空间插值算法汇总

合集下载

空间插值方法对比整理版

空间插值方法对比整理版

• 由于建立在统计学的基础上,因此不仅可 以产生预测曲面,而且可以产生误差和不 确定性曲面,用来评估预测结果的好坏
• 多种 kriging 方法
a
9
3、精确插值和近似插值
• 精确插值:产生通过所有观测点的曲面。
• 在精确插值中,插值点落在观测点上,内插值等 于估计值。
• 近似插值:插值产生的曲面不通过所有观测 点。
a
11
插值方法选择的原则
① 精确性:
② 参数的敏感性:许多的插值方法都涉及到一个或多个参数, 如距离反比法中距离的阶数等。有些方法对参数的选择相当 敏感,而有些方法对变量值敏感。后者对不同的数据集会有 截然不同的插值结果。希望找到对参数的波动相对稳定,其 值不过多地依赖变量值的插值方法。
③ 耗时:一般情况下,计算时间不是很重要,除非特别费时。
空间插值 Spatial Interpolation
• 空间插值的概念 • 空间插值的类型 • 空间插值的方法
a
1
空间插值概念
空间插值——空间插值常用于将离散点的测量数据转换为连 续的数据曲面,以便与其它空间现象的分布模式进行比较, 它包括了空间内插和外推两种算法。空间内插算法:通过已 知点的数据推求同一区域未知点数据。空间外推算法:通过 已知区域的数据,推求其它区域数据。
• 典型例子是:全局趋势面分析 、Fourier Series (周期序列)
a
4
局部内插法
➢ 局部内插法只使用邻近的数据点来估计未知点的值,步骤如 下: • 定义一个邻域或搜索范围; • 搜索落在此邻域范围的数据点; • 选择能表达这有限个点空间变化的数学函数; • 为未知的数据点赋值。
➢ 局部内插方法: • 样条函数插值法 • 距离倒数插值 • Kriging插值(空间自由协方差最佳内插)

空间插值

空间插值
20
图15.10 距离倒数平方 法生成的年平均降水量 曲面。
21
图15.11 距离倒数平方法 生成的等雨量线图。
22
薄板样条函数( Thin-Plate Splines)
薄板样条函数生成一个通过控制点的表面,并使所有点连接形成的所 有坡面的斜度变化最小(Franke 1982)。也就是说,薄板样条函数基于生 成最小曲率的面来拟合控制点。
图15.3 0号站点的未知值由其周围具有已知值的5个站点插值。
10
图15.4 由三阶趋势面模型生成的等值线 图(图中点符号表示位于爱达荷州内的 已知点)。
11
局部拟合法
局部拟合法用一组已知点的样本来估算未知值,确定用于 估算的已知点个数和已知点选择是很重要的。
12
图15.5 搜索样本点的三种方法:(a)找到与估算点最邻近的点; (b)以半径搜索点;(c)用象限搜索点。
4
图15.1 爱达荷州及其周边的 175个气象站地图。
5
空间插值的类型
1. 空间插值方法可分成全局和局部拟合法。 2. 空间插值方法可分成精确的和不精确的。 3. 空间插值方法可分成确定的和随机的。
6
表15.1 空间插值方法的分类
整体拟合法
局部拟合法
确定性 随机性
确定性
随机性
趋势面*
回归
泰森 密度估算 距离倒数权重 薄板样条
假设不存在漂移,普通克里金法重点考虑空间相关的因 素,并用拟合的半变异直接进行插值。
37
图15.20 基于指数模型的普通克里 金插值法生成的等雨量线图。
38
图15.21 图15.20中的年降水 量曲面的标准误差。
39
泛克里金法(Universal )

空间插值算法汇总

空间插值算法汇总

空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。

克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。

克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。

3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。

用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。

最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。

使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。

4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。

空间插值方法大致总结

空间插值方法大致总结

前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。

即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。

(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。

即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。

从而空间统计学应用而生。

➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。

常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。

严格来说趋势面分析并不是在一种空间数据插值法。

它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。

⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。

精度以最小二乘法进行验证。

地理信息系统课程GIS空间插值

地理信息系统课程GIS空间插值

• 对每种插值方法重复下面的步骤,实现对不 同插值方法的比较: • 从数据集中除去一个已知点的测量值; • 用剩余的点估计除去点的值; • 比较原始值和估计值,计算出估计值的预测 误差。 • 针对每个已知点,进行上述步骤,然后评价 不同插值方法的精确度。常用的评价指标是 均方根(RMS):
1 n 2 RMS ( Z Z ) i , act i ,est n i 1
公式
其数学表达式为:
v e vi vi 表示 i 点的变量值。 其中ve 表示待估点变量值,
i 点必须满足如下条件:
d ei min( d e1 , d e 2 , d en )
d ij xi x j y i y j
2
其中
2
表示点 i(xi, yi)与点 j(xj, yj)间的欧几里德距离。
2、确定性方法和地统计方法 确定性方法
– 确定性插值法是使用数学函数进行插值,以研究 区域内部的相似性(如反距离加权插值法),或 者以平滑度为基础(如径向基函数插值法)由已 知样点来创建预测表面的插值方法。 – 全局多项式插值、反距离权插值、局部多项式插 值
地统计学插值
• 基于自相关性 (测量点的统计关系),根据 测量数据的统计特征产生曲面;
RSS=
ˆt ) ( yt y
t 1 T 2
=
ˆ x )2 ˆ ( y t t
t 1
T
• 根据最小化的一阶条件,将式分别对x,y求 偏导,并令其为零,即可求得α, β
• 一阶线性平面可模拟具有单一坡度的斜 坡地形表面; • 二次曲面方程可表达山头、洼地区域; • 三次曲面则能描述较为复杂的地形曲面。
例如:在一个没有数据记录的地点,其降 水量可通过对附近气象站已知降水量记 录的插值来估算出来。

插值算法总结

插值算法总结

一:距离加权反比法插值算法1:原理:设空间待插点为P(Xp,Yp,Zp),P点邻域内有已知散乱点Q i(x i,y i,z i),i=1,2,3….n;利用距离加权反比法对P点的属性值Zp进行插值。

其插值原理是待插点的属性值是待插点邻域内已知散乱点属性值的加权平均, 权的大小与待插点与邻域内散乱点之间的距离有关, 是距离的k(0<=k<=2)(k一般取2)次方的倒数。

其中:d i为待插点与其邻域内第i个点之间的距离。

2:克里金算法设研究区域为A, 区域化变量即欲研究的物理属性变量为{Z(x)∈A},x 表示空间位置(一维、二维或三维坐标), 在采样点x i(i=1,2,…n)处的属性值(或称为区域化变量的一次实现)为Z(x i)(i=1,2,…n),则根据普通克里金插值原理, 未采样点x0处的属性值Z(x0)估计值是n个已知采样点属性值的加权和, 即;λi为待求权系数。

假设区域化变量Z(x)在整个研究区域内满足二阶平稳假设:(1):Z(x)的数学期望存在且等于常数:E[Z(x)]=m(常数)(2):Z(x)的协方差Cov(x i,x j)存在,且只与两点之间的相对位置有关。

或满足本征假设(3)E[Z(x i)-Z(x j)]=0.(4)增量的方差存在且平稳:Var[Z(x i)-Z(x j)]= E[Z(x i)-Z(x j)]2经过无偏性要求:经推到可得:。

在无偏条件下使得估计方差达到最小,即其中:u 是拉格朗日算子。

可以得到求解权系数λi (i=1,2…n )的方程组:求出诸权系数λi (i=1,2…n )后,就可求出位采样点x 0处的属性值Z *( x 0).上述求解λi (i=1,2…n )的方程中的Cov (x i ,x j )若用变异函数表示时,其形式为:变异函数的定义为:由克里金插值所得的方差为:或。

空间插值方法

空间插值方法


数据拟合问题就是根据若干参考点上的已知值求出待定点 上(未知点)的研究值。数据拟合问题通常可分为插值问 题和光顺逼近问题。 插值问题的解要求严格经过已知量测点,而光顺逼近问题 的解虽不要求严格经过已知点,但它要求在某种约束条件 下(比如最上 乘意义下 最小曲面能或最小粗糙度意义 下(比如最上二乘意义下、最小曲面能或最小粗糙度意义 下)达到整体逼近效果。
6/21/2010
空间插值方法
第6讲 空间插值方法及 TIN/TEN构建算法

6.1 问题的提出 6.2 空间数据插值方法概述 6.3 几种空间数据插值方法原理
6.1 空间插值问题的提出

6.2 空间数据插值方法概述

GIS在实际应用过程中,很多情况下,比如采样密度不够、 曲线与曲面光滑处理、空间趋势预测、采样结果的可视化 等,必须对空间数据进行插值和拟合,因此空间数据插值 是GIS数据处理的一项重要任务。其主要目的是根据一组 已知的离散数据,按照某种数学关系推求其他未知点和未 知区域的数据的过程。
Delauny三角化方法自提出后并未引起足够多 的重视,到了20世纪80年代才开始研究这个算 法,目前比较有效的算法有:

分治算法 逐点加入法 生长算法 凸壳法

分治算法

分治算法的基本思想是一个递归思想,把点集划分到足够小, 使其易于生成三角网,然后把子集中的三角网合并生成最终 的三角网。 逐点加入法有两个基本步:1.定位,找到包含新加点的三角 形;2.更新,形成新的三角形。 生长法从第一个DT开始,而后由三角形边逐步形成新的DT。 如果二维上的任意一点对应到三维点,可以计算出提升点的 凸壳,除去朝上的凸壳面,剩下的朝下的面就是原始点的DT (这个关系适合于任意n维)。

空间插值——精选推荐

空间插值——精选推荐

γ(t) =
τ2
+
σ2t2 1+ϕt2
if t > 0
0
otherwise
21/51
空间插值
对应的协方差函数如下:
C(t) =
σ2(1

t2 1+ϕt2
)
if t > 0
τ2 + σ2 otherwise
22/51
空间插值
7)小波(Wave)
γ(t) =
τ2
+
σ2(1

sin(ϕt) )
ϕt
if t > 0
7/51
空间插值
变异函数满足负定条件。对任意位置集合s1, · · · , sn,任意
的满足
n =1
=
0的常数1,
·
·
·
,
n,则
1
jγ(s − sj) = E
j(Y(s) − Y(sj))2
j
2 j
= −E
j Y (s )Y (sj )
j
= −E[ Y(s)]2 ≤ 0.
8/51
空间插值
3、 各向同性(isotropy)
26/51
空间插值
对应的协方差函数如下:
C(t) =
σ
2(2 2−1
tϕ) ()
K
(2
τ2 + σ2
tϕ)
if t > 0 otherwise
= 3/ 2时,C(t) = σ2(1 + ϕt) exp(−ϕt), t > 0。
27/51
空间插值
4、 变异函数的估计 一个通常的经验变异函数的估计是
空间插值

空间插值模型的评价与对比

空间插值模型的评价与对比

空间插值模型的评价与对比空间插值是地理信息科学中重要的研究领域,它通过利用已知的空间数据点来估计未知位置的值。

空间插值模型的评价与对比对于提高空间数据的精确性和可靠性至关重要。

本文将探讨空间插值模型的评价方法,并对比常用的插值算法。

一、评价空间插值模型的指标1. 精度指标精度是评价插值模型的重要指标之一。

常用的精度指标包括均方根误差(RMSE)、平均绝对误差(MAE)和平均百分比误差(MAPE)。

RMSE衡量了观测值与插值值之间的差异,值越小表示模型精度越高;MAE计算了观测值与插值值的绝对差异的平均值,同样,值越小表示模型精度越高;MAPE则用百分比表示了观测值与插值值的误差程度,同样,值越小表示模型精度越高。

2. 空间自相关指标空间自相关指标可以反映插值结果的空间分布特征。

其中,Moran's I和Geary's C是常用的空间自相关指标。

Moran's I衡量了观测值与其邻近观测值之间的空间相关性,值介于-1和1之间,其中正值表示正相关,负值表示负相关;Geary's C则衡量了观测值与其邻近观测值之间的差异,值越接近1表示空间自相关性越强。

二、常用的插值算法对比1. 克里金插值法克里金插值法是一种基于统计学原理的插值方法,它通过对已知数据点的空间关系进行分析,建立空间变异模型,从而对未知位置进行估计。

克里金插值法具有较好的精度和稳定性,但对于大规模数据集计算较为耗时。

2. 反距离加权插值法反距离加权插值法是一种简单而常用的插值方法,它假设未知位置的值与其邻近已知点的距离成反比。

该方法简单易懂,计算速度较快,但对于稀疏数据集和局部变异性较大的情况下,插值结果可能较差。

3. 全局插值法全局插值法是一种基于全局模型的插值方法,如径向基函数插值(RBF)和普通克里金插值。

全局插值法通过对整个数据集进行拟合,建立全局模型来估计未知位置的值。

这种方法适用于数据集较为均匀的情况,但对于大规模数据集计算较为耗时。

地理空间数据分析中的空间插值技术的使用教程

地理空间数据分析中的空间插值技术的使用教程

地理空间数据分析中的空间插值技术的使用教程在地理空间数据分析中,空间插值技术被广泛应用于填充缺失值、补齐网格数据、生成等高线图等任务中。

本文将介绍空间插值技术的基本原理、常用方法以及使用教程,以帮助读者更好地理解和运用这一技术。

一、空间插值技术的基本原理空间插值是通过已知的观测点得出未知位置的属性值的一种方法。

它基于空间相关性的假设,即临近点的属性值相似性较高。

根据这个假设,空间插值方法可以通过在观测点之间进行合理的插值推断来得出未知点的属性值。

二、常用的空间插值方法1. 反距离加权插值(IDW)反距离加权插值是一种简单且常用的插值方法。

它根据观测点和插值点的距离,对观测点进行加权计算,距离越近的点权重越大。

该方法适用于局部空间变异性较大且存在离散数据的情况。

2. 克里金插值(Kriging)克里金插值是一种基于泛函高斯随机场理论的空间插值方法。

它考虑了空间数据的自相关性和空间变异性,能够更好地描述空间数据的复杂性。

克里金插值方法通过构建半变异函数和克里金方程,对观测点进行插值推断。

3. 三角网插值(TIN)三角网插值将空间数据进行三角化处理,在每个三角形内进行插值。

它适用于不规则分布的观测点和空间数据边界不规则的情况。

通过分割空间为连续的三角形,可生成连续的等高线图等。

4. 其他插值方法除了上述常用的插值方法外,还有较多的其他插值方法可供选择。

例如径向基函数插值(RBF)、样条插值(Spline)等。

选择合适的插值方法需要根据具体的数据特征和分析目标进行。

三、空间插值技术的使用教程以下是空间插值技术的使用教程,以反距离加权插值和克里金插值为例。

1. 反距离加权插值(IDW)的使用教程(1)使用ArcGIS等地理信息系统软件打开需要进行插值的地理空间数据。

(2)选择反距离加权插值工具。

(3)根据自己的需求设置插值参数,如距离权重指数、邻近点数量等。

(4)开始插值计算,待计算完成后得到插值结果。

2. 克里金插值的使用教程(1)使用克里金插值软件,如Surfer、GS+等,打开需要进行插值的地理空间数据。

关节空间轨迹的插值计算

关节空间轨迹的插值计算

关节空间轨迹的插值计算关节空间轨迹的插值计算是指根据给定的关节空间点集,通过插值算法计算出连续的关节空间轨迹。

这在机器人运动学和路径规划中是一个重要问题。

下面将介绍几种常用的插值方法。

1. 线性插值:线性插值是最简单的插值方法之一。

假设有两个关节空间点A和B,我们可以通过线性插值来计算它们之间的关节空间轨迹。

具体做法是将关节空间轨迹分为若干段,每段之间的关节空间点根据时间进行线性插值。

线性插值的优点是简单易理解,计算速度快。

但是由于插值结果是一条直线,无法满足复杂的路径要求。

2. 二次插值:二次插值是一种更加平滑的插值方法。

它假设关节空间轨迹是一个二次曲线,可以通过三个相邻的关节空间点来确定。

具体做法是根据给定的三个点,使用二次函数来表示路径,然后再根据路径的参数化形式计算出关节角度。

二次插值的优点是插值结果光滑,相比线性插值更适合实际机器人运动。

3. 样条插值:样条插值是一种更加灵活的插值方法。

它假设关节空间轨迹是由多段特定形状的曲线拼接而成。

具体做法是将关节空间轨迹划分为若干小段,每段之间拼接成一条曲线。

在每个小段内,通常使用三次多项式函数来表示。

样条插值的优点是可以通过控制拼接点的位置和曲线形状来满足不同的路径要求。

但是由于样条插值需要计算大量的参数来确定曲线形状,在计算量上较大。

4. 逆运动学插值:逆运动学插值是一种特殊的插值方法,适用于已知起点和终点的运动轨迹,而不是在关节空间定义的轨迹。

逆运动学插值的目的是根据起点和终点在笛卡尔坐标系中的坐标,计算出机器人每个关节的角度,从而使得机器人能够从起点运动到终点。

逆运动学插值的难点在于需要解决逆运动学问题,即通过关节角度计算末端执行器在笛卡尔坐标系中的位置。

综上所述,关节空间轨迹的插值计算可以使用线性插值、二次插值、样条插值和逆运动学插值等方法。

选择哪种方法要根据实际需求来确定。

在实际应用中,通常需要综合考虑插值结果的光滑度、计算复杂度和路径要求等因素。

空间分析空间插值与地统计

空间分析空间插值与地统计


E(X) xp(x)dx
i1
– 方差:二阶中心矩
D (X)E[XE(X)]2
– 协方差:二阶混合中心矩
C ov(X,Y)E [XE(X)][YE(Y)]
=E [X Y 整理] pptE [X]E [Y]
40
• 协方差函数
类似地,当Z(x)是区域化变量时,对于任意 两点si和sj ,空间随机过程的协方差函数为:
区域化变量,亦称区域化随机变量, Matheron(1963)将它定义为以空间点x的三 个直角坐标为自变量的随机场 Z(x)Z(xu,xv,xw)
区域化变量具有两个最显著,也是最重要 的特征:随机性和结构性。
整理ppt
34
随机变量
与时间有关的 随机函数
随机函数
带有多个(2个以上)自 变量的随机函数
点附近的6个数据点来计算方程式系数。
整理ppt
14
Deterministic Solutions
Predicted Model
Measured
First Order Polynomial Interpolation
Second Order (third, fourth, etc.) Polynomial Interpolation
36
区域化变量的功能:
由于区域化变量是一种随机函数,因而能同时反 映空间变量的结构性和随机性。 一方面,当空间点 x 固定后,Z(x)就是一个随
机变量,这体现了其随机性。 另一方面,在空间两个不同点 x 与 x+h 处的区
域化变量值具有某种程度的相关性,这体现了 其结构性。
整理ppt
37
区域化变量的组成部分
• 双三次多项式(样条函数)内插法是规则格网插 值的常用方法之一。这种方法通过一系列曲面片 段来拼接地形表面,最终得到一个1阶、2阶连续 的表面。该方法属于局部插值,计算负担中等; 对于平滑表面拟合效果最好,对于起伏的表面拟 合效果最差。

空间插值方法对比整理版

空间插值方法对比整理版

优点
能够处理非线性数据,对局部变化敏 感且具有较好的平滑效果。
缺点
计算复杂度较高,需要选择合适的核 函数和参数。
03
全局插值方法对比
线性插值
01
02
03
定义
线性插值是利用两点之间 的直线关系来估计未知点 的值。
公式
$z(x) = z(x_0) + frac{(x x_0) times (z(x_1) z(x_0))}{x_1 - x_0}$
06
各种方法的优缺点比较
计算复杂度
全局插值方法
计算复杂度较低,适用于大规模数据集,但牺牲了局部拟合 精度。
局部插值方法
计算复杂度较高,适用于小规模数据集,能更好地拟合局部 变化。
预测精度
全局插值方法
预测精度相对较低,适用于对全局趋 势的预测。
局部插值方法
预测精度较高,适用于对局部细节的 预测。
存在问题
尽管现有的空间插值方法取得了一定的成果,但在实际应用中仍存在一些问题。例如,对于复杂地形 和地貌的插值效果不够理想,插值结果的稳定性和可靠性有待提高。此外,现有方法在处理大规模数 据时效率较低,不能满足实时性要求。
未来研究方向与展望
研究方向
为了解决现有问题,未来的研究可以从以下几个方面展开:一是开发更为智能、自适应的插值算法,以提高 插值结果的稳定性和可靠性;二是研究如何将机器学习、深度学习等先进技术应用于空间插值中,以提高插 值的精度和效率;三是探索如何利用高性能计算技术,如并行计算、云计算等,实现大规模数据的快速处理。
适用于各种类型的空间数据,尤其适 用于具有空间结构性和随机性的数据。
特点
考虑了空间数据的结构性和随机性, 能够较好地反映空间数据的变异特征, 插值结果较为准确。

空间插值方法

空间插值方法

空间插值方法1.反距离权重插值:通过与样本点距离大小赋予权重,距离近的样本点被赋予较大的权重,受该样本点的影响越大,同时可以限制插值点的个数、范围,通过幂值来决定样本点对插值点的影响程度,灵活性大,准确性高,但不太适用规则排列的插值点2.克里金插值:克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。

它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。

使用克里金插值需确定半变异函数的类型、步长、步数。

对于这种方法,原始的输入点可能会发生变化。

在数据点多时,结果更加可靠。

该插值方法对规则排列、较密集的点插值较适用,而离散的插值点则需进行多次调试才可达到较为理想的效果3.自然邻域插值:原理是构建voronoi多边形,也就是泰森多边形。

首先将所有的空间点构建成voronoi多边形,然后将待求点也构建一个voronoi多边形,这样就与圆多边形有很多相交的地方,根据每一块的面积按比例设置权重,这样就能够求得待求点的值了。

该方法不是通过数据模型来进行插值,不需要设置多于的参数,简便但不灵活,不适合离散点进行插值,因为会形成不规则插值边界,但插值结果相对符合实际数值、准确,适合规则排列、较密集的点插值。

4.样条函数插值:这种方法使用样条函数来对空间点进行插值,它有两个基本条件:1.表面必须完全通过样本点2.表面的二阶曲率是最小的。

插值主要受插值类型(Regularized 或Tension)和weight值的影响,一般Regularize 插值结果比Tension插值结果光滑,在Regularized Spline 插值中,weight 值越高生成的表面越光滑,Tension Spline 插值则相反;适合那些空间连续变化且光滑的表面的生成。

该方法虽可生成平滑的插值结果,但其结果会在原有样点值进行数值延伸,产生于实际不符的结果,不建议一般插值使用。

空间插值方法

空间插值方法

7.空间插值7.1空间插值的概念和理论空间插值常用于将离散点的测量数据转换为连续的数据曲面,以便与其它空间现象的分布模式进行比较,它包括了空间内插和外推两种算法。

空间内插算法是一种通过已知点的数据推求同一区域其它未知点数据的计算方法;空间外推算法则是通过已知区域的数据,推求其它区域数据的方法。

在以下几种情况下必须作空间插值:1)现有的离散曲面的分辨率,象元大小或方向与所要求的不符,需要重新插值。

例如将一个扫描影象(航空像片、遥感影象)从一种分辨率或方向转换到另一种分辨率或方向的影象。

2)现有的连续曲面的数据模型与所需的数据模型不符,需要重新插值。

如将一个连续的曲面从一种空间切分方式变为另一种空间切分方式,从TIN到栅格、栅格到TIN或矢量多边形到栅格。

3)现有的数据不能完全覆盖所要求的区域范围,需要插值。

如将离散的采样点数据内插为连续的数据表面。

空间插值的理论假设是空间位置上越靠近的点,越可能具有相似的特征值;而距离越远的点,其特征值相似的可能性越小。

然而,还有另外一种特殊的插值方法——分类,它不考虑不同类别测量值之间的空间联系,只考虑分类意义上的平均值或中值,为同类地物赋属性值。

它主要用于地质、土壤、植被或土地利用的等值区域图或专题地图的处理,在“景观单元”或图斑内部是均匀和同质的,通常被赋给一个均一的属性值,变化发生在边界上。

7.2空间插值的数据源连续表面空间插值的数据源包括:●摄影测量得到的正射航片或卫星影象;●卫星或航天飞机的扫描影象;●野外测量采样数据,采样点随机分布或有规律的线性分布(沿剖面线或沿等高线);●数字化的多边形图、等值线图;空间插值的数据通常是复杂空间变化有限的采样点的测量数据,这些已知的测量数据称为“硬数据”。

如果采样点数据比较少的情况下,可以根据已知的导致某种空间变化的自然过程或现象的信息机理,辅助进行空间插值,这种已知的信息机理,称为“软信息”。

但通常情况下,由于不清楚这种自然过程机理,往往不得不对该问题的属性在空间的变化作一些假设,例如假设采样点之间的数据变化是平滑变化,并假设服从某种分布概率和统计稳定性关系。

ArcGIS中几种空间插值方法

ArcGIS中几种空间插值方法

ArcGIS 中几种空间插值方法1. 反距离加权法(IDW )ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比.可表示为:1111()()n nip p i i i i Z Z D D ===∑∑其中Z 是插值点估计值,Z i (i=1Λn )是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差.2。

多项式法多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。

在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。

前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况.3。

样条函数内插法样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。

样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。

4.克里格插值法克里格法是GIS 软件地理统计插值的重要组成部分。

这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。

这种连续性变化的空间属性称为“区域性变量",可以描述象气压、高程及其它连续性变化的描述指标变量。

地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。

Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。

空间内插方法比较

空间内插方法比较

空间内插方法比较一、本文概述空间内插方法是一种在地理信息系统(GIS)和遥感技术中广泛使用的技术,用于根据已知的数据点推测未知区域的值。

这种方法在环境科学、气象学、城市规划、资源管理等众多领域都有着重要的应用。

本文旨在探讨和比较几种常见的空间内插方法,包括反距离权重法(IDW)、克里金插值法(Kriging)、自然邻点插值法(Natural Neighbors)以及多项式插值法等。

我们将首先简要介绍这些空间内插方法的基本原理和实施步骤,然后通过一个具体的案例或数据集来比较它们的性能。

我们将评估插值结果的精度、平滑度以及在不同应用场景下的适用性。

我们还将讨论这些方法的优缺点,以便读者能够根据自己的需求选择合适的空间内插方法。

通过本文的阅读,读者将对空间内插方法有更加深入的理解,能够掌握其基本原理和实施步骤,了解不同方法之间的差异和优缺点,并能够在实践中选择合适的空间内插方法。

二、空间内插方法概述空间内插是一种重要的地理信息系统(GIS)技术,用于估算在已知数据点之间或之外的未知地理位置的值。

它是通过分析和理解空间数据的分布模式,使用数学算法来预测和模拟这些模式在空间上的变化。

这种技术广泛应用于各种领域,包括环境科学、气象学、地质学、城市规划等。

空间内插方法大致可以分为两类:确定性方法和统计性方法。

确定性方法,如反距离权重法(IDW)、样条函数法(Spline)等,主要基于空间数据的物理特性和已知点之间的空间关系进行插值。

这类方法通常假设空间数据具有某种连续性和平滑性,通过最小化插值误差或最大化平滑度来得到预测值。

统计性方法,如克里金插值(Kriging)、协方差法等,则更多地依赖于对空间数据分布模式的统计分析和理解。

这类方法认为空间数据不仅具有空间相关性,而且可能存在某种潜在的随机性。

因此,它们通过构建和拟合空间统计模型,如变异函数或协方差函数,来估算未知位置的值。

每种空间内插方法都有其独特的优缺点和适用范围。

关节空间轨迹的插值计算

关节空间轨迹的插值计算

关节空间轨迹的插值计算关节空间轨迹的插值计算是指在给定初末状态和运动时间的情况下,通过插值算法计算出一系列连续的关节位置,使得机器人能够平滑地运动到目标位置。

这种插值计算是机器人运动规划中的重要问题,对于确保机器人运动的流畅性和运动速度的控制具有重要意义。

首先介绍线性插值法。

线性插值法是指在给定的两个关节位置之间进行线性插值,即将关节运动分为若干个小段,每一小段按照匀速直线运动进行插值。

具体计算步骤如下:1.通过给定的初末状态和时间计算出每个关节的速度,即关节位置随时间的导数。

2.将给定时间分割成若干小段,每一小段的时间长度相等。

3.根据关节速度和小段的时间长度,计算出每一小段的关节位置变化量。

4.累加每一小段的关节位置变化量,得到整个运动过程的关节位置轨迹。

线性插值法的优点是计算简单,但是其生成的插值轨迹存在速度突变的问题,可能造成机器人运动时的抖动,因此在实际应用中往往配合速度平滑的控制方法使用。

除了线性插值法,多项式插值法也是常用的关节空间轨迹插值算法。

多项式插值法通过构建一个多项式函数,使得关节位置随时间的函数具有一定的光滑性。

具体计算步骤如下:1.根据给定的初末状态和时间,构建一个关节位置的多项式函数。

2.求解多项式函数的系数,使得多项式函数满足给定的初末状态。

3.对多项式函数求导,得到关节速度随时间的函数。

4.根据给定的时间段和间隔,计算出每个时间点的关节位置。

多项式插值法的优点是生成的插值轨迹光滑性较好,能够避免速度突变的问题,但是其计算较为复杂,且在高阶多项式的情况下容易出现震荡现象。

此外,还有一种常用的关节空间轨迹插值算法是样条插值法。

样条插值法是通过构建一系列子段的插值曲线,使得整个关节运动过程具有较高的光滑性。

具体计算步骤如下:1.将给定的初末状态和时间分割成多个小段。

2.在每个小段内,构建插值曲线,并满足相邻小段之间的平滑条件。

3.根据插值曲线的参数方程,计算出每个时间点的关节位置。

空间插值算法汇总

空间插值算法汇总

空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。

克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。

克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。

3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。

用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。

最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。

使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。

4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间插值算法:
1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。

克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。

克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。

3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。

用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。

最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。

使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。

4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。

你可以用几个选项来确定你需要的趋势面类型。

多元回
归实际上不是插值器,因为它并不试图预测未知的Z 值。

它实际上是一个趋势面分析作图程序。

使用多元回归法时要涉及到曲面定义和指定XY的最高方次设置,曲面定义是选择采用的数据的多项式类型,这些类型分别是简单平面、双线性鞍、二次曲面、三次曲面和用户定义的多项式。

参数设置是指定多项式方程中X 和Y组元的最高方次。

5、径向基本函数法(Radial Basis Function)径向基本函数法是多个数据插值方法的组合。

根据适应你的数据和生成一个圆滑曲面的能力,其中的复二次函数被许多人认为是最好的方法。

所有径向基本函数法都是准确的插值器,它们都要为尊重你的数据而努力。

为了试图生成一个更圆滑的曲面,对所有这些方法你都可以引入一个圆滑系数。

你可以指定的函数类似于克里金中的变化图。

当对一个格网结点插值时,这些个函数给数据点规定了一套最佳权重。

6、谢别德法(Shepard's Method)谢别德法使用距离倒数加权的最小二乘方的方法。

因此,它与距离倒数乘方插值器相似,但它利用了局部最小二乘方来消除或减少所生成等值线的"牛眼"外观。

谢别德法可以是一个准确或圆滑插值器。

在用谢别德法作为格网化方法时要涉及到圆滑参数的设置。

圆滑参数是使谢别德法能够象一个圆滑插值器那样工作。

当你增加圆滑参数的值时,圆滑的效果越好。

7、三角网/线形插值法(Triangulation with Linear Interpolation)三角网插值器是一种严密的插值器,它的工作路线与手工绘制等值线相近。

这种方法是通过在数据点之间连线以建立起若干个三角形来工作的。

原始数据点的连结方法是这样:所有三角形的边都不能与另外的三角形相交。

其结果构成了一张覆盖格网范围的,由三角形拼接起来的网。

每一个三角形定义了一个覆盖该三角形内格网结点的面。

三角形的倾斜和标高由定义这个三角形的三个原始数据点确定。

给定三角形内的全部结点都要受到该三角形的表面的限制。

因为原始数据点被用来定义各个三角形,所以你的数据是很受到尊重的。

8.自然邻点插值法(Natural Neighbor)自然邻点插值法(NaturalNeighbor)是Surfer7.0才有的网格化新方法。

自然邻点插值法广泛应用于一些研究领域中。

其基本原理是对于一组泰森(Thiessen)多边形,当在数据集中加入一个新的数
据点(目标)时,就会修改这些泰森多边形,而使用邻点的权重平均值将决定待
插点的权重,待插点的权重和目标泰森多边形成比例[9]。

实际上,在这些多边形中,有一些多边形的尺寸将缩小,并且没有一个多边形的大小会增加。

同时,自然邻点插值法在数据点凸起的位置并不外推等值线(如泰森多边形的轮廓线)。

9.最近邻点插值法最近邻点插值法(NearestNeighbor)又称泰森多边形方法,泰森多边形(Thiesen,又叫Dirichlet或Voronoi多边形)分析法是荷兰气象学家A.H.Thiessen提出的一种分析方法。

最初用于从离散分布气象站的降雨量数
据中计算平均降雨量,现在GIS和地理分析中经常采用泰森多边形进行快速
的赋值[2]。

实际上,最近邻点插值的一个隐含的假设条件是任一网格点p(x,y)的属性值都使用距它最近的位置点的属性值,用每一个网格节点的最邻点值
作为待的节点值[3]。

当数据已经是均匀间隔分布,要先将数据转换为SURFER 的网格文件,可以应用最近邻点插值法;或者在一个文件中,数据紧密完整,只
有少数点没有取值,可用最近邻点插值法来填充无值的数据点。

有时需要排
除网格文件中的无值数据的区域,在搜索椭圆(SearchEllipse)设置一个值,对无
数据区域赋予该网格文件里的空白值。

设置的搜索半径的大小要小于该网格文件数据值之间的距离,所有的无数据网格节点都被赋予空白值。

在使用最
近邻点插值网格化法,将一个规则间隔的XYZ数据转换为一个网格文件时,可
设置网格间隔和XYZ数据的数据点之间的间距相等。

最近邻点插值网格化法没有选项,它是均质且无变化的,对均匀间隔的数据进行插值很有用,同时,它
对填充无值数据的区域很有效。

10.Moving Average(移动平均法)移动平均法是用一组最近的实际数据值来预测未来一期或几期内公司产品的需求量、公司产能等的一种常用方法。

移动平均法适用于即期预测。

当产品需求既不快速增长也不快速下降,且不存
在季节性因素时,移动平均法能有效地消除预测中的随机波动,是非常有用的。

移动平均法根据预测时使用的各元素的权重不同移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。

因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。

11.Local Polynomial(局部多项式法)
12.Modified Shepard's Method(改进谢别德法)。

相关文档
最新文档