直角三角形全等的判定(HL)

合集下载

直角三角形全等的判定(HL)课件2021-2022学年北师大版八年级数学下册

直角三角形全等的判定(HL)课件2021-2022学年北师大版八年级数学下册

双基巩固
练习2:如图,点B、E、C、F在同一直线上, AC⊥BF,DF⊥AF,AB=DE,BE=CF . 求证:(1)AC=DF,(2)AB∥DE.
A
D
B
CE
F
练习2:如图,点B、E、 C、F在同一直线上, AC⊥BF,DF⊥AF,AB=DE,BE=CF . 求证:(1)AC=DF,(2)AB∥DE.
分析:要证AB∥DE,需证∠ABC=∠DEF,
只要证△ABC≌△DEF, 由AC⊥BF,DF⊥AF, BE=CF , B E 可得∠ACB=∠DFE=90°BC=EF , 又AB=DE,根据“HL”可证ABC≌△DEF. 请你将证明过程规范化写出来。
AD CF
练习2:如图,点B、E、 C、F在同一直线上,
求证:AC=DC。
E
证明:∵△BCE为等腰直角三角形,
A
∴∠BCA=∠ECD=90°,BC=EC,
∵在Rt△BCA与Rt△ECD中
BA ED
BC EC
∴Rt△BCA≌Rt△ECD
(HL).B
C
D
∴AC=CD.
问1:△ACD是什么特殊三角形? △ACD是等腰直角三角形.
问2:若将“BA=ED”与“AC=DC”互换,结论成立吗?
SSS
B. AB=DE, AC=DF,∠A=∠D SAS
C. AB=DE, AC=DF,∠B=∠E SSA D. AB=DE,∠A=∠D,∠B=∠E ASA
A
D(D)
E
F
B
C
(E)
探究新知
当AC、DF分别变为与BC、EF分别垂直(即两边 分别相等及其中一组等边所对的角为直角时)
A
D
B
CCE

直角三角形的全等判定方法hl

直角三角形的全等判定方法hl

直角三角形的全等判定方法hl
具体来说,假设有两个直角三角形ABC和DEF,其中∠BAC =
∠EDF = 90°。

如果这两个三角形满足以下条件:
1. 三角形ABC和DEF的斜边AB和DE相等,即AB = DE;
2. 三角形ABC和DEF的高BC和EF相等,即BC = EF。

那么根据直角三角形的全等判定方法hl,可以得出三角形ABC
和DEF是全等的。

这种全等判定方法hl的原理是基于直角三角形的性质和全等三
角形的定义。

直角三角形的斜边和高可以唯一确定一个直角三角形,因此当两个直角三角形的斜边和高分别相等时,这两个三角形就是
全等的。

需要注意的是,这种判定方法只适用于直角三角形,对于一般
的三角形,需要使用其他的全等判定方法,如SSS、SAS、ASA等。

综上所述,直角三角形的全等判定方法hl是利用斜边和高来判
定两个直角三角形是否全等,通过对斜边和高的相等性进行比较来判断三角形的全等关系。

12.2 直角三角形全等的判定(HL)

12.2 直角三角形全等的判定(HL)

12.2 直角三角形全等的判定(HL)一、内容和内容解析(一)内容直角三角形全等的判定:“斜边、直角边”.(二)内容解析本课是在学习了全等三角形的四个判定方法(“边边边”、“边角边”、“角边角”、“角角边”)的基础上,进一步探索两个直角三角形全等的判定方法.直角三角形是三角形中的一类,判定两个直角三角形全等,可以用已学过的所有全等三角形的判定方法,但两个直角三角形中已有一对直角是相等的,因此在判定两个直角三角形全等时,只需另外找到两个条件即可,由于直角三角形的这种特殊性,判定两个直角三角形全等的方法又有别于其它的三角形.教科书首先给出一个“思考”,让学生认识到判定两个直角三角形全等与判定两个普通三角形全等的不同之处.然后通过探究5的作图实验操作,让学生经历探究满足斜边和一条直角边分别相等的两个直角三角形是否全等的过程,然后在学生总结探究出的规律的基础上,直接以定理的方式给出“斜边、直角边”判定方法.最后,教科书给出一个例题,让学生在具体问题中运用“斜边、直角边”证明两个直三角形全等,并得到对应边相等.基于以上分析,本节课的重点是:“斜边、直角边”判定方法的运用.二、目标及目标解析(一)目标1.理解“斜边、直角边”能判定两个直角三角形全等.2.能运用“斜边、直角边”证明两个直角三角形全等,并得到对应边、对应角相等.(二)目标解析1.学生经历探索两个直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.2.学生能从具体的问题中找出符合“斜边、直角边”条件的两个直角三角形,并能证明这两个直角三角形全等.三、教学问题诊断分析由于直角三角形是特殊的三角形,它具备一般三角形所没有的特殊性质.例如,对一般三角形来说,已知两边和其中一边的对角分别相等,不能判定两个三角形全等,而对于直角三角形来说,已知斜边和一直角边分别相等,能够得到两个直角三角形全等.直角三角形的斜边和一直角边确定了,根据勾股定理,得到第三边也是确定的,从而可以利用“边边边”或“边角边”证明满足斜边和一条直角边分别相等的两个直角三角形全等.但是勾股定理是后面学习的内容,在这里不能运用勾股定理来证明这个结论,只能通过实验操作、观察得出定理.基于以上分析本节课的难点是:“斜边、直角边”判定方法的理解.四、教学过程设计引言前面我们学习了全等三角形的四个判定方法(“边边边”“边角边”“角边角”“角角边”),本节课我们继续研究两个直角三角形全等的判定方法.问题1:对于两个直角三角形,除了直角相等的条件外,还要满足哪几个条件,这两个直角三角形就全等了?两个直角三角形满足的条件:两条直角边分别相等(SAS);一个锐角和一条直角边分别相等“ASA”或(AAS);一个锐角和斜边分别相等(AAS)追问:如果满足斜边和一条直角边分别相等,这两个直角三角形全等吗?师生活动:师生共同得出上面的三个判定方法,学生思考猜想:满足斜边和一条直角边分别相等的两个直角三角形是否全等.设计意图:直接进入本节课学习的内容,培养学生分类讨论的思想.让学生大胆提出猜想.1.探索新知问题1 如图,舞台背景的形状是两个直角三角形,为了美观,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)如果用直尺和量角器两种工具,你能解决这个问题吗?(2)如果只用直尺,你能解决这个问题吗?问题2 画一个与已知直角三角形纸板全等的Rt △ABC ,有∠C =90°,再画一个Rt △DEF ,使∠F=90°,EF=BC ,DE=AB ,然后把已知直角三角形纸板放在画好的Rt △DEF 上,你发现了什么?2.归纳概括“HL ”判定方法和 分别相等的两个直角三角形全等(简写为“斜边、直角边”或“HL ”).注意:前提条件是 。

12.2第4课时直角三角形全等的判定(HL)

12.2第4课时直角三角形全等的判定(HL)

第4课时 直角三角形全等的判定(HL)
2.如图 12-2-45 所示,P 是∠BAC 内一点,且点 P 到 AB,AC 的距离 PE,PF 相等,则直接得到 Rt△PEA≌Rt△PFA 的依据是( C )
A.AAS C.HL
B.ASA D.SSS
图 12-2-45
第4课时 直角三角形全等的判定(HL)
(1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30°,求∠ACF 的度数.
图 12-2-56
第4课时 直角三角形全等的判定(HL)
解:(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°. 在 Rt△ABE 和 Rt△CBF 中,AAEB= =CCFB, , ∴Rt△ABE≌Rt△CBF(HL). (2)∵∠ABC=90°,AB=CB,∴∠BAC=45° ∵∠CAE=30°,∴∠BAE=∠BAC-∠CAE=45°-30°=15°. 由(1)知 Rt△ABE≌Rt△CBF, ∴∠BCF=∠BAE=15°, ∴∠ACF=∠BCF+∠ACB=15°+45°=60°.
第4课时 直角三角形全等的判定(HL)
14.如图 12-2-57,已知 AD,AF 分别是两个钝角三角形 ABC 和 ABE 的高,如果 AD=AF,AC=AE.求证:BC=BE.
图 12-2-57
第4课时 直角三角形全等的判定(HL)
证明:∵AD,AF 分别是两个钝角三角形 ABC 和 ABE 的高, ∴∠ADC=∠AFE=90°. 在 Rt△ADC 和 Rt△AFE 中,AACD= =AAEF, , ∴Rt△ADC≌Rt△AFE(HL),∴CD=EF. 在 Rt△ABD 和 Rt△ABF 中,AABD= =AABF, ,∴Rt△ABD≌Rt△ABF(HL), ∴BD=BF,∴BD-CD=BF-EF, 即 BC=BE.

12.2.4直角三角形全等的判定(HL)教案

12.2.4直角三角形全等的判定(HL)教案
-能够运用全等三角形的知识解决实际几何问题。
举例:在教学过程中,教师应重点讲解HL判定法的原理和运用步骤,通过示例演示和练习题,让学生熟练掌握这一判定方法。同时,强调直角三角形全等在解决几何问题中的重要性,如计算边长、角度等。
2.教学难点
-理解HL判定法背后的逻辑关系,尤其是斜边和直角边对应关系;
-在复杂图形中识别并运用HL判定法;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直角三角形全等判定HL的基本概念。HL是指当两个直角三角形的斜边和直角边分别相等时,这两个三角形全等。这一判定方法是解决几何问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例中直角三角形全等的判定过程,了解HL在实际中的应用,以及它如何帮助我们解决问题。
-解决与直角三角形全等相关的综合问题。
举例:
a)难点突破:教师应详细解释HL判定法中斜边和直角边对应关系,通过直观图示和实际操作,让学生理解全等的条件。例如,可以设计对比实验,让学生比较全等和不全等的直角三角形,从中感悟到对应边的重要性。
b)识别运用:针对复杂图形,教师应引导学生如何从众多信息中提取关键直角三角形的边角关系,并应用HL判定法。例如,可以给出一些包含多个直角三角形的图形,让学生识别哪些部分可以用HL判定法证明全等。
3.重点难点解析:在讲授过程中,我会特别强调斜边和直角边相等这一判定条件和其在解决问题中的应用。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与直角三角形全等相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用模型或教具演示HL判定法的基本原理。

三角形全等的判定HL

三角形全等的判定HL

B
“HL”判定方法的运用
变式1 如图,AC⊥BC,BD⊥AD,要证△ABC ≌△BAD,需要添加一个什么条件?请说明理由. AD = BC ( 1) ( HL); ( 2) AC = BD ( HL); D C
(3) ∠DAB = ∠CBA (AAS ); (4) ∠DBA = ∠CAB (AAS ). A
B
课堂练习
练习1 如图,C 是路段AB 的中点,两人从C 同时 出发,以相同的速度两地.DA⊥AB,EB⊥ A AB. D,E 与路段AB的距离 相等吗?为什么? C
E B
课堂练习
练习2 如图,AB =CD,AE⊥BC,DF⊥BC,垂 足分别为E ,F,CE =BF.求证:AE =DF.
C
D
F
E
A
B
课堂小结
(1)“HL”判定方法应满足什么条件?与之前所学 的四种判定方法有什么不同? (2)判定两个直角三角形全等有哪些方法?
12.2 三角形全等的判定 (第4课时)-HL
A
Rt△ABC,∠C =90°, Rt△A'B'C',∠C'=90°
C
A'
B
C'
B'
归纳概括“HL”判定方法
斜边和一条直角边分别相等的两个直角三角形全 等(简写为“斜边、直角边”或“HL”). A
几何语言: ∵ 在Rt△ABC 和 Rt△A'B'C'中, C AB =A'B', A' BC =B'C', ∴ Rt△ABC ≌ Rt△A'B'C'(HL) . C'
B
B'
“HL”判定方法的运用
例1 如图,AC⊥BC,BD⊥AD,AC =BD.求证: BC =AD.
证明:∵ AC⊥BC,BD⊥AD, D ∴ ∠C =∠D =90° 在Rt△ABC 和 Rt△BAD 中, AB =BA, A AC =BD, ∴ Rt△ABC ≌ Rt△BAD(HL). ∴ BC =AD(全等三角形对应边相等). C

直角三角形全等的判定(HL)(分层作业)(解析版)docx

 直角三角形全等的判定(HL)(分层作业)(解析版)docx

12.2.4直角三角形全等的判定(HL)夯实基础篇一、单选题:1.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,下列条件中不能判定Rt△ABC≌Rt△A′B′C′的是()A.AC=A′C′,∠B=∠B′B.∠A=∠A′,∠B=∠B′C.AB=A′B′,AC=A′C′D.AB=A′B′,∠A=∠A′【答案】B【知识点】直角三角形全等的判定(HL)【解析】【解答】解:A、根据全等三角形的判定定理AAS可以判定△ABC≌△A′B′C′.故本选项不符合题意;B、根据AAA不能判定Rt△ABC≌Rt△A′B′C′.故本选项符合题意;C、根据全等三角形的判定定理可以判定Rt△ABC≌Rt△A′B′C′.故本选项不符合题意;D、根据全等三角形的判定定理AAS可以判定Rt△ABC≌Rt△A′B′C′.故本选项不符合题意;故选B.【分析】根据三角形全等的判定方法,SSS、SAS、ASA、AAS,HL等逐一检验.2.下面说法不正确的是()A.有一角和一边对应相等的两个直角三角形全等B.有两边对应相等的两个直角三角形全等C.有两角对应相等的两个直角三角形全等D.有两角和一边对应相等的两个直角三角形全等【答案】C【知识点】直角三角形全等的判定(HL)【解析】【解答】A、∵直角三角形的斜边和一锐角对应相等,所以另一锐角必然相等,∴符合ASA定理,不符合题意;B、两边对应相等的两个直角三角形全等,若是两条直角边,可以根据SAS判定全等,若是直角边与斜边,可根据HL判定全等.不符合题意;C、有两个锐角相等的两个直角三角形相似,符合题意;D、有一直角边和一锐角对应相等的两个直角三角形符合ASA定理,可判定相等,不符合题意.故答案为:C【分析】直角三角形中已经有一个直角对应相等,需要它们全等的话,只需要再有一个角和一组边对应相等,利用AAS或者ASA判断出它们全等;或者只需要两组边对应相等,利用HL或者SAS就可判定出它们全等;根据判定方法即可一一判断出答案。

三角形全等的判定第4课时用“HL”判定直角三角形全等课件(共23张PPT)

三角形全等的判定第4课时用“HL”判定直角三角形全等课件(共23张PPT)

12.2.4 用“HL”判定直角三角形全等
随堂练习
1.如图,AB = CD,AE⊥BC,DF⊥BC,垂足分别为 E,F,CE = BF. 求证:(1) AE = DF. 分析: CE - EF = BF - EF. 即 CF = BE
Rt△ABE≌Rt△DCF ( HL )
12.2.4 用“HL”判定直角三角形全等
12.2.4 用“HL”判定直角三角形全等
课堂小结
内容
斜边和一条直角边分别相等的两个直角三 角形全等( “斜边、直角边”或“HL”).
用“HL”判定 直角三角形全等
前提条件 在直角三角形中
使用方法
只须找除直角外的两个条件即可 (两个条件中至少有一个条件是一组对 应边相等)
12.2.4 用“HL”判定直角三角形全等
针对训练 1.如图,C 是路段 AB 的中点,两人从 C 同时出发,以相同的速度分别 沿两条直线行走,并同时到达 D,E 两地. DA⊥AB,EB⊥AB. D,E 与 路段 AB 的距离相等吗?为什么?
分析: CA = CB, CD = CE, ∠A =∠B = 90°.
12.2.4 用“HL”判定直角三角形全等
②当 P 运动到与 C 点重合时,AP=AC. 在 Rt△ABC 与 Rt△PQA 中,
AB=PQ, AC=PA, ∴ Rt△ABC≌Rt△PQA (HL). ∴ AP=AC=10 cm. 综上, 当 AP=5 cm 或 10 cm 时,△ABC 才能和△APQ 全等.
12.2.4 用“HL”判定直角三角形全等
用符号语言表达: 在 Rt△ABC 与 Rt△A'B'C' 中,∠C=∠C'=90°
AB = A'B' ∵

北师大版 八年级数学下册1.2直角三角形 直角三角形全等的判定(HL)-讲练课件-(共28张PPT)

北师大版 八年级数学下册1.2直角三角形 直角三角形全等的判定(HL)-讲练课件-(共28张PPT)
到△AOB≌△COD,理由是( A )
A.HL
B.SAS
C.ASA
D.SSS
2.如图,在△ABC中,∠C=90°,AD=AC,DE⊥AB于点D.若
∠B=28°,则∠AEC=( B )
A.28°
B.59°
C.60°
D.62°
3.如图,在△ABC中,∠BAC=90°,ED⊥BC于点D,AB=
BD,若AC=8,DE=3,则EC的长为 5 .
B.AB=AB
C.∠ABC=∠ABD
D.∠BAC=∠BAD
3.如图,在△ABC中,∠C=90°,ED⊥AB于点D,BD=BC,若
AC=6 cm,则AE+DE等于( C )
A.4 cm
B.5 cm
C.6 cm
D.7 cm
4.如图,AC⊥AB,AC⊥CD,要使得△ABC≌△CDA.
( 1 )若以“SAS”为依据,需添加的一个条件为 AB=CD ;
6.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ
=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当
AP= 5或10 时,△ABC和△PQA全等.
7.【教材P35复习题T13变式】如图,AC⊥BC,AD⊥BD,垂足分别
为点C,D,AD=BC,CE⊥AB,DF⊥AB,垂足分别是点E,F.求证:
= ,
∴Rt△ABC≌Rt△BAD(HL).
∴∠ABC=∠BAD.
3.如图,△ABC和△DEF为直角三角形,∠ABC=∠DEF=90°,边
BC,EF在同一条直线上,斜边AC,DF交于点G,且BF=CE,AC=DF.
求证:GF=GC.
证明:∵BF=CE,∴BF+FC=CE+FC.∴BC=EF.

12.2 第4课时 直角三角形全等的判定(“HL”)

12.2 第4课时 直角三角形全等的判定(“HL”)

知识点二 直角三角形全等的判定方法 判定:斜边和___一_条_直__角_边____分别相等的两个直角三角形全等( 可 以 [注简意写] 可成用“斜“S边S、S”直“角S边A”S或”“H“LA”S)A.”“AAS”来判定直角三 角形全等,还可用“HL”来判定.
已知:如图12-2-18所示,AB⊥CF于点B,AD⊥CE于点D,
且AB=AD,DE=BF.求证:AF=AE.
证明:在 Rt△ABF 和 Rt△ADE 中,
AB=AD,

BF=DE, ∴Rt△ABF≌Rt△ADE(HL),
∴AF=AE.
图12-2-18
上面的推理过程正确吗?如果不正确,说明错在哪里,并写出正
确的推理过程.
解:不正确,错用了“HL”. 证明:∵AB⊥CF,AD⊥CE,∴∠ABF=∠ADE=90°.
第十二章 全等三角形
12.2 三角形全等的判定
第十二章 全等三角形
第4课时 直角三角形全等的 判定(“HL”)
目标突破 总结反思
目标突破
目标一 用“HL”判定直角三角形全等
例1 教材例5针对训练 已知:如图12-2-16,在四边形 ACBD中,∠C=∠D=90°,BC=BD. 求证:AC=AD.
图12-2-16
证明:连接பைடு நூலகம்AB.
AB=AB, 在 Rt△ABC 和 Rt△ABD 中,
BC=BD, ∴Rt△ABC≌Rt△ABD(HL). ∴AC=AD.
【归纳总结】“HL”只适用于判定两个直角三角形全等,不适用 于判定两个一般三角形全等.
目标二 综合运用不同方法证明直角三角形全等
找第三边→SSS
(2)已知两角找 找夹 一边 角→ 的A对S边A→AAS

直角三角形全等判定(HL)

直角三角形全等判定(HL)
B
Rt△ABP≌Rt△DEQ
AB=DE,AP=DQ
E
P D
C
Q
F
证明:∵AP、DQ是△ABC和△DEF的高 ∴∠APB=∠DQE=90° 在Rt△ABP和Rt△DEQ中 AB=DE AP=DQ
B ∴Rt△ABP≌Rt△DEQ (HL) ∴ ∠B=∠E (全等三角形的对应角相等) 在△ABC和△DEF中 ∠BAC=∠EDF AB=DE ∠B=∠E (已证) E ∴△ABC≌△DEF (ASA)
∴ Rt△ABC≌Rt△BAD (HL) A
AB BA(公共边 ) BC AD
B
例3
已知:如图,在△ABC和△DEF中,AP、DQ分别是高, 并且AB=DE,AP=DQ,∠BAC=∠EDF, 求证:△ABC≌△DEF A
分析: △ABC≌△DEF ∠BAC=∠EDF, AB=DE,∠B=∠E
4.在两个三角形中,如果有三条 边对应相等,那么这两个三角形 全等(简记为S.S.S)
一般三角形全等的判定方法
1.在两个三角形中,如果有两个角及它们的夹边 对应相等,那么这两个三角形全等(简记为A.S.A) 2.在两个三角形中,如果有两个角及其中一个角的对 边对应相等,那么这两个三角形全等(简记为A.A.S) 3.在两个三角形中,如果有两条边及它们的夹角对 应相等,那么这两个三角形全等(简记为S.A.S) 4.在两个三角形中,如果有三条边对应相等,那么 这两个三角形全等(简记为S.S.S)
2:在射线CM上截取CA=8cm;
3:以A为圆心,10cm为半径画弧,交射线CN于B; 4:连结AB;
N B
ቤተ መጻሕፍቲ ባይዱ
△ABC即为所要画的三角形
M
A
C
动动手 做一做 比比看

直角三角形(2)全等的判定hl

直角三角形(2)全等的判定hl
回味无穷
• 勾股定理: 如果直角三角形两直角边分别为a、b,斜边为 c,那么a2+b2=c2.即直角三角形两直角边的平 方和等于斜边的平方.. • 勾股定理的逆定理: 如果三角形两边的平方和等于第三边平方, 那 么这个三角形是直角三角形.
命题与逆命题
在两个命题中,如果一个命题的条件和结论分 别是另一个命题的结论和条件,那么这两个命题 称为互逆命题,其中一个命题称为另一个命题的 逆命题. 一个命题是真命题,它逆命题是真命题还是假 命题?
定理与逆定理
一个命题是真命题,它逆命题却不一定是真命题.
一个定理的逆命题是真命题还是假命题?,
如果一个定理的逆命题经过证明是真命题,那么它 是一个定理,这两个定理称为互逆定理,其中一个 定理称另一个定理的逆定理.
想一想:
互逆命题与互逆定理有何关系?
练习:1判断
1每个命题都有逆命题.
2每个定理都有逆命题.
7两角对应相等,且有一条公共边两个直角三角形 全等.
回味无穷
• 直角三角形全等的判定定理:

定理:HL.
公理:SSS. SAS ASA
推论:AAS.
• 综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个直角三角形全等;
切记!!!命题:两边及其中一边的对角对应
B M P
E B'
C N D F
4 1 3 2
A
△AEF是等边三角形
勾股定理应用:
D 1 A' C
如图,折叠矩形纸片ABCD.先折 对角线BD,再使AD与DB重合得 折痕DG ,AB=2,BC=1,求AG的长.
1
A

数学人教版八年级上册直角三角形全等的判断(HL)

数学人教版八年级上册直角三角形全等的判断(HL)

结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
证:△EBC≌△DCB.
A
证明: ∵ BD⊥AC,CE⊥AB,
∴∠BEC=∠BDC=90 °. 在 Rt△EBC 和Rt△DCB 中,
CE=BD,
E
D
BC=CB .
∴ Rt△EBC≌Rt△DCB (HL). B
C
3.如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF.求证:BF=DE.
证明: ∵ BF⊥AC,DE⊥AC,
当堂练习
1. 如图,∠B=∠D=90°,要证明△ABC 与△ADC全等,
还需要补充的条件是
(写出一个即可).
A
答案: AB=AD 或 BC=DC
B
D 或 ∠BAC=∠DAC 或 ∠ACB=∠ACD.
C 注意 一定要注意直角三角形不是只能用HL证明全等,但 HL只能用于证明直角三角形的全等.
2.如图 在△ABC中,已知BD⊥AC,CE ⊥AB,BD=CE.求
第十二章 全等三角形
直角三角形的判定
导入新课
复习引入
1.全等三角形的性质: 对应角相等,对应边相等. 2.判别两个三角形全等的方法:
SSS
SAS ASA
AAS
3. AAA
60° 60° 60° 60°
SSA A
B
D
C
讲授新课
任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A ′B ′C ′ 使 ∠C′=90 °,B′C′=BC,A ′B ′=AB,把画好的Rt△A′B′ C′ 剪下来,放 到Rt△ABC上,它们全等吗?

《三角形全等判定(四)HL》课件 2022年人教版省一等奖PPT

《三角形全等判定(四)HL》课件 2022年人教版省一等奖PPT

N
B
MA
C
动动手 做一做 比比看
把我们刚画好的直角三角形剪下来,和同桌的比比看, 这些直角三角形有怎样的关系呢?
B
5cm
B′
5cm
A
4cm
C
A′
4cm
C′
Rt△ABC≌ R△ tA′ B′ C′
斜边、直角边公理
有斜边和一条直角边对应相等的两个直角三角形全等.
条件1 条件2
简写成“斜边、直角边〞或“HL〞
全等 (AAS)
判断: 满足以下条件的两个三角形是否全等?为什么?
2.一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形. 全等 ( ASA)
判断: 满足以下条件的两个三角形是否全等?为什么?
3.两直角边对应相等的两个直角三角形.
全等 ( SAS)
判断: 满足以下条件的两个三角形是否全等?为什么?
斜边、直角边公理 (HL)
有斜边和一条直角边对应相等的两个直角三角形全等.
条件1 条件2
B
∵∠C=∠C′=90°
∴在Rt△ABC和Rt△ABC中 A
C
AB=AB BC=BC
B′
∴Rt△ABC≌R△ tA′ B′ C′ (HLA)′
C′
判断: 满足以下条件的两个三角形是否全等?为什么?
1.一个锐角及这个锐角的对边对应相等的两个直角三角形.
30°50° ③两边:
2cm 4cm
30°
30°
可以发现按这 些条件画的三 30° 50° 角形都不能保 证一定全等。
2cm 4cm
先任意画出一个△ABC再画一个△DEF,使
AB=DE,BC=EF,AC=DF.把画好的△ABC剪下来,放到△DEF上,

直角三角形全等的判定(HL)

直角三角形全等的判定(HL)

B'
“HL”判定方法的运用
如图,AC=AD,∠C,∠D是直角,
求证: BC=BD
C
A
B
D
“HL”判定方法的运用
例1 如图,AC⊥BC,BD⊥AD,AC =BD.求证: BC =AD.
证明:∵ AC⊥BC,BD⊥AD, D ∴ ∠C 和∠D 都是直角. 在Rt△ABC 和 Rt△BAD 中, AB =BA, A AC =BD, ∴ Rt△ABC ≌ Rt△BAD(HL). ∴ BC =AD(全等三角形对应边相等). C
课堂练习
课本 练习1、2
课堂小结
(1)“HL”判定方法应满足什么条件?与之前所学 的四种判定方法有什么不同? (2)判定两个直角三角形全等有哪些方法?
布置作业
教科书44页 习题12.2第6、7、8题.
B
“HL”判定方法的运用
例2 如图,有两个长度相同的滑梯,左边滑梯的 高度AC 与右边滑梯水平方向的长度DF 相等,两个滑梯 的倾斜角∠ABC 和∠DFE 的大小有什么关系?为什么?
“HL”判定方法的运用
证明:根据题意得: ∠CAB 和∠FDE 都是直角. 在Rt△ABC 和 Rt△DEF 中, BC =EF, AC =DF, ∴ Rt△ABC ≌ Rt△DEF(HL). ∴ ∠ABC =∠DEF ∵ ∠DEF +∠DFE =90°, ∴ ∠ABC +∠DFE =90°.
A
B
C
实验操作探索“HL”判定方法
画法:
(1) 画∠MC'N =90°; (2)在射线C'M上取B'C'=BC; (3) 以B'为圆心,AB为半径画弧, 交射线C' N于点A'; (4)连接A'B'. 现象:两个直角三角形能重合. 说明:这两个直角三角形全等.

直角三角形全等判定HL

直角三角形全等判定HL

如图,AC⊥BC,BD⊥AD,垂足分别为C,D, AC=BD,求证BC=AD.
D C
A
B
2. 如图,AC=AD,∠C,∠D是直角,将上述 条件标注在图中,你能说明BC与BD相等吗?
C 解:在Rt△ACB和Rt△ADB中,则
AB=AB,
A B AC=AD. ∴ Rt△ACB≌Rt△ADB (HL). ∴BC=BD D (全等三角形对应边相等).
如图,舞台背景的形状是两个直角三角形,工作人员 想知道这两个直角三角形是否全等,但每个三角形都 有一条直角边被花盆遮住无法测量.
(1)你能帮他想个办法吗?
方法一:测量斜边和一个对应的锐角. (AAS) 方法二:测量没遮住的一条直角边和一个对应的锐角. (ASA)或(AAS)
如图,舞台背景的形状是两个直角三角形,工作人员 想知道这两个直角三角形是否全等,但每个三角形都 有一条直角边被花盆遮住无法测量.
直角三角形是特殊的三角形,所以不仅有一般三角形判定 全等的方法,还有直角三角形特有的判定方法“HL”. 判断直角 三角形全 等条件 三边对应相等 SSS 一锐角和它的邻边对应相等 ASA 一锐角和它的对边对应相等 AAS 两直角边对应相等 SAS 斜边和一条直角边对应相等 HL
我们应根据具体问题的实际情况选择判断两个直角三角 形全等的方法.
把下列说明Rt△ABC≌Rt△DEF的条件或根据补充完整. A AC=DF (1) _______,∠A=∠D ( ASA )
BC=EF (SAS) (2) AC=DF,________ (3) AB=DE,BC=EF ( HL ) AB=DE ( HL ) (4) AC=DF, ______ (5) ∠A=∠D, BC=EF ( AAS) B=∠E (6) ∠ ________,AC=DF ( A这个任务吗? 工作人员测量了每个三角形没有被 遮住的直角边和斜边,发现它们分别对 应相等,于是他就肯定“两个直角三角 形是全等的”.你相信他的结论吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S.A.S.
A.S.A.
A.A.S.
S.S.S.
直角三角 形全等的 S.A.S. 判定
A.S.A.
A.A.S.
H.L.
思考
1. 任意两直角边相等的两个直角三角形全等吗? 全等. SAS 2. 任意两对应边相等的两个直角三角形全等吗? 全等. SAS 或 HL 3.任意两边相等的两个直角三角形全等吗? 不一定全等
B B`
A
C
A`
C`
动动手 画一画
画一个Rt△ABC, 使∠C=90°, 一直角边
CA=4cm, 斜边AB=5cm.
1:画线段CA=4cm; 2:画∠ACN=90°;
把你画的三角形与 邻座同学对照一下 你有什么发现?
N B B
3:以A为圆心,5cm为半径画弧, 交射线CN于B;
4:连结AB;
AA
4cm 4cm
任意两个三角形取3组对应的元素,如果有 边角边 或 角边角 或 角角边 或 边边边 分 别对应相等,那么这两个三角形一定全等。
A A'


B'
C'
如果是 角角角 或 边边角 也对应相等,但不能
判断这两个三角形全等。
那么在两个直角三角形中,当斜边和一条直角 边分别对应相等时,也具有“边边角”对应相等 的条件,此时这两个直角三角形能否全等?
课本练习
1. 如图,在△ABC中,D为BC的中点,DE⊥AB, DF⊥AC, 点E、F为垂足, DE=DF, A 求证:△BED≌△CFD.
E F D
B
C
课本练习
2. 如图,AC=AD,∠C=∠D=90º ,
求证:BC=BD.
A
C
D
B
思考
一般三角形全等的判定方法都适用于直角三角形吗?
一般三角 形全等的 判定
C C
Hale Waihona Puke △ABC即为所要画的三角形
斜边、直角边定理 你发现了什么?
斜边和一条直角边分别相等的两个直角 三角形全等. 简写为 H.L.或(斜边直角边)
B
5cm 5cm
B`
A
4cm
C
A`
4cm
C`
Rt△ABC ≌ Rt△A`B`C`
斜边、直角边定理 (H.L.)推理格式
B B′
A
C
A′
C′
在Rt△ABC和Rt△A′B′C′中 AB=A′B′ BC=B′C′ ∴Rt△ABC≌Rt△A′B′C′(HL)
请说出判定直角三角形全等的方法:
SAS,ASA,AAS,HL.
课外 作业
P76
习题13.2 第6题
例7 如图,已知: AC=BD,∠C=∠D=90°,
求证: Rt△ABC≌Rt△BAD. 证明: ∵∠C=∠D=90°(已知) ∴ △ABC与△BAD都是直角三角形
在Rt△ABC与Rt△BAD中. ∵ AC=BD (已知) AB=BA (公共边)
A B D C
∴ Rt△ABC≌Rt△BAD ( H.L. )
相关文档
最新文档