路的组成及其各部分的作用
集成运算放大器实质是高增益的直接耦合多级放大电路。
uP 输入级
中间级
uO 输出级
uN
偏置电路
4.1.3 集成运放的电压传输特性
1. 符号
uP uN
+
- Aod
uO
集成运放的符号
uP→同相输入端, u0与uP同相。 uN→反相输入端,u0与uP反相。
Aod→开环差模放大倍数。
2. 电压传输特性
uO
U om
线性区: u0 Aod (uP uN )
IR
IC0 T0
Re0
+Vcc R IB0+IB1
IB0 IB1 IE0 IE1
IC1
T1 Re1
U BE0 I E0 Re0 U BE1 I R E1 e1
uBE
IE Ise UT 得
U BE
UT
ln
IE IS
由于T0、T1为对管,所以
U BE0 U BE1
UT
ln
IE0 IS0
UT
1、镜像电流源
T0、T1 为对管,UBE0=UBE1=UBE,IB0= IB1= IB
+Vcc
0 = 1= 所以IC0 = IC1= IC= IB 。
IR R
IC1
2IB
镜像电流源, IC1为输出电流。
IC0 T0
T1 IB0 IB1
镜像电流源
基准电流
IR
VCC UBE R
IC 2IB
IC
2
解:
Aod 100dB Aod 105
当集成运放工作在线性区时,输出电压uO=Aod uI; 当Aod uI超过±14V时,uO不是+14V,就是-14V。
故 uI 10V , u0 10106 105 0.1V
uI 100V , u0 100106 105 1V
uI 1mV ,
3、微电流源
+Vcc
IR
IC0 T0
R IB0+IB1
IB0 IB1 IE1
IC1
T1 Re
当 >>1时,T1管集电极电流
IC1
I E1
U BE0 U BE1 Re
uBE Re
△UBE很小,只要几千欧的Re,就可得到微安级的IC1。
UBE0 UBE1 I R E1 e
uBE
I E Ise UT
U BE0 U BE1
UT
ln
IE0 IS0
UT
ln
I E1 IS0
UT
ln
IR I C1
I C1
UT Re
ln
IR I C1
IR
VCC
U BE0 R
4.2.2 改进型电流源电路(考虑β较小的情况)
1、加射极输出器的电流源
T0、T1和T2特性完全相同,因而 0= 1= 2= ,
+Vcc
而由于UBE0=UBE1,IB1= IB0= IB
IR
R
IC0 T0
IB2
T2
IE2
IB0 IB1
IC1 T1
IC1
IC0
IR
IB2
IR
IE2
1
IR
2I B1
1
IR
2IC1
(1 )
加射极输出 器的电流源
IC1 1
IR 2
IR
(1 )
若=10,则代入上式可得IC1≈0.982IR。说明即使 很小,
相关文档
最新文档