直线线段射线特征表
北师大版初一数学上册第四章教师版 基本平面图形(解析版)
北师大版初中数学初一上第四章基本平面图形1线段、射线、直线(1)直线有三个特征:一是直的,二是没有端点,三是向两方无限延伸;(2)射线有三个特征:一是直的,二是有一个端点,三是向一方无限延伸;(3)线段有两个特征:一是直的,二是有两个端点。
(4)直线、射线、线段的表示方法(5)线段、射线、直线的区别与联系2直线的性质(1)直线公理:经过两个点有且只有一条直线。
(两点确定一条直线。
)(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
3线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(两点之间线段最短。
)(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的大小关系和它们的长度的大小关系是一致的。
4线段的中点:点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。
AM = BM =1/2AB (或AB=2AM=2BM)。
5角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。
或:角也可以看成是一条射线绕着它的端点旋转而成的。
6角的四种表示方法①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
7角的度量角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’,1’=60”8角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
苏教版小学四年级上册数学课本全册知识点
苏教版小学四年级上册数学课本全册知识点苏教版学校四班级上册数学课本全册学问点苏教版四班级数学上册课本的学问点详细是什么呢?不如我们一起来探究与学习吧。
下面是我为大家整理的关于苏教版学校四班级数学课本全册学问点,欢迎大家来阅读。
四班级数学上册学问点(苏教版)一、除法1、除数是整十数(商是一位数)如:60÷20、160÷40算法:方法一:想乘法算除法。
如:60÷20由于20×3=60,所以60÷20=3 方法一:利用表内除法计算。
如80÷20由于8÷2=4,所以80÷20=4 方法三:竖式计算。
A、要先推断被除数的前一位数除以除数够不够除(6÷20),不够就退后一位(60÷20)。
B、除到哪一位,商就写在哪一位上面。
(商3就写在个位上)2、除数是整十数(商是两位数)如:420÷30算法:竖式计算:A、要先推断被除数的前一位数除以除数够不够除(4÷30),不够就退后一位(42÷30)。
B、除到哪一位,商就写在哪一位上面。
(写在2上,商得1,余12)C、在第一次除后还有余数,需要和个位上的数合起来连续除。
(12和个位的0合起来即120,连续除。
D、假如有余数,必需比除数小3、三位数除以两位数的笔算(1)。
如:350÷79、192÷32算法:三位数除以两位数,假如除数(79、32)是非整十数,通常看做和它接近的整十数(80、30)试商来计算(然后按上面除数是整十数的计算方法算)。
4、三位数除以两位数的笔算(2)。
如272÷34算法:除数(34)是非整十数,看做和它接近的整十数(30)试商9(也叫初商),发觉9与34的乘积超过被除数272,说明商9大了,就要改小成8,这叫调商,然后再计算。
二、角1、射线、直线、线段定义及特征:,射线:把线段的一端无限延长,就得到一条射线。
4.1、线段、直线、射线
1 线段、射线、直线1.线段、射线、直线的概念(1)线段概念:铅笔、人行横道线和路旁的电线杆都可以近似地看做线段,下图就是一条线段.线段的特征:①线段是直的;②线段有2个端点;③线段的长度是有限的,可度量.线段可以向两方无限延长;线段是没有粗细之分的.(2)射线概念:射线可以看做由线段向一个方向无限延长形成的图形.如图,把线段AB向一个方向无限延伸,就是一条射线.射线的特征:①射线是直的;②射线有一个端点;③因射线向一个方向无限延长,所以射线没有长短,不可测量.射线可以反向延长;射线没有粗细之分.(3)直线概念:直线可以看做由线段向两个方向无限延长形成的.直线的特征:①直线是直的;②直线没有端点;③向两个方向无限延长,没有长短,不可测量.因为直线是线段向两个方向无限延长形成的,所以我们不能说延长某条直线,即直线不能延长.【例1】下列说法正确的有( ).①画一条射线等于5 cm;②线段AB为直线AB的一部分;③在直线、射线、线段中,线段最短;④射线与其反向延长线形成一条直线.A.1个B.2个C.3个D.4个解析:①×射线向一个方向无限延伸,不可度量②√直线上两点间的部分是线段③×直线、射线无长短,不能比较④√将射线反向延长后形成的图形是直线答案:B2.线段、射线、直线的表示方法(1)线段的表示方法①用两个表示端点的大写字母来表示.如图,以A,B为端点的线段,可记作“线段AB”或“线段BA”.②用一个小写字母来表示.如线段AB也可记作“线段a”.(2)射线的表示方法用两个大写字母表示.一条射线可用它的端点和射线上的另一点来表示,如图中的射线,可记作“射线AB”(端点必须在前面).射线的识别:判断两条射线是否是同一条射线,首先看端点是否相同,再看延伸方向是否相同,如果这两点都符合,那么这两条射线是同一条射线.①端点相同,延伸方向也相同的射线是同一条射线,如图射线MB,MC,MN都表示同一条射线.②端点相同,但延伸方向不相同的射线不是同一条射线,如图中射线AB,AC就不是同一条射线.③端点不同的射线不是同一条射线,如图中的射线BN,CN的延伸方向一致,但端点不同,所以不是同一条射线.【例2-1】射线OA,OB表示同一条射线,下面的图形正确的是( ).解析:答案:D(3)直线的表示方法直线有两种表示方法:①可以用表示这条直线上任意两个点的大写字母来表示,注意表示直线上任意两个点的字母没有顺序性.如图甲中的直线可记作“直线AB”或“直线BA”;②可用一个小写字母来表示,如图乙中的直线可记作“直线l”.图甲图乙辨误区、射线、直线的联系①表示线段、射线、直线时,都要在字母前面注明“线段、射线或直线”;②用两个大写字母表示线段和直线时,两个字母没有顺序性,可以交换位置,如“线段BA”和“线段AB”表示同一条线段,“直线AB”和“直线BA”表示同一条直线;③表示射线的两个大写字母有一定的顺序,表示端点的字母必须写在前面.【例2-2】如图所示,下列说法( ).A.都错误B.都正确C.只有一个正确D.有两个正确错解:B错解分析:误以为直线可以用两个小写字母、一个大写字母或者大小写字母混合表示.正解:D正解思路:直线可以用两个大写字母或一个小写字母表示.3.直线的性质(1)经过两点有且只有一条直线.①它包含两层含义:一是“肯定有”,二是“只有一条”,不会有两条、三条……;②它可简单地说成“两点确定一条直线”.(2)直线的其他性质:①经过一点的直线有无数条;②不同的两条直线最多有一个交点.【例3】工人师傅要将一块长条钢板固定在机器上,则至少要用__________个螺钉.解析:根据“两点确定一条直线”可知至少需要2个螺钉.答案:24.射线、线段的计数方法射线和线段可以看做直线的一部分,因此在一条直线上,取一些点时,会出现射线和线段.(1)点数与射线的条数射线向一方无限延伸,因此射线的条数是由端点的个数决定的.在直线上,以一个点为端点的射线有2条,若直线上有n 个点,则共有2n 条射线.(2)点数与线段的条数线段有两个端点,直线上每两个点之间的部分就是一条线段.因此,数线段时,只要判断这些点共有多少种组合即可.析规律 数线段条数的方法确定线段的条数时,可以先固定第一个点为一个端点,再以其余的点为另一个端点组成线段,然后固定第二个点为一个端点,与其余的点(第一个点除外)组成线段……,依此类推,直到找出最后的线段为止.________________________________________________________________________________________________________________ ________________________________________________________ ________________________________________________________________________________________________________________【例4】 画出线段AB :(1)如图(1),在线段AB 上画出1个点,这时图中共有几条线段?(2)如图(2),在线段AB 上画出2个点,这时图中共有几条线段?(3)如图(3),在线段AB 上画出3个点,这时图中共有几条线段?(4)如图(4),在线段AB 上画出n 个点时,猜一猜:图中共有几条线段?解:(1)线段上一共有三个点(线段AB 的两个端点和点C ),以每个点为端点的线段各有2条,这样一共有(2+1)×2=6条线段,因为线段无端点顺序,如线段AB 和线段BA 是同一条线段,这样6条线段重复一半,所以图(1)中共有线段的条数是(1+2)×22=3; (2)在线段上画出2个点,这时图中共有4个点,以每个点为端点的线段各有3条,这样一共有(2+2)×3=12条线段,同样重复一半,这样图(2)中共有线段的条数是(2+2)×32=6;(3)在线段上画出3个点,这时图中共有5个点,以每个点为端点的线段各有4条,这样一共有(2+3)×4=20条线段,同样重复一半,这样图(3)中共有线段的条数是(3+2)×42=10;(4)在线段上画出n 个点,这时图中共有(n +2)个点,以每个点为端点的线段各有(n +1)条,这样一共可画(n +2)·(n +1)条线段,同样重复一半,这样图(4)中共有线段的条数是(n +2)(n +1)2.5.直线性质的应用生活中的很多实际问题要用到直线的性质,如木工师傅在锯木料之前,先在木板上画出两个点,然后过这两个点弹条墨线,就是利用了直线的“两点确定一条直线”的性质,沿着这条线能锯成直的,而不会歪斜.【例5】 建房屋垒墙时,建筑工人都要在墙的两端固定绳子,请利用所学的知识,说明其中道理.分析:利用直线的性质“经过两点有且只有一条直线”进行说明.解:拉紧的绳子可以近似看成一条直线,固定在墙的两端是固定的两点,因为过两点有且只有一条直线,所以这样垒出的墙是直的.6.与直线有关的规律探究(1)两点确定一条直线,在同一平面内,不同的点可以确定不同的直线.当任意三点均不在同一直线上时,点数与直线条数的关系见下表:(2)平面上若有n (n >1)条直线两两相交,则交点个数最多有12n (n -1)个. 【例6】平面上有五个点,过其中任意两点画一条直线,最多能得到多少条直线?请画出另外三种不同情况的图形.分析:五个点有四种不同的关系:①五个点在同一条直线上;②有四个点在同一条直线上;③有三个点在同一条直线上;④五个点中任意三个点都不在同一条直线上.解:当任意三点都不在同一条直线上时,最多有:5×(5-1)×12=10(条),所以最多能得到10条直线.另外三种情况如下图所示.(二)与线段中点有关的问题线段的中点定义:文字语言:若一个点把线段分成相等的两部分,那么这个点叫做线段的中点图形语言:M几何语言: ∵ M 是线段AB 的中点∴ 12AM BM AB ==,22AM BM AB == 典型例题:1.由下列条件一定能得到“P 是线段AB 的中点”的是( D )(A )AP=21AB (B )AB =2PB (C )AP =PB (D )AP =PB=21AB 2.若点B 在直线AC 上,下列表达式:①AC AB 21=;②AB=BC ;③AC=2AB ;④AB+BC=AC . 其中能表示B 是线段AC 的中点的有( A )A .1个B .2个C .3个D .4个3.如果点C 在线段AB 上,下列表达式①AC=12AB;②AB=2BC;③AC=BC;④AC+BC=AB 中, 能表示C 是AB 中点的有( C )NA.1个B.2个C.3个D.4个4.已知线段MN ,P 是MN 的中点,Q 是PN 的中点,R 是MQ 的中点,那么MR = ______ MN . 分析:据题意画出图形 设QN=x ,则PQ=x ,MP=2x ,MQ=3x , 所以,MR=23x ,则83423==x x MN MR 5.如图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN=a ,BC=b ,则线段AD 的长是( )A 2(a-b )B 2a-bC a+bD a-b分析:不妨设CN=ND=x ,AM=MB=y因为MN=MB+BC+CN所以a=x+y+b因为AD=AM+MN+ND所以AD=y+a+x=a-b+a=2a-bD。
直线 射线 线段
直线、射线、线段要点一、直线1.概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始概念,直线常用“一根拉得紧的细线”、“一张纸的折痕”等实际事物进行形象描述.2. 表示方法:(1)可以用直线上的表示两个点的大写英文字母表示,如图1所示,可表示为直线AB(或直线BA).(2)也可以用一个小写英文字母表示,如图2所示,可以表示为直线l.3.基本性质:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.直线的特征:(1)直线没有长短,向两方无限延伸.(2)直线没有粗细.(3)两点确定一条直线.(4)两条直线相交有唯一一个交点4.点与直线的位置关系:(1)点在直线上,如图3所示,点A在直线m上,也可以说:直线m经过点A.(2)点在直线外,如图4,点B在直线n外,也可以说:直线n不经过点B.要点二、线段1.概念:直线上两点和它们之间的部分叫做线段.2.表示方法:(1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作:线段AB 或线段BA .(2)线段也可用一个小写英文字母来表示,如图5所示,记作:线段a .3. “作一条线段等于已知线段”的两种方法:法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC 上截取AB =a .法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线段a 的长度,再画一条等于这个长度的线段.4.基本性质:两点的所有连线中,线段最短.简记为:两点之间,线段最短.如图6所示,在A ,B 两点所连的线中,线段AB 的长度是最短的.要点剖析:(1)线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短. (2)连接两点间的线段的长度,叫做这两点的距离. (3)线段的比较:①度量法:用刻度尺量出两条线段的长度,再比较长短.②叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.5.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如图7所示,点C 是线段AB 的中点,则12AC CB AB ==,或AB =2AC =2BC .要点剖析:若点C 是线段AB 的中点,则点C 一定在线段AB 上图6 图71.概念:直线上一点和它一侧的部分叫射线,这个点叫射线的端点.如图8所示,直线l 上点O 和它一旁的部分是一条射线,点O 是端点.l2.特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长. 3.表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的 任意一点,端点写在前面,如图8所示,可记为射线OA .(2)也可以用一个小写英文字母表示,如图8所示,射线OA 可记为射线l . 要点剖析:(1)端点相同,而延伸方向不同,表示不同的射线.如图9中射线OA ,射线OB 是不同的射线.(2)端点相同且延伸方向也相同的射线,表示同一条射线.如图10中射线OA 、射线OB 、射线OC 都表示同一条射线.要点四、直线、射线、线段的区别与联系1.直线、射线、线段之间的联系(1)射线和线段都是直线上的一部分,即整体与部分的关系.在直线上任取一点,则可将直线分成两条射线;在直线上取两点,则可将直线分为一条线段和四条射线.(2)将射线反向延伸就可得到直线;将线段一方延伸就得到射线;将线段向两方延伸就得到直线.2.三者的区别如下表要点剖析:图8 图9 图10(1)联系与区别可表示如下:(2)在表示直线、射线与线段时,勿忘在字母的前面写上“直线”“射线”“线段”字样.命题点一:计算图形中的直线、射线、线段的条数例1.如图,(1)能用字母表示的直线有_____条,它们是___________________________(2)能用字母表示的线段有_____条,它们是___________________________(3)在直线EF上能用字母表示的射线有_____条,它们是_______________________例2。
北师大版七年级数学第四章----- 基本平面图形
第四章 基本平面图形思维导图形图面平本基⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧=︒⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧︒︒︒︒︒"=''=︒⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧)(36036018090909006016012为扇形的半径为圆心角的度数,π扇形面积:—用扇形所占百分比乘—圆心角的度数相关计算角叫做圆心角圆心角:顶点在圆心的形径所组成的图形叫做扇这条弧的端点的两条半扇形:由一条弧和经过的部分叫做圆弧圆弧:圆上任意两点间点形成的图形点旋转一周,另一个端段绕着它固定的一个端定义:平面上,一条线圆做正多边形各角也相等的多边形叫正多边形:各边相等,两个顶点的线段边形中,连接不相邻的多边形的对角线:在多图形次相连组成的封闭平面一直线上的线段首尾顺定义:由若干条不在同多边形大小比较线射线叫做这个角的平分的角,这条把这个角分成两个相等顶点引出的一条射线,角平分线:从一个角的的角,小于钝角:大于的角直角:等于的角,小于锐角:大于小于平角的角的分类,角的单位换算:希腊字母表示一个阿拉伯数字或一个字母或一个大写字母或表示方法:用三个大写而成的射线绕着它的端点旋转角也可以看成是由一条顶点的公共端点是这个角的的射线组成,两条射线角由两条具有公共端点定义角长短比较之间线段的长度两点之间的距离:两点最短性质:两点之间,线段点段分成两条相等线段的线段的中点:把一条线字母表示表示,也可用一个小写的两个端点的大写字母表示方法:用表示线段看做线段板的边沿都可以近似地定义:绷紧的琴弦、黑线段倒字母写在前面,不能颠字母表示,表示端点的表示方法:用两个大写限延长就形成了射线定义:将线段向一方无射线有一条直线性质:经过两点有且只个小写字母表示意两点的大写字母或一表示方法:用直线上任了直线个方向无限延长就形成定义:将线段向两个两直线扇形R n R n S考点精讲考点一线段、射线、直线线段、射线、直线的概念1.线段:期紧的琴弦、黑板的边沿都可以近似地看做线段.线段有两个特征:一是直的;二是有两个端点.2.射线:将线段向一个方向无限延长就形成了射线.手电筒、探照灯所射出的光线可以近似地看做射线.射线有三个特征:一是直的;二是有一个端点三是向一方无限延伸.3.直线:将线段向两个方向无限延长就形成了直线,直线有三个特征:一是直的;二是没有端点;三是向两方无限延伸.线段、射线、直线的表示方法名称图例表方方法线段用一个小写字母表示,如:线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).射线用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA直线用一个小写字母表示,如:直线l;用直线上的两个大写字母表示,如直线AB(或直线BA).线段、射线、直线的区别与联系名称线段射线直线不同点端点个数2个1个无伸展性不可延长只能向一方无限延长向两方无限延长度量可以度量不可度量不可度量联系将线段向一个方向无限延长就形成了射线,向两个方向无限延长就形成了直线,线段和射线都可以看做直线的一部分共同点都是直的,不是曲的拓展:线段的延长线是有方向的,作延长线时要特别注意表示线段的字母的顺序,以便确定延长的方向.“线段BA”与“线段AB”是同一条线段,但“线段AB的延长线”与“线段BA的延长线”却不是同一条.如图,图中,线段AB的延长线如图(1),线段BA的延长线如图(2).直线的性质1.画直线的常用工具是直尺,经过一点A可以画出无数条直线.2.直线的基本性质:经过两点有且只有一条直线(这一事实可以简述为:两点确定一条直线)线段的性质两点的所有连线中,线段最短.简单说成:两点之间的所有连线中,线段最短.可简称为“两点之间线段最短”两点之间的距离两点之间线段的长度,叫做这两点之间的距离.特别提醒:考点二比较线段的长短(1)线段是一个图形;两点间的距离是指线段的长度,是一个数值.(2)线段的长度可用刻度尺测量.比较两条线段的长短已知线段AB和CD.1.叠合法:把它们放在同一条直线上比较.具体作法如下:画一条直线l,在l上先作出线段AB,再作出线段CD,并使点C与点A重合,点D与点B位于点A的同侧,则:(1)如果点D与点B重合,就说线段AB与线段CD相等,记作AB=CD,如图①所示;(2)如果点D在线段AB内部,就说线段AB大于线段CD,记作AB>CD,如图②所示;(3)如果点D在线段AB外部,就说线段AB小于线段CD,记作AB<CD,如图③所示.2.度量法:先用刻度尺量出线段AB与线段CD的长度,再进行比较.特别提醒:用测量法比较线段的长短时,要采用相同的测量标准,单位要统一.作一条线段等于已知线段如图所示,作图步骤为:(1)作一条射线AB;(2)用圆规量出已知线段的长度(记作a);(3)用圆规在射线AB上截取AC=a.则线段AC就是所求作的线段.线段的中点特别提醒:(1)线段的中点必须在线段上,线段的中点只有一个,三等分点有两个,四等分点有三个.(2)利用线段的中点可以写出线段相等或成倍分关系的等式.(3)若点C是线段AB的中点,则AC=BC;但若AC=BC,则点C不一定是线段AB的中点.角的定义1.角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点,这两条射线叫做角的边.构成角的两个基本条件;一是角的顶点,二是角的边.如图所示,角的顶点是点O,角的边是射线OA,OB.考点三角2.从运动的观点看,角也可以看成是由一条射线绕着它的端点旋转而成的图形.如图所示,∠BAC可以看成是以A为端点的射线,从AB的位置绕点A旋转到AC的位置而成的图形.3.一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角.如图(1)所示,射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所成的角叫做平角:如图(2)所示,射线OA绕它的端点旋转一周所成的角叫做周角.在小学数学中,我们已经知道:1平角=180°,1周角=360°.拓展:平角与直线、周角与射线的区别:平角是一个角,它的始边和终边在同一条直线上,但方向相反;直线是一条线,没有端点,可以向两边无限延长,这是两个不同的概念,不能说“一条直线就是平角”或“平角是一条直线”.同样,周角是始边旋转360°后与终边重合而构成的角,这时构成角的两条边的两条射线重合,同样也不能说“一条射线是周角”或“周角是一条射线”.特别提醒:(1)平角和周角都是“角”,而不是”线”因此不能说“一条直线就是平角”,也不能说“一条射线就是周角.(2)没有特殊说明,我们只讨论大于等于0且小于等于180°的角.角的表示方法角的几何符号是“∠”,角的表示方法有以下几种:图例记法适用范围及注意事项用三个大写字母表示,如∠AOB或∠BOA任何情况都适用,用此方法表示角时,顶点的字母必须写在中间用一个大写字母表示,如∠O以这一点为顶点的角只有一个时才适用用数字1,2,3,…表示,如∠AOB可记作∠1任何情况都适用,用此方法表示角时,要用小弧线表示出角的范围,即从哪边到哪边用小写希腊字母α,β,…表示,如∠BOC可记作∠α任何情况都适用,用此方法表示角时,要用小弧线表示出角的范围,即从哪边到哪边考点三角特别提醒:当以某一点为顶点的角较多时,不能只用表示顶点的大写字母表示角,一般可用数字或希腊字母表示.角的分类小于平角的角可按大小分成三类:当一个角等于平角的一半时,这个角叫直角;大于零度角且小于直角的角叫锐角;大于直角且小于平角的角叫钝角.1周角=2平角=4直角=360°,1平角=2直角=180°,1直角=90°.角的度量及换算1.角的度量单位角的度量单位主要有度、分、秒,符号分别是“°”“′”“″”.把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.以度、分、秒为单位的角的度量制,叫做角度制.此外,还有其他度量角的单位制.2.角度制的换算1周角=360°,1平角=180°,1°=60′,1′=160⎛⎫⎪⎝⎭,1′=60″,1″=160''⎛⎫⎪⎝⎭.3.角的度量方法最常用的量角的工具是量角器.用量角器量角时要注意对中(顶点对中心)、重合(一边与量角器的零刻度线重合)、读数(读出另一边所对的度数)这三点.考点四角的比较角的大小比较名称方法举例度量法用量角器量出两个角的度数,度数大的角大,度数小的角小,度数相等的角相等用量角器量得∠1=50°,∠2=45°,所以∠1>∠2.叠合法把两个角的一条边和顶点叠合在一起,另一条边在叠合边的同侧,通过观察另一条边的位置来比较两个角的大小如果EF与BC重合,如图),那么∠DEF等于∠ABC,记作∠DEF=∠ABC.如果EF落在∠ABC的外部,如图,那么∠DEF大于∠ABC,记作∠DEF>∠ABC.如果EF落在∠ABC的内部,如图,那么∠DEF小于∠ABC,记作∠DEF<∠ABC.注意:(1)角的大小与角的两边的长短、粗细无关,只与角的两边张开的程度有关;考点四角的比较(2)角的大小一旦确定,它的大小就不因图形的位置,图形的放大或缩小而改变.特别提醒:(1)比较角的大小时,有时也可用估测法,即直接通过观察的方法,比较角的大小.此方法较为直观,但不够准确,适用于角度差别较大或精确度要求不高的角的大小的比较.(2)“测量法”中角的大小关系和角的度数大小关系是一致的,是从“数的方面”来比较角的大小.“叠合法”中比较角的大小时,一定要使两个角的顶点及一边重合,将角的另一边落在重合的边的同侧,这是从“形”的方面来比较角的大小.两者比较大小的结果是一致的.角的平分线定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图所示,如图所示,射线OC是∠BOA的平分线,则∠BOC=∠COA=21∠BOA,∠BOA=2∠BOC=2∠C0A.特别提醒:(1)角的平分线是一条射线,不是线段,也不是直线.(2)若OC是∠AOB的平分线,则OC必然在∠AOB的内部.考点五多边形和圆的初步认识多边形的有关概念1.多边形:由若干条不在同一直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形.三角形、四边形、五边形、六边形等都是多边形,组成多边形的各条线段叫做多边形的边,相邻两条边的公共端点叫做多边形的顶点,相邻两条边所组成的角叫做多边形的内角,简称多边形的角.特别提醒:多边形的特征:①多边形是平面图形,要和立体图形区分开;②多边形是由不在同一直线上的线段组成的封闭图形;③组成多边形的各条线段首尾顺次相连.2.多边形的对角线:在多边形中,连接不相邻两个顶点的线段叫做多边形的对角线. 拓展:从n边形每一个顶点都能引出(n-3)条对角线,共有n个顶点,但每条对角线都重复计算了一次,从而对角线共有2)3(nn条.正多边形各边相等,各角也相等的多边形叫做正多边形.如图所示的多边形分别是正三角形、正四边形(正方形)、正五边形、正六边形、正八边形.拓展:多边形可分为凸多边形和凹多边形,如没有特别说明,本书所说的多边形都是指凸多边形,即多边形总在任何一条边所在直线的同一侧,凸多边形的每个内角都小于180°.圆、圆弧、扇形、圆心角的概念1.平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O称为圆心,线段OA称为半径(如图所示)2.圆上任意两点A ,B 间的部分叫做圆弧,简称弧,记作.读作圆弧AB 或“弧AB ”(现阶段一般研究小于半圆的弧)3.由一条弧AB 和经过这条弧的端点的两条半径OA ,OB 所组成的图形叫做扇形;顶点在圆心的角叫做圆心角.如图所示的阴影部分就是扇形AOB .∠AOB 就是圆中的一个圆心角,∠AOB 也可记作∠1.特别提醒:圆心和半径是确定一个圆的两个必须条件.圆心确定圆的位置,半径确定圆的大小,二者缺一不可.圆心角的度数(1)一个圆可以分割成若干个扇形,这些扇形的面积的和等于圆的面积(2)因为一个周角为360°,所以分成的几个扇形的圆心角的度数之和=360,每一个扇形圆心角的度数=360°×(每一个扇形圆心角占周角的百分比)拓展:半径为R 的圆,其面积S =πR 2,将圆等分为360个小扇形,则每个圆心角为1°的小扇形的面积是3602R π,所以圆心角为n 的扇形的面是3602R n π.。
《直线、射线、线段》PPT课件
做A、B两点的距离
A
B
连接两点间的线段的长度,叫做这两点的距离.
想一想 绿地里本没有路,为什么大家都喜欢走捷径呢?
两点之间,线段最短.
想一想 公园里设计了曲折迂回的桥,这样做对游人观赏湖面 风光有什么影响?
两点之间,线段最短. 曲折迂回的桥增加了游人在桥上行走的路程, 便于游人欣赏风光.
典型例题
第四章 几何图形初步
4.2 直线、射线、线段
第2课时
学习目标
直
1. 会用尺规作图画一条线段等于已知线段,会比较两条线段的长短.
线
射
2. 理解线段等分点的意义.
线
3. 体会文字语言、符号语言和图形语言的相互转化.
线
4. 培养学生对几何图形的兴趣,提高学习几何的积极性.
段
情境引入 做手工时,在没有刻度尺的条件下,若想从较长的木棍上截 下一段,使其等于短木棒,我们常采用以下办法.
A
C
O DB
解:因为 C,D 分别是线段 OA,OB 的中点,
所以 OC=1 AO,OD= 1 BO.
所以
2
1
CD=OC+OD= 2
2 (OA+OB)=
1 2AB=
1 2
×
4=2.
随堂练习 估计下列图中线段AB与线段AC的大小关系,再检验你的估计.
刻度尺: AB<AC
随堂练习 估计下列图中线段AB与线段AC的大小关系,再检验你的估计.
探究
线段和射线都是直线的一部分,类比直线的表示方法, 线段和射线又如何表示呢?
图形
a
A
B
表示方法
线段a 线段AB 线段BA
l
O
A
线段直线和射线
射线BA,端点为B,由B A 无限延伸
向方展伸
A
B
伸展方向
直线: 把线段向两方无限延伸 所形成的图形,就叫做直线.
-2
-1
0
1
2
直线的特征:
直的,没有端点, 向两方无限延伸,无法度量长度。
直线表示方法:
(1) 用表示直线上的两个点的大写字母表示: 直线AB或直线BA A B (2) 用一个小写字母表示: l
直线 l
你知道吗?
一天淘气和笑笑聊天,淘气说: “我画了一条2厘米长的直线,4厘米长 的射线,6厘米长的线段。”笑笑就忍不 住捧腹大笑,你知道笑笑为什么笑吗?
直线、线段和射线有什么相同和不同之处呢? 小组讨论一下,把你们的发现填在表格中。
图形 相同点 端点个数 延长情况
线段
都 是 直 直 的 线 2
第三单元
第一课
线段 直线 射线
有只虫子从一个山洞到另一个山洞寻找食物, 有五条路可走,可是走哪一条路最短呢?可怜的 小虫子犯愁了,谁能帮帮它呢?
1 起点 2 4 5
3
终点
两点之间线段最短
线段的特征:
直的;有两个端点;能量出它的长度。
线段表示方法:
A
B
用表示端点的两个大写字母表示: 线段AB或线段BA。
数一数:
下图中一共有( 6)条线段, (1 )条直线,( 8)条射线。
画一画,说一说
多少条 射线 1.从一点出发可以画无数条 无数条直线 2.经过一点可以画 多少条 可以画多少条直线 3.经过两点 只能画一条直线
像手电筒、汽车灯和太阳等射出来的光线, 都可以近似地看成是射线。
想一想:射线有哪些特点呢?
人教版四年级线和角知识点归纳、练习题
一、线段、直线和射线1、线段(1)线段的特征:线段是直的,有两个端点,不能向两端延伸,可以量出长度画线段时,两端必须画出端点(2)线段的表示方法用两个大写字母表示线段的两个端点,在用这两个大写字母来表示线段如:2、直线(1)直线的特征:直线没有端点,可以向两端无限延伸,不能量出长度(2)直线的表示方法:直线可以用两个大写字母表示,也可以用一个小写字母表示如:3.射线(1)射线的特征:射线只有一个端点,只能向一端无限延伸,不能量出长度(2)射线的表示方法:射线可以用表示端点的大写字母和表示射线上另一个点的大写字母表示如:4.线段、直线、射线之间的联系和区别5.经过指定点画射线和直线(1)从一点出发画射线(2)经过一点画直线(3)经过两点画直线二、角1.角的定义从一点引出两条射线所组成的图形叫做角。
这个点叫做角的顶点,这两条射线叫做角的边。
如:2.角的表示方法角通常用符号“∠”表示练习:1.填空(1)从一点引出两条________所组成的图形叫做角(2)直线有_______个端点,线段有________个端点,直线有________个端点(3)下面图形中,______是直线,______是射线,________是线段2.判断(1)射线长35米()(2)线段是直线的一部分()(3)角的两边是直线()(4)射线比直线短()(5)经过两点可以画无数条直线()3.当一条直线上有5个点时,共能组成多少条线段?有10个点呢?有30个点呢?4.从甲市到乙市的铁路沿线上共有8个站点(包括起点和终点),铁路局要准备多少种不同的车票才能满足甲市到乙市途中所有乘客的需求?三、角的度量1.用量角器度量角度用量角器度量角的度数四、平角和周角1.平角(1)定义:一条射线绕它的端点旋转半周,形成的角叫做平角(2)度数:1平角=_____°2.周角(1)定义:一条射线绕它的端点旋转一周,形成的角叫做周角(2)度数:1周角=______°3.平角和周角的画法五、各类角之间的关系1.列表比较名称锐角直角钝角平角周角图形度数定义小于____°的角叫做锐角等于___°的角叫做直角大于___°而小于___°的角叫做锐角一条射线绕它的端点旋转半周,形成的角一条射线绕它的端点旋转一周,形成的角2.明确各种角的关系锐角直角钝角平角周角1周角=2平角=4直角练习:1.判断(1)一条射线就是一个周角()(2)平角的度数是直角的2倍,是周角的一半()(3)所有的锐角都比直角小()(4)两个锐角和一定抑郁直角()(5)一条直角就是一个平角()2. 3:15时,时针和分针的夹角是______°3.比平角小91°的角是______角4.钝角度数的一半是_______角5.求下面各图中未知角的度数6.下面三幅图都是有一副三角尺拼成的,∠1,∠2,∠3的度数分别是多少?7.如下图所示,∠1=∠2=∠3,如果途中所有角的度数和是180°,那么∠AOB是多少度?。
2021七年级数学 考点01 图形的认识(1)(线段、射线、直线)
考点01 图形的认识(1)(线段、射线、直线)知识框架⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩直线相关概念线段相关概念射线相关概念直线、射线、线段的区别与联系直线、射线、线段基本概念直线、射线、线段的实际生活中的应用作图问题利用线段解决计数问题与线段有关的计算问题实际背景下的计算问题分类讨论思想在计算中的运用线段中的动态基础知识点重难问点题型题基础知识点知识点1-1直线相关概念1.概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始概念,直线常用“一根拉得紧的细线”、“一张纸的折痕”等实际事物进行形象描述.2. 表示方法:(1)可以用直线上的表示两个点的大写英文字母表示,如图1所示,可表示为直线AB (或直线BA ).(2)也可以用一个小写英文字母表示,如图2所示,可以表示为直线l .3.基本性质:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线. 直线的特征:(1)直线没有长短,向两方无限延伸.(2)直线没有粗细.(3)两点确定一条直线.(4)两条直线相交有唯一一个交点.4.点与直线的位置关系:(1)点在直线上,如图3所示,点A 在直线m 上,也可以说:直线m 经过点A .(2)点在直线外,如图4,点B 在直线n 外,也可以说:直线n 不经过点B .1.(2021·浙江)木工师傅用刨子可将木板刨平,如图,经过刨平的木板上的两个点,而且只能弹出一条墨线,其数学原理为___________.2.(2021·浙江浙江省·七年级期末)若两直线相交,最多1个交点;三条直线相交最多有3个交点;四条直线相交最多有6个交点,像这样的十条直线相交最多的交点个数为()A.36个B.45个C.50个D.55个3.(2021·广西覃塘区·七年级期末)平面上有6个点,其中任意3个点都不在同一条直线上,若经过每两点画一条直线,则一共可以画出的直线条数是________.4.(2021·偃师市实验中学初一月考)按下所语句画图:点M在直线a上,也在直线b上,但不在直线c上,直线a,b,c两两相交,下图中正确的是()A.B.C.D.5.(2020·浙江杭州市·七年级期末)如图,棋盘上有黑、白两色棋子若干,如果在一条至少有两颗棋子的直线(包括图中没有画出的直线)上只有颜色相同的棋子,我们就称“同棋共线”.图中“同棋共线”的线共有()A.12条B.10条C.8条D.3条6.(2021·绵阳市七年级课时练习)观察下列图形,阅读下面相关文字并填空:(1)在同一平面内,两条直线相交最多有1个交点,3条直线相交最多有______个交点,4条直线相交最多有______个交点,……,像这样,8条直线相交最多有______个交点,n条直线相交最多有______个交点:(2)在同一平面内,1条直线把平面分成2部分,两条直线最多把平面分成4部分,3条直线最多把平面分成______部分,4条直线最多把平面分成______部分,……,像这样,8条直线最多把平面分成______部分,n条直线最多把平面分成______部分.知识点1-2线段相关概念1.概念:直线上两点和它们之间的部分叫做线段.2.表示方法:(1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作:线段AB或线段BA.(2)线段也可用一个小写英文字母来表示,如图5所示,记作:线段a.3. “作一条线段等于已知线段”的两种方法:法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.法二:用刻度尺作一条线段等于已知线段.例:可以先量出线段a的长度,再画一条等于这个长度的线段.4.基本性质:两点的所有连线中,线段最短.简记为:两点之间,线段最短.如图所示,在A,B两点所连的线中,线段AB的长度是最短的.注:(1)线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.(2)连接两点间的线段的长度,叫做这两点的距离.(3)线段的比较:①度量法:用刻度尺量出两条线段的长度,再比较长短.①叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.5.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如图所示,点C是线段AB的中点,则12AC CB AB==,或AB=2AC=2BC.若点C是线段AB的中点,则点C一定在线段AB上.1.(2021·黑龙江齐齐哈尔市·)A,B两点间的距离是指()A .过A ,B 两点间的直线 B .连接A ,B 两点间的线段C .直线AB 的长D .连接A ,B 两点间的线段的长度2.(2021·浙江台州市·中考真题)小光准备从A 地去往B 地,打开导航、显示两地距离为37.7km ,但导航提供的三条可选路线长却分别为45km ,50km ,51km (如图).能解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C .三角形两边之和大于第三边D .两点确定一条直线3.(2021·浙江衢州市·七年级期末)如图,根据“两点之间线段最短”,可以判定AC +BC ___AB (填“>”“<”或“=”).4.(2021·浙江衢州市·七年级期末)杭衢高铁线上,要保证衢州、金华、义乌、诸暨、杭州每两个城市之间都有高铁可乘,需要印制不同的火车票( )A .20种B .15种C .10种D .5种5.(2021·浙江浙江省·七年级期末)如图,已知A B C D E 、、、、五点在同一直线上,点D 是线段AB 的中点,点E 是线段BC 的中点,若线段12AC =,则线段DE 等于( )A .6B .7C .8D .96.(2021·浙江浙江省·)已知 A B C 、、三点在同一条直线上,且线段4cm,6cm AB BC ==,点D E 、分别是线段AB BC 、的中点点F 是线段DE 的中点,则BF =_______cm . 7.(2021·浙江浙江省·七年级期中)如图,点M 为线段AB 的中点,C 为线段MB 上的任意一点(不与点M ,B 重合).在同一直线上有一点N ,若1223CN AC <<,则( )A .点N 不能在射线AP 上B .点N 不能在线段AM 上C .点N 不能在线段MB 上D .点N 不能在射线BQ 上8.(2021·杭州市公益中学七年级月考)已知点C 在线段AB 上,AC =2BC ,点D 、E 在直线AB 上,点D 在点E 的左侧,(1)若AB=18,DE=8,线段DE在线段AB上移动,①如图1,当E为BC中点时,求AD的长;①当点C是线段DE的三等分点时,求AD的长;(2)若AB=2DE,线段DE在直线上移动,且满足关系式32AD ECBE+=,则CDAB=.9.(2021·广东光明区·)定义:数轴上的三点,如果其中一个点与近点距离是它与远点距离的12,则称该点是其他两个点的“倍分点”.例如数轴上点A,B,C所表示的数分别为﹣1,0,2,满足AB=12BC,此时点B是点A,C的“倍分点”.已知点A,B,C,M,N在数轴上所表示的数如图所示.(1)A,B,C三点中,点是点M,N的“倍分点”;(2)若数轴上点M是点D,A的“倍分点”,则点D对应的数有个,分别是;(3)若数轴上点N是点P,M的“倍分点”,且点P在点N的右侧,求此时点P表示的数.知识点1-3射线相关概念1.概念:直线上一点和它一侧的部分叫射线,这个点叫射线的端点.如图所示,直线l上点O和它一旁的部分是一条射线,点O是端点.l2.特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长.3.表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意一点,端点写在前面,如图8所示,可记为射线OA.(2)也可以用一个小写英文字母表示,如图8所示,射线OA可记为射线l.注:(1)端点相同,而延伸方向不同,表示不同的射线.如图中射线OA,射线OB是不同的射线.(2)端点相同且延伸方向也相同的射线,表示同一条射线.如图中射线OA、射线OB、射线OC都表示同一条射线.1.(2021·山西祁县·)日常生活中,手电筒发射出来的光线,类似于几何中的()A.折线B.直线C.射线D.线段2.(2021·全国七年级课时练习)图中的直线a、射线b、线段c可以相交的是()A.B.C.D.3.(2021·贵州贵阳市·七年级期末)如图,下面语句中不正确的是()A.直线OA和直线AB是同一条直线B.射线OA和射线OB是同一条射线C.线段AB和线段BA是同一条线段D.射线OA和射线AB是同一条射线4.(2021·江西余干县·七年级期末)如图,下列说法正确的是()A.图中有两条线段B.图中共有6条射线C.射线AB与射线BC是同一射线D.直线AC与直线BC不同5.(2021·河北丰宁满族自治县·)下列说法中正确的是()A.画一条2厘米长的射线B.画一条2厘米长的直线C.画一条3厘米长的线段D.在线段、射线、直线中,直线最长知识点1-4直线、射线、线段的区别与联系1.直线、射线、线段之间的联系(1)射线和线段都是直线上的一部分,即整体与部分的关系.在直线上任取一点,则可将直线分成两条射线;在直线上取两点,则可将直线分为一条线段和四条射线.(2)将射线反向延伸就可得到直线;将线段一方延伸就得到射线;将线段向两方延伸就得到直线.2.三者的区别如下表注:(1) 联系与区别可表示如下:(2)在表示直线、射线与线段时,勿忘在字母的前面写上“直线”“射线”“线段”字样. 1.(2021·全国九年级专题练习)下列有关直线、射线、线段的说法,错误的是( ) A .直线没有端点 B .两点确定一条直线 C .射线是直线的一半长 D .两点之间线段最短2.(2021·吉林吉林市·七年级期末)下列说法正确的是( )A .直线AB 与直线BA 不是同一条直线 B .射线AB 与射线BA 是同一条射线C .延长线段AB 和延长线段BA 的含义一样D .经过两点有一条直线,并且只有一条直线 3.(2021·湖南涟源市·七年级期末)如图,下列语句描述正确的是( )A .点O 在直线AB 上B .点B 是直线AB 的一个端点C .点O 在射线AB 上D .射线AO 和射线OA 是同一条射线 4.(2021·北京交通大学附属中学七年级期末)下列说法错误的是( )A .直线AB 和直线BA 是同一条直线 B .若线段5AB =,3AC =,则BC 不可能是1 C .画一条5厘米长的线段D .若线段2AM =,2BM =,则M 为线段AB 的中点5.(2021·浙江杭州市·)已知线段10MN cm =,现有一点P 满足20PM PN cm +=.有下列说法;①点P必在线段MN上;①点P必在直线MN外;①点P必在直线MN上;①点P可能在直线MN上;①点P可能在直线MN外,其中正确的说法是()A.①①B.①①C.①①D.①①①6.(2020·河北省初一期末)已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上重难点题型题型1 直线、射线、线段基本概念解题技巧:熟练掌握直线、射线、线段基本性质和概念。
图形的认识与测量
=0.75(cm)
答:容器中的水面下降了0.75 cm.
提示:圆锥的体积等于这个底面周长是25.12cm,告示水面下降厘米数的圆柱的体积。
例7:把一根长1m,底面直径是2dm的圆柱形钢材截成4段,表面积增加了多少?
分析:此题是对立图形切割中表面积变化规律知识灵活运用能力的考查。把钢材截成4段,是将圆柱平行于底面截(4-1)次,而每次都要增加两个底面的面积。
例1:5个相同的正方形重叠起来,连接点正好是正方形的中心(如下图)。正方形的边长是3cm,这个图形的周长是多少厘米?
分析:此题是对正方形周长公式灵活应用能力的考查。在两侧完整的正方形相邻的边长上各取中点A、A′、B、B′,得知AC+ A′C=BD+ B′D=3cm,这样5个小正方形露在外面的边就都各剩下2个3cm了。
4、三角形、平行四边形、梯形和圆的面积计算。
5、长方体、正方体、圆柱的体积计算和表面积计算,圆柱的表面积及其应用。
6、圆锥的体积计算及其应用,等底等高圆柱和圆锥的体积关系。
知识与导学:
一、平面图形的认识
知识点一:直线、射线、线段
(1)直线、射线、线段的意义。
(2)直线、射线、线段的特征
知识点二:垂线与平行线
×3.14×22- ×(2×2)×2+「 ×(2×2+6)×2- ×3.14×22」
=6.28-4+「10-6.28」
=6(cm2)
方法二:解答:将阴影部分割补如图1或图2,使计算简化。
(2×2+6)×2÷2-2×2×2÷2「2+(6-2)」×2÷2
=10-4 =6×2÷2
=6(cm2)=6(cm2)
想求一共需要的水泥数,要用每平方米需要水泥6kg乘抹水泥的面积,而抹睡你的面积=游泳池前、后面的面积+左、右面的面积+底面的面积。求这个游泳池最多可装水多少立方米就是求这个游泳池的容积。
直线射线线段知识点讲解以及例题解析
直线条数
2
1=S2=
3
3=S3=
4
6=S4=
5
10=S5=
……
……
n
Sn=
从表中我们可以推断出,平面上有n个点(n≥2),且任意三个点不在同一直线上,这些点一共可作出条直线。
解:平面上有n个点(n≥2),且任意三个点不在同一直线上,这些点一共可作出条直线。
评析:归纳猜想是这类题型的解决思路,多看几种情况,要善于发现规律并正确地进行归纳猜想。
分析:我们可以从简单的入手,当有两个点时,可作出1条直线;当有3个点时,可以作出3条直线;当有4个点时(如图所示)过其中任何一点都有3条直线,共有4×3=12条,但是因为直线AB与BA、AC与CA、AD与DA……分别是同一条直线,说明每一条直线重复一次,所以实际只能画出直线共×4×3=6条;考查点的个数n和可作的直线条数Sn,它们之间的关系如下表:
(1)延长直线AB()
(2)直线AB与直线BA不是同一条直线()
(3)直线AB上有A点()
(4)直线AB与直线l不可能是同一条直线()
分析:(1)直线本身是向两方无限延伸的,因此不用延长。
(2)用两个大写字母表示直线时与字母的顺序无关。
(3)直线AB上一定有点A,即点A在直线AB上。
(4)直线既可用大写字母AB表示又可用小写字母l表示。
例3.如图所示,平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画出确定蓄水池H点的位置,使它与四个村庄的距离之和最小。
分析:根据两点之间线段最短,所求点必在线段AD上,也必在线段BC上,即为AD、BC的交点。
解:根据两点之间线段最短,可连结AD、BC且交于一点H,则点H即为所求。
6.2.1直线、射线、线段-(课件)人教版(2024)数学七年级上册
(1)画射线CD;
(2)画直线AD;
(3)连接AB;
(4)画线段BD 与直线AC 相交于点O.
感悟新知
解题秘方:紧扣直线、射线、线段的概念画图. 解:(1)(2)(3)(4)如图6 .2-8 所示.
知3-练
感悟新知
5-1. 如图,在平面内有A,B,C 三点.
知3-练
(1)画直线AC、线段BC、射线AB;
综合应用创新
一条直线把平面分成2 部分, 两条直线把平面分成2 +2 =4 部分, 三条直线把平面分成2 +2 +3=7 部分, 四条直线把平面分成2 +2 +3+4 =11 部分, 五条直线把平面分成2 +2 +3+4 +5 =16 部分… 依此可得,n条直线把平面分成2+2+3+4+5+… +n=
解题秘方:紧扣直线的定义、 表示方法以及与点的位置关系 进行解答.
知1-练
感悟新知
知1-练
(1)点B 在直线AD___上____,点C 在直线AD ____外___ ; (2)点E 是直线_A__F_(_或__A_E__或__E_F__) __与直线_C_D_(_或__D__E_或__C_E__)
感悟新知
知1-练
例 2 平面内有三个点,过其中任意两点画直线,一共可 以画几条直线?画图加以说明. 解题秘方:紧扣“直线的基本事实”,根据三点的 位置情况,逐一画出图形.
感悟新知
解:当三点在同一直线上时,可以画一条直线,如 图6.2 -3 ①; 当三点不在同一直线上时,可以画三条直线,如图 6.2 -3 ② .
知2-讲
图示
感悟新知
特别提醒
知2-讲
1.不论用大写字母还是小写字母表示射线,都必须标明
“射线××”.
2.由于射线可以向一个方向无限延伸,因此射线没有延长
北师大版初一(上)数学讲义第四章:基本平面图形
第四章:基本平面图形◆4.1 线段、射线、直线1.线段、射线、直线的概念(1)线段概念:铅笔、人行横道线和路旁的电线杆都可以近似地看做线段,下图就是一条线段.线段的特征:①线段是直的;②线段有2个端点;③线段的长度是有限的,可度量.线段可以向两方无限延长;线段是没有粗细之分的.(2)射线概念:射线可以看做由线段向一个方向无限延长形成的图形.如图,把线段AB向一个方向无限延伸,就是一条射线.射线的特征:①射线是直的;②射线有一个端点;③因射线向一个方向无限延长,所以射线没有长短,不可测量.射线可以反向延长;射线没有粗细之分.(3)直线概念:直线可以看做由线段向两个方向无限延长形成的.直线的特征:①直线是直的;②直线没有端点;③向两个方向无限延长,没有长短,不可测量.因为直线是线段向两个方向无限延长形成的,所以我们不能说延长某条直线,即直线不能延长.【例1】下列说法正确的有( ).①画一条射线等于5 cm;②线段AB为直线AB的一部分;③在直线、射线、线段中,线段最短;④射线与其反向延长线形成一条直线.A.1个B.2个C.3个D.4个2.线段、射线、直线的表示方法(1)线段的表示方法①用两个表示端点的大写字母来表示.如图,以A,B为端点的线段,可记作“线段AB”或“线段BA”.②用一个小写字母来表示.如线段AB也可记作“线段a”.(2)射线的表示方法用两个大写字母表示.一条射线可用它的端点和射线上的另一点来表示,如图中的射线,可记作“射线AB”(端点必须在前面).射线的识别:判断两条射线是否是同一条射线,首先看端点是否相同,再看延伸方向是否相同,如果这两点都符合,那么这两条射线是同一条射线.①端点相同,延伸方向也相同的射线是同一条射线,如图射线MB,MC,MN都表示同一条射线.②端点相同,但延伸方向不相同的射线不是同一条射线,如图中射线AB,AC就不是同一条射线.③端点不同的射线不是同一条射线,如图中的射线BN,CN的延伸方向一致,但端点不同,所以不是同一条射线.【例2-1】射线OA,OB表示同一条射线,下面的图形正确的是( ).(3)直线的表示方法直线有两种表示方法:①可以用表示这条直线上任意两个点的大写字母来表示,注意表示直线上任意两个点的字母没有顺序性.如图甲中的直线可记作“直线AB”或“直线BA”;②可用一个小写字母来表示,如图乙中的直线可记作“直线l”.图甲图乙辨误区线段、射线、直线的联系①表示线段、射线、直线时,都要在字母前面注明“线段、射线或直线”;②用两个大写字母表示线段和直线时,两个字母没有顺序性,可以交换位置,如“线段BA”和“线段AB”表示同一条线段,“直线AB”和“直线BA”表示同一条直线;③表示射线的两个大写字母有一定的顺序,表示端点的字母必须写在前面.【例2-2】如图所示,下列说法( ).A.都错误 B.都正确C.只有一个正确D.有两个正确3.直线的性质(1)经过两点有且只有一条直线.①它包含两层含义:一是“肯定有”,二是“只有一条”,不会有两条、三条……;②它可简单地说成“两点确定一条直线”.(2)直线的其他性质:①经过一点的直线有无数条;②不同的两条直线最多有一个交点.【例3】工人师傅要将一块长条钢板固定在机器上,则至少要用__________个螺钉.4.射线、线段的计数方法射线和线段可以看做直线的一部分,因此在一条直线上,取一些点时,会出现射线和线段.(1)点数与射线的条数射线向一方无限延伸,因此射线的条数是由端点的个数决定的.在直线上,以一个点为端点的射线有2条,若直线上有n个点,则共有2n条射线.(2)点数与线段的条数线段有两个端点,直线上每两个点之间的部分就是一条线段.因此,数线段时,只要判断这些点共有多少种组合即可.析规律数线段条数的方法确定线段的条数时,可以先固定第一个点为一个端点,再以其余的点为另一个端点组成线段,然后固定第二个点为一个端点,与其余的点(第一个点除外)组成线段……,依此类推,直到找出最后的线段为止.【例4】画出线段AB:(1)如图(1),在线段AB上画出1个点,这时图中共有几条线段?(2)如图(2),在线段AB上画出2个点,这时图中共有几条线段?(3)如图(3),在线段AB上画出3个点,这时图中共有几条线段?(4)如图(4),在线段AB上画出n个点时,猜一猜:图中共有几条线段?5.直线性质的应用生活中的很多实际问题要用到直线的性质,如木工师傅在锯木料之前,先在木板上画出两个点,然后过这两个点弹条墨线,就是利用了直线的“两点确定一条直线”的性质,沿着这条线能锯成直的,而不会歪斜.【例5】建房屋垒墙时,建筑工人都要在墙的两端固定绳子,请利用所学的知识,说明其中道理.6.与直线有关的规律探究 (1)两点确定一条直线,在同一平面内,不同的点可以确定不同的直线.当任意三点均不在同一直线上时,点数与直线条数的关系见下表:点的个数 最多直线条数2 13 3 46 … …n (n >1) n (n -1)2(2)平面上若有n (n >1)条直线两两相交,则交点个数最多有12n (n -1)个.【例6】平面上有五个点,过其中任意两点画一条直线,最多能得到多少条直线?请画出另外三种不同情 况的图形.………………………………………………………………………………………………………………………◆4.2比较线段的长短1.线段的性质(1)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
四年级上册数学课件-4.1线和角:线-线段.射线和直线 ▎冀教版(2014秋)(共19张PPT)
否
(2)总结线段、直线和射线的特点。
(课件出示歌谣:直线、射线和线段,为人正直腰不弯。直 线本领大,身体无限长;射线向一方,也是无限长;线段最 乖巧,只在两点之间跑。)
(3)火眼金睛:完成33页“试一试”。
(这一环节,先让学生讨论交流,总结线段、直线和射线有 什么共同点和不同点,整理成形象直观的表格,再用充满童 趣的歌谣进行深化,既再次激起学生的兴趣,又强化了学生
3、认识射线。
(1)启发想象:把线段的一端无限延伸会怎么样?(学生 想象交流)教师画图展示,说明:这样的线我们就叫做射线。
(2)看看射线长得什么样?(直直的,只有一个端点,向 一方延伸,不能度量)
(3)你能说说生活中还有哪些可以近似地看作射线吗? (学生举例,教师用课件展示,如:太阳照射的光线,手电 筒射出的光线,枪的弹道,探照灯光,等等)
学习指南一
直观认识线段有两个端点;在认识线段 的基础上再认识直线和射线。教学直线 时,采用的是想象、描述相结合的方式 (即先想象把一条线段向两端无限延伸 会怎么样?再描述“把一条线段向两端 无限延伸就得到一条直线” )
学习指南二
教学射线时,采用的是想象、描述、举 例相结合的方式进行(即先想象把一条 线段向一端无限延伸会怎么样?再描述 “把一条线段向一个方向无限延伸就得 到一条射线” 最后举出探照灯射出的光 线、太阳射出的光线,帮助学生强化对 射线的认识。)
总之,整节课始终坚持以学生为课堂活动的主体,密 切结合学生的生活实际,时时处处注意激发学生的学 习兴趣,相信,能够比较圆满地完成了教学任务。
在深入学习新课标精神,透彻理 解教材编写意图的基础上,结合 四年级学生的认知特点,我确定 本节课的教学目标如下:
线段和角
3. 线段 (1)线段的概念:直线上的两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。 (2)两点间的距离:连结两点的线段的长度叫做这两点的距离。 (3)线段公理:所有连接两点的线中,线段最短,即两点之间线段最短。 (4)线段的表示方法:如图 1,用两个大写字母表示,记做线段 AB 或线段 BA;如图 2,用一个小写 字母表示,记做线段 a。
图8
3.在同一条公路旁,住着五个人,他们在同一家公司上班,如图 9,不妨设这五个人的家分别住在点 ABDEF 位置,公司在 C 点,若 AB=4km,BC=2km,CD=3km,DE=3km,EF=1km,他们全部乘出租车上班,车费单位报 销.出租车收费标准是: 起步价 3 元(3km 以内,包括 3km) , 以后每千米 1.5 元(不足 1km, 以 1km 计算) , 每辆车能容纳 3 人. (1)若他们分别乘出租车去上班,公司在支付车费多少元? (2)如果你是公司经理,你对他们有没有什么建议?
例 2:反向延长一线段 BA 到 C,使 BC = DC 的中点 E 和 A 点之间的距离。
2 1 AB ,延长 BA 到 D,使 DA AB ,已知 DC = 6cm,求线段 3 3
例 3:已知点 C 是线段 AB 上一点,M 是线段 BC 的中点,可以有 AM =
1 ( AB AC ) 的结论吗?为什么? 2
(5)两条直线相交的意义:当两条不同的直线有一个公共点时,我们称这两条直线相交,这个公共 点叫做它们的交点。如图所示,可以说:直线 a、b 相交于点 O。此时直线 a、b 只有一个公共点。 2. 射线 (1)射线的概念:直线上的一点和它一旁的部分叫做射线,这个点叫做射线的端点。 (2) 射线的表示方法: 用射线的端点和射线上任一点来表示, 如图 1 中的射线记做射线 OA 或射线 l。 注意:①表示端点的字母一定要写在前面,使字母的顺序与射线延伸的方向一致,如图 1 射线 OA 不能表 示成射线 AO;②同一条射线是指射线的端点相同,而延伸方向也相同的射线。如图 2,射线 OA 与射线 OB 表示同一条射线; ③两条不同射线是指端点不同的射线,或者是指端点相同但延伸方向不同的射线,如图 2 中,射线 OB 与 射线 AB 不是同一射线。